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2055, Col. Lomas 4ª. Sección, San Luis Potosí, SLP 78216, Mexico               
   4Statoil ASA ,   7053   Ranheim ,  Norway       

         1.   Introduction 

 Microbial life has proven to be adapted to various extreme conditions on earth, 
including extremely cold and hot, acidic and alkaline, as well as high salt (Allen 
and Ban fi eld,  2005 ; Podar and Reysenbach,  2006  ) . Oil reservoirs located deep 
within the earth crust are providing not only very high temperatures but in addi-
tion often high pressure and high salt, heavy metal, and organic solvent concen-
trations (Youssef et al.,  2009  ) . Consequently, microorganisms tolerating and 
propagating under such conditions are truly poly-extremophiles, being both 
(hyper)thermophilic, piezotolerant, halophilic, and solventophilic (Kotlar,  2012  ) . 
Oil reservoir microbial communities are interesting research objects, also due to 
their potential impact on oil production and their relevance for industrial biopro-
cess applications including approaches of Biologically activated Enhanced Oil 
Recovery (Bio-EOR) and bioprospecting for thermostable biocatalysts applicable 
in industrial bioprocesses. Due to the enormous commercial values associated 
with oil production, bio-probing for the purpose of reservoir monitoring and the 
development of complementary methods in search for new oil prospects also rep-
resents  fi elds with potentially high impacts. 

 To date, numerous oil reservoirs worldwide have been studied with respect 
to their content of microorganisms (Fig.  1 ). These studies included (1) the descrip-
tion of new genera, species, and strains of both  Bacteria  and  Archaea ; (2) the 
speci fi c enrichment and characterization of subpopulations like methanogens 
and sulfate-reducing bacteria (SRB), the latter being discussed to be related to 
reservoir and oil production problems like souring and corrosion; (3) cultivation-
dependent and cultivation-independent studies aiming at characterizing the 
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complexity of individual microbial communities, nowadays promoted by  fl ou rishing 
new cultivation-independent technologies like the meta’omics (metagenomics, 
metatranscriptomics, etc.); and (4) comparative studies covering multiple, distantly 
located reservoir sites. For such approaches, the access to representative, uncon-
taminated sample material is important, though often dif fi cult to achieve and 
thus representing a major obstacle. Metagenome analysis and upcoming new 
technologies can be expected to revolutionize the view on oil reservoir microbial 
communities in the near future.  

 In this chapter, we follow the traditions of previous, excellent reviews, for 
example, by Magot and coworkers (Magot et al.,  2000  ) , focusing on microbiology 
in oil reservoirs with in situ temperatures of 50 °C or higher, including (hyper)
thermophilic strain isolations and descriptions from such locations.  

    2.   Microorganisms and Microbial Consortia of High-Temperature Oil Reservoirs 

 During the past three decades, many high-temperature oil reservoirs ( ³ 50 °C in situ 
temperature) in Europe, North America, South America, Africa, Asia, and 
Australia have been subject to microbiological characterizations (see Fig.  1  for 
study types and references). The longest tradition of such studies exists in Europe 
and North America starting in the late 1980s, while Asian sites (particularly 
Chinese) have gained an increasing attention during the last few years. South 
American high-temperature reservoirs have only rarely been investigated so far, 
and a number of studies including some of the early consortia characterizations 
cover multiple sampling sites on different continents. The best surveyed region in 
this respect is the North Sea and the European part of the North Atlantic Ocean, 
both concerning consortium studies (mainly cultivation dependent) and related to 
the description of new species and strains. After 2006, obviously responding to the 
revolutionary technological developments in high throughput sequencing, culture-
independent approaches have increased in number, mainly using samples from 
Asia but also from South America and Europe. Metagenomic (Kotlar et al.,  2011  )  
and other not yet applied meta’omic (e.g., metatranscriptomic, metaproteomic) 
approaches to study entire microbial communities, including the metabolically 
active fractions, can be expected to be applied in increasing frequency in the near 
future. Such studies will likely provide unprecedented insight into microbial in situ 
processes both in pristine reservoirs and reservoirs subjected to methods of 
enhanced oil recovery. Up to now, sampling has most frequently originated from 
production water or wellheads, and a large fraction of the reservoirs have also been 
 fl ooded with production-associated water prior to sampling (see Fig.  1 ). This 
means that many of the strains or consortia described in the literature are likely to 
be contaminants relative to the original, untouched reservoir. Therefore, the 
signi fi cance of future microbial community studies of oil reservoirs will to a large 
degree depend on the quality of the sample material (closer discussed in Sect.  3 ), 
and some of the latest studies have already applied dedicated sampling devices that 
account for this type of challenge (Yamane et al.,  2008 ; Kotlar et al.,  2011  ) . 
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    2.1.   NEW MICROBIAL ISOLATES 

 A large number of both bacterial and archaeal species have for the  fi rst time been 
described as isolates from high-temperature oil reservoirs (see Fig.  2  for species 
names and references). Regularly, enrichment cultures have been grown, resulting 
in isolation of pure strain cultures, which subsequently have been characterized in 
detail to de fi ne their taxonomic placement in the microbial tree of life (Fig.  2 ). 
The Thermotogae, represented by the genera  Petrotoga  (6 species),  Thermotoga  
(5 sp.),  Geotoga  (2 sp.),  Kosmotoga ,  Oceanotoga , and  Thermosipho , account for 
the highest number of new strain isolates from high-temperature oil reservoirs, 
followed by the Firmicutes with the genera  Thermoanaerobacter  (3 sp.),  Geobacillus  
(2 sp.),  Bacillus ,  Desulfotomaculum ,  Caldanaerobacter , and  Mahella . Isolates 
from other bacterial groups represent the genera  Deferribacter  (Deferribacteres), 
 Thermus  (Deinococcus-Thermus),  Anaerobaculum , and  Thermovirga  (both 
Synergistetes). Archaeal isolates from high-temperature oil reservoirs belong 
to the genera  Methanoculleus  and  Methermicoccus  (both Methanomicrobia), 
 Methanothermobacter  (Methanobacteria),  Methanococcus  (Methanococci), 
 Archaeoglobus  (Archaeoglobi), and  Thermococcus  (Thermococci).  

 It needs to be mentioned that it is widely accepted that only a very small 
fraction of microorganisms can be readily cultivated using established methods 
(Rappé and Giovannoni,  2003  ) . In that sense, the listing of strain isolates in Fig.  2  
(bold/bullet points) includes the strong bias of cultivability and therefore does not 
represent a valid picture of predominant species present in oil reservoirs. In addi-
tion, it cannot be ruled out that some of these strains are not indigenous to the 
sampled reservoir, but rather represent contaminations from oil production proc-
esses or sampling.  

    2.2.   CULTIVATION-DEPENDENT CONSORTIAL STUDIES 

 The majority of studies based on high-temperature oil reservoir derived sample 
material, including most of the strain isolations and descriptions mentioned above 
(Sect.  2.1 ), include enrichment culture prior to strain isolation or 16S rRNA gene 
ampli fi cation, library cloning, and sequence analysis (see Fig.  1  for references). 
Such enrichment steps are bound to introduce the potentially strong bias of culti-
vability in the analysis of a community composition within an oil reservoir (see 
comment at the end of Sect.  2.1 ), often on top of putative contaminations and 
biases originating from sampling and the way the respective original reservoir con-
tent has been altered by production processes. In spite of all these concerns, we 
found it interesting to relate all the reported organisms to the microbial tree of life, 
to see if  some major trends could be observed (Fig.  2 ). The  fi gure also includes the 
species names of the isolated strains (Sect.  2.1 , bold/bullet points) and different 
genera detected in cultivation-independent studies (Sect.  2.3 ). It is striking from 
this  fi gure that Proteobacteria are very frequently reported as being present based 
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  Figure 2.    Phylogenetic placement of microbes detected in oil reservoir samples. (#) Number of 
reported encounters of genera in the different studies explicitly referred to in Fig.  1 . Bullet points/bold 
represent detailed strain descriptions. The current release no. 106 of the “All-Species Living Tree” 
Project (LTP) (Yarza et al.,  2008  )  was used for the tree representation, modi fi ed using the ARB  software 
(Ludwig et al.,  2004  ) .       
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Thermoanaerobacter brockii subsp. lactiethylicus (Cayol et al., 1995)
Thermoanaerobacter sp. SEBR5268 (Fardeau et al., 1993)
Thermoanaerobacter subterraneus (Fardeau et al., 2000)
Caldanaerobacter subterraneus (Fardeau et al., 2004)
Mahella australiensis (Salinas et al., 2004)

Anaerobaculum thermoterrenum (Rees et al., 1997)
Thermovirga lienii (Dahle et al., 2006)

Anaerobaculum, Aminobacterium, Thermovirga, Desulfothiovibrio

Kosmotoga olearia (DiPippo et al., 2009)
Thermotoga hypogea (Fardeau et al., 1997)
Petrotoga olearia (L’Haridon et al., 2002)
Petrotoga sibirica (L’Haridon et al., 2002)
Petrotoga mobilis (Lien et al., 1998)
Petrotoga mexicana (Miranda-Tello et al., 2004)
Petrotoga halophila (Miranda-Tello et al., 2007)
Petrotoga miotherma (Davey et al.,1993)
Geotoga petraea (Davey et al., 1993)
Geotoga subterranea (Davey et al., 1993)
Thermosipho geolei (L’Haridon et al., 2001)
Thermotoga elfii (Ravot et al., 1995)
Thermotoga subterranea (Jeanthon et al., 1995)
Thermotoga petrophila (Takahata et al., 2001)
Thermotoga naphthophila (Takahata et al., 2001)
Oceanotoga teriensis (Jayasinghearachchi & Lal, 2011)

Methanoculleus receptaculi (Cheng et al., 2008)
Methermicoccus shengliensis (Cheng et al., 2007)

Methanothermobacter crinale (Cheng et al., 2011)
Methanobacterium, Methanobrevibacter, Methanothermobacter

Methanococcus thermolithotrophicus (Nilsen et al., 1996)
Methanocaldococcus, Methanococcus, Methanothermococcus

Archaeoglobus fulgidus (Beeder et al., 1994)
Archaeoglobus, Geoglobus

Thermococcus sibiricus (Miroshnichenko et al., 2001)
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on consortium studies, while they seem to never have been identi fi ed as single novel 
isolates from oil reservoir samples growing at 50 °C or above. The reason for this 
discrepancy is not clear but could potentially be related, for example, to the condi-
tions commonly used for strain puri fi cation, which may be in disfavor of this group 
of organisms. Another possible explanation might lie in contaminating DNA, 
leading to misinterpretations of obtained 16S rRNA gene sequence data. For the 
remaining parts of the tree, the correlation between individual isolates and com-
munity compositions is more consistent, and the Firmicutes and Thermotogae are 
heavily represented. The same accounts for various  Archaea  (like Methanomicrobia, 
Methanobacteria, and Thermococci). This indicates that members of these taxo-
nomic groups indeed are typical indigenous inhabitants of hot oil reservoirs, a 
conclusion that also appears reasonable based on their biological properties.  

    2.3.   CULTIVATION-INDEPENDENT STUDIES 

 Many cultivation-dependent studies performed so far and discussed in Sect.  2.2  
include approaches of ampli fi cation of ribosomal 16S rRNA genes followed by 
cloning and sequence determinations. Some of these studies follow experimental 
set-ups that in parts do not involve enrichment steps prior to 16S rRNA gene 
ampli fi cation (Orphan et al.,  2000 ; Bonch-Osmolovskaya et al.,  2003 ; Sette et al., 
 2007 ; Brakstad et al.,  2008 ; Dahle et al.,  2008 ; Korenblum et al.,  2012  ) . In addition, 
increasing numbers of studies in the most recent years, predominantly based on 
Asian reservoir samples, do not include enrichment steps at all, rendering them 
completely cultivation independent (see Fig.  1  for references). Such procedures 
should implicate a less biased picture of the microbial population in a given sample, 
particularly if contamination sources have also been minimized. 16S rRNA-based 
studies are limited with respect to the information that can be obtained, in the sense 
that the entire genetic make-up of the corresponding organisms remains unknown. 
To overcome these limitations, our group recently carried out a nontargeted meta-
genomic approach to sequence metagenomic DNA from an oil reservoir on the 
Norwegian Continental Shelf (Kotlar et al.,  2011  ) . In this case, we applied a pres-
surized sample methodology to a reservoir that had not been contaminated by sea 
water breakthrough. This study con fi rmed the presence of typical thermophilic bac-
teria (e.g., Thermotogales taxa) and Archaea (e.g., methanogens), but an apparently 
diverse group of Proteobacteria was also predicted from this study (Sect.  2.2 ). This 
may indicate that such bacteria are actually abundant in hot oil reservoirs but that 
they for some reason have not been cultivated as individual strains.  

    2.4.   STUDIES SPECI FI CALLY ADDRESSING RESERVOIR PROBLEMS 

 Some groups of microorganisms are seemingly related to speci fi c reservoir conditions 
and problems like reservoir souring and corrosion which are discussed to be a con-
sequence of microbial processes taking place during oil production (see Sect.  4.6 ), 
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especially in oil reservoirs exploited by application of secondary recovery methods 
like the injection of sea or fresh water. As a consequence, a number of studies aim 
at enriching and describing the microbial species possibly involved in such reser-
voir problems, like for the souring case, sulfate-reducing bacteria (SRB), which in 
several studies have been enriched and analyzed with respect to taxonomy and/or 
metabolism (Rosnes et al.,  1991 ; Leu et al.,  1998,   1999 ; Rozanova et al.,  2001a ; 
Kaster et al.,  2007  ) . Though speci fi c markers for SRB exist (e.g., the  dsrAB  and 
the  aps  genes (Teske et al.,  2003  ) ), they have obviously never been applied in the 
context of high-temperature oil reservoir studies. Other examples of enrichment 
and analysis of a speci fi c subfraction of an oil reservoir microbial community are 
the analysis of methanogens by enrichment and sequencing of the  mcrA  and  assA  
genes (Mbadinga et al.,  2012  )  and organisms capable of alkane degradation/
hydrocarbon oxidation using  alkB  gene enrichment (Shestakova et al.,  2011  ) .   

    3.   Oil Reservoir Sample Recovery and Processing 

 Deeply buried oil reservoirs are particularly challenging to sample, at least if  
it is considered important to keep the level of  contamination at a minimum. 
Locali zation, logistics, knowledge about sampling methodology, knowledge about 
reservoir history, as well as the dependence on extensive oil company collabora-
tion are relevant factors in fl uencing the sampling. Most of the studies reported in 
the literature are therefore not meeting the ideal requirements for understanding 
the composition and metabolic performance of the indigenous microbial com-
munities. Since we believe that these problems are very important for the future 
progress in the  fi eld, we have chosen to elaborate more on these problems in the 
Sects.  3.1 ,  3.2 , and  3.3  below. 

    3.1.   SAMPLING METHODOLOGY 

 Oil reservoir samples for microbial studies can be collected in various ways, 
and the samples themselves can be very different, for example, originating from 
the oil phase (Pineda-Flores et al.,  2004  ) , from the water phase (Nilsen et al., 
 1996b  ) , or from drilling cores (Spark et al.,  2000  ) . They can also be sampled 
from different parts of  the technical infrastructure, like wellheads (l’Haridon 
et al.,  2002 ; Bonch-Osmolovskaya et al.,  2003  ) ,  fi rst separators (Leu et al.,  1999 ; 
Brakstad et al.,  2008  ) , or tanks (Takahata et al.,  2001  ) . In addition, some of 
the reported samples are “mixed” (e.g., Rozanova et al.,  2001a  ) , containing 
material from more than one oil well, whereas others originate from single wells 
only (e.g., Li et al.,  2006 ; Kotlar et al.,  2011  ) . Even if  it can be seen as an 
oversimpli fi cation, one may probably assume that the more distant the sampling 
point is from the actual oil reservoir, the higher in general is the risk for contami-
nation (discussed below). 
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 In addition to differences in sampling sites, the methods used for sample 
withdrawal can also be very different. The overall impression from the relevant 
literature is that sampling methodology is often poorly described. Some studies 
use samples collected by tapping a pipeline at atmospheric pressure (e.g., Magot 
et al.,  2004 ; Dahle et al.,  2008 ; DiPippo et al.,  2009  ) , whereas other collect pres-
surized samples (e.g., Kotlar et al.,  2011 ; Yamane et al.,  2011  )  to avoid cell lysis 
(Sect.  3.2.2 ). Even if, to our knowledge, only applied in one study so far, there are 
technical possibilities for more advanced sample collection, where a sample is 
collected in situ in an oil reservoir well, enclosed, and transported up to the plat-
form with a maintained high pressure (Yamane et al.,  2011  ) . Such a procedure 
further minimizes the loss of representativeness due to cell lysis and potential 
contamination of the sample from pipelines and other infrastructures, however, 
being extremely costly due to the advanced equipment used and a longer interrup-
tion of oil production from the well.  

    3.2.   SPECIAL CHALLENGES IN SAMPLE COLLECTION 

 Sample collection from deeply buried oil reservoirs is virtually impossible without 
a close collaboration with the relevant oil company. Due to safety regulations for 
oil platforms and limited access to these areas, people with very different educa-
tional background are commonly involved at the different stages of the sample 
collection procedure, and samples are often collected by personnel lacking micro-
biological background, increasing the risk of contamination (see Sect.  3.2.2 ). 
Different challenges apply, dependent on the type of sample to be collected and 
the sampling methodology. Some of the main and particular pronounced aspects 
are described below. 

    3.2.1.   Access to Reservoir Samples 
 Oil reservoirs are often remotely located, resulting in logistical challenges concerning 
sampling equipment and sampled material, leading to longer transportation times 
than preferred from a microbiological point of view. Due to these obstacles, oil 
reservoir samples are in practice restricted to selected research groups only, i.e., those 
that have managed to establish a collaboration agreement with an oil company. 
The process of sample collection from producing oil wells is often in con fl ict with a 
desirable continuous oil production and the associated enormous value generation. 
A stop in oil production for the purpose of sampling involves beside the direct 
economic loss often also substantial risks for the oil company (e.g., clogging of 
production pipes), rendering establishment of such collaboration a dif fi cult task.  

    3.2.2.   Representativeness of Sample Material 
 The question of  whether or not microbes isolated/described/identi fi ed using 
oil reservoir samples are indigenous or not, is a constantly debated issue in the 
literature (e.g., Magot et al.,  2000 ; Youssef et al.,  2009  ) . The  fi rst issue is the origin 
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of the microbes analyzed, whether or not they originate from the actual original 
reservoir or if  they have been introduced to the oil reservoir by processes like drill-
ing or well treatment (Fig.  3 ). In addition, the exact origin of the sample material 
might be dif fi cult to elucidate, since sediment particles and  fl uids might, apart 
from the actual reservoir site, originate from pipelines and platform infrastruc-
tures. Samples used for reported studies have also been found to be collected at 
different structures, and depending on the sampling site, non-indigenous microbes 
within the sample are often likely to occur. However, isolation of new strains and 
description of microbes from oil reservoir samples, indigenous or not, may still be 
valuable for certain types of studies, for example, within bioprospecting.  

 Most studies using oil reservoir samples are performed on samples subjected 
to a rapid pressure reduction (transportation of the oil sample to the platform 
followed by the release of sample pressure at the production liner), potentially 
resulting in substantial cell lysis within the sample (similar to the effect of a 
French pressure cell press). A few studies (Kotlar et al.,  2011 ; Yamane et al.,  2011  )  
perform sampling into pressure  fl asks to maintain high pressure upon sampling. 
From these  fl asks, upon arrival in the laboratory, pressure is subsequently released 
by a procedure that is slow enough to presumably avoid extensive cell lysis. This 
approach does most likely result in the collection of a more representative sample 
with respect to the in situ microbial community. Therefore, such samples are pre-
ferred for total oil reservoir microbial community descriptions (Fig.  3 ). 

 The analysis and downstream handling of the reservoir samples might also 
in fl uence whether or not indigenous microbes are analyzed (Fig.  3 ). Cultivation 
in general might be selective for nonindigenous microbes, since the in situ reservoir 
conditions might be dif fi cult to mimic in the lab (e.g., Whitman et al.,  1998 ; Reeder 
and Knight,  2009  ) . Analysis of isolated DNA would therefore be a more accurate 

  Figure 3.    Sources of contamination and experimental biases as well as suggestions for their minimization 
for representative consortium studies of oil reservoirs.       

 



452 ALEXANDER WENTZEL ET AL.

approach for the characterization of microbial communities (e.g., Amann et al., 
 1990 ; Reeder and Knight,  2009  ) ; however, contamination of the sample might 
still pose a problem, and DNA-based methods might also be biased towards more 
well-known microorganisms (e.g. primer design for 16R rRNA gene analysis). To 
date, a metagenomic approach (analyzing the total DNA content, i.e., the metagen-
ome, of the sample) is believed to be the most accurate approach to environmental 
microbial community characterization (Cowan et al.,  2005 ; Quince et al.,  2008 ; 
Sleator et al.,  2008  ) .   

    3.3.   LIMITATIONS AND RESTRICTIONS ON SAMPLE INFORMATION 
AND DISSEMINATION OF ANALYSIS RESULTS 

 Characterization of oil reservoir microbial communities usually requires (as 
described above) the collaboration with an oil company, which often raises the 
issues of con fi dentiality and Intellectual Property Rights (IPR). Academic groups 
are widely required to sharing research result by publication. However, due to the 
enormous investments in oil production and corresponding company secrecy pol-
icies, sharing of background information related to the sampled reservoir and the 
sample origin may be restricted. As a consequence of this, limited background 
information, for example, about the physicochemical characteristics of the reser-
voirs (even though existing), may complicate an interpretation of the results of 
analyses from these environments. 

 Also IPR issues might in fl uence the research on oil reservoir microbial com-
munities, since dissemination of results may be delayed due to patenting proc-
esses, or even be excluded from publication or patenting, and kept undisclosed. 
Findings in studies of oil reservoir microbes can be of high economical value for 
oil companies (or other companies), and hence, carefulness is indicated when 
sharing information from such  fi ndings. Since an in depth understanding of oil 
reservoirs as habitats for microbial life still is in its infancy, and in addition, such 
environments provide very special environmental conditions, new species with yet 
unknown but highly desired qualities or new enzymes with high industrial potential 
might be revealed in such studies.   

    4.   Metabolic Capabilities of Oil Reservoir Microorganisms 

 As in many microbial habitats, the in situ microbial metabolic processes within oil 
reservoirs are likely to be very diverse. The processes are obviously dependent on 
the different groups of organisms present within the reservoirs at any given time, 
as well as on nutrients and other compounds available for consumption. These are 
parameters that differ from reservoir to reservoir and might also change within 
the same site due to natural processes and/or anthropogenic in fl uences. In general, 
due to the absence of oxygen, microorganisms indigenous to oil reservoirs can be 
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expected to be capable of anaerobic metabolism. In turn, strictly aerobic species 
unambiguously detected in reservoir samples are likely to be contaminants either 
from oil production processes or sampling. Due to the relatively limited knowl-
edge of oil reservoir microbial communities, the understanding of the true in situ 
processes is also limited and will in most cases be rather speculative. However, by 
increasing knowledge on the composition of these microbial consortia and com-
parison with related (and currently better understood) habitats, some main meta-
bolic processes of oil reservoirs can be predicted, and the main groups of microbes 
expected to be involved are discussed below. 

    4.1.   SULFATE REDUCERS 

 Sulfate-reducing bacteria (SRB) constitute a group frequently isolated from oil 
reservoir samples (e.g., Rosnes et al.,  1991 ; Tardy-Jacquenod et al.,  1996 ; Leu 
et al.,  1998,   1999 ; Kaster et al.,  2007 ; Kotlar et al.,  2011  ) . SRB taxa are in many 
cases also likely to be able to reduce other sulfur-containing compounds (like 
sul fi te or thiosulfate), and hence the name sulfate-reducing bacteria might in some 
cases be misleading. SRB recovered from oil reservoir samples do seemingly 
belong to different phyla; Proteobacteria, mainly Deltaproteobacteria as, for 
example, Desulfovibrionales and Desulfomonadales species (Beeder et al.,  1995 ; 
Rees et al.,  1995 ; Rozanova et al.,  2001b  ) , Firmicutes (Nilsen et al.,  1996a,   b ; 
Magot et al.,  2000 ; Dahle et al.,  2008 ; Youssef et al.,  2009 ; Kotlar et al.,  2011  ) , and 
Thermodesulfobacteria species (Beeder et al.,  1995 ; Yamane et al.,  2011  ) . There 
are also several archaeal species recovered from oil reservoirs that exhibit sulfate-
reducing capabilities, exempli fi ed by  Archaeoglobus fulgidus  (Beeder et al.,  1994  ) , 
 Archaeoglobus lithotrophicus  (Stetter et al.,  1993  ) , and  Thermococcus  sp. (Slobodkin 
et al.,  1999 ; Orphan et al.,  2000  ) . 

 SRB can partly or completely oxidize a broad variety of substrates, including 
aromatic and aliphatic constituents of petroleum oil, coupled to the reduction of 
sulfate to hydrogen sul fi de (H 2 S) (Rosnes et al.,  1991 ; Nilsen et al.,  1996b ; Rabus 
et al.,  1996  ) . H 2 S accumulation promoted by SRB activities might in some cases 
result in reservoir souring (Sect.  4.6.1 ). SRB strains normally grow by using sul-
fate, sul fi te, or thiosulfate as electron acceptors; otherwise, their growth is linked 
to fermentative processes in the absence of these electron acceptors.  

    4.2.   METHANOGENS 

 Methanogenesis is the  fi nal step in the complex processes involved in the anaerobic 
degradation of organic matter (such as petroleum oil), and methanogens are 
microbes able to convert hydrogen (H 2 ), carbon dioxide (CO 2 ), and fermenta-
tive substrates (e.g., acetate) into methane (Magot et al.,  2000 ; Gray et al., 
 2009  ) . These organisms do all belong to the archaeal domain and typically live in 
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anaerobic habitats, often attributing extreme conditions. Methanogens are generally 
divided into three distinct groups depending on their substrates: hydrogenotrophs 
(H 2 /CO 2 ), methylotrophs (methylated compounds), and acetoclasts (acetate) 
(Garcia et al.,  2000  ) . 

 There are numerous examples of methanogens recovered from, or identi fi ed 
in, oil reservoir samples, and several different genera have frequently been 
identi fi ed, such as  Methanocalculus  (Ollivier et al.,  1998 ; Li et al.,  2007a,   2012 ; 
Yamane et al.,  2011 ; Mbadinga et al.,  2012  ) ,  Methanoculleus  (Ollivier et al.,  1998 ; 
Orphan et al.,  2000 ; Li et al.,  2007a,   2012 ; Brakstad et al.,  2008 ; Cheng et al., 
 2008 ; Lan et al.,  2011 ; Yamane et al.,  2011 ; Mbadinga et al.,  2012 ; Tang et al., 
 2012  ) ,  Methanobacterium  (Belyaev et al.,  1983 ; Orphan et al.,  2000 ; Bonch-
Osmolovskaya et al.,  2003 ; Li et al.,  2007a,   b,   2012 ; Ren et al.,  2011 ; Yamane 
et al.,  2011 ; Tang et al.,  2012  ) ,  Methanothermobacter  (Bonch-Osmolovskaya 
et al.,  2003 ; Nazina et al.,  2006 ; Li et al.,  2007a,   b ; Cheng et al.,  2011 ; Lan et al., 
 2011 ; Ren et al.,  2011 ; Yamane et al.,  2011 ; Mbadinga et al.,  2012 ; Tang et al., 
 2012  ) , and  Methanococcus  (Nilsen and Torsvik,  1996 ; Orphan et al.,  2000 ; Li 
et al.,  2007a,   b,   2012 ; Kaster et al.,  2009 ; Kotlar et al.,  2011  ) . The different species 
seemingly use different substrates for growth but all produce methane, either by 
their own metabolism completely, but in many cases in syntrophic interactions 
with other microorganisms, for example, SRB and/or fermentative bacteria 
(Garcia et al.,  2000 ; Scholten et al.,  2007 ; Dar et al.,  2008 ; Wintermute and Silver, 
 2010  ) ; see Sect.  4.5  below.  

    4.3.   FERMENTATIVE BACTERIA 

 Fermentative microorganisms constitute an important part of oil reservoir micro-
bial communities. Several types of mesophilic fermentative bacteria have been 
isolated from low-temperature oil reservoirs (Magot et al.,  2000  ) , but for the ther-
mophilic fermenters, the largest fraction of recovered species are members of the 
Thermotogae phylum (Davey et al.,  1993 ; Jeanthon et al.,  1995 ; Ravot et al.,  1995 ; 
Fardeau et al.,  1997 ; Lien et al.,  1998 ; Orphan et al.,  2000 ; l’Haridon et al.,  2001, 
  2002 ; Takahata et al.,  2001 ; Miranda-Tello et al.,  2004,   2007 ; DiPippo et al.,  2009 ; 
Youssef et al.,  2009 ; Jayasinghearachchi and Lal,  2011 ; Mbadinga et al.,  2012  )  or 
the family of Thermoanaerobiaceae (Fardeau et al.,  1993,   2000 ; Cayol et al.,  1995 ; 
l’Haridon et al.,  1995 ; Leu et al.,  1998 ; Li et al.,  2007b  ) . 

 Most Thermotogales species isolated are able to grow on complex substrates 
(e.g., amino acids, sugars, and peptides), reducing sulfur and/or thiosulfate (Fardeau 
et al.,  1997 ; Takahata et al.,  2001  ) . The Thermoanaerobacteriales ferment sugars 
(e.g., Cayol et al.,  1995 ; Grassia et al.,  1996  ) , organic acids (e.g., Rees et al.,  1997  ) , 
and/or amino acids (e.g., Dahle and Birkeland,  2006  )  and typically reduce thiosul-
fate to sul fi de or elemental sulfur, using electrons from carbohydrates or hydrogen 
(Magot et al.,  2000  ) . Common end products are H 2 , CO 2 , and acetate, compounds 
that are often used as substrates by other microbes within the habitat, indicating 
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interactions and syntrophy involving fermentative microbes within the oil reservoirs 
(Sect.  4.5 ). There are also data indicating presence of fermentative archaeal species, 
like Thermococci and Pyrococci, within the oil reservoir habitats (e.g., l’Haridon 
et al.,  1995 ; Miroshnichenko et al.,  2001 ; Kaster et al.,  2009 ; Kotlar et al.,  2011 ; Lan 
et al.,  2011 ; Ren et al.,  2011 ; Lewin et al.,  2013  ) . When isolated and cultivated in the 
laboratory, such strains usually grow on complex carbon sources and reduce ele-
mental sulfur to sul fi de (Stetter et al.,  1993  ) .  

    4.4.   OTHER GROUPS 

 Oil reservoir microbial communities may contain species belonging to other 
groups than those described above. Several studies have detected iron-reducing 
bacteria like  Deferribacter thermophilus  able to reduce iron or manganese (Greene 
et al.,  1997 ; Orphan et al.,  2000  ) ,  Alteromonas / Shewanella  species capable of iron, 
elemental sulfur, sul fi te, and thiosulfate reduction (Magot et al.,  2000 ; Brakstad 
et al.,  2008  ) , as well as nitrate-reducing bacteria (NRB), like different  Geobacillus  
species (Nazina et al.,  2001 ; Bonch-Osmolovskaya et al.,  2003 ; Li et al.,  2007b ; 
Shestakova et al.,  2011  ) . However, due to the lack of data about availability of, for 
example, nitrate, iron, or manganese levels in oil reservoirs (as exists in higher 
extent for sulfate and methane), the relevance of metabolic processes related to 
these compounds is harder to evaluate and therefore becomes very speculative.  

    4.5.   SYNTROPHIC INTERACTIONS WITHIN OIL RESERVOIR 
MICROBIAL CONSORTIA 

 Microbial processes within environmental habitats are usually not independent of 
each other, but rather connected, and many microbes are likely to form syntrophic 
interactions (Wintermute and Silver,  2010  ) . The complexity of such interactions 
and their dependence on microbial growth and available nutrients make most 
discussions speculative. However, based on existing data and processes likely to 
occur, some syntrophic interactions can be expected within oil reservoir habitats. 
Furthermore, it has been shown that syntrophic processes in general result in low-
energy yields and consequently slow growth of the microbes involved (McInerney 
et al.,  2009  ) . This is consistent with reports indicating slow growth of subsurface 
microbial communities (e.g., Price and Sowers,  2004 ; Jørgensen and D’Hondt, 
 2006 ; Morono et al.,  2011  ) , which is likely to also be true for microbes prevailing 
in oil reservoirs. 

 The presence of SRB and methanogens within the habitat and the indication 
of active methanogenic hydrocarbon metabolism within the oil  fi elds (e.g., Jones 
et al.,  2008  )  suggest the presence of syntrophic interactions between SRB and 
methanogens and possibly with additional microbial groups (Jones et al.,  2008 ; 
Pernthaler et al.,  2008 ; Gray et al.,  2009 ; Mayumi et al.,  2011  ) . It has been shown 
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that SRB and methanogens under some conditions compete for the same substrates 
(electrons and H 2 ) produced by fermentative microbes (Dar et al.,  2008  ) . At high-
sulfate levels, SRB growth will be favored (due to their thermodynamically 
favorable process), whereas at lower-sulfate concentrations, substrates will be 
used by methanogens. However, SRB do not compete for methylated substrates; 
hence, methylotrophic methanogens are then favored even at high-sulfate concen-
trations (Cetecioglu et al.,  2009 ; Lazar et al.,  2011  ) . 

 Methanogens are capable of using different substrates; hence, methanogenesis 
is likely to occur under several conditions. In environments containing complex 
organic compounds, such as oil reservoirs, and with low levels of sulfate and 
nitrate, methanogens are reported to be linked to chemoheterotrophic bacteria for 
organic substrate degradation (Garcia et al.,  2000  ) . Polymers are microbiologi-
cally degraded, resulting in simpler organic compounds utilized for acidogenesis 
by fermentative bacteria, which in turn produce substrates for methanogens or for 
syntrophic bacteria. The resulting simple methylated compounds, acetate, alco-
hols, and H 2 /CO 2  are then consumed by methanogenic  Archaea  in methanogene-
sis. The syntrophic interactions are dependent on a H 2 -consuming part in the 
interaction, keeping H 2 -levels low and hence making the whole reaction thermo-
dynamically favorable (McInerney and Bryant,  1981  ) .  

    4.6.   IMPACT OF OIL RESERVOIR MICROBIAL PROCESSES 
ON PETROLEUM OIL AND OIL PRODUCTION 

 Metabolic processes attributed by oil reservoir microbial communities will, to a 
smaller or larger extent, have an impact on the petroleum oil and oil production 
from the reservoir. Different groups of microbes are proposed to have different 
effects and can affect reservoir souring, oil recovery, or corrosion of infrastructures 
(Youssef et al.,  2009  ) . Some processes do seemingly have negative effects on oil 
production, whereas others are suggested to aid oil recovery, normally referred to 
as Microbial Enhanced Oil Recovery (MEOR) or Biologically activated Enhanced 
Oil Recovery (Bio-EOR). Due to the constant need for increased oil recovery, pro-
gression within this  fi eld is naturally desirable. However, this is a complex and chal-
lenging research area. There are supposed differences between lab-scale experiments 
and actual oil  fi eld effects, as well as various challenges (e.g., long-term effects) con-
nected to  fi eld studies, both being examples of factors complicating these studies. 

    4.6.1.   Negative Effects of Microbial Processes in Oil Production 
 SRB (Sect.  4.1 ) are one of the most well-known microbial groups of oil reservoirs 
due to their possible different effects on petroleum oil and oil recovery. In situ 
growth of SRB using sulfate as electron acceptor can result in accumulation of 
H 2 S and consequently in reservoir souring (Bødtker et al.,  2008  ) . This might be a 
consequence of reservoir  fl ooding, since seawater introduced into the reservoir 
usually is high in sulfate levels, promoting growth of SRB and consumption of H 2  
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for H 2 S production over other processes (e.g., methanogenesis, see Sect.  4.5 ). 
However, not all  fl ooded reservoirs are soured, and hence the level of reservoir 
souring also seems to depend on additional factors. Reservoir souring is often 
associated with plugging (due to accumulation of sul fi de minerals), problems with 
corrosion of pipes, and platform structures and with risks associated with the 
toxicity of H 2 S (Cord-Ruwisch et al.,  1987 ; Myhr et al.,  2002 ; Duncan et al.,  2009  ) . 
Naturally, petroleum oil is rich in hydrocarbons and may hence be seen as micro-
bial growth substrates within the reservoir. Several species of the microbial com-
munities are able to degrade oil constituents and use them as carbon source. 
However, due to the expected lack of other nutrients, growth (and thereby oil 
consumption in situ) is limited. Different microorganisms and potential genes 
expected to play a role in oil degradation have been identi fi ed and analyzed (e.g., 
Head et al.,  2006  ) . One speci fi c example is methanogens degrading petroleum 
hydrocarbons and producing methane gas (Jones et al.,  2008 ; Gieg et al.,  2010  ) . 
SRB and Fe(III)-reducing bacteria are also expected to degrade hydrocarbons in 
oil reservoirs considering the presence of sulfate and Fe(III) oxides and the 
reported capacity of these microorganisms to degrade hydrocarbons (Van Hamme 
et al.,  2003  ) .  

    4.6.2.   MEOR and Bio-EOR 
 Many oil  fi elds are approaching tail production, and hence, various tertiary methods 
for enhanced oil recovery (EOR) are wished for and desirable to apply within 
these reservoirs. There are different microbial processes and products derived from 
microbial metabolism that are suggested to have positive effects on oil recovery 
from a reservoir site (MEOR/Bio-EOR processes). These involve the reduction in 
oil viscosity by production of solvents or gases, increase in oil mobilization by 
hydrocarbon metabolism, or production of emulsi fi ers (Belyaev et al.,  2004 ; Sen, 
 2008  ) . Potentially relevant EOR methods also include reservoir  fl ooding using 
alkaline solutions or additives such as biologically derived polymers and surfac-
tants. Several studies indicate promising results; however, actual in situ processes 
are often dif fi cult to monitor, and  fi eld studies might be complex to perform and 
interpret, which makes this a very challenging research area. 

 A common problem in oil production is immobilized oil trapped within 
reservoir sediments. Several end products from microbial processes, like gases 
(CO 2 , H 2 ), acids, and different solvents, have been proposed to reduce oil viscosity, 
dissolve deposits, and alter wettability, which might result in enhanced mobilization 
and transportation of oil and thus in increased oil recovery (Belyaev et al.,  2004 ; 
Salehi et al.,  2008 ; Youssef et al.,  2009  ) . Microbial groups potentially involved in 
such processes are mainly fermentative bacteria and methanogens. Oil mobiliza-
tion is also believed to be aided by microbial production of biosurfactants (low 
molecular weight surface active agents with amphiphilic properties forming 
micelles) acting on the oil-water interphase and lowering the surface or interface 
tensions (e.g., Banat,  1995 ; Bordoloi and Konwar,  2009  ) . Microbial species sug-
gested to produce biosurfactants within oil reservoirs might be various, but 
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main groups are  Bacillus  sp.,  Pseudomonas  sp., and  Rhodococcus  sp. (Aburuwaida 
et al.,  1991 ; Li et al.,  2002 ; Mukherjee and Das,  2005 ; Youssef et al.,  2009  ) . 
Recent  fi ndings indicate that an increased recovery might be a combined effect 
of  both reduced viscosity by scission of  heavy molecules and a strong local bio-
surfactant production from activated microbial consortia. Additionally, oil 
biodegradation can promote the conversion of heavy (and “hard-to-recover”) oil 
fractions to lighter oil fractions, thus increasing oil mobilization, for example, by 
microorganisms able to degrade n-alkanes (Wentzel et al.,  2007  ) . Another oil 
production problem might be plugging of pipes by paraf fi n or by other deposits. 
These are often treated using chemical injections but might be removed by hydro-
carbon degrading microorganisms injected together with or without nutrients 
(e.g., Lazar et al.,  1999  ) . 

 As mentioned (Sect.  4.6.1 ), SRB can in some cases cause problems in oil 
production, and one strategy that has been used to counteract their effects is to 
stimulate nitrate-reducing bacteria (NRB, Sect.  4.4 ) in situ. This can be done by 
introduction of nitrate and potentially of NRB (Bødtker et al.,  2009 ; Lysnes 
et al.,  2009  ) . NRB might then compete with SRB for electron donors, oxidize 
undesirable high levels of sul fi de, and increase the redox potential in the habitat, 
leading to inhibition of SRB growth (Jenneman et al.,  1986 ; Telang et al.,  1997 ; 
Nemati et al.,  2001 ; Myhr et al.,  2002 ; Voordouw et al.,  2009  ) . Hence, NRB 
stimulation might then outcompete SRB growth in situ, with reduced reservoir 
souring as a positive effect (Grigoryan and Voordouw,  2008  ) .    

    5.   Future Perspectives and Biotechnological Exploitation of High-Temperature 
Oil Reservoir Microbiology Research 

 The highest reported temperature supporting life of microorganisms is very close 
to 120 °C (Takai et al.,  2008  ) , and in the deep biosphere, within sediments buried 
200–500 million years ago, extraordinary new types of organisms may be found. 
These microbes are truly poly-extremophiles, being highly thermophilic, halo-
philic, piezotolerant, and solventophilic. Studies of these (belonging to both the 
bacterial and the archaeal domain) can provide new knowledge and understand-
ing of various oil reservoir-associated mechanisms and characteristics, as well as 
reveal very exciting properties since the genetic materials of these microbes may 
encode biocatalysts with potentially highly relevant industrial implications. Gene 
mining and bioprospecting for a variety of new properties in proteins and metabo-
lites may lead to new industrial applications, including those for enhanced oil 
recovery: Bio-EOR (Sect.  4.6.2 ). The use of  extremophiles in various biocata-
lytic processes has already provided a new wave in the biotech industry, with bio-
processes performable at temperature and pressure conditions never before 
considered possible, and enzymes isolated from organisms originating from oil 
reservoirs might furnish new incentives for the development of  entirely new 
processes. In addition, the genetic information of these microbes also has the 
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potential to be developed into new tools for searching for new oil deposits in sensitive 
areas (like the Arctic, Antarctica, or jungle areas) using novel detection systems. 

 Obtaining new reserves of oil answers the increasing need of oil products 
and ensures a sustainable development of oil companies. Obtaining new reserves 
implies either to discover and develop new oil and gas  fi elds by exploration or to 
increase the recovery rate of existing  fi elds. One important research aim today is 
to develop biotechnological methods to enhance oil recovery (EOR). Two-thirds 
of the world’s extractable fossil fuels lay within the category of heavy to extra 
heavy oil, and the world’s average recovery rate from this type of oil reservoirs is 
only at about 7 %. Therefore, technologies that could boost these recoveries 
would have a tremendous economic impact. Today, different process technologies 
exist to extract these oils. However, these are all high-cost, high-energy, and high-
emission technologies, and they are also associated with other environmental 
concerns. In addition to limitations in recovery of heavy oils, there are other con-
cerns in oil recovery from present reservoir sites, including oil immobilization and 
plugging (Sect.  4.6.2 ), issues also being targets for combinations of conventional 
methods, and Bio-EOR processes. Further and deepened characterization of oil 
reservoir microbial communities is therefore very important. Not only are there 
numerous applicable features (suitable for both oil and biotechnology industry) 
to discover but also a need for an increased understanding of these communities. 
In order to access high quality samples for such studies, extensive collaborations 
with the oil industry are crucial and require well-designed and accurate sampling 
methods, limiting the risks of contamination and loss of sample representativeness 
to an absolute minimum.      
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