
Chapter 11
Robust Observer Based Model Predictive
Control of a 3-DOF Helicopter System

Yujia Zhai

Abstract Helicopter systems are characterized by highly nonlinear dynamics,
multiple operating regions, and significant interaction among state variables. In
this paper, an observer based model predictive control (MPC) scheme with suc-
cessive linearization is presented, for a 3 degree of freedom (DOF) helicopter
system. All control simulations were performed under the conditions of noisy
measurements. To illustrate the advantage by using unscented Kalman filter (UKF)
as the observer, the performance of UKF based MPC is compared with those of
MPC algorithms using linear filters and extended Kalman filter (EKF). The sim-
ulation results have shown that for this application the UKF-based MPC has
superior performance, in terms of the disturbance rejection and set-point tracking.

Keywords Nonlinear systems � Helicopter dynamics � MIMO systems � Model
predictive control � Kalman filter

11.1 Introduction

Helicopters have severe nonlinearities and open-loop unstable dynamics as well as
significant cross-coupling between their control channels, which make the control
of such multiple-input multiple-output (MIMO) systems a challenging task.
Conventional approaches to helicopter flight control involve linearization of these
nonlinear dynamics about a set of pre-selected equilibrium conditions or trim
points within the flight envelop [6]. Based on the obtained linear models, classical
single-input single-output (SISO) techniques with a PID controller are widely used
[7, 9, 18] Of course, this approach will require multi-loop controllers, which
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makes their design inflexible and difficult to tune. Hence, the development of
MIMO controller design approaches has received more and more attention. For
example, successful implementation of LQR design for a helicopter system has
been presented in [2]. Also, Koo and Sastry [8] used dynamical sliding mode
control to stabilize the altitude of a nonlinear helicopter model in vertical flights.
Later, neural network based inverse control of an aircraft system was presented in
[15]. More MIMO control approaches for helicopter maneuver are presented in
[11, 13, 20, 21].

In the past two decades, model predictive control has been widely used in
industrial process control [3, 10, 16]. With the development of modern micro-
processors, it has been possible to solve the optimization problems associated with
MPC online effectively, which makes MPC applicable to systems with fast
dynamics [23, 24]. Many researchers utilized linear MPC to control helicopter
systems [12, 22]. As the linearized model is valid only for small perturbations from
its equilibrium or trim point, the control performance can degrade severely if the
helicopter does not operate around the design trim point. The applications of MPC
by using nonlinear internal model (NMPC) directly can be found in petrochemical
industry due to the slow update rate of control input. The time limitation for the
necessary online computation does not need to be taken into consideration. For a
helicopter system, the equations which accurately describe the nonlinear dynamics
can be derived by the knowledge of aerodynamics. However, a typical rate on in
helicopter control is every 0.1 s, and given such small time interval, it is very
difficult to for micro-controller to produce a control input using NMPC scheme.
This study is principally concern with the control of a 3DOF helicopter using
model predictive control scheme. To make the control scheme have better per-
formance and meet online computational requirement, successive linearization
(SL) on a known nonlinear helicopter model is applied to obtain the linear internal
model for MPC. The harsh operation environment of helicopter is a challenge to
the stability of control system. For a control scheme based on the helicopter model
with high order, the derivatives terms, such as angle velocity and acceleration, are
usually obtained by analytical or numerical differentiation, which would amplify
the effects of measurement noise. To increase the stability of MPC scheme, the
unscented Kalman filter is employed to estimate the system states and disturbances
from the available measurements. To demonstrate the advantage brought by UKF,
the performance of proposed control scheme is compared with those achieved by
other filter based MPC, such as linear filter, extended Kalman filter.

This paper is organized as follows. In Sect. 11.2, the mathematical model of 3-
DOF helicopter system used in this work is introduced. The MPC with successive
linearization and state estimation algorithms are covered in Sect. 11.3. In
Sect. 11.4, simulation results are presented showing the performance of different
observers based MPC for the control on elevation and travel of the 3-DOF heli-
copter. Section 11.5 concludes this paper with a few closing remarks.
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11.2 Helicopter System Dynamics

It is economical for both industrial and academic research to investigate the
effectiveness of an advanced control system before putting it into practical
application. The research presented in this paper is based on a mathematical model
of a 3-DOF lab helicopter system from Quanser Consulting, Inc. The 3-DOF
helicopter consists of a base upon which an arm is mounted. The arm carries the
helicopter body on one end and a counter weight on the other end. The arm can
pitch about an elevation axis as well as swivel about a vertical (travel) axis.
Encoders that are mounted on these axes allow measuring the elevation and travel
of the arm. The helicopter body is mounted at the end of the arm and is free to
swivel about a pitch axis. The pitch angle is measured via a third encoder [2].

The system dynamics can be described by the following highly nonlinear state
model [2]:

_x ¼ FðxÞ þ ½G1ðxÞ;G2ðxÞ�u ð11:1Þ

where

x ¼ ½ e _e h _h / _/ �T

u ¼ ½Vf Vb �T

FðxÞ ¼

_e
p1 cos eþ p2 sin eþ p3 _e

_h
p5 cos hþ p6 sin hþ p7

_h

_/

p9
_/

2
666666664

3
777777775

G1 xð Þ ¼ ½ 0; p4cosh; 0; p8; 0; p10 sin h �T

G2 xð Þ ¼ ½ 0; p4cos h; 0; �p8; 0; p10 sin h �T

p1 ¼ � Mf þMb

� �
gLa þMcgLc

� �
=Je p2 ¼ � Mf þMb

� �
gLa tan daþMcgLc tan dc

� �
=Je

p3 ¼ �ge=Je p4 ¼ KmLa=Je

p5 ¼ � Mf þMb

� �
gLh

� �
=Jh p6 ¼ � Mf þMb

� �
gLh tan dh=Jh

P7 ¼ �gh=Jh p8 ¼ KmLh=Jh

P9 ¼ �g/J/ p10 ¼ �KmLa=J/

da ¼ tan�1 Ld þ Leð Þ=Laf g dc ¼ tan�1 Ld=Lcf g dg ¼ tan�1Le=Lh

and, the symbols used above are model parameters.
In this research, a model predictive control algorithm with successive lineari-

zation is investigated for the control of the elevation and travel in the helicopter
system by manipulating the voltages applied to the front and back motors.
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Therefore, elevation angle, e, and travel angle, /, are chosen as the controlled
variables, i.e.,

y ¼ e; /½ �T ð11:2Þ

and the two voltages, Vf and Vb, are chosen as the manipulated variables, i.e.,

u ¼ Vf ; Vb

� �T ð11:3Þ

For such dynamical system with severe nonlinearities, the direct MIMO control
is challenging; however, this challenge can be overcome using successive line-
arization as described in the next sections.

11.3 Model Predictive Control Algorithm

In [5], it has been shown that the nonlinear model described in Sect. 11.2 captures
the essential dynamic behavior of a lab helicopter, and therefore, it is used in this
work to describe the Quanser lab helicopter system and to design the MPC
scheme.

11.3.1 Linearized Model by Successive Linearization

The nonlinear system in Sect. 11.2 can be written as:

_x ffi f xk; ukð Þ þ A x� xkð Þ þ B u� ukð Þ ð11:4Þ

y ffi g xk; ukð Þ þ C x� xkð Þ þ D u� ukð Þ ð11:5Þ

where,

A ¼ of

ox

����
xk ;uk

;B ¼ of

ou

����
xk ;uk

C ¼ og

ox

����
xk ;uk

;D ¼ og

ou

����
xk;uk

are matrices of the appropriate sizes. At a given time sample tk, xk and uk represent
the current state and control vectors, respectively. Using Eqs. (11.1), (11.4),
(11.5), these system matrices can be obtained as follows:
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A ¼

0 1 0 0 0 0

�p1 sin eþ p2 cos e p3 �p4 sin h Vf þ Vb

� �
0 0 0

0 0 0 1 0 0

0 0 �p5 sin hþ p6 cos h p7 0 0

0 0 0 0 0 1

0 0 p10 cos h Vf þ Vb

� �
0 0 p9

2
66666664

3
77777775

ð11:6Þ

B ¼

0 0
p4 cos h p4 cos h

0 0
p8 �p8

0 0
p10 sin h p10 sin h

2
6666664

3
7777775

C ¼ 1 0 0 0 0 0
0 0 0 0 1 0

� �

D ¼ 0 0
0 0

� �

ð11:7Þ

According to Eqs. (11.6) and (11.7), at every instance, the nonlinear model can
be linearized at the current state and the control input. Then, the obtained linear
model is used in MPC scheme. The advantage of utilizing this kind of successive
linearization (SL) technique is that, the updated model can catch the change of
system dynamics, and produce accurate prediction on future behavior. MPC
scheme with SL is therefore more robust against the external disturbances. The-
oretically, MPC based on the nonlinear model in Eq. (11.1) is possible. However,
the introduction of such nonlinear model would result in nonlinear programming
(NLP) problem that need to be solved online by, for example, sequential quadratic
programming (SQP) technique that is a very computationally expensive algorithm.
Given the computational power of the micro-controllers used in this application,
the helicopter dynamics is too fast to implement such SQP technique. Therefore,
the use of a linearized model reduces the computational effort in solving the MPC
optimization problem significantly, and makes the developed control algorithm
more realistic to meet the hardware requirement of a real-time control system.

11.3.2 Model Predictive Control with Successive
Linearization

Figure 11.1 below depicts the structure of closed-loop observer based MPC on a
3DOF helicopter system, with successive linearization.

In Fig. 11.1, spk stands for the set point value at sample time tk, uk the control
input, yk the measurement and x̂k the current estimate of system states. At sample
time tk, MPC controller can obtain a linear model of system using uk and x̂k. This
linear model can be used as an internal model of a predictive controller. The model
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generates predictions of future process output over a specified prediction horizon,
which is then used to minimize the following MPC objective criterion:

min
uk

XP

i¼1
eT

y;iQey;i þ
XM

j¼1
jT RDuj; k ¼ 0; 1; . . .; M � 1 ð11:8Þ

s.t.,

uL� uk � uU

uk ¼ u tkð Þ ¼ u tð Þ; t 2 t0; tp
� �

; ey;i ¼ yi � ri;2 1;P½ �; Duj ¼ ujþ1 � uj;
j 2 1;M½ �

where M and P are the control and prediction horizons respectively, Q 2 Rne�ne

and R 2 RnDu�nDu are the weighting matrices for the output error and the control
signal changes respectively, and ne ¼ P� ny; nDu ¼ M � nu:rk 2 Rne is the output
reference vector at tk, and uL and uU are constant vectors determining the input
constraints as element-by-element inequalities [1]. By minimizing the objective
function in Eq. (11.8), the MPC algorithm generates a sequence of control inputs
uk and k ¼ 0; 1; . . .;M � 1. Then, only the first element in this control sequence is
implemented and the whole procedure is repeated at next sampling instant. In this
research, the internal model used by the model predictive controller is a linear
model that is obtained by linearizing the nonlinear helicopter model at each
sampling instant. Therefore, the optimization problem above is a standard qua-
dratic programming problem (QP) which can be solved by any modern QP solvers.
Given the medium size of optimization problem in this application, the active set
method is used here to efficiently solve this online optimization problem [4, 14].

11.3.3 State Estimation

In the 3DOF helicopter system, two encoders mounted on these axes allow for
measuring the elevation and travel of the arm. The helicopter body is mounted at

Fig. 11.1 Structure of model predictive control with observer
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the end of the arm. The helicopter body is free to swivel about a ‘‘pitch’’ axis. The
pitch angle is measured via a third encoder. Therefore, the measurement model is

ym ¼ Hx with H ¼

1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

2
6666664

3
7777775

ð11:9Þ

which means only the positions of three angles—elevation e, pitch h, travel /, are

available by direct measurements. In this case, angle velocities—_e _h _/ need to
be estimated to have a full-state vector for MPC.

11.3.3.1 Unscented Kalman Filter

The unscented Kalman filter used in this study is a straightforward extension of the
unscented transformation (UT) to the recursive estimation on system states, where
the system state vector is augmented as the concatenation of the original state and

noise variables: Xa
k ¼ xT

k vT
k nT

k

� �T
. Then, the UT sigma point selection scheme

is applied to this new augmented state vector to calculate the corresponding sigma
matrix, Xa

k . The UKF algorithm is given as following:
Initialize with

x̂0 ¼ E x0½ � ð11:10Þ

P0 ¼ E x0 � x̂0ð Þ x0 � x̂0ð ÞT
� �

ð11:11Þ

x̂a
0 ¼ E xa½ � ¼ x̂T

0 0 0
� �T ð11:12Þ

Pa
0 ¼ E ½ xa

0 � x̂a
0

� �
xa

0 � x̂a
0

� �T � ¼
P0 0 0
0 RV 0
0 0 Rn

2
4

3
5 ð11:13Þ

For k 2 1; . . .;1f g
Calculate sigma points:

Xa
k�1 ¼ x̂a

k�1 x̂a
k�1 þ c

ffiffiffiffiffiffiffiffiffiffi
Pa

k�1

p
x̂a

k�1 � c
ffiffiffiffiffiffiffiffiffiffi
Pa

k�1

ph i
ð11:14Þ

Time update:

Xx
k k�1j ¼ F Xx

k k�1j ; uk�1 Xv
k k�1j

h i
ð11:15Þ

x̂�k ¼
X2L

i¼0
W mð Þ

i Xx
i;k k�1j ð11:16Þ
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P�k ¼
X2L

i¼0
W cð Þ

i Xx
i; k k�1j � x̂�k

h i
Xx

i; k k�1j � x̂�k

h iT
ð11:17Þ

Yk k�1j ¼ H Xx
k k�1j ;Xn

k�1

h i
ð11:18Þ

ŷ�k ¼
X2L

i¼0
W mð Þ

i Yx
i;k k�1j ð11:19Þ

Measurements update equations:

P~yk~yk
¼
X2L

i¼0
W cð Þ

i Yi;k k�1j � ŷ�k
� �

Yi;k k�1j � ŷ�k
� �T ð11:20Þ

Pxkyk
¼
X2L

i¼0
W cð Þ

i Xi;k k�1j � x̂�k
� �

Yi;k k�1j � ŷ�k
� �T ð11:21Þ

Kk ¼ Pxkyk
P�1

~yk~yk
ð11:22Þ

x̂k ¼ x̂�k þ Kk yk � ŷ�k
� �

ð11:23Þ

Pk ¼ P�k � KkP~yk~yk
KT

k ð11:24Þ

where, Xa ¼ xT vT nT½ �T ; Xa ¼ Xxð ÞT Xvð ÞT Xnð ÞT
� �T

; c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ kð Þ

p
; k =

composite scaling parameter, L = dimension of augmented state, Rv = process
noise cov., Rn = measurement noise cov., Wi = weight as calculated as following:

W mð Þ
0 ¼ k

Lþ kð Þ ; W cð Þ
0 ¼

k
Lþ kð Þ þ 1� a2 þ b

� �
ð11:25Þ

W mð Þ
i ¼ W cð Þ

i ¼
1

2 Lþ kð Þf g i ¼ 1; . . .; 2L: ð11:26Þ

The constant a determines the spread of the sigma points around x and is
usually set to a small positive value. b is used to incorporate prior knowledge of
the distribution of x. For Gaussian distributions, b ¼ 2 is optimal.

The tracking performance and robustness of MPC scheme based on different
filters were investigated in this study, and would be shown next.

11.4 Results

In this work, the control algorithm described earlier is applied to the nonlinear
helicopter model using MATLAB. The voltages Vf and Vb of the two motors are
assumed to be changeable in the range 0V; 5V½ �. The nominal values of the
physical constants in the helicopter test-bed are as follows [5]:
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Je ¼ 0:86 kg m2; Jh ¼ 0:044 kg m2; J/ ¼ 0:82 kg m2;

La ¼ 0:62 m; Lc ¼ 0:44 m; Ld ¼ 0:05 m; Le ¼ 0:02 m; Lh ¼ 0:177 ;

Mf ¼ 0:69 kg; Mb ¼ 0:69 kg; Mc ¼ 1:69 kg; Km ¼ 0:5 N=V; g ¼ 9:81 m



s2;

ge ¼ 0:001 kg m2



s;¼ 0:001 kg m2=s; g/ ¼ 0:005 kg m2=s

The reference signals for the elevation and travel angles in this simulation are
changed between -20� to 20� to simulate the demands given by the pilot as shown
in Figs. 11.2, and 11.3. Also, the sampling time for control and simulation time
used are 0.1 and 200 s, respectively.

The design parameters used in MPC with successive linearization are given in
Table 11.1:

The EKF and UKF parameter are x̂0 ¼ X0 þ 10�3 10�3 10�3 10�3½
10�3 10�3�T , and P0 ¼ diag 106 106 106 106 106 106

� �
. The process

noise was not considered, which means: Q ¼ diag 0 0 0 0 0 0f g. In sim-
ulations, the sampling rate for measurement is 100 Hz that is 10 time higher than
that of control action. The measurements ARE corrupted by zero mean white noise
with covariance for the test: R ¼ diag 10�2 10�2 10�2

� �
. This is an extreme

case, in which the measurement noise on three angles is very significant, and linear
filter based MPC, and EKF based MPC all failed to guarantee the stability of this
control system. The corresponding simulation crashed after a few seconds.
However, the UKF based algorithm continues operating satisfactorily. According
to the noise magnitude, the test was completed, and the control results of UKF
based MPC are shown in Fig. 11.4.
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Fig. 11.2 Reference signal for the elevation angle
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11.5 Conclusion

This paper describes the application of observer based model predictive control
with successive linearization for a 3-DOF helicopter system. The simulation has
shown satisfactory tracking performance on elevation and travel. It was shown
that, in the presence of significant measurement noise, the UKF based MPC
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Fig. 11.3 Reference signal for the travel angle

Table 11.1 Design parameters MPCSL

Initial Conditions e ¼ h ¼ / ¼ _e ¼ _h ¼ _/ ¼ 0; Vf ¼ 1:8865; Vb ¼ 1:936

P 10
M 5
Q 10*Ip

R 0.01*IM
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Fig. 11.4 Simulation results of UKF based MPC
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performed very well on controlling such highly nonlinear and fast dynamics
helicopter system. In the proposed MPC scheme, the system robustness is
enhanced greatly by the implementation of unscented Kalman filter.
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