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    Abstract     The research efforts worldwide have established the sulphur-containing 
amino acid homocysteine (Hcy) as a potent and independent risk factor (or risk 
marker) for a number of cardiovascular, as well as central nervous system disorders. 
This vasotoxic and neurotoxic agent interferes with fundamental biological 
 processes and it is metabolized to homocysteine thiolactone, its highly reactive 
thioester. Hcy and its metabolites induced neuronal damage and cell loss through 
excitotoxicity and apoptosis. Our results showed that Hcy and Hcy thiolactone 
 signifi cantly affect neuronal cycles, EEG tracings and behavioral responses. After 
systemic administration, this naturally occurred substance led to the appearance of 
two different kinds of epileptic activity in adult rats. It has been suggested that 
Hcy thiolactone may be considered as an excitatory metabolite, capable of becom-
ing a convulsant if accumulated to a greater extent in the brain. It was also found 
that changes in Na + /K + -ATPase activity could be an important factor for the 
 establishment of epileptic focus in Hcy-treated rats. Recently, we demonstrated 
functional  involvement of NO signaling pathway in mechanisms of hyperexcitabil-
ity caused by Hcy thiolactone. Acute ethanol treatment was shown in our study to 
decrease EEG power spectra and to represent one of the factors of the exogenous 
stabilization of brain excitability. Furthermore, our preliminary results showed that 
hypermethionine diet could contribute to these effects. Developed model of Hcy 
thiolactone- induced seizures in adult rats allows further investigations of mecha-
nisms involved in Hcy's neurotoxicity and hyperexcitability.  
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6.1         Introduction 

 Within the past several decades, the efforts of researchers have identifi ed the amino 
acid homocysteine (Hcy) as a potent and independent, “new and emerging” risk 
factor for arteriosclerosis, as well as vasotoxic and neurotoxic agent involved in 
fundamental biological processes common to all cells. Therefore, it is also known 
as “cholesterol of the 21st century”. 

 Total plasma Hcy (tHcy) is defi ned as the pool of free Hcy, homocystine, Hcy-S-
S-Cys disulfi de, as well as protein-bound N- and S-linked Hcy, oxidized forms, and 
Hcy-thiolactone [ 1 – 3 ]. Under physiological conditions, less than 1 % of total Hcy 
is present in a free reduced form. About 10–20 % of total Hcy is present in different 
oxidized forms such as Hcy-Cys and homocystine, the Hcy dimer. Plasma tHcy 
levels are infl uenced by age, sex and genetic and lifestyle factors, as well as various 
pathologic conditions [ 1 ,  2 ,  4 ]. Hyperhomocysteinemia is present when tHcy con-
centration exceeds 10 μM. 

 Elevated tHcy is a recognized risk factor for cardiovascular disease [ 5 – 8 ] and has 
been linked to diseases of the aging brain including cognitive decline, vascular 
dementia and Alzheimer’s disease, cerebrovascular disease and stroke, including 
epilepsy In addition, Hcy is pro-thrombotic and pro-infl ammatory mediator [ 9 ,  10 ].  

6.2     Homocysteine Metabolism and Its Implications 

 Metabolism of Hcy is regulated in order to achieve a balance between the remethyl-
ation and transsulfuration pathways which will maintain low levels of this poten-
tially cytotoxic amino acid [ 11 ]. Hcy belongs to a group of molecules known as 
cellular thiols. Glutathione and cysteine, the most abundant cellular thiols, are con-
sidered to be “good” thiols, contrary to Hcy [ 12 ]. In the methylation pathway, Hcy 
acquires a methyl group to form methionine in a vitamin B12 dependent reaction 
catalyzed by the enzyme methionine synthase. The kidney, liver and eye lens have 
the capacity to convert Hcy to methionine trough a vitamin B12-independent reac-
tion catalyzed by betaine-Hcy S-methyltransferaze (BHMT). On the contrary, the 
CNS lacks BHMT and therefore conversion of Hcy to methionine is completely 
dependent on the vitamin B12 and folate pathway. 

 Hcy condenses with serine to form cystathionine in an irreversible reaction cata-
lyzed by the B6 containing enzyme – cystathionine beta-synthase, known as the 
transsulfuration pathway. Hcy catabolism requires vitamin B6 and as a conse-
quence, alteration in folic acid and B vitamins status impairs Hcy biotransforma-
tion. These alterations result in the in the synthesis of cysteine, taurine and inorganic 
sulfates that are excreted in urine. 

 Elevation of Hcy levels is known to lead to metabolic conversion and inadvertent 
elevation of homocysteine thiolactone, a reactive thioester representing less than 
1 % of total plasma Hcy. In all cell types, including endothelial and nerve cells, Hcy 
is metabolized to homocysteine thiolactone by methionyl-tRNA synthetase [ 13 ]. 
Homocysteine thiolactone causes lethality, growth retardation, blisters and somite 
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development abnormalities by oxidative stress, one important mechanism for toxicity 
to neural cells [ 14 ]. The highly reactive Hcy metabolite homocysteine thiolactone 
can be produced in two steps by enzymatic and/or non-enzymatic reactions in blood 
serum. Therefore, the ability to detoxify or eliminate homocysteine thiolactone is 
essential for biological integrity [ 13 ,  14 ].  

6.3     Contribution of Homocysteine to Neurotoxicity 

 A number of studies provided evidences for a complex and multifaceted relation of 
homocysteinemia and CNS disorders Hcy, as endogenous compound, is neurotoxic 
in supraphysiological concentrations. The hypothesis that relates Hcy to CNS dys-
function is based on its neuroactive properties. Adverse effects on brain functioning 
and debilities of high tissue Hcy concentrations appeared through oxidative stress 
and excitotoxicity-induced effects on neurons [ 15 ], and together with homocystinuria 
characterize patients with convulsions [ 16 ]. 

 Hcy induces neuronal damage and cell loss through excitotoxicity and apoptosis, 
what could be a consequence of the inability of cerebral tissue to metabolize Hcy 
through the betaine and transsulfuration pathways, favoring Hcy accumulation in 
the nervous system [ 17 ]. High brain concentrations of either Hcy or its oxidised 
derivatives might alter neurotransmission [ 18 ]. An accumulation of Hcy (at syn-
apses or in the extracellular space) would increase intracellular S adenosylhomo-
cysteine (SAH), which is a potent inhibitor of many methylation reactions that are 
vital for neurological function including the O-methylation of biogenic amines. 
Methylation of myelin basic protein and reducing the synthesis of phosphatidyl 
choline, which can lead to disruption of the blood-brain barrier (BBB) are possible 
in absence of normal methylation patterns [ 19 ]. 

 According to recent theory, Hcy toxicity is a consequence of covalent binding to 
proteins, interfering with protein biosynthesis, decreasing normal physiological 
activity of proteins thus modifying their functions in process called homocysteinyl-
ation [ 13 ,  20 ]. Therefore, increased intracellular Hcy concentration is associated 
with both alteration of redox balance and post-translational protein modifi cations 
through  N - and  S -homocysteinylation [ 21 ]. Moreover, some studies suggest that 
Hcy induces the expression of superoxide dismutase in endothelial cells, consumption 
of NO _  and impaired endothelial vasorelaxation [ 22 ].  

6.4     Hyperexcitability Induced by Homocysteine 

6.4.1     Experimental Models of Seizures 

 Experimental models of epilepsy may be induced by manipulation of γ-aminobuturic 
acid (bicuculline, corasol, picrotoxin, benzylpenicillin sodium) [ 23 ] or by increasing 
cerebral excitatory neurotransmission. Experimental rat models of generalized 
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clonic-tonic seizure induced by metaphit [ 24 ,  25 ] and lindane [ 26 – 28 ] are suitable 
for the studies of epilepsy and preclinical evaluation of potential antiepileptic treat-
ments. Almost four decades ago, Sprince et al. [ 29 ] described that high levels of 
Hcy, arising from excess dietary methionine, may induce epilepsy and lethality. 

 The fact that the elevated Hcy concentrations persists in damaged endothelial 
structures, during aging and antiepileptic-drug-therapy [ 30 ] justifi es attention 
directed towards the examinations of homocysteine thiolactone effects. Namely, 
classical anticonvulsants (phenytoin, carbamazepine and valproic acid) lower 
plasma folate levels and increased signifi cantly Hcy levels inducing epileptogenic 
brain and suboptimal control of seizures in the patients with epilepsy [ 31 ].  

6.4.2     Two Types of Seizures in Adult Rats upon 
Homocysteine Thiolactone Administration 

 Stanojlovi  et al. [ 32 ] suggested that D, L-homocysteine thiolactone may be consid-
ered as an excitatory metabolite, capable of becoming a natural convulsant if accu-
mulated to a great extent in the brain. Hyperhomocysteinemia in awake adult Wistar 
male rats induced recurrent unprovoked clonic-tonic convulsions and absence-like 
seizures, as well as specifi c electrical discharges. The seizure incidence, median 
seizure episode severity, median number of seizure episodes per rat, was signifi -
cantly higher in all Hcy treated groups together with prolonged median latency to 
the fi rst seizure [ 32 ]. Non-convulsive status epilepticus can occur from variety of 
causes including primarily generalized absence epilepsy, genetic origins (Wakayama 
or tremor epileptic rats) or pharmacologically (penicillin, pentylenetetrazole, 
γ-hydroxy-butyric acid) induced models [ 33 ]. The most puzzling phenomena in 
absence epilepsy are behavioral immobility during the active motor cortex and the 
occurrence of generalized spike-wave activity. SWDs may belong to the same class 
of phenomena such as sleep spindles. Sleep spindles are normally generated sleep 
rhythms that transform one, two or more spindle waves into the spike component of 
the SWD [ 34 ]. 

 According to well known fact that rhythmic bursts of spikes represent an electro-
physiological marker of a hyperexcitability, Folbergrova et al. [ 35 ] found very poor 
electroclinical correlation together with dissociation between electroencephalo-
graphic (EEG) pattern and motor phenomena in immature rats. The epileptogenic 
process is closely associated with the changes in neuronal synchronization. 
Non- lesion, non-convulsive, generalized epilepsy is characterized by brief episodes 
of unpredictable and unresponsive behavior with a sudden arrest accompanied by 
SWDs. This second type of spike-wave complexes had different shape. Bilateral, 
high-voltage synchronous, spindle-like electrical oscillations, phenomenon of 
paroxysmal electroencephalographic attacks, termed SWDs were associated with a 
sudden motor immobility and minor clinical signs like loss of responsiveness with 
rhythmic twitches of vibrissae or cervicofacial musculature were seen after i.p. 
administration of D, L-homocysteine thiolactone in adult rats. 
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 Stanojlović et al. [ 32 ] found poor electro clinical correlations and dissociation of 
activity in rats. It is worth mentioning that electrographic seizure discharge was absent 
even during motor convulsions of grade 3 or 4, while on the contrary, EEG seizures 
without motor symptoms were regularly observed. Foremention EEG graphoelements 
were distinguishable from sleep spindles (10–16 Hz), regarding their frequency, dura-
tion, morphology (sleep spindles are more stereotyped than SWD waves) and moment 
of occurrence (SWD occurs during passive wakefulness  vs . sleep spindle-like oscilla-
tion occurring during high amplitude delta activity.  

6.4.3     Mechanisms of Homocysteine Convulsive Effects 

 There are several proposed mechanisms by which exposure to excess D,L- 
homocysteine thiolactone induces seizure [ 36 ]. 

 Increased levels of Hcy and its metabolites could provoke seizures by increasing 
activation of some receptors like N-methyl-D-aspartate (NMDA) and α-amino-3- 
hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainite ionotropic glutamate 
receptors [ 1 ]. These receptors are expressed in hippocampal pyramidal cells and 
may directly induce or drive these cells over the threshold for excitotoxic cell death. 
Overstimulation of these receptors triggers Ca 2+  infl ux and intraneuronal calcium 
mobilization in the presence of glycine [ 37 ]. Increased cytosolic Ca 2+  concentra-
tions affect enzyme activities and synthesis of nitric oxide [ 38 ]. It should be noted 
that expression of NMDA receptor is not confi ned to neurons. Other cells, including 
endothelial cells from cerebral tissue, can express this receptor. Free radicals induce 
up-regulation of the NR1 subunit of the NMDA receptor, increasing the susceptibil-
ity of cerebral endothelial cells to excitatory amino acids, favoring BBB disruption 
[ 39 ]. Also, microglia is subject to toxic effects of Hcy [ 40 ]. Hcy could induce con-
vulsions in adult, as well as in immature experimental animals throw modulating the 
activity of metabotropic glutamate receptors (mGluRs) [ 41 ]. 

 Hcy was shown to enhance either the release or uptake of other endogenous 
excitatory amino acids [ 41 ]. It seems that Hcy exerts a direct excitatory effect com-
parable to the action of glutamate [ 16 ]. 

 Rasic-Markovic et al. [ 42 ] investigated the effects of MK-801, NMDA anatago-
nis, as well as, of ifenprodile, NR2B-selective NMDA antagonist in homocysteine 
thiolactone seizures and showed involvement of this mechanisms in homocysteine 
thiolactone induced epileptogenesis.  

6.4.4     Involvement of nNOS Signaling Pathways 
in Homocysteine Hyperexcitability 

 Nitric oxide (NO) is a highly reactive messenger molecule synthesized in a num-
ber of tissues with key role in new form of interneuronal communication via mod-
ulating release of classical neurotransmitters and excitability status of neurons. 
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Hrnčić et al. [ 43 ] determined the role of NO in mechanisms of D, L homocysteine 
thiolactone induced seizures by testing the action of L-arginine (NO precursor) 
and L-NAME (NOS inhibitor) on behavioral and EEG manifestations of D, L 
homocysteine thiolactone induced seizures. Recently, the involvement of neuro-
nal NO synthase (nNOS) in homocysteine thiolactone – induced seizures was 
determined using pharmacological inhibition of this enzyme by 7-nitroindazole, its 
selective inhibitor [ 44 ]. Congruent results with those obtained using non-selective 
inhibition were obtained.  

6.4.5     Homocysteine and Na + /K + ATPase Activity 

 The function of the Na + /K + -ATPase is essential for generation of the membrane 
potential and maintenance of neuronal excitability [ 12 ]. Rašić-Marković et al. [ 45 ] 
demonstrated a moderate inhibition of rat hippocampal Na + /K + -ATPase activity by 
D,L-homocysteine, which however expressed no effect on the activity of this 
enzyme in the cortex and brain stem. In contrast, D,L-homocysteine thiolactone 
strongly inhibited Na + /K + -ATPase activity in cortex, hippocampus, and brain stem 
of rats structures affecting the membrane potential with deleterious effects for neurons. 
Hrnčić et al. [ 43 ] demonstrated that L-Arginine when applied alone, signifi cantly 
increases the activity of Na + /K + -ATPase activity in the hippocampus, the cortex and 
the brain stem and when applied prior to homocysteine thiolacotne completely 
reversed the inhibitory effect of homocysteine thiolactone.  

6.4.6     Modulation of Homocysteine-Induced Hyperexcitability 

 Complex relationship between sleep and epilepsy is still of special interest for 
neuroscientists since neurophysiological basis of that relation is far from being 
completely understood [ 46 ]. Sleep is a cyclic vital physiological process that 
makes one-third of human life [ 47 ]. It is estimated that about 20 % of the world’s 
population still suffer from decrease in sleep time due to change of lifestyle and 
sleep disorders as the major causes. Recently, we have shown aggravation of sei-
zure activity in homocysteine thiolactone – treated rats upon selective REM sleep 
deprivation [ 48 ]. 

 Rašić-Marković et al. [ 49 ] examined the changes of total spectral power density 
in adult rats after ethanol alone and together with homocysteine thiolactone and it 
was found that action of ethanol on electrographic pattern was biphasic, with poten-
tiation of epileptiform activity in one dose range and depression in another one. 
Low ethanol doses causing euphoria and behavioral arousal are associated with 
desynchronization of the EEG, decrease in the mean amplitude, and increase in the 
theta and alpha activity. Ethanol increased mean total spectral power density 15 and 
30 min after administration, in all ethanol groups.   
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6.5     Conclusion 

 Results of aforementioned studies demonstrated that acute administration of 
homocysteine thiolactone signifi cantly affected neuronal cycles, EEG tracing and 
behavioral responses. After systemic administration, this natural substance led to 
the disturbances in brain functioning and to the appearance of two different kinds of 
neuron network in adult Wistar rat males. It could be supposed that hyperhomocys-
teinemia might express similar effects on human brain activity. These effects are 
connected with stimulation of NMDA receptors, inhibition of the Na + ,K + -ATPase 
activity, and NO mediated signaling pathways during. Modulation of homocyste-
ine – induced hyperexcitability was achieved by REM sleep deprivation and ethanol 
administration.     
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