
183R. Lal et al. (eds.), Ecosystem Services and Carbon Sequestration in the Biosphere, 
DOI 10.1007/978-94-007-6455-2_9, © Springer Science+Business Media Dordrecht 2013

    Abstract     Within the global carbon (C) cycle, there is still much debate as to the 
magnitude, location and turnover of the terrestrial C sinks (and sources). One of the 
major keys to closing this knowledge gap is that globally, the amount of C entering 
oceans maybe only  ca . 33 % of the total C transported from terrestrial ecosystems 
to inland surface waters. Streams, lakes, rivers and transitional waters are areas for 
the active transformation and recycling of terrestrially-derived C indirectly back to 
the atmosphere (estimated range of 25–44 %). Understanding processes that control 
soil C losses to and its fate in surface waters is not only important in establishing 
accuracy of C fl uxes, feedbacks and tradeoffs but also providing evidence to limit 
terrestrial ecosystem C contributions to atmospheric carbon dioxide (CO 

2
 ). 
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 The relationship between inland surface waters and C cycling are controlled by 
biogeochemical, physical and hydrometeorological metrics that integrate both lateral 
(soil to water) and longitudinal (along the riverine continuum) processes during C 
transport in its different forms, i.e., particulate, dissolved and gaseous C species. 
This chapter outlines processes affecting compositional “quality” of C within 
surface waters and in-stream physico-chemical and biotic mechanisms that are 
instrumental to understanding losses of C via the soil-surface water-atmosphere 
pathway.  

  Keywords     Carbon   •   Dissolved organic carbon   •   Particulate organic carbon   • 
  Organic matter   •   Inland surface waters   •   Carbon dioxide outgassing   •   In-stream 
processes   •   Biogeochemical quality   •   Aquatic carbon cycle  

   Abbreviations

   C    Carbon   
  CH 

4
     Methane   

  CO 
2
     Carbon Dioxide   

  DIC    Dissolved Inorganic Carbon   
  DOC    Dissolved Organic Carbon   
  DOM    Dissolved Organic Matter   
  FT-IR    Fourier Transform Infrared   
  GHG    Greenhouse Gas   
  GPP    Gross Primary Production   
  OM    Organic Matter   
  N 

2
 O    Nitrous Oxide   

  NEE    Net Ecosystem Exchange   
  PIC    Particulate Inorganic Carbon   
  POC    Particulate Organic Carbon   
  POM    Particulate Organic Matter   
  SOC    Soil Organic Carbon   
  SOM    Soil Organic Matter   
  UV    Ultra-Violet   

9.1          Introduction 

 The global carbon (C) cycle is comprised of three main compartments: land (soil, 
vegetation and geological), ocean and atmospheric pools (Janzen  2004 ; Smith et al. 
 2008 ), each with their relative stocks of C that are constantly fl uctuating. It is a 
complex system to understand and accurately estimate its C cycling processes, and 
there has been considerable disagreement over C stocks and the movement of C 
(i.e., C fl uxes) between pools for disparate ecosystems (Dixon and Turner  1991 ; 
Malhi  2002 ). For example, total soil C content varies spatially within the same 
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mapped soil unit and C stock estimates within a given area can vary depending on 
the scale of soil mapping (Dawson and Smith  2007 ). The myriad of spatio-temporal 
variations (e.g., soil characteristics, gaseous emissions, seasonality) combined with 
diverse land management strategies complicate derivation of C stocks, fl uxes and 
processes in terrestrial (soil and vegetation) ecosystems (Chadwick et al.  1994 ; Cao 
et al.  2002 ). Furthermore, soil organic C stocks will be sensitive to changes in cli-
mate, but the magnitude and timescale of their response as well as potential feed-
backs are not fully comprehended (Schmidt et al.  2011 ). Some discrepancies 
between literature estimates of the global C stocks and fl uxes occur due to the dif-
ferent extrapolation approaches utilised. Limitation of suffi cient representative data 
is one main source of uncertainty in estimates but further understanding of mecha-
nisms and processes that underpin C cycling from microbial to global scales is also 
required to reduce the uncertainty that persists (Smith et al.  1993 ; Janzen  2004 ; Le 
Quéré et al.  2009 ). 

 It is important to note that the global C cycle does not operate independently but 
is linked to the nitrogen (N), phosphorus (P) and sulphur (S) cycles by biological 
processes such as mineralization and immobilisation (Richey  1983 ; Stevenson 
 1986 ). The ‘Anthropocene’ (Crutzen  2002 ) has been proposed as a name for the 
present epoch (commencing with the industrial revolution,  ca  1750) in which con-
sumption of fossil fuels releasing C, N and S to the atmosphere, together with N, P 
and ammonia fertilizer production and land-use changes (e.g., cultivation, clearing 
and harvesting of forests) have resulted in signifi cant perturbations to these natural 
biogeochemical cycles (Bolin et al.  1983 ; Malhi  2002 ; Janzen  2004 ; Raupach and 
Canadell  2010 ). These perturbations have impacted climate, biodiversity and land 
cover resulting in multiple pressures on ecosystems that supply fundamental ser-
vices for human well-being (Dawson and Smith  2010 ). One of the most striking 
examples of this ecosystem disequilibrium is the changing composition of the atmo-
sphere as a result of anthropogenic consumption that has generated increasing 
amounts of greenhouse gases (GHGs, e.g., carbon dioxide [CO 

2
 ] as well as methane 

[CH 
4
 ] and nitrous oxide [N 

2
 O]) as end products (Janzen  2004 ). 

 The distribution of C within the land-atmosphere–ocean system for the past 
10,000 years (Holocene), prior to the Anthropocene, had remained relatively stable. 
Atmospheric CO 

2
  concentrations, determined from ice-cores, ranged between 260 

and 280 ppmv (Barnola et al.  1987 ; Indermühle et al.  1999 ) and CH 
4
  concentrations 

at 650–700 ppbv (Chappellaz et al.  1990 ). Between 1850 and 1950, the average 
annual C fl ux from fossil fuel combustion was 0.6 Pg C year −1  (1 Pg = 10 15  g; Stuiver 
 1978 ). This fl ux had increased to 5.4 Pg C year −1  by 1990 (Tans et al.  1990 ; Dixon 
et al.  1994 ); the average emission of CO 

2
  from fossil fuel combustion and cement 

manufacture for the 1990s was estimated at 6.3–6.5 Pg C year −1  (IGBP  1998 ; 
Schimel et al.  2001 ; Houghton  2003 ; Janzen  2004 ; Post et al.  2004 ). Since the turn 
of the century, rapid growth in these CO 

2
  emissions has continued, reaching 9.1 ± 0.5 

Pg C year −1  by 2010 (Peters et al.  2012 ). Changes in human land management strat-
egies have also caused a net release of C to the atmosphere (Woodwell  1978 ; 
Houghton et al.  1983 ). Until  ca . 1960 this was higher than the C emitted by fossil 
fuel combustion (Houghton et al.  1983 ; Malhi et al.  2002 ). By 1980 land-use 
changes emitted between 0.4 and 4.7 Pg C year −1  (Buringh  1984 ; Schlesinger  1984 ; 
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Tans et al.  1990 ) and average annual emissions in the 1990s were between 1.7 and 
2.2 Pg C year −1  (Houghton  2003 ; Janzen  2004 ). Net deforestation alone has been 
estimated to release 0.9–1.6 Pg C year −1  (IGBP  1998 ; Houghton  2000 ; Schlesinger 
and Andrews  2000 ; Raupach and Canadell  2010 ). 

 Although, the emission of CO 
2
  by fossil fuel combustion and land-use changes 

since 1750 have been partly balanced by oceanic and terrestrial sinks (about 
50–60 % of anthropogenic CO 

2
  releases, Scholes and Noble  2001 ; Sabine et al. 

 2004 ; Le Quéré et al.  2009 ; Raupach and Canadell  2010 ), there was still a net 
increase of CO 

2
  to the atmosphere of 3.2–3.4 Pg C year −1  during the 1990s (IGBP 

 1998 ; Schimel et al.  2001 ; Janzen  2004 ) resulting in atmospheric CO 
2
  concentra-

tions of 371 ppmv by 2001 (   Malhi  2002 ; Janzen  2004 ; Post et al.  2004 ) and CH 
4
  

concentrations of 2,000 ppbv (Fowler et al.  1995 ). Recent estimates indicate that up 
to 5 Pg C year −1  maybe accumulating in the atmosphere (Le Quéré et al.  2009 ; 
Friedlingstein et al.  2010 ). Monthly mean CO 

2
  concentrations, supplied by the US 

National Oceanic and Atmospheric Administration from the Mauna Loa Observatory 
in Hawaii, by April 2012 have reached 396 ppmv (National Oceanic and Atmospheric 
Administration  2012 ). 

 There is still much debate as to the magnitude, location and turnover of the ter-
restrial C sinks (and sources) (Dixon et al.  1994 ; Keeling et al.  1996 ; Houghton 
 2003 ; Aufdenkampe et al.  2011 ), particularly with changing climate and land use. 
As soil and vegetation combined ( ca . 75 % of the terrestrial C stock occurs as 
organic matter [OM] in soils) contain three times as much C than in the atmosphere 
pool, small increases in net C losses from the terrestrial biosphere to the atmosphere 
could have signifi cant impacts on atmospheric CO 

2
  concentrations. Hence, the 

response of soils, particularly organic-rich soils (e.g., peatlands), to climate and 
land management future scenarios is crucial when assessing climate-C cycle feed-
backs (Smith et al.  2008 ; Evans and Warburton  2010 ). The more C that can be 
retained resiliently via reduced turnover rates within the global terrestrial sink mod-
erates that amount exported to the atmosphere as GHG. To achieve this, requires 
accurate assessment of terrestrial fl uxes and processes. This has led to numerous 
studies with regards to determining net ecosystem exchange (NEE) and net ecosys-
tem production (NEE incorporating lateral export, Lovett et al.  2006 ; Aufdenkampe 
et al.  2011 ) across different soil and vegetation classes. Others studied sensitivity to 
decomposition of soil organic matter (SOM) pools and land use/management strate-
gies that can reduce losses of GHG from land to the atmosphere (e.g. Cao and 
Woodward  1998 ; Cannell  2003 ; Janssens et al.  2003 ; Janzen  2004 ; Dawson and 
Smith  2007 ; Smith et al.  2008 ; Le Quéré et al.  2009 ; Schulze et al.  2010 ). 

 However, to balance the C budget of anthropogenic emissions, land and ocean 
sinks and the measured atmospheric pool, it was proposed that the losses of C via 
inland surface waters equated to the amount of missing C adsorbed from the atmo-
sphere but not sequestered in the terrestrial biosphere on land (Siemens  2003 ). 
Moreover, in contrast to the NEE dynamic equilibrium between CO 

2
  inputs to land 

as gross primary production (GPP) and vegetation and soil biomass respiration losses 
of CO 

2
  (Cao and Woodward  1998 ), C losses to surface waters are – redeposition on 

fl oodplains aside – uni-directional and are now considered integral to improving 
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estimates of C budgets within terrestrial ecosystems from landscape to global scales 
(Billett et al.  2004 ,  2010 ; Cole et al.  2007 ; Dawson and Smith  2007 ; Battin et al. 
 2009 ; Aufdenkampe et al.  2011 ). Key to this is that the amount of C entering oceans 
is only a part of the total C transported from terrestrial ecosystems to surface waters. 
The remainder is cycled within the riverine continuum and returned back to the 
atmosphere as CO 

2
  or buried in sediments as OM (Aufdenkampe et al.  2011 ). 

 Recent observations of increasing dissolved organic carbon (DOC) concentra-
tions (Worrall et al.  2004 ; Evans et al.  2006a ,  b ; Monteith et al.  2007 ; de Wit and 
Wright  2008 ) and increased erosion contributing particulate organic carbon (POC) 
(Evans et al.  2006a ,  b ; Evans and Warburton  2010 ) within stream waters of upland 
(mainly organic-rich soils) ecosystems suggest that SOM stocks may be vulnerable 
and will potentially contribute to positive climate forcing. However, this assumes 
that the soil-derived OM entering surface waters is converted to CO 

2
  with subse-

quent evasion from the water column to the atmosphere (Hope et al.  2001 ; Billett 
and Garnett  2010 ). Conversely, non-respired OM transported from the land to 
oceans, with burial and incorporation in marine sediments would mean that losses 
of SOM would not contribute to CO 

2
  concentrations in the atmosphere. Therefore, 

understanding processes that control soil C losses to and its fate in surface waters is 
not only important in establishing accuracy of terrestrial and aquatic C fl uxes, feed-
backs and tradeoffs but also providing evidence for local, national and global land 
management and policy strategies that limit terrestrial ecosystem C contributions to 
atmospheric CO 

2
 .  

9.2    The Soil-Surface Water-Atmosphere Pathway 

9.2.1    The Role of Surface Waters in the Carbon Cycle 

 Within the global C cycle, inland surface waters (streams, lakes, rivers and transi-
tional waters) act as a conduit for the transport of C from the land to the ocean 
(Fig.  9.1 ). The total global riverine organic C fl ux has been estimated at  ca . 0.40 Pg 
C year −1  (Degens et al.  1991 ; Schlunz and Schneider  2000 ), of which particulate 
transport constitutes between 0.07 and 0.20 Pg C year −1  (Ittekkot and Laane  1991 ; 
Hedges et al.  1997 ).

   Global inorganic C fl uxes from rivers are of an equal magnitude to organic fl uxes 
and have been estimated at between 0.26 and 0.53 Pg C year −1  (Meybeck  1993 ; Hope 
et al.  1994 ; Smith et al.  2008 ). Although these river fl uxes are two orders of magni-
tude smaller than annual gross C fl uxes between the atmosphere and land ( ca . 120 Pg 
C year −1 ) and atmosphere and oceanic ( ca.  90 Pg C year −1 ) pools of the global cycle 
(Janzen  2004 ; Smith et al.  2008 ), the global riverine fl ux of organic C to the oceans 
is comparable to the annual C sequestration in soil (0.4 Pg C year −1 , Schlesinger 
 1990 ; Hope et al.  1994 ; Roulet and Moore  2006 ), suggesting that terrestrially- derived 
aquatic losses of organic C may contribute to regulating changes in SOC storage 
(Hope et al.  1997 ; Cole and Caraco  2001 ; Billett et al.  2006 ). 
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 In surface waters, C is transported in particulate (non-solubilised), dissolved and 
gaseous forms (Dawson et al.  2002 ). OM covers a continuous size spectrum of 
compounds ranging from free monomers such as amino acids, carbohydrates and 
fatty acids, fulvic and humic acids, to macromolecules such as proteins and col-
loids, to aggregates and large particles including bacteria (Thurman  1985 ). POC and 
particulate inorganic carbon (PIC) are retained on a fi lter with pore sizes mainly 
between 0.45 and 0.7 μm. The upper limit is operationally defi ned by the sampling 
device used and is usually about a few mm (Ittekkot and Laane  1991 ). DOC is asso-
ciated with the fi ltrate that passes through the fi lter paper (Thurman  1985 ; Hope 
et al.  1997 a). Dissolved inorganic carbon (DIC) is also contained in the fi ltrate and 
in surface waters comprises H 

2
 CO 

3
 , HCO 

3
  −  and CO 

3
  2−  . These anions are associated 

with gaseous free CO 
2
  via the carbonate equilibria. Their relative proportions depen-

dent on pH and, to a lesser extent, on temperature (Stumm and Morgan  1981 ; 
Dawson et al.  1995 ). Although CH 

4
  concentrations in surface waters are usually 

much lower than CO 
2
 , it is another important C-containing GHG associated with 

areas of anoxia within catchments (De Angelis and Scranton  1993 ; Jones and 
Mulholland  1998 ). 

 Continual C inputs to surface waters occur via tributaries, bank seepage and the 
hyporheic zone as headwaters – streams – rivers progress to estuaries, coastal envi-
ronments and the deep ocean. However, surface waters are not inert channels but 
key hotspots for active transformation and recycling of C. Aquatic C has ecological 
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  Fig. 9.1    Simplifi ed global carbon cycle highlighting the uni-directional fl ux and aquatic cycling 
of carbon from the land to either atmosphere or ocean pools. See text for discussion of fl uxes       
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signifi cance as an energy source for both autotrophic and heterotrophic biota (Cole 
et al.  2007 ; Battin et al.  2008 ,  2009 ; Aufdenkampe et al.  2011 ). Inorganic and 
organic C, as a constituent of dissolved organic matter (DOM), infl uences the pH 
and ionic balance within surface waters (i.e., via organic acids and the carbonate 
equilibria). Both DOM and particulate organic matter (POM) are also involved in 
complexation mechanisms that affect solubility, transport and availability of ions, 
nutrients, heavy metals and organic pollutants (Hope et al.  1994 ; Dawson et al. 
 2002 ). Moreover, the quantity and quality of DOM can have economic conse-
quences associated with treatment costs to remove colour for potable waters (Worrall 
et al.  2004 ; Dawson et al.  2009a ).  

9.2.2    Connectivity Between Soils and Surface Waters 

 In order to determine C losses to surface waters, most studies utilise the catchment 
as a functional unit. The catchment concept provides a natural environment that 
“links the atmosphere, plants, soils, groundwater, and streams through the conver-
gence and interaction of material and energy fl ows” in an integrated manner (Lohse 
et al.  2009 ). Catchments provide a platform for maximising research within and 
between an infi nite variety of different terrestrial systems (e.g., by area, characteris-
tics or management), where hypotheses can be quantitatively assessed (Dawson and 
Smith  2010 ). 

 The climate, geology and land use/management of catchments and their interac-
tion mainly determine soil type and vegetative communities and hence the terres-
trial C stock. Topography, temperature, precipitation, hydrology and nutrients affect 
vegetative and soil-forming processes, such as primary production, respiration and 
biologically-mediated decomposition (Hope et al.  1994 ; Yoo et al.  2006 ), infl uenc-
ing the amount of potentially exportable C from the terrestrial pool. Decomposition 
and mineralization of litter and/or SOM converts primary production products to 
smaller organic components and inorganic forms, respectively, releasing C and 
nutrients for uptake by soil biota (plants, faunal and microbial communities). 
Factors, e.g., temperature, soil texture and moisture, and plant residue composition, 
that regulate OM stabilisation and decomposition rates in soils have been discussed 
extensively in the literature (e.g., Davidson and Janssens  2006 ; Von Lützow et al. 
 2006 ; Smith et al.  2008 ; Lohse et al.  2009 ; Schmidt et al.  2011 ). SOM decomposi-
tion differs considerably amongst terrestrial systems and results in losses of soil C 
as (i) mainly CO 

2
  and CH 

4
  to the atmosphere as part of NEE; (ii) particulate C and 

DOC by erosion processes and (iii) gaseous, dissolved and particulate C to surface 
waters (Dawson and Smith  2007 ). 

 Spatial and temporal (e.g., diurnal, seasonal) variations in concentrations and 
the type (particulate, dissolved or gaseous) of C exported in surface waters are 
determined by hydrological processes interacting with the biogeochemistry of the 
surrounding terrestrial environment (Hornberger et al.  1994 ; Lohse et al.  2009 ; 
Dawson et al.  2011 ). Within stream processes can constitute a secondary control 
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on these inputs (Dawson et al.  2001a ). Areas of SOM erosion, decomposition 
products within soil interstitial pore waters (e.g., temperature-related biological 
decomposition of available OM and solubility of DOC and gaseous components) 
and groundwater inputs contribute to C available for export from soils to surface 
waters (Dawson and Smith  2007 ). Connectivity of soils to the drainage net-
work - controlled by soil distribution (Billett and Cresser  1992 ) and their hydro-
logical properties (e.g., hydrology of soil types; Boorman et al.  1995 ) combined 
with hydrometeorological characteristics (e.g., antecedent conditions, rainfall-runoff 
ratios, mean transit times, discharge variability) are paramount in determining the 
extent and timing of C inputs (Brooks et al.  1999 ; Dawson et al.  2008 ,  2009b , 
 2011 ). However, the linkage between soil and surface waters is temporally dynamic 
and vulnerable to disturbance (Fraser et al.  2001 ; Billett et al.  2006 ).  

9.2.3    Inputs of Particulate Carbon to Surface Waters 

 POC in surface waters originates from allochthonous (terrestrially-derived) sources 
such as soils and fragmented plant material (branches, cones, leaves, needles, 
twigs). It is also present in surface waters as microbial and algal biomass (biofi lms) 
and from aggregation of DOM (Sollins et al.  1985 ; Ittekkot and Laane  1991 ; Hope 
et al.  1994 ). POC is less common, dependent on the nature of the underlying parent 
material within catchments, originating in areas containing carbonate minerals, 
such as limestone and dolomite (Meybeck  1982 ). 

 The main mechanism of POC inputs to surface waters is via erosion of topsoil 
aggregates containing SOM that are spatially close to receiving waters. Inputs of 
POC, as a variable component of suspended sediment (Dawson et al.  2012 ), tend to 
be episodic in nature. The majority of POC is transported via overland fl ow follow-
ing intense rainfall events (and snowmelt), when runoff is greater than the infi ltra-
tion capacity of the soil (Walling and Webb  1985 ,  1987 ; Reynolds  1986 ; Walling 
et al.  2002 ; Evans and Brazier  2005 ). In addition, sub-surface soil pipes can contrib-
ute substantially to POC content, particularly in peatlands that have been artifi cially 
drained (Warburton et al.  2004 ; Holden  2006 ). Bare soils, lacking in stability, are 
more liable to erosion than their equivalent soils that are naturally vegetated; e.g., 
under vegetation on arable land or have undergone peatland restoration. For river-
bank soils, higher discharge and increased stream size enhances erosional processes, 
through weathering, fl uid entrainment, “preparatory” bank weakening and eventual 
collapse of the bank (Lawler et al.  1997 ; Couper and Maddock  2001 ). 

 Soil erosion and production of suspended sediment is highly variable (e.g., Stott 
and Mount  2004 ; Dawson and Smith  2007 ). Altitude, slope and soil type have been 
correlated with extent of erosion. However, inadequate consideration of “best prac-
tice” protocols for land management infl uence losses such as tillage down slope by 
mechanised agriculture, burning and drainage of organic C-rich moorland, over- 
recreation, over-stocking and poaching by cattle are important contributors to ero-
sional processes (McHugh et al.  2002 ; Dawson and Smith  2007 ). Temporally, the 
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extent of erosion within a given area can also change markedly. Within the same 
locality, different stages of the forestry cycle comprising undisturbed peatland, 
ploughing and ditching, mature forests to harvesting have produced substantial 
changes to suspended sediment yields in adjacent surface waters (Stott and Mount 
 2004 ). The transport of eroded SOM also removes essential nutrients and minerals, 
which can affect the ability of the soil to support ecosystem functions (Neff and 
Asner  2001 ). Moreover, the mobilisation of soil to surface waters has other disad-
vantages as suspended sediment reduces light penetration, impacts on macro- 
invertebrate and fi sh communities, increases biochemical oxygen demand and 
contributes to diffuse pollution by controlling export of sediment-associated nutri-
ents, pathogens and contaminants, such as trace metals and pesticides (Kronvang 
et al.  1997 ; Lawler et al.  2006 ; Collins and Anthony  2008 ).  

9.2.4    Inputs of Dissolved Carbon to Surface Waters 

 DOC in surface waters originates from vegetation (leaching, rhizodeposition) and 
soil (leaching, OM decomposition and erosion) (Hope et al.  1994 ; Meyer et al.  1998 ). 
In-stream, processing of POM contributes to DOC concentrations (Dawson et al. 
 2004 ,  2012 ). DIC is derived from dissolution of carbonates and weathering of 
silicates in soils and bedrock. Speciation of DIC is also dependent on the carbonate 
equilibria (including its interaction with CO 

2
  dynamics) within ground and soil water 

pools (Hope et al.  2004 ). Soil interstitial pore water is modifi ed as it moves preferen-
tially along fl ow paths through organic and mineral soil horizons to ground or surface 
waters (Grieve  1990 ; Hinton et al.  1998 ; Hagedorn et al.  2000 ). In upland peatland 
streams, isotopic studies have suggested that soil-derived DOC was commonly of 
recent (decadal) origin. However, ground water DOC was much older,  ca . 8,500 years 
and associated with underlying mineral layers (Schiff et al.  1997 ; Palmer et al.  2001 ; 
Tipping et al.  2010 ). In larger rivers, a terrestrially-derived combination of young and 
old DOC and mainly old POC (>1,000 year) was noted. It has been suggested that 
the younger, more labile DOC has undergone preferential mineralization resulting in 
a residual older OM component (Raymond and Bauer  2001 ). 

 Many studies in temperate and boreal catchments, but not all (e.g., Tao  1998 ; 
Dawson et al.  2008 ), indicate positive relationships between surface water con-
centrations of DOC (or POC) and hydrological discharge (Dawson and Smith 
 2007 ). However, seasonality and catchment-specifi c hydrological patterns (e.g., 
antecedent moisture levels, hysteresis related to rising and falling events on the 
hydrograph and OM source exhaustion following consecutive intense rainfall 
events) can affect DOC and POC concentrations for a particular discharge, 
increasing variation of individual concentration-discharge relationships (Walling 
 1977 ). Seasonal splitting of data can sometimes improve this relationship for 
DOC (Dawson et al.  2002 ,  2008 ,  2011 ). Surface water concentrations of DIC tend 
to show an inverse relationship with discharge as the contributions of ground 
water are reduced and the infl uence of sub-surface water derived from the upper 
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organic soil horizons that contain less DIC increases at higher discharge (Hill and 
Neal  1997 ; Neal et al.  1997 ; Dawson et al.  2002 ,  2004 ). Understanding these 
relationships between discharge and concentrations is important for improving 
assessments of the total C lost from soils to surface waters.  

9.2.5    Inputs of Gaseous Carbon to Surface Waters 

 Gaseous CO 
2
  in surface waters is derived from the terrestrial environment, in-stream 

mineralization of OM and by exchange at the atmosphere/water interface (Dawson 
et al.  2009b ). Microbial communities also convert OM to CH 

4
  but only in areas of 

anoxia such as those in peat soils, riparian zones and bed sediments (Dahm et al. 
 1991 ; Jones and Mulholland  1998 ; Hope et al.  2004 ). In soils, gaseous components 
dissolve in soil water and are either trapped within soil pores, lost by diffusion to the 
soil surface, or hydrologically transported to ground or surface waters. The soil 
porosity and moisture levels control the proportion of gaseous C that is exported to 
surface waters (Skiba and Cresser  1991 ; Dawson et al.  2001a ; Hope et al.  2004 ). In 
well-aerated, freely draining mineral soils, the rate of gaseous C effl ux as CO 

2
  to the 

atmosphere from the soil surface is dominant, and gaseous losses to the surface 
waters are a minor component. However, in typically saturated organic C-rich soils, 
gaseous C effl uxes to the surface are reduced as CO 

2
  and CH 

4
  dissolves in soil pore 

waters more readily from where it is then transported laterally to surface waters 
increasing their losses via hydrological pathways (Clymo and Pearce  1995 ; Fowler 
et al.  1995 ; Billett et al.  2004 ).  

9.2.6    Spatial Variability of Carbon Inputs to Surface Waters 

 As streams increase in size to rivers, C inputs from the surrounding terrestrial eco-
system become less signifi cant as autochthonous (derived from up-stream contigu-
ous inputs and in-stream processes) C content becomes more dominant. 
Anthropogenic inputs are also important in areas with a higher population density 
and pollution (Hope et al.  1994 ). 

 Studies indicate strong correlations between C in surface waters and soil type, 
e.g., % area of peat (Hope et al.  1997 ; Dawson et al.  2011 ) or the soil C pool and 
SOM C:N ratios (Aitkenhead et al.  1999 ; Billett et al.  2006 ; Aitkenhead-Peterson 
et al.  2007 ). 

 However, these often occur in smaller scale (<5 km 2 ) catchments where soil- 
stream linkage is strongest (Aitkenhead et al.  1999 ; Dawson et al.  2001a ; Hope 
et al.  2004 ; Billett et al.  2006 ). Figure  9.2  highlights an example of how changes in 
stream water DOC and CO 

2
  concentrations link to spatial changes in the soil C pool 

along a headwater stream. Initially, at the source, shallow, immature soils (Leptosols) 
with little C content only supply small amounts of DOC or CO 

2
  to the adjacent 
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drainage network. As the stream fl ows through deep peat (>5 m in depth, Billett 
et al.  2006 ), increased DOC and CO 

2
  are supplied directly to the drainage channel. 

These inputs then decrease in the lower part of the catchment as the stream fl ows 
through more freely drained organo-mineral soils. At this stage, the relationship 
between organic C in the soil and stream becomes weaker as complex interactions 
occur, e.g., continual inputs of detrital DOC from upstream, lower DOC and CO 

2
  

inputs from freely-drained minerals soils, continual outgassing of CO 
2
  to the atmo-

sphere and in-stream processing of DOC (Dawson et al.  2001a ; Billett et al.  2006 ). 
This inter-relationship between allochthonous and autochthonous inputs and pro-
cesses, affecting both organic and inorganic C concentrations and fl uxes in surface 
waters, occurs continuously downstream to oceans with an increasing infl uence of 
autochthonous inputs as terrestrial connectivity with the surface water is often 
reduced in larger river systems (Minshall et al.  1985 ; Meyer and Edwards  1990 ; 
McTammany et al.  2003 ; Dawson et al.  2004 ,  2009b ,  2011 ; Webster  2007 ).

9.2.7        In-Stream Processes Affecting Carbon 
Concentrations and Speciation 

 Many processes modify both organic and inorganic C concentrations within surface 
waters prior to entering the oceanic sinks (Fig.  9.3 ). It has been estimated that of the total 
amount of organic C entering global rivers, 50 % is transported to oceans, 25 % is 
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  Fig. 9.2    Downstream spatial variability in DOC (▲) and CO 
2
 -C (◊   ) concentrations along the 

main stem of a head water peatland stream, indicating connectivity with soil type (■ = Leptosol 
■ = Histosol (Peat) ■ = Histic Podzol) (Data obtained on 14/07/97, Adapted from Dawson et al. 
( 2001a ) and Billett et al. ( 2006 )) (Color fi gure online)       
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oxidised and 25 % stored as sedimentary OM within impoundments, lakes, fl oodplains, 
and other wetlands (Hope et al.  1994 ). Recently, it has been suggested that  ca . 33 % of 
global terrestrial C inputs to surface waters reach the oceanic sink and a minimum of 
44 % enters the atmosphere as gaseous C at a rate of 1.2 Pg year −1  (range of 0.75–1.4 Pg 
year −1 ) with the remaining 22 % retained in sediments (Battin et al.  2009 ; Aufdenkampe 
et al.  2011 ). However, these rough estimates have an inherent uncertainty due to the 
substantial spatio-temporal variability within and between ecosystems.

   In organic C-rich uplands, POC is largely derived from low density eroded peat. 
Once this material enters a stream channel it is largely transported as washload 
which can be transported at very low discharge and is fl ushed downstream, only 
deposited once the fl ow weakens. Larger blocks of peat may be temporarily stored 
on the channel bed but these are soon broken down by in-stream microbial pro-
cesses and rapid abrasion (Evans and Warburton  2001 ). OM deposited on the chan-
nel bed is re-suspended when discharge rises above a certain threshold. Sediment 
OM is liable to re-suspension (as POC) in an alternating sequence of deposition 
(with potential subsequent fates of burial or further decomposition) and re-suspen-
sion (Thurman  1985 ; Cushing et al.  1993 ; Evans and Warburton  2001 ,  2005 ) along 
the riverine continuum. 

 Whole stream metabolism of OM, related to the amount and type of biological 
activity within the stream ecosystem, exerts a signifi cant control on C concentrations 
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2
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and is important for understanding differential speciation and fate of C within surface 
waters. Rates of in-stream GPP, community respiration (benthic and water column) 
and net ecosystem production rates are known to vary diurnally, seasonally and 
between different aquatic environments (Battin et al.  2008 ; Staehr et al.  2012 ). 
Increased input of nutrients in bioavailable forms to stream ecosystems may also 
stimulate primary productivity, increasing autotrophic organic biomass production 
such as phytoplankton and macrophytes, with concomitant increases in community 
respiration (Peterson et al.  1985 ; Neal et al.  2006 ; Stutter et al.  2008 ; Dawson et al. 
 2012 ). Physical aspects of the stream also play a role in determining OM processing 
(Fellows et al.  2001 ). This includes hydraulic parameters, such as water transient 
storage, hyporheic fl ow paths, pooling and fl ow characteristics, which can affect 
biotic establishment and stability, thus, infl uencing in-stream heterotrophic and auto-
trophic processes (Battin et al.  2008 ; Dawson et al.  2009b ). 

 In detrital-based upland stream ecosystems and along organic C-rich rivers, het-
erotrophic decomposition of DOM often dominates (respiration > photosynthesis) 
acting as a source of CO 

2
  (Meyer and Edwards  1990 ; Marzolf et al.  1994 ; Mulholland 

et al.  1997 ; Dawson et al.  2001b ,  2004 ). This is due to large inputs of respiratory 
substrate (OM) from either upstream or adjacent terrestrial sources that constitute a 
major energy source for aquatic communities. Biota that utilise OM are likely to be 
acclimatised to specifi c DOC sources found within particular ecosystems (Kuserk 
et al.  1984 ). POM deposited as sediments can be broken down physically by macro- 
invertebrates and microbes to fi ner particles. Collectors and fi lter feeders (e.g., 
 Diptera ,  Simulidae ), which are known to process large amount of POC, break down 
these fi ner particles contributing DOC to the water column (Vannote et al.  1980 ; 
Meyer and Tate  1983 ; Malmqvist et al.  2001 ; Monaghan et al.  2001 ). Strong rela-
tionships between fi lter feeders and bioavailable-P within POM confi rm the impor-
tance and reactivity of this substrate (Stutter et al.  2007 ). DOC inputs can be 
removed from the water column either by biotic or abiotic processes (Hope et al. 
 1994 ). Adsorption of DOC as well as via aggregation to form POC is usually con-
trolled by its physical chemistry at the solid/liquid interface. OM can be adsorbed to 
inorganic particulates, undergo deposition and be retained on the stream bed by 
biofi lm communities that act as major transformers of DOC in headwater streams 
(McDowell  1985 ; Fiebig and Lock  1991 ; Staehr et al.  2012 ). Dissolved humic sub-
stances (a component of the DOC pool), although often considered relatively recal-
citrant, are also an important biodegradable source of C (Volk et al.  1997 ). In 
addition, there is evidence that photolytic degradation of DOM to more readily 
assimilated compounds occurs stimulating ecosystem productivity under suitable 
conditions, e.g., in lakes (Lindell et al.  1995 ; Granéli et al.  1996 ; De Lange et al. 
 2003 ). Particulate OM has been less studied as a source of C to the atmosphere 
compared to DOM as it is transported towards sedimentary pools in the estuarine 
and oceanic environments where it constitutes a major substrate for heterotrophic 
metabolism (Ittekkot and Larne  1991 ; Tappin et al.  2003 ; Cole et al.  2007 ). 
Consequently, “far less is known about potential transformations of POM, which 
govern POC fate and interaction within surface waters” (Dawson et al.  2012 ). The 
major OM microbial transformation processes associated with in-stream POM 
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require initial colonisation on particulate material, respiration (either decomposition 
to DOC or mineralization to CO 

2
 ) and nutrient recycling with formation of new 

biomass (Grossart and Ploug  2000 ; Zimmermann-Timm  2002 ; Battin et al.  2008 ). 
 Dissolved CO 

2
  content in surface waters is determined as a concentration 

(mg L −1 ) or partial pressure ( p CO 
2
 ) in the gas phase. The ‘excess partial pressure of 

CO 
2
 ’ ( ep CO 

2
 ) has been defi ned as ‘the ratio of the  p CO 

2
  in solution to the atmo-

spheric  p CO 
2
  value’ (Neal  1988 ; Dawson et al.  2009b ). Water in equilibrium with 

the atmosphere at current values has a partial pressure of dissolved CO 
2
  (pCO 

2
 ) of 

 ca . 390 ppmv. A recent collation of estimates has stated that nearly all fresh waters 
contain CO 

2
  in concentrations that are supersaturated with respect to that of the 

atmosphere ( ep CO 
2
  values > 1). Measured  p CO 

2
  values range from 1,000 to 12,000 

ppmv in rivers and from 350 to 10,000 ppmv in lakes and reservoirs (Aufdenkampe 
et al.  2011 ). This supersaturated state is due to the allochthonous inputs of CO 

2
  from 

ground and soil pore waters, and because aquatic community respiration rates from 
OM mineralization exceed photosynthetic uptake (Cole and Caraco  2001 ; Dawson 
et al.  2001b ,  2009b ; Jones et al.  2003 ; Griffi ths et al.  2007 ; Billett and Moore  2008 ; 
Teodoru et al.  2009 ). 

 The loss of supersaturated CO 
2
  in streams as it equilibrates with the atmospheric 

CO 
2
  concentration is termed the “outgassing effect” (Skiba and Cresser  1991 ). Like 

CO 
2
 , CH 

4
  can also be supersaturated in streams (Jones and Mulholland  1998 ), 

where it undergoes oxidation to CO 
2
  and outgassing once it enters surface waters 

(Hope et al.  2001 ). Historically, losses of CO 
2
  via this soil-surface water-atmosphere 

pathway have tended to be unaccounted for in most inland surface water C fl ux 
estimations and ecosystem C budgets but it is now considered an important indirect 
transfer mechanism to the atmosphere from the terrestrial C pool (Kling et al.  1991 ; 
Cole et al.  1994 ; Cole and Caraco  2001 ; Richey et al.  2002 ). Considerable differ-
ences exist between studies that have investigated evasion rates of CO 

2
  and CH 

4
  

from streams, rivers, lakes and wetland ponds due to spatio-temporal differences in 
catchment soils and their moisture levels affecting mineralization rates and hydro-
logical fl ow paths e.g., lateral transport, as well as in-stream processes (Dawson and 
Smith  2007 ). Figure  9.2  illustrates how CO 

2
  concentrations in a headwater stream 

can vary spatially within the same network (and hence outgassing fl ux) along short 
distances in relation to changes in source areas (e.g., peat). Once the elevated levels 
of CO 

2
  have been lost from the stream by outgassing, further inputs are reduced as 

the stream enters areas adjacent to more freely drained peaty podzols. Often, signifi -
cant outgassing ‘hotspots’ occur along a riverine continuum, such as organic C-rich 
soil pools, where soil C losses to the atmosphere are reduced and the soil-stream 
linkage is strong (Dawson et al.  2001a ,  2004 ; Hope et al.  2001 ). In-stream physico- 
chemical factors controlling CO 

2
  losses to the atmosphere include temperature- 

dependent solubility, volume, depth, velocity, gradient, turbulence and wind speed, 
as well as the initial concentration of CO 

2
  in the stream water (Neal  1988 ; Rebsdorf 

et al.  1991 ; Hope et al.  2001 ; Dawson et al.  2001a ,  2009b ). 
 Hope et al. ( 2001 ) showed that gaseous C evasion fl uxes from a peatland stream 

to the atmosphere were similar to fl uxes of the total C (particulate, dissolved and 
gaseous) transported within the stream itself. Other studies have indicated its 
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importance as part of an overall total C balance (sink/source status) in landscapes 
(Billet et al.  2004 ; Dinsmore et al.  2009 ,  2010 ). Moreover, processes infl uencing 
CO 

2
  in surface waters, along with other chemical inputs, alter pH that determine 

speciation/calcite precipitation of the ground water and terrestrially-derived DIC 
(i.e. HCO 

3
  − /CO 

3
  2− ) via the carbonate equilibria (Stumm and Morgan  1981 ). Isotopic 

studies of outgassed CO 
2
  from carbonate free waters suggest that a “small, rapidly 

cycling pool (2–5 year) of organic C is responsible for the large C fl uxes from land 
to water to atmosphere”. However, some systems show greater contributions from 
ground water sources which can increase the mean CO 

2
  age to several decades 

(Mayorga et al.  2005 ). 
 Even in highly heterotrophic streams and rivers, autotrophic processes continue, 

but their dominance is restricted to occasional periods of the day or year when con-
ditions for photosynthetic processes are optimised. During these periods when 
 ep CO 

2
  is <1, infl ux of CO 

2
  from the atmosphere can occur (Rosenfeld and Roff 

 1991 ; Dawson et al.  2001b ,  2009b ; Battin et al.  2008 ). Further downstream from 
organic C-rich headwaters, heterotrophic communities can potentially utilise C 
derived from “upstream processing ineffi ciencies” and autotrophic communities 
utilise CO 

2
  derived from continual ground and soil pore-water inputs as well as in- 

stream OM mineralization and solubility dependent gas exchange with the atmo-
sphere (Vannote et al.  1980 ; Griffi ths et al.  2007 ; Dawson et al.  2009b ). There is a 
direct correlation between in-stream primary production and stream order (Minshall 
et al.  1985 ). The deposition of C increases as streams and rivers meander and 
hydraulic energy is dispersed to levels suitable for increased sedimentation. These 
physical changes that lead to increases in sedimentation, encourages colonisation 
and establishment of benthic autotrophic communities that sequester CO 

2
  from the 

water column. Along with the high input of allochthonous respiratory C substrate in 
organic C-rich upland systems, this produces a U-shaped curve of energy between 
contiguous headwaters, tributaries and main rivers ecosystems (Fiebig and Lock 
 1991 ; Webster  2007 ; Dawson et al.  2009b ). 

 However, the dynamic equilibrium between effl ux and sequestration of CO 
2
  

within surface waters is spatially dependent as the dynamics of physical (outgas-
sing/gas exchange) and biogeochemical processes vary (Dawson et al.  2009b ). 
Moreover, different processes also dominate depending on the time-scale of the 
analysis (Hanson et al.  2006 ). For example, (i) atmospheric deposition, climate 
and land use changes infl uence DOC dynamics in soil and stream waters at dif-
ferent spatio-temporal scales which make it diffi cult to discern the overriding 
control on widespread long-term trends of DOC in surface water (Clark et al. 
 2010 ) and, (ii) photosynthetic consumption of CO 

2
  is light dependent but in-

stream community respiration and CO 
2
  terrestrial inputs continue throughout 

periods of darkness and diurnal variations in concentrations of CO 
2
  concentra-

tions can be signifi cant (Guasch et al.  1998 ; Dawson et al.  2001b ; Neal et al. 
 2004 ; Griffi ths et al.  2007 ). Maximum diurnal amplitude of CO 

2
  concentrations 

tend to occur during summer when an increased prevalence of lower discharges 
and higher temperatures encourages biotic activity (Dawson et al.  2001b ; 
Griffi ths et al.  2007 ; Battin et al.  2008 ).  
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9.2.8    Biogeochemical Quality of Organic Matter 

 In the past, the majority of studies on organic C distribution within surface waters 
have concentrated on quantifying concentrations or fl uxes and discerning processes 
that infl uence the main organic components, i.e., DOC and POC, and production of 
GHG. However, the biogeochemical composition and degradability of OM will 
affect its transformation dynamics and hence distribution within surface waters. 
This has implications for selective processing of OM and hence its fate within the 
aquatic environment (McCallister et al.  2006 ; Dawson et al.  2012 ). 

 Moreover, as OM mineralization and decomposition rates can depend on the 
physico-chemical characteristics of the OM itself, soil management and land use 
practices that affect spatio-temporal variability of the quantity and type of OM 
entering watercourses will infl uence whether terrestrially-derived C eventually 
resides in atmospheric or oceanic pools. Therefore, there is a need to understand 
SOM quality inputs and in-stream processes that control the proportions and kinet-
ics of aquatic (POC and/or DOC) and benthic sediment OM transformations to 
GHG across a diverse range of environmental scenarios. Furthermore, nutrient 
enrichment from e.g., agricultural diffuse such as N and P pollutants (Stutter et al. 
 2008 ), infl uences the “biogeochemical environment” of aquatic biotic activity (both 
photosynthetic and respiratory processes) changing nutrient and C fl ows and eco-
logical stoichiometry within food webs (Cross et al.  2005 ; Penton and Newman 
 2007 ; Manzoni and Poporato  2011 ). 

 Different functional forms of aquatic OM infl uence biological and physico- 
chemical processes, such as its biological decomposition potential e.g., labile to 
recalcitrant compounds; ecosystem energy, hydrophobicity, pH buffering and pho-
tochemical fading (Baker et al.  2008 ). The degradability of OM may also be limited 
by the availability of other elements such as N and P (Taylor and Townsend  2010 ). 
Stoichiometric ratios (C:N:P) of OM are generally a simple yet robust indicator of 
OM quality (Elser et al.  2000 ; Cross et al.  2003 ). 

 In order to monitor and assess the extreme spatio-temporal variability of OM 
quality, standardised biogeochemical techniques and assays are required that can be 
performed relatively easily. These assays should also relate to functional properties 
of OM that impact on their fate within the aquatic environment. In terms of DOC, 
The relationship between ultra-violet (UV) absorbance and DOC concentrations has 
been used to infer changes in the proportion of hydrophobic (aromatic, recalcitrant) C 
and hence potential biodegradability of DOC (Marschner and Kalbitz  2003 ; Chen 
et al.  2002 ; Weisharr et al.  2003 ; Dawson et al.  2009a ). Ågren et al. ( 2008 ) have 
suggested that the bioavailability of the DOC maybe also be related to molecular 
weight (indicted by Abs 

254
 /Abs 

365
  ratios), encompassing both aliphatic and aromatic 

components. More complex characterisation of DOC can be achieved by fl uores-
cence spectroscopy, which include determination of humic-like, fulvic-like, trypto-
phan or tyrosine (protein) like groups, chlorophyll as well as linking to functional 
characteristics of DOC (Baker and Spencer  2004 ; Baker et al.  2008 ). This technique 
has also been utilised to assess biodegradability of stream water DOC (Fellman et al. 
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 2009 ). Furthermore, the use of Fourier Transform Infrared (FT-IR) spectroscopy has 
been utilised to assess chemical functional groups of humic substances (Lumsdon 
and Fraser  2005 ). 

 The inherent biodegradability of OM derived from surface waters and benthic 
sediment can be assessed by an integrated measurement of its respiration kinetics. 
Benthic sediment samples can be collected relatively easily and measured under 
defi ned conditions. However, respiration rates have also been measured from sus-
pended sediments collected on fi lter papers using the MicroResp TM  technique 
(Dawson et al.  2012 ). The principal of the MicroResp TM  system is that a colour 
change forms in an indicator gel during incubation due to the CO 

2
  evolved from 

microbial-induced substrate decomposition (Campbell et al.  2003 ). Other measure-
ments of “biogeochemical reactivity” of OM include stoichiometric (C, N, P) 
assessments of both DOM and POM as well as chlorophyll-α concentrations 
(Sobczak et al.  2002 ; Neal et al.  2006 ) that assess autotrophic OM contributions 
(autochthonous apportionment, Dawson et al.  2012 ). The amount of respired CO 

2
  

produced as a proportion of the total C associated with POM on the suspended 
sediment and POM autotrophic activity could be related to contributory land use 
pressures as well as the biogeochemical water environment (Dawson et al.  2012 ).   

9.3    Conclusion 

 The understanding and quantifi cation of in-stream processes, including in-stream 
cycling of C derived from non-terrestrial sources, provides increased certainty of 
the proportions of terrestrially-derived aquatic OM transformed to GHG and that 
is eventually exported from streams, lakes and rivers to estuarine and marine 
environments. 

 The relationships between inland surface waters and C cycling can be dependent 
on the integration of many different processes that requires understanding of both 
lateral (soil to water) and longitudinal (along the riverine continuum) transport of C. 
This also requires an integrated understanding and assessment that incorporates par-
ticulate, dissolved and gaseous C species. These processes need to be explored to 
evaluate the ultimate fate of terrestrially-derived C in surface waters. Many surface 
waters are dominated by in-stream biological systems which may ultimately control 
the decomposition of complex natural OM. This is where an integrative quantitative 
assessment of these processes that link the compositional ‘quality’ of OM forms to 
biological accessibility for respiration under ‘realistic’ scenarios is required. There 
are, however, interconnected physical processes of stream morphology, deposition 
and re-suspension of particulates, photo-oxidation of DOM and outgassing of gas-
eous C. Hydrometeorological metrics affect connectivity of soil sources controlling 
the amount and nature of the material initially reaching the surface waters and the 
stability and hence processing capacity of in-stream biological communities. 
Moreover, climate change as well as progressive anthropogenic infl uences along the 
river continuum, such as bank disturbance, nutrient/pollutant inputs and water 
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abstraction also infl uences OM degradation rates both in the water column and 
benthic sediments. 

 It must be noted that OM losses to inland surface waters are an important compo-
nent of its natural ecosystem functioning. In-stream C provides energy for process-
ing of other terrestrially-derived materials, e.g., processing and reduction of nitrate 
relies on metabolically available DOC. However, perturbation of biogeochemical 
cycles has meant that although C performs this important role, consequently being 
respired and lost to the atmosphere, it is appropriate to devise strategies that also 
reduce excessive point/diffuse pollutant terrestrial inputs to surface waters, resulting 
in a more balanced equilibrium between cycles. 

 Therefore, to reduce GHG production via the soil-stream-atmosphere pathway 
requires reduction in the fi rst stage of this process, i.e., unnecessary losses of C (and 
nutrients) to waters, via soil erosion and hydrologically-mediated transport of SOM 
decomposition products. Strategies increasing SOM stabilization and reducing the 
rate of decomposition and mineralization to DOC and CO 

2
 , respectively, are instru-

mental to this hydrological export. Therefore, land use and best management prac-
tices that mitigate against C losses from terrestrial environments (both directly to 
the atmosphere and via surface waters) are important as to which strategies have the 
ability to store the most C.     
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