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    Abstract     Angiogenesis, or new blood vessel formation, is necessary for the growth 
and progression of malignant tumors. Among the endogenous regulators of angio-
genesis, catecholamines have recently drawn attention owing to the discovery that 
they have opposing roles in regulating tumor angiogenesis. Dopamine (DA), norepi-
nephrine (NE), and epinephrine (E) are the members of the catecholamine family. 
DA suppresses tumor angiogenesis and hence inhibits tumor growth, whereas NE 
and E increase tumor growth by promoting angiogenesis in tumor tissues. Therefore, 
on the whole, catecholamines function as an angiogenic switch. These neurotrans-
mitters act upon their target cells via specifi c receptors, exerting pro- or anti-angio-
genic effects, and thus are excellent targets for the regulation of tumor angiogenesis 
by dopaminergic or adrenergic receptor agonists or antagonists.  

     Neovascularization occurs by two distinct mechanisms: angiogenesis, in which new 
blood vessels sprout from the pre-existing blood vessels, and vasculogenesis, in 
which new blood vessels are derived from the circulating bone marrow-derived 
endothelial progenitor cells (EPCs) [ 1 – 5 ]. This process of new blood vessel forma-
tion is essential not only in normal physiological situations (e.g., the menstrual 
cycle, implantation, embryogenesis, and wound-healing), but also in the growth and 
metastasis of malignant tumors [ 1 – 5 ]. 

 In the normal physiological milieu, angiogenesis is tightly regulated by intri-
cately balanced endogenous pro- and anti-angiogenic molecules [ 6 – 8 ]. However, in 
malignancy, this fi ne tuning of the balance between pro- and anti-angiogenic 
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molecules is disabled by either the overexpression of pro-angiogenic molecules or 
the down-regulation of anti-angiogenic molecules, resulting in the activation of the 
angiogenic switch [ 6 – 8 ]. The overexpression of pro-angiogenic growth factors, 
such as vascular permeability factor/vascular endothelial growth factor (VPF/
VEGF), fi broblast growth factor (FGF), interleukin-8 (IL-8), placenta growth factor 
(PlGF), transforming growth factor β (TGF-β), and platelet derived growth factor 
(PDGF) tilt the tumor microenvironment in favor of angiogenesis and allow the 
transition of an avascular dormant tumor into a growing vascular tumor mass [ 1 – 3 ]. 
Because targeting growth factor-induced angiogenesis has shown clinical promise, 
designing therapies to target tumor neovessels is of interest owing to the decreased 
toxicity of the approach, the minimal drug resistance, and the ability to increase the 
effi cacies of anti-cancer drugs and radiation therapy [ 1 – 10 ]. 

 Catecholamines are a group of neurotransmitters that includes dopamine (DA), 
norepinephrine (NE), and epinephrine (E) [ 11 ]. In addition to their conventional 
roles in the brain, these molecules also have important functions in the periphery 
[ 11 ]. Recent discoveries of a regulatory role for different catecholamines in tumor 
angiogenesis are of current interest from a clinical viewpoint for the development of 
anti-angiogenic drugs to treat cancer patients [ 12 – 14 ]. These newly identifi ed roles 
for catecholamines also enable us to understand the biology of catecholamines in 
peripheral systems [ 13 ]. The available information regarding the roles of catechol-
amines in the regulation of tumor angiogenesis is discussed in this chapter. 

    NE and E are Endogenous Promoters of Tumor Angiogenesis 

 NE and E act on their target cells through α (α 
1
  and α 

2
 ) and β (β 

1
  and β 

2
 ) adrenoceptors 

[ 11 ]. Evidence indicates that exposure to chronic stress promotes tumor growth [ 12 , 
 15 ] through the stress mediators NE and E [ 16 ,  17 ], and the up-regulation of tumor 
angiogenesis is suggested to be the underlying mechanism [ 13 ,  18 ]. In a model of 
orthotopically xenografted human ovarian tumors in nude mice, a tumor growth-pro-
moting effect was observed in animals following exposure to chronic stress or treat-
ment with the β-adrenergic agonist isoproterenol, and this effect was abrogated by the 
β-adrenergic antagonist propranolol [ 19 ]. Interestingly, this increase in tumor growth 
was associated with the up-regulation of VEGF in tumor tissues, which led to the 
induction of tumor angiogenesis [ 19 ]. However, inhibition of the VEGF pathway sup-
pressed the tumor growth stimulatory effect of the β-adrenergic agonist [ 19 ].  In vitro  
studies also demonstrated the NE-mediated secretion of VEGF by ovarian carcinoma 
cells [ 20 ]. In addition, there are reports that indicate that NE, by acting on the adreno-
ceptors present in the tumor-associated macrophages (TAM), induces angiogenesis 
by stimulating the production of matrix metalloproteinase 9 (MMP-9) [ 21 ]. 

 In addition to the NE-mediated increase in the expression of the pro-angiogenic 
cytokine VEGF, studies have also indicated that in different tumor cells bearing 
the β-adrenoceptor (such as melanoma, ovarian, and nasopharyngeal cancer cells), 
NE induces a signifi cant increase in the synthesis and release of other pro-angiogenic 
factors, including IL-6, IL-8, MMP-2, and MMP-9 [ 21 – 24 ]. Interestingly, nicotine 
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has been shown to increase xenografted human colon tumor growth in nude mice. 
This increased tumor growth is associated with elevated plasma E levels and tumor 
angiogenesis. However, blocking the β-adrenoceptors with specifi c antagonists sig-
nifi cantly abrogated the nicotine-induced tumor growth through the down- regulation 
of tumor angiogenesis [ 25 ]. In addition, NE has also been shown to stimulate VEGF 
mRNA synthesis in endothelial cells through the cAMP-PKA pathway and to pro-
mote proliferation of these cells by activating ERK [ 26 ].  

    Molecular Mechanisms of NE- and E-induced Tumor Angiogenesis 

 By acting through β 
2
 -adrenoceptors, NE has been shown to promote angiogenesis in 

the orthotopically grown ovarian cancers HEY-8 and SKOV3ipI [ 19 ]. The underly-
ing molecular mechanisms of this phenomenon were determined to be increased 
VEGF synthesis and the overexpression of matrix metalloproteinases, such as 
MMP-2 and MMP-9 [ 19 ]. Further investigations demonstrated that this VEGF- 
induced overexpression of matrix metalloproteinases is mediated through the cAMP-
PKA signaling pathway following stimulation of β 

2
 -adrenoceptors by NE, indicating 

a novel signaling pathway, such as NE-β 
2
 -adrenoceptors-cAMP-PKA- VEGF [ 19 ]. 

NE treatment has also shown similar results in the human nasopharyngeal cell line 
HONE 1 [ 23 ]. In several human multiple myeloma cell lines (NCI-H-929, MM-M1, 
and FLAM-76) NE treatment has also shown similar results by acting through β 

1
  and 

β 
2
  adrenoceptors present in these cells [ 27 ]. However, a recent study has demon-

strated that  in vitro  treatment of human prostate (PC3), breast (MDA-MB-231), and 
liver (HCC SK-Hep1) cancer cells with NE or isoproterenol stimulated the expres-
sion of HIF-1α and synthesis of VEGF in a dose- dependent manner [ 28 ]. This 
increased VEGF synthesis was decreased when the tumor cells were transfected with 
HIF-1α siRNA [ 28 ]. This observation was further strengthened when HIF-1α was 
up- or down-regulated in these tumor cells following pretreatment with the adenylate 
cyclase activator forskolin or the protein kinase A (PKA) inhibitor H-89, respec-
tively [ 28 ]. Finally, pretreatment of tumor cells with a β-adrenergic blocker pro-
pranolol completely abolished the expression of VEGF and HIF-1α protein amount 
in these cells [ 28 ]. Therefore, in brief, NE induces VEGF expression in cancer cells 
through NE-β-adrenoceptor-PKA-HIF-1α-VEGF signaling pathway (Fig.  7.1 ).

   This catecholamine neurotransmitter also stimulates the synthesis and release of 
another pro-angiogenic factor, IL-6, in the human ovarian tumor cell lines 
SKOV3ip1, HEY-A8 and EG  in vitro  [ 24 ]. By acting through β-adrenoceptors in 
these tumor cells, NE signifi cantly increased both IL-6 mRNA synthesis and pro-
moter activity [ 24 ]. Additional results have demonstrated an abrogation of this 
NE-mediated effect on IL-6 synthesis following treatment with β-adrenoceptor 
antagonists, confi rming the NE-mediated regulation of IL-6 gene transcription 
through the activation of β-adrenoceptors [ 24 ]. NE-mediated β-adrenoceptor acti-
vation was also shown to increase Src kinase phosphorylation, which subsequently 
increased IL-6 mRNA synthesis through the up-regulation of the IL-6 promoter 
activity [ 24 ]. This suggestion of a NE-β-adrenoceptor-Src kinase-IL-6 pathway for 



80 S. Basu and P.S. Dasgupta

increased tumor angiogenesis was further strengthened by immunohistochemical 
analysis of human ovarian cancer tissues, in which a signifi cant correlation between 
the overexpression of Src kinase and the degree of tumor neovascularization was 
observed [ 24 ]. Src activation was also instrumental in increasing the synthesis of 
other pro-angiogenic molecules, such as VEGF and IL-8 [ 24 ]. However, another 
alternate signaling pathway was recently identifi ed in which NE and E stimulated 
MMPs in human ovarian tumor cell lines independent of the β1, β2-adrenoceptors-
PKA pathway. This pathway involves STAT-3, a transcription factor known to initi-
ate several signaling pathways in cancer cells [ 29 ].  

    DA as an Endogenous Inhibitor of Tumor Angiogenesis 

 In addition to acting as a precursor molecule in the biosynthetic pathway of NE and E, 
DA also acts as an important neurotransmitter in both the brain and the peripheral 
organs [ 30 ]. In the brain, DA regulates several major functions, including cognition, 
motor activities, and the reward effect in the form of pleasure [ 30 ,  31 ]. In peripheral 
systems, DA regulates cardiac and renal functions. In addition, recent evidence has 
indicated that DA infl uences other diverse functions, such as blood pressure, insulin 

  Fig. 7.1     NE stimulates 
VEGF synthesis in the 
tumor cells.  NE by activating 
β-adrenergic receptors 
activates cAMP-PKA axis 
and stimulates VEGF 
synthesis by up-regulating the 
transcription factor Hypoxia 
Inducible Factor-1α (HIF-1α) 
in tumor cells       
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synthesis in beta cells of the pancreas, and the functions of immune effector cells 
[ 32 – 34 ]. Recently, another role of this neurotransmitter in the peripheral system has 
been demonstrated: DA functions as an endogenous inhibitor of angiogenesis by acting 
through its D 

2
  class of receptors present in the endothelial cells and EPCs [ 35 – 41 ]. 

 A signifi cant increase in B-16 melanoma growth has been found in D 
2
  DA 

receptor (−/−) mice [ 37 ]. Another study has revealed signifi cantly decreased growth 
of mammary carcinoma in hyperdopaminergic Wistar rats (APO-SUS), and 
increased growth of the same tumors was observed in hypodopaminergic rats (APO-
UNSUS) [ 36 ]. This increased or decreased tumor growth in hypo- or hyperdopami-
neregic rats is closely associated with increased or decreased angiogenesis in tumors 
[ 36 ]. Furthermore, in human gastric cancer patients, a signifi cant reduction of DA 
in malignant stomach tissues compared to the surrounding normal tissues has been 
observed, and exogenous administration of DA or a D 

2
  DA receptor agonist signifi -

cantly inhibited stomach tumor growth [ 38 ]. The mechanism of this phenomenon 
has been attributed to the inhibition of angiogenesis in the tumor tissues [ 38 ].  

    Molecular Mechanisms of DA-induced Inhibition 
of Tumor Angiogenesis 

 VEGF is the predominant cytokine that regulates angiogenesis by mediating pro-
liferation, migration, and tube formation in endothelial cells from pre-existing ves-
sels [ 3 ,  10 ]. VEGF also plays a pivotal role in the migration and subsequent 
mobilization of EPCs from the bone marrow into the neovessels of tumors by act-
ing through VEGFR-2 receptors present on these cells [ 41 ].  In vivo  studies have 
demonstrated that DA treatment signifi cantly inhibits tumor angiogenesis [ 35 – 41 ]. 
Tumor endothelial cells isolated from human breast (MCF-7) and colon (HT29) 
tumor-bearing mice displayed suppression of VEGFR-2 phosphorylation with sub-
sequent inhibition of its downstream signaling cascades (e.g., MAPK and focal 
adhesion kinase (FAK)), which regulate the proliferation and migration of endothe-
lial cells; this regulation is essential for tumor neovessel formation (Fig.  7.2 ) [ 40 ]. 
Recent studies also reveal important contributions of bone marrow-derived EPCs 
in tumor angiogenesis [ 4 ,  5 ,  42 ]. Indeed, additional reports indicate that in the bone 
marrow niche, DA is synthesized in stromal cells [ 43 ] and is depleted in tumor-
bearing mice [ 41 ], thus indicating a role of DA in the regulation of the mobilization 
of these precursor cells from bone marrow into circulation [ 41 ]. Importantly, the 
administration of exogenous DA, which inhibited tumor angiogenesis, also inhib-
ited the mobilization of these cells from bone marrow [ 41 ]. This inhibitory effect 
of DA is abrogated when the animals are treated with a D 

2
  DA receptor antagonist 

[ 41 ]. The inhibitory effect on the mobilization of EPCs from the bone marrow and 
hence on tumor angiogenesis is due to the D 

2
  DA receptor-mediated down-regula-

tion of MMP-9 synthesis by these bone marrow progenitor cells through the inhibi-
tion of the ERK1/ERK2 pathway (Fig.  7.3 ) [ 41 ]. These observations were further 
supported in D 

2
  DA receptor (−/−) mice: increased numbers of circulating EPCs 
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were evident in tumor- bearing mice compared to wild type controls, and the D 
2
  DA 

receptor antagonist treatment failed to elicit any effect in the animals [ 41 ].
    These studies have clearly demonstrated that DA acts as an endogenous inhibitor 

of angiogenesis, and hence of tumor growth, by targeting the VEGF-induced prolif-
eration and migration of endothelial cells and EPCs through several newly uncov-
ered mechanisms [ 35 – 41 ].  

    Discussion 

 Together, current fi ndings show that catecholamine neurotransmitters act as regula-
tors of tumor angiogenesis and, hence, regulate the growth of malignant tumors [ 13 ]. 
The available evidence suggests that DA acts through its D 

2
  class of receptors to 

inhibit tumor angiogenesis by targeting the proliferation and migration of tumor 
endothelial cells as well as the mobilization of EPCs [ 35 – 41 ]. In contrast, NE and E 
act through β-adrenoceptors to stimulate angiogenesis by stimulating the synthesis of 
pro-angiogenic cytokines (e.g., VEGF, IL-8, and IL-6) and MMPs (e.g., MMP-2 and 
MMP-9) in tumor cells through different signaling pathways [ 13 ]. Briefl y, in the D 

2
  

DA receptor-mediated down-regulation of angiogenesis, the target cells are endothe-
lial cells and EPCs, whereas in the NE-mediated up-regulation of tumor angiogenesis, 
the target cells are principally tumor cells [ 13 ]. Therefore, based on these opposing 

  Fig. 7.2     Dopamine inhibits tumor endothelial cell proliferation and migration.  Dopamine by 
activating its D 

2
  receptors inhibits VEGFR-2 phosphorylation and downstream signaling mole-

cules like mitogen-activated protein kinase (MAPK) and Focal adhesion kinase (FAK)       
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  Fig. 7.3     Dopamine inhibits mobilization of bone marrow-derived endothelial progenitor 
cells for tumor neovessel formation . Activation of D 

2
  dopamine receptors in endothelial progenitor 

cells (EPCs), dopamine inhibits migration of these cells from bone marrow to the circulation and 
subsequently to neovessels of the tumors by inhibiting synthesis of matrix metalloproteinase-9 
(MMP-9) in these progenitor cells       

  Fig. 7.4     Model of an 
angiogenic switch in tumor: 
Diagram of catecholamine-
mediated operation of an 
angiogenic switch in tumor 
microenvironment.  
Dopamine inhibits 
angiogenesis, whereas 
norepinephrine and 
epinephrine up-regulate 
angiogenesis in tumor tissues       

effects of stimulation and inhibition of tumor angiogenesis by the catecholamine 
neurotransmitters (DA, NE, and E), it is suggested that catecholamines function as an 
angiogenic switch in the tumor microenvironment (Fig.  7.4 ). The expression profi le 
of D 

2
  DA receptors or β-adrenoceptors in any organ may be altered in response to the 

onset of malignancy in that organ. These alterations may tilt the microenvironment 
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of the tumor in favor of angiogenesis, thereby transforming an avascular, dormant 
tumor mass into a vascular, rapidly growing tumor. Epidemiological evidence has 
also indicated that the use of NE antagonists reduces the risk of cancer incidence 
[ 44 ]. Therefore, it will be prudent to undertake further detailed investigations to dis-
sect the specifi c roles of catecholamines in relation to their function as an angiogenic 
switch in tumor growth. These studies will enable clinicians to develop DA or NE/E 
receptor agonists or antagonists as anti-angiogenic drugs.
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