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Series Preface

The fifth volume of Advances in Mathematics Education focuses on an under ad-
dressed area of research in mathematics education, namely early mathematical
thinking and learning. Despite the groundbreaking work of Piaget that led to the
formulation of developmental theories, interest in further developing neo-Piagetian
models of learning has waned since the 1980’s. Three decades later, the community
has come to realize that these developmental models do not take into consideration
the sophisticated mathematical thinking that children are capable of, given the right
mathematical activities to stimulate them into abstract reasoning.

The book, Reconceptualizing Early Mathematics Learning, edited by Lyn En-
glish and Joanne Mulligan presents studies that advance children’s mathematical
learning in ways we did not think was possible. The chapters focus on notions
of early algebra, statistical thinking, beginning numeracy as well as the advocacy
for the kinds of learning that are important for the 21st century. Several of the
chapters also address the professional development of teachers necessary to pro-
mote early mathematical learning experiences. The theoretical foundations of this
work are set in Newton and Alexander’s chapter that surveys the state of the art.
This is followed by empirical studies of Mulligan in Australia, Clements in the
U.S. as well as alternative play-based classrooms of Wager. Data modeling is an-
other theme explored by English with children in grades 1–3. Interdisciplinary ap-
proaches are also found in the work of Diefes-Dux that utilize model eliciting ac-
tivities in art classrooms. The book provides a balance between theoretical foun-
dations, empirical work with children that advance theories, as well as the impor-
tance of work with teachers to provide early mathematics learning and develop-
ment.

An important feature to note in volume 5 is that the book series, Advances in
Mathematics Education, has moved into topics not traditionally anchored in prior
volumes of the connected journal, ZDM—The International Journal on Mathe-
matics Education. This suggests that the series is open to research perspectives
from the community that advance our field, without necessarily being anchored to
ZDM.

v



vi Series Preface

We are deeply convinced that this book will make a strong contribution to the
much needed diversity of theoretical advances in mathematics education.

Bharath Sriraman
Gabriele Kaiser

Missoula, USA
Hamburg, Germany
11 March 2013
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Perspectives on Reconceptualizing Early
Mathematics Learning

Introduction

Lyn D. English and Joanne T. Mulligan

This edited volume emanated primarily from our concern that the mathematical
capabilities of young children continue to receive inadequate attention in both the
research and instructional arenas. Our research over many years has revealed that
young children have sophisticated mathematical minds and a natural eagerness to
engage in a range of mathematical activities. As the chapters in this book attest, cur-
rent research is showing that young children are developing complex mathematical
knowledge and abstract reasoning a good deal earlier than previously thought.

A range of studies in prior to school and early school settings indicate that young
learners do possess cognitive capacities which, with appropriately designed and im-
plemented learning experiences, can enable forms of reasoning not typically seen in
the early years (e.g., Clements et al. 2011; English 2012; Papic et al. 2011; Perry
and Dockett 2008). For example, young children can abstract and generalize mathe-
matical ideas much earlier, and in more complex ways, than previously considered.
Although there is a large and coherent body of research on individual content do-
mains such as counting and arithmetic, there have been remarkably few studies that
have attempted to describe characteristics of structural development in young stu-
dents’ mathematics.

The title of this volume, Reconceptualizing Early Mathematics Learning, cap-
tures the essence of each chapter. Collectively, the chapters highlight the impor-
tance of providing more exciting, relevant, and challenging 21st century mathemat-
ics learning for our young students. The chapters provide a broad scope in their
topics and approaches to advancing young children’s mathematical learning. They
incorporate studies that highlight the importance of pattern and structure across the
curriculum, studies that target particular content such as statistics, early algebra,
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2 L.D. English and J.T. Mulligan

and beginning number, and studies that consider how technology and other tools
can facilitate early mathematical development. Reconceptualizing the professional
learning of teachers in promoting young children’s mathematics, including a con-
sideration of the role of play, is also addressed. Although these themes are diffused
throughout the chapters, we restrict our introduction to the core focus of each of the
chapters.

To set the scene, the opening chapter by Newton and Alexander provides an in-
depth historical analysis of the changing and, at times paradoxical, nature of early
mathematics learning. By conceptualizing how perspectives on early mathematics
learning have taken shape over the past century through the impact of both inter-
nal and external forces, Newton and Alexander highlight the changing character of
early mathematics learning over the last century. They explore psychological, socio-
cultural, and neurophysiological developments that may have helped to shape these
pedagogical trends in early mathematics education.

Emphasizing the importance of pattern and structure across the curriculum is the
core feature of the chapters by Mulligan and her collaborators. Their classroom re-
search with 4- to 8-year-old children reveals a focus on mathematical pattern and
structure to be both critical and salient to young learners’ mathematical develop-
ment. They demonstrate how their construct, Awareness of Mathematical Pattern
and Structure, generalizes across early mathematical concepts, can be reliably mea-
sured, and is correlated with mathematical understanding. The construct can bring
more coherence to our understanding of mathematical development and the design
of effective pedagogical approaches. For example, we report on an evaluation study
that demonstrates the positive impact of a Pattern and Structure Awareness Program
(PASMAP) in the first year of schooling.

Another approach to advancing early mathematics learning is offered by
Clements and Sarama with their learning trajectories tool, which forms the core
of their conceptual framework for developing curricula and teaching strategies. The
learning trajectories describe how children learn major topics in mathematics and
how teachers can support that learning, while their framework details criteria and
procedures for creating scientifically based curricula using learning trajectories.

An alternative perspective on supporting early mathematics learning is proposed
by Wager with her focus on play-based classrooms. She explores the application of
‘focused’ instruction that minimizes teacher-centered practices and promotes play—
teachers plan and build on children’s understanding, interests, and cultural practices,
and recognize and respond to the mathematics that emerges in children’s play.

A focus on play also features in the chapter by van Oers, who addresses ways in
which we might help children explore their actual play situations from the perspec-
tive of number. Specifically, the chapter describes how translating number related
problems into thinking tools that are accessible for mathematical refinement (i.e.
mathematizing) can occur meaningfully within the context of young children’s play.
Such experiences are linked strongly to children’s learning to communicate about
number in a coherent way, rather than by instructing them on number operations.

Providing opportunities for children to direct their own learning is also high-
lighted in English’s chapter, where she explores reconceptualizing young children’s
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statistical experiences from the beginning years of formal schooling. Specifically,
she addresses data modeling as a means of developing young children’s abilities to
impose structure on complex data, detect relationships between seemingly diverse
concepts and representations, and organize, structure, visualize, and represent data.
Ways in which young learners engaged in these processes during a longitudinal
study of data modeling across grades one to three are described.

Other ways of enriching learning opportunities are offered in the chapters that
address advances in technology. Ginsburg et al. show how cognitive psychology can
inform the design and evaluation of software for early mathematics learning, and
how the resulting software can provide new approaches to evaluating learning and
enhance basic cognitive research. With examples from their MathemAntics software
program, the authors illustrate the affordances of computer technology in fostering
transformative improvements in early mathematics education. The development of
such software has the potential to elicit advanced mathematical thinking and reveal
unexpected deviations from known developmental trajectories.

Likewise, Goodwin and Highfield demonstrate the rich learning experiences that
interactive technologies can provide for the mathematics learning of 3–8-year-olds.
Their exemplars demonstrate how the pedagogic design of technologies can have
a substantial impact on young children’s development of basic mathematical con-
cepts. In addition, Goodwin and Highfield provide evidence that different forms of
multimedia offer unique opportunities for learners, whose responses challenge the
widespread belief that young children are incapable of dealing with complex math-
ematical concepts.

Other didactic tools that have the potential to enhance early mathematical devel-
opment include picture books, as seen in van den Heuvel-Panhuizen’s and Elia’s
chapter. They present a framework of picture book characteristics that support
kindergartners’ learning of mathematics, and examine three reading book tech-
niques investigated in their research. A major conclusion of their research is read-
ing picture books can support substantially children’s mathematical understanding
and should thus have a significant place in the early curriculum. The use of picture
books appears effective for a wide range of children including those of different
ages, socio-economic backgrounds, and language and mathematical abilities.

An innovative, interdisciplinary approach to furthering early mathematical de-
velopment is described in Diefes-Dux’ chapter. She considers how art education,
which is typically viewed solely as an opportunity to explore creative thinking, can
be a powerful partner in advancing young children’s problem solving, with a fo-
cus on mathematical modeling. The chapter describes a Draw-a-Monster activity
that was created to adhere to design principles for a Model-Eliciting Activity and
implemented in two art classrooms. Ways in which an activity of this nature can be
linked to children’s learning in other domains including mathematics, language arts,
and engineering are explored. Preparing young children for more complex modeling
situations, appearing increasingly in their world, are discussed.

Enhancing teachers’ professional development is a core concern of the chapters
by Warren and Miller, Papic, and Perry and Dockett. The first two chapters report
on teacher programs designed to promote the early mathematics learning of disad-
vantaged, indigenous children. Warren and Miller’s program for teachers resulted in
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improvements in their affective domain, with teachers becoming more confident in
their ability to teach mathematics. These gains in teacher confidence led to improved
pedagogical practices, and enriched mathematical content knowledge and instruc-
tion. In turn, these outcomes impacted positively on the children’s confidence and
learning.

Papic reports on a series of studies aimed at improving young indigenous chil-
dren’s learning opportunities, particularly in early algebra, patterning, and math-
ematical reasoning. The development of teachers’ pedagogical and mathematical
content knowledge was also a core aim achieved through ongoing, supportive pro-
fessional development. The program was geared towards the broader goal of closing
the gap in numeracy achievement for Australian indigenous children in rural and re-
gional early childhood settings. The studies outlined in their chapter provide empiri-
cal evidence that, through scaffolding teacher’s abilities to promote early mathemat-
ics learning, children’s development of sophisticated concepts and skills emerges.
In particular, prior to formal schooling young children are capable of abstracting,
generalizing, and explaining patterns and pattern structures.

Perry and Dockett’s chapter also addresses both teacher and student develop-
ment, with a focus on findings from the Early Years Numeracy Project in South
Australia. The development of a major artifact from the project, namely, the Reflec-
tive Continua, forms the focus of the chapter. Ways in which educators have used
the Reflective Continua to stimulate the powerful mathematics learning of young
children are reported. The Continua’s rich contribution to teacher development lies
in its frameworks that guide educator reflections on children’s mathematical work
and assist in the planning of future learning experiences.

In concluding, we thank the authors for their insightful and future-oriented per-
spectives on early mathematics learning and development. The book would not have
been possible without their commitment to advancing the field; we hope their di-
verse collection of studies will provide a strong foundation for much needed future
research.
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Early Mathematics Learning in Perspective:
Eras and Forces of Change

Kristie J. Newton and Patricia A. Alexander

One of the endlessly alluring aspects of mathematics is that its thorniest paradoxes have a
way of blooming into beautiful theories. Phillip J. Davis (1964)

As the opening chapter in this important volume that looks deeply at the chang-
ing and somewhat paradoxical nature of early mathematics learning, our goal is to
position those shifting perspectives within a historical framework. By conceptualiz-
ing how views of early mathematics learning have taken shape over the past century
through the pushes and pulls of both endogenous (internal) and exogenous (external)
forces, one can better grasp the re-conceptualization of mathematics learning con-
veyed within the ensuing chapters. There are perhaps few who would argue with the
underlying premise of this book; that the character of early mathematics education
has changed dramatically over the last century not only in terms of the pedagogical
approaches to teaching young children, but also in relation to the content and goals
of that instruction. However, the progression of that change may be less evident and,
consequently, worthy of scrutiny.

Changes in complex domains such as early childhood mathematics rarely hap-
pen abruptly or without inducement. Rather, such transformations seemingly unfold
over the course of many years in response to internal and external conditions. Here
we endeavor to unearth those inducements, some of which arise more directly from
within the community of researchers and practitioners invested in early mathematics
teaching and learning. Other of those inducements can be situated within the broader
educational and psychological communities, reflecting varied if not conflicting the-
oretical orientations toward human learning and development (see Fig. 1). Thus, in
this chapter, we attempt to identify six particular periods or eras associated with
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6 K.J. Newton and P.A. Alexander

Fig. 1 The sources of evidence in constructing eras of change in early mathematics learning

mathematics learning in young children and seek to explore psychological, socio-
cultural, and neurophysiological developments that may have helped to shape those
eras.

Before we begin this historical overview of early mathematics learning, we want
to state frankly that there is not exactness to the characterization we present. Histor-
ical analysis of this sort is characteristically inferential. Consequently, others who
would engage in a comparative historical examination of the early mathematics lit-
erature or judge the endogenous and exogenous forces that were at work within
each time period may reach different conclusions. Moreover, the boundaries be-
tween historical eras are neither rigid nor fixed. Here we looked at 20-year periods
as meaningful, generational units for analysis, but the trends underway within the
era do not simply begin or end at the preset time points. Further, our own interests
and empirical foci, such as our investment in the study of learning theories and chil-
dren’s understanding of fractions and their analogical reasoning, will undoubtedly
color the perspectives we forge herein from the existing evidence.

Nonetheless, with these caveats in mind, the eras we identify derive from the
theoretical and empirical literature of that period, and consider personages whose
writings and thinking were particularly influential. We also signify some important
events within mathematics, education, or the broader society that are anchored to
these time periods. Also, we consider the views of children and the teaching of
mathematics to children that were prevailing within each era, as well as the presence
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of alternative or competing perspectives that may have signaled subsequent changes
on the horizon.

For example, early childhood educators have traditionally advocated for learn-
ing through play, but views of the nature and purpose of play have varied markedly
among educational researchers and practitioners. In part, these variations exist as a
function of the changing beliefs about children’s cognitive capabilities and about the
role of early educational experiences in enhancing the capabilities of young minds.
They also mirror shifting psychological orientations toward learning and philosoph-
ical perspectives toward knowledge and knowing. An examination of the writings of
such influential theorists as Dewey, Thorndike, Piaget, Vygotsky, Flavell, and Ro-
goff will serve to illuminate these shifting orientations toward young minds, math-
ematics, and the learning of mathematics. Drawing on these writings, we chart the
course of early mathematics education in relation to these theoretical underpinnings,
consider emerging trends, and address the implications for early mathematics re-
search and practice.

Era of Experiential Learning (1900–1920)

Every historical analysis begins at some predetermined point in time. For our pur-
poses, this analysis begins at the turn of the 20th century. So much of the world
was undergoing change as the century dawned; civil conflicts in the United States
and France had ended and the industrialization of much of Europe and the US was
well underway. In terms of psychology, there was a growing interest in the nature
of childhood itself—a concept that was not commonly considered prior to the in-
dustrialization of world powers—and an investment in developing mental faculties
beginning at a young age (Elkind 1998). In the late 19th century, mathematics was
considered important as a way to exercise the mental faculties in the developing
mind (Sztajn 1995), and we see this notion carried forward into the early 20th cen-
tury.

Those who were associated with early mathematics learning at the close of the
19th century, however, had not fully embraced the character of young children and
their predisposition toward learning through free play that would become a feature
of the next era. Rather, the available methods to teaching young children from that
period were somewhat formal and structured in nature as perhaps best exemplified
by the work of Friedrich Froebel. In particular, the techniques used by Froebel,
who has been credited with introducing the concept of “kindergarten” into Western
culture, involved concrete materials, such as geometric figures, that were deeply
mathematical and which could be used to engage young children in the learning of
mathematical concepts (Balfanz 1999). Froebel Gifts, as his educational materials
were called, were very carefully devised and intended to be systematically used
in the early childhood setting to foster particular ways of thinking and behaving.
Froebel, as with Montessori who borrowed from his work, understood the role of
“free work” or activities to teach the young. However, he saw these mathematical



8 K.J. Newton and P.A. Alexander

activities not as an end in and of themselves but as important ways of exercising the
developing mind of the child. Thus, Froebel’s approach could be described as rather
formal and less spontaneous than we would see in the early 20th century in what we
have labeled the Era of Experiential Learning.

By the early 1900s, the influence of Froebel was fading in favor of more holis-
tic and less orchestrated conceptions of early childhood education (Balfanz 1999).
Whereas Froebel’s kindergarten was rather structured in its treatment of mathemat-
ics, the more child-centered orientations of this era focused on the child as a social
being. “Free work” was still central to early mathematics learning in this era, but
the child was given increased freedom to choose and to freely explore the mathe-
matically associated objects and activities that populated the learning environment.
Mathematics was not directly the focus of learning in this setting, but was rather
understood as manifestations of young children’s true interests that needed to be
appropriately fed and actively nurtured through relevant and engaging experiences
(Dewey 1903). Mathematical experiences existed but were informal in nature and
embedded within children’s exploratory activities. In other words, the learning of
mathematics was somewhat more incidental than intentional and the consequence
of learning in experience rather than learning from experience (Saracho and Spodek
2009).

Influential Personages

No name is more associated with this Era of Experiential Learning than that of John
Dewey, the pragmatist and the father of progressive education. In his formulation
of progressive education, Dewey was influenced by Montessori’s idea of learning
through activities and appreciated the efforts of Froebel to create learning environ-
ments for the young. Among the tenets of the progressive movement was Dewey’s
often-expressed idea that education is the process of living and not simply a prepa-
ration of later life (Dewey 1900/1990). Toward that end, Dewey argued that the
content of learning should derive from the children’s existing interests and draw
meaningfully from the children’s life in the broader social community. Mathematics
was not to be dealt with as isolated content nor used as mental calisthenics, but was
to be experienced fully and naturally by children through hands-on, project-based
activities that built on children’s existing interests and that pertained to activities
(e.g., cooking, building) that were valued outside of school.

The focus on the teaching of mathematics to young children through engrossing
experiences of value personally and socially coincided with the emergence of a new
field, developmental psychology. Unlike the developmental psychology of today,
this earliest manifestation of this field had more to do with systematic observation
than experimental study. This focus can be clearly seen in the work of G. Stanley
Hall (1907), considered the founder of developmental psychology, the first president
of the American Educational Research Association, and the father of the child study
movement. Perhaps best known for his fascination with peculiar and exceptional
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children, Hall devised methods for the detailed documentation of children’s physical
attributes and psychological behaviors.

The significance of developmental psychology, in general, and the child move-
ment in particular was the now commonly accepted premise that young children
are much more than miniature adults. Rather, they live and learn differently and
those differences undergo systematic change over time. In terms of mathematics,
this translated into critical questions about what the mind of the child was able to
grasp mathematically and how best to harness the burgeoning knowledge about the
physical and psychological development of children to teach them mathematical
concepts and procedures appropriately (Alexander et al. 1989). Questions of devel-
opmental appropriateness and about how best to bring children and mathematics
together reappear throughout the ensuing eras. For those of the Experiential Learn-
ing Era, that question was best answered by allowing young children to shape the
educational agenda through the enactment of their interests and choices and by po-
sitioning the particulars of mathematical concepts and processes as background to
the wants and desires of those children. Learning by doing remained the rule of the
day, even as the uniqueness of young children was embraced.

Views of Children and the Teaching of Mathematics

In order to address growing concerns in the early part of the century about appropri-
ate instruction in kindergarten, and in particular the appropriateness of Froebelian
kindergarten, the International Kindergarten Union formed the Committee of Nine-
teen. A lack of consensus within the Committee meant that three reports on the
content and goals of kindergarten were eventually issued, ranging from support of
the Froebel method to endorsement of a more child-centered progressive orienta-
tion. Patty Smith Hill wrote the report supporting a child-centered approach, which
ultimately won favor in academia (Beatty 1995). Following this report, play became
a legitimate part of kindergarten programs and it was recommended that learning be
guided by activities of interest to the child (Saracho and Spodek 2009).

Around this time, Margaret MacMillan established the first nursery school in
England. Play was also an important part of this approach, but there was little con-
cern for academic subjects. When academic subjects were introduced to older chil-
dren, no particular approach to teaching was prescribed (Saracho and Spodek 2008).
What was important instead to McMillan was the child’s health and hygiene, with a
particular concern for poor and working class children. As a result, outdoor play and
good air ventilation were incorporated into the program, to the extent that her early
buildings were only partially enclosed and the children sometimes even napped out-
side (Beatty 1995). As nursery schools gained popularity over the next few decades,
their focus would broaden to include the child’s general well-being and readiness
for more formal learning in school.

Inspired by Dewey, Kilpatrick (1926) forwarded the Project Method, which en-
gaged children in learning activities that were purposeful and practical. According
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to Kilpatrick, children would be naturally stimulated to learn if they were provided
with interesting experiences that involved them in the community. This followed
the principles of progressive education wherein it was expected that children are
naturally curious and interested in the world around them and that those curiosities
and true interests included mathematical concepts and processes. There was also the
presumption that the mind of the child was highly capable of dealing with mathe-
matical concepts and procedures if those concepts and procedures were embedded
in activities that the children valued and that they could reasonable pursue. Thus,
when engaged in the Project Method, children may count or measure objects as
they worked toward a larger goal, such as raising chickens (Saracho and Spodek
2008, 2009).

Mathematics was not emphasized in its own right, but it was expected that chil-
dren would learn some mathematical ideas as they participated in the projects. We
see similar orientations to mathematics learning in contemporary sociocultural the-
ories of learning and development, such as Rogoff’s (1990) concept of legitimate
peripheral participation. As with the aforementioned discussion, this overview of
the Experiential Learning Era of early mathematics education introduces several
themes about children and mathematics learning that will periodically reappear in
our analysis. The first has to do with the perceived capacities of the young mind
and whether the mind of the child is conceived as fertile ground for grasping basic
mathematical concepts and procedures or not. The second has to do with the need
to foreground the mathematical concepts or procedures or whether the mathematics
should be embedded in socioculturally valued experiences or activities. For those in
the Experiential Learning Era, children were perceived as highly self-directed and
inquisitive learners who were able to acquire mathematical understanding if they
were allowed to explore those ideas within the context of self-chosen, self-directed
and socially valued activities.

Competing Views

Perhaps the most evident contrast to arise during this Experiential Learning Era
was the all too familiar theme of traditional or basic skills education that has re-
mained the counterpoint to progressive movements throughout the century. Specif-
ically, Deweyan approaches to early childhood education were not the only ones
that conflicted with the ideas forwarded by Froebel and his notion of kindergarten
(Balfanz 1999). Another critic was Thorndike (1913), a behaviorist in terms of this
theoretical orientation toward learning and development, whose work can be seen
as the backbone for basic skills training and development. Thorndike purported that
formal instruction in arithmetic was fruitless before second grade, and that even
when mathematics was introduced, understanding was not a pre-requisite for ac-
quiring mathematical skill (Baroody 2000). Rather than believing that mathematics
could be learned incidentally through purposeful activities, Thorndike, who equated
learning with behavioral change and manifestations, believed that mathematics must
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be systematically structured and practiced and, thus, had no place in early childhood
education. Thorndike, along with many other critics, thought that the early years
should be focused instead on social development and health (Balfanz 1999).

Era of Childhood Readiness (1920–1940)

Two trends that appeared within the Era of Experiential Learning—learning through
play and the focus on early childhood as a particular period of development—carried
forward into the Era of Childhood Readiness. What distinguished this new era from
the previous, as we will discuss, was the acceptance of mathematics as not solely
as means to an end, but as a curricular end in and of itself. These trends combined
together positioned the early educational years as a time to prepare the child for the
more formal study of the domain of mathematics—to ensure that they were “ready”
to think and perform mathematically in subsequent years.

As more students began to attend schools during the early twentieth century,
an increased focus was placed on mathematics that was considered to be practical
for the average person. This was especially true during the Great Depression, since
limited availability of jobs kept many students in school for longer. The resulting in-
crease in high school enrollment meant that more students were focused on training
for jobs rather than college. Mathematics was de-emphasized, and in some cases,
the mathematics requirements for graduation were removed altogether (Walmsley
2007). Instead, courses such as home economics, art, and physical education in-
creased in popularity at the secondary level. Partly in response to the decreased
focus on mathematics in schools, the National Council of Teachers of Mathematics
(NCTM) was founded in 1920 (Austin 1921). Meanwhile, a parallel trend was oc-
curring in early childhood education. In particular, mathematics in the early years
was extremely limited. The focus shifted to play, imagination, physical movement,
and social skills in part because this is what many educators felt young minds were
able to cognitively and physically address (Saracho and Spodek 2009).

Several reasons contributed to this reality, including dominant theoretical per-
spectives during this era coupled with the changes occurring in the later grades.
Mathematics was included as part of the first and second grades, but the amount of
time spent on mathematics instruction was a fraction of the time spent on reading,
language, and even recess (Balfanz 1999). Likely influenced by the continuing ar-
guments by Thorndike and his adherents, it was determined that to focus any more
specifically or directly on mathematics in these young years would not prove fruit-
ful. Rather, drawing on the work in child study of the prior decades, it was held
that educators needed to ascertain whether young children showed signs in their
play and interactions with others that they were cognitively predisposed for formal
instruction, including formal instruction in mathematics in the years to come.
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Personages

Two contemporaries and colleagues warrant particular recognition for their role in
shaping this Era of Readiness, Arnold Gesell and Frances Ilg. As has often been the
case in the history, especially in these early years, Arnold Gesell came to education
from a different field. He had trained to be a physician, but become enamored with
questions of nature versus nurture and the role that each played in the development
of children with disabilities. From decades of systematic research with Frances Ilg,
he argued that nurture had a significant role to play in children’s developmental
trajectory. Gesell and Ilg did not discount the power of nature but felt that there
was much that could be done within the early years of life to stimulate cognitive
capacity—to build on what nature had provided.

Gesell’s writing on The Mental Growth of the Preschool Child (1925), and The
Preschool Child from the Standpoint of Public Hygiene and Education (1923), as
well as his work with Ilg on the development of early childhood assessments served
to justify the time as one of nurturing the young child—of readying them for the
more formalized instruction in mathematics and other contents that would follow.
His influence also extended beyond the educational community to parents concerned
with child development and child rearing. This influence was largely due to his
highly cited volume that documented early childhood milestones, An Atlas of Infant
Behavior (1934) and to the two guides for child rearing that he coauthored with Ilg,
Infant and Child in the Culture of Today (1943), and The Child from Five to Ten
(1946).

By the close of this era, many regarded Gesell as the foremost authority on child
rearing and child development. Not only did he argue strongly for the influence of
early nurturance at home, but he also became an advocate for a nationwide nursery
school system that could provide the early stimulation and support that he promoted
in his writings to educators and to parents. And it was these strongly held beliefs
in the importance of readiness to later development that mark this era, particularly
when coupled with the Thorndikian perspective that training in mathematics should
be reserved for later elementary and not attempted within the early grades.

Views of Children and the Teaching of Mathematics

Views of young children and the teaching of mathematics during this era were
shaped by an emerging interest into the inner workings of the human mind (cog-
nition) in relation to the behavioral indicators of capability (behaviorism). In line
with Thorndike’s work, some theorized that formal instruction in mathematics was
unnecessary—and perhaps even harmful—in the early years and should be delayed
until the child was in a formal school setting (Balfanz 1999). As a result, the mathe-
matics curriculum was limited in the early years. Nursery schools, which were pop-
ularized during this time, held little regard for academic subjects in general and even
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less for mathematics in particular. They instead encouraged dramatic play, physical
movement, and even caring for animals (Saracho and Spodek 2009).

With more and more children attending kindergarten, it was gradually becoming
linked to the public school system. As this happened, mathematics became even
more de-emphasized in early childhood. One contributing factor was that textbooks
were written with the assumption that kindergarten students had no prior knowledge
of mathematics; arithmetic was limited or absent until first grade (Balfanz 1999).
Given the emphasis in later grades on mathematics that would be useful to the aver-
age person, mathematics for young learners was perhaps meaningless. Instead, the
purpose of kindergarten was readiness for more formal learning; for example, fol-
lowing directions and complying with rules were emphasized (Saracho and Spodek
2009).

Competing Views

The nature versus nurture discussion that Gesell and Ilg brought to the public at-
tention in this period can be contrasted with that of another developmentalist, Jean
Piaget (1926/1930, 1952, 1955). Like Gesell, Piaget came to his interests in educa-
tion and human learning and development from an alternative profession. In Piaget’s
case, this profession was science and biology. Piaget, like G.S. Hall and Arnold
Gesell, was an acute observer of nature. In fact, even as a child, it was apparent that
Piaget had remarkable capacity to build upon direct, detailed observations; having
published a book about birds that were found around his home in Switzerland before
he was 10. What Piaget’s observations of animal life and later human life led him to
was a more stage-like perspective on human cognition and a stronger appreciation
for the “nature” side of human development than his predecessors.

During the 1920s and 1930s, Piaget began publishing books based on observa-
tions and clinical interviews of young children which presented his ideas about the
child’s emerging ability to think logically (Piaget 1926/1930)—what became known
as genetic epistemology. While many praised his use of naturalistic settings, some
also criticized his research for not being “scientific” enough (Beatty 2009). Like-
wise, his ideas about the child’s egocentric nature were initially met with mixed
results among early childhood educators. His work enjoyed a brief reception in the
United States during this time but did not fully take hold until a few decades later.
Meanwhile in Geneva, he continued to conduct research with children and to de-
velop a more fully-articulated theory of child development that would eventually
gain widespread support and make a profound contribution to the mathematics edu-
cation of young children.

The most influential aspect of Piaget’s prolific work was the stages of develop-
ment he conceptualized and the more focused attention on cognition rather than on
behavioral manifestations. Although Piaget presented these as general stages and
not fixed timeframes of development, their consequences, which carried over into
the next era, was to think of the capacities of young mind’s including mathematical
capabilities as rather rigid or set.
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Era of Cognitive Development (1940–1960)

The prioritizing of social skills over academic rigor that began early in the twentieth
century led to growing concerns by mid-century that students were ill-prepared for
technical jobs. This idea that was especially highlighted by War World II, when it
became clear that soldiers often did not have the mathematical skills needed for their
jobs in the military. Moreover, many critics felt that “practical” mathematics was no
longer enough even for the average student and that, in order to flourish in an in-
creasingly technological world, higher levels of mathematics needed to be required
at the secondary level. This view was coupled with a shifting focus from memoriza-
tion to understanding, most notably reflected in the work of Brownell (Kilpatrick
1992; Lambdin and Walcott 2007). By the end of this era, the New Math move-
ment, which emphasized mathematical ideas and structures and included more rig-
orous mathematics than prior decades, had taken shape (Herrera and Owens 2001;
Jones and Coxford 1970; Walmsley 2007). Launched in 1957, Sputnik further cre-
ated a sense of urgency to update mathematics education at all levels and secured
the momentum of the New Math movement in the decade to come.

With the external forces in play, fascination with the “black box” of the human
mind moved into prominence within the educational community and strict behav-
ioral theories of learning faded into the background (Newell et al. 1957, 1958). How
the mind works and how the understanding of mental processing could be harnessed
into better educational outcomes became the approach de rigueur. Increased atten-
tion was also being paid to the cognitive and mathematical skills of young children
during this period, as evidenced by the significant amount of research that emerged
in this area over the next several decades. This research supported the idea that
young children can learn mathematical ideas if they are grounded in the child’s ex-
periences, and that children begin school with significant informal experiences on
which to build. Moreover, building on these experiences can help students make
sense of the new information they are encountering in school settings (Baroody and
Ginsburg 1990).

Personages

As noted, no individual was more contributory to shaping the Era of Cognitive De-
velopment than Jean Piaget. While other children were playing with toys and en-
joying their childhoods, Piaget was already immersed in scientific study of animals
and fossils. More than his developmental predecessors, Piaget (1952, 1955) showed
the world of living organisms—humans included—as growing and changing in sys-
tematic ways. But the changes that Piaget documented through his clinical methods
were stage based, meaning that they were conceived as transformative, distinct, and
dramatic rather than gradual and continuous. Those cursorily familiar with Piaget’s
theoretical and empirical writings are likely aware of his four developmental stages:
sensorimotor, preoperational, concrete operational, and formal operational.
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Even those who have moved away from the initial conceptualization of these
stages or who are more liberal in their age-related characterizations (i.e., neo-
Piagetians) still bow to Piaget’s notion of stage-like development in young children
(Case 1985, 1992; Flavell 1985; Flavell et al. 1993). A detailed discussion of these
stages is beyond the scope and intention of this chapter. Yet, because of their rel-
evance to this examination of the history of early mathematics education, we will
briefly address the characterizations of the sensorimotor and preoperational stages
and consider the implications for early mathematics education.

From the moment of their birth, children are thrust into a strange, new world
that they must come to know through their senses—their primary tools for growth
and development. Given the primary role of the senses in the first months after
birth, it is understandable that Piaget would refer to this initial period of cognitive
development that was conceived to run to about age two as the sensorimotor stage.
Even in their rudimentary formation of mathematical conceptions and procedures,
children at this young age remain dependent on direct, physical examination and
exploration to survive and to understand their world and their place in that world
(Alexander 2006). This sensory-physical exploration is aided by the fact that these
young children are maturing neurologically and motorically, and they are acquiring
the ability to express their wants and needs to others around them.

Toward the end of this initial developmental stage, according to Piaget, young
children begin to realize that the things they see and do can be represented symboli-
cally with words or numbers. They begin to think symbolically by language, in prob-
lem solving, and through imaginative play (Piaget 1955). Just as increased mobility
and linguistic facility are keys to change, this acquisition of symbolic understanding
becomes a catalyst for moving young children into a new realm of development—
preoperational thinking. Thus, while there may be a genetic predisposition in the
preoperational child to sense quantity or spatial orientation, critical to later math-
ematical development, this grasping of symbolic representation makes more con-
ceptual growth possible. Along with the ability to use symbols and signs critical
to mathematical thinking and learning, there are certain defining attributes of the
preoperational mind—a period that runs from around ages 2 to 7. For one, young
children become more skilled at engaging in conventional rather than idiosyncratic
communication (Piaget 1955). Another cognitive achievement of the preoperational
stage has to do with young children’s conception of time and space (Piaget 1952).

Still, as noted, there were clear limitations within Piagetian theory to the na-
ture of the thinking and reasoning of which preoperational children were pre-
sumed capable. Those limitations were associated with such processes of egocen-
trism (self-centeredness), conservation (maintenance of quantity or mass), and re-
versibility (reverse thinking). For example, according to Piagetian theory, young
children must abandon their propensity toward idiosyncratic speech and become
more facile in conventional language as they develop (Piaget 1955). To Piaget, id-
iosyncratic speech was evidence of egocentrism or children’s tendency to view the
world through their own knowledge and experiences without regard to other per-
spectives. Although egocentrism is often used pejoratively when applied to more
mature individuals, this was not Piaget’s intention. Rather, Piaget (1926/1930, 1952)



16 K.J. Newton and P.A. Alexander

sought to demonstrate that preoperational thinkers had an understandably limited
sphere of existence that resulted in their interpretation events solely through their
personal lens of experience.

Interestingly, for all the remarkable cognitive and mathematical accomplish-
ments that young children realize in these initial two stages of development, there
were seemingly negative consequences that arose from the adaptation of a Piage-
tian perspective—consequences not intended by Piaget. For one, many within the
educational realm did not recognize that Piaget was describing typical behavior
of children—what most children would be expected to do under most conditions.
Instead, the idea of individual differences or variability got lost in the curricular
programs that were devised. Activities were excluded or not introduced under the
notion that children of a given age would not be able to benefit from them (White
and Alexander 1986). Further, the adaptation of a stage model of development led
to an all-or-nothing conception of learning. Children were either preoperational or
concrete operational or not. There was less room for cognitive variability based on
task or context.

Views of Children and the Teaching of Mathematics

Although Piaget believed that very young children were not capable of developing
true number concepts, he insisted that they were curious and naturally interested
in patterns. He also believed that developing understanding, rather than rote mem-
orization, was most important for learning mathematics (Baroody 2000). Whereas
his earlier work stressed the relation between language and logical thought, his later
work supported the idea that logical thought is developed through children’s activity
(Beatty 2009).

Hence, activities that involved concrete materials were thought to help support
the eventual development of number concepts. Learning activities or exercises were
derived based on classical Piagetian tasks or the concepts and processes that those
tasks exemplified. Through the manipulation of concrete materials, mathematical
ideas could be discovered and later formalized through instruction (Lambdin and
Walcott 2007). Unlike Froebel’s materials, which were inherently mathematical,
these concrete materials could include activities with everyday objects (e.g., sorting
or counting cookies). Such an approach is based in the idea that rote memoriza-
tion of information is not adequate for developing either deep understandings of or
positive attitudes toward mathematics (Baroody and Ginsburg 1990).

Competing Views

At this point in the history of mathematical learning and development, there was
no argument that there was a systematic nature to growth in young children. The
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controversies that existed had more to do with whether that change was continuous
or discontinuous (stage-like), and, relatedly, whether the mind of the young child
could benefit from early exposure to mathematical concepts and procedures or not.
The rumblings for more continuous development had always been present over the
decades but those rumblings became to grow louder toward to end of this era. Re-
grettably, some of the strongest and more compelling voices for continuous change
(i.e., those of Vygotsky and Luria) were not heard until years later as a result of
political circumstances.

Some approaches to early mathematics education during this time represented
a merging of several perspectives. For example, the Reggio Emilia approach in-
volved children in the sort of pre-number activities such as classifying and sorting
that were consistent with Piaget’s notions of developmental appropriateness. At the
same time, mathematics was embedded in project work, or in-depth explorations
of familiar contexts, an aspect inspired by Dewey. The approach was also inspired
by the work of Bruner (1960, 1961), Bruner et al. (1956), who argued strongly for
the power of scaffolding by others, and Vygotsky, who held that children were co-
creators of knowledge and they use a variety of cultural tools to aid in this process
(Dodd-Nufrio 2011; Linder et al. 2011). This latter perspective would take a strong
foothold in the decades to come.

Era of Socially-Scaffolded Development (1960–1980)

During the next era in the history of mathematical teaching and learning, the debates
over continuous or discontinuous models of development became coupled with an
augmented awareness of international competitiveness and growing concerns over
students’ preparedness. For instance, the New Math movement continued through
the 1960s, but dissatisfaction with students’ computational skills spurred a public
push for a shift “back to basics” during the 1970s. Coupled with this trend was an
increased focus on standardized testing and teacher accountability (Walmsley 2007).
However, some argued that early childhood educators could promote fluency with
basic skills while still supporting children’s thinking in a way that is consistent with
theories of cognitive development. In other words, academic learning of skills was
not necessarily viewed as incompatible with play (Havis and Yawkey 1977).

During this time, there was also heightened attention on poverty and its impact on
academic learning; raising awareness of the power of nurture or the social context
to impact young children’s subsequent growth and development. As a result, Head
Start was founded in 1965 to target poor children and their parents. The program
was meant to be comprehensive, including services that ranged from health and
nutrition to parent education and involvement. Although it was not without its critics
in the beginning, Head Start is considered a beneficial initiative in part because of
longitudinal studies that illustrated a variety of positive, long-term outcomes (Beatty
1995). As with much of the readiness work in the prior eras, the focus within Head
Start in these early years was on preparing the child, socially and cognitively, for the
demands of formal instruction in mathematics and other domains that would soon
follow.
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Personages

Two individuals merit recognition for the shaping of this Era of Socially-Scaffolded
Development—one a contemporary of Piaget whose writings did not become widely
distributed until decades after his death (i.e., Vygotsky) and another whose writings
still influence educational research and practice (i.e., Bruner). While we would still
regard the theory and research of these two giants within the field of education as
cognitive—that is both were invested in understanding the workings of the individ-
ual mind so as to promote learning and development—they manifest more emphasis
on the role of the social context and those who populate that social environment in
fostering young children’s growth than did Piaget and his adherents. For this reason,
while Piaget has been called a cognitive constructivist, Vygotsky and Bruner would
be more suitably regard as social constructivists (Murphy et al. 2012).

Volumes have been dedicated to the research and influence of Lev Vygotsky
and we will not be able to do justice to that legacy here. However, as it pertains
to early mathematics learning and teaching several conclusions are especially note-
worthy. First, while Vygotsky admired Piaget and found much within his writings
with which he agreed, he differed strongly with Piaget on several critical accounts
(Vygotsky 1934/1986). Specifically, Vygotsky (1978) did not hold to a stage or dis-
continuous view of development and put much more weight on the influence of
more knowledgeable others to guide and support development. In this way, Vy-
gotsky (1978, 1934/1987) was more invested in understanding optimal rather than
typical development. It was not a question of what children generally could do math-
ematically without guidance, but rather what a given child could potentially demon-
strate when functioning within a rich and supportive environment.

Similarly, Jerome Bruner (1960, 1966, 1974) argued for guided discovery for
young children and was credited with introducing the now often-used term “scaf-
folding” into the educational vernacular. Bruner felt that an interplay of various
forms of representation, most notably symbolic, is what defined children’s develop-
ment; not the stage-like progression that Piaget contended. Further, through guided
discovery, children have the opportunity to explore mathematical concepts and pro-
cedures but under the watchful eye of teachers who could help to orchestrate events
in such a way as to maximize the child’s learning. Consistent with the New Math
movement, Bruner believed that mathematical concepts could be taught with in-
tegrity to young children, provided that tasks were carefully chosen to illustrate
important ideas at an age-appropriate level (Herrera and Owens 2001; Lambdin and
Walcott 2007).

Views of Children and the Teaching of Mathematics

Researchers during this time were beginning to question some of Piaget’s ideas
related to number development (Baroody 2000). According to Piaget, instruction



Early Mathematics Learning in Perspective 19

for young children who cannot yet conserve number should be restricted to pre-
number activities such as ordering and classifying (Clements 1984). In a training
study comparing this approach to one that focused explicitly on number concepts,
Clements (1984) found that the group trained in number concepts outperformed the
other group on number skills yet performed as well on a test of the pre-number
skills. In other words, it was thought that number skills cannot only be taught at this
age, but doing so can also reinforce pre-number skills.

Other evidence for learning number skills can be found with Sesame Street,
a children’s show that was popularized during this time. This show was designed not
just for entertainment but to actually teach social behaviors and early academic skills
to young children, particularly to those with an economic disadvantage. Across a
multitude of studies from several countries, positive effects have been found for
both. For example, children who viewed Sesame Street generally entered kinder-
garten with a greater range of number skills than those who did not, with effects
lasting for years (Fisch et al. 1999).

Competing Views

While the influence of the social context, especially in the form of more knowl-
edgeable others was gaining prominence, there were two groups of theorists and re-
searchers who offered contrasting perspectives on young children and their learning
of mathematics. On the one hand, there were the neo-Piagetian’s like Robbie Case
(1985) and John Flavell (1985) who retained a more cognitive orientation toward
young children’s development. While differentially or more liberally interpreting
Piaget’s work, they still held to a discontinuous view of learning and development
and effectively documented both the capabilities but limitations of the young mind
in terms of dealing with symbolic representations that mathematics learning de-
manded. Further, Flavell (with Miller and Miller 1993), who studied with Piaget,
argued convincingly that attempts to document what typically occurs in the course
of development for most children under most circumstances did not preclude efforts
to appreciate individual variability. In this way, the homogeneity and heterogeneity
of young children’s development could rightfully co-exist.

At the other end of the spectrum, there was an escalation in the number of schol-
ars trained in social anthropology and cultural anthropology who began to focus
their expertise and interests onto questions of education and learning (e.g., Lave
and Wenger 1991; Rogoff 1990). With this escalation, a harbinger for the era that
would follow, less concern existed for the operations or development of the individ-
ual mind. Rather, the attention was on society or communities and on the activities
of the collective as they engaged in socially-valued and socially-supported prac-
tices that served as evidence of mathematical learning. The mathematical learning
of young children was not constrained to schooled versions of mathematics but was
opened to everyday cognitions that occurred within the course of living and func-
tioning within sociocultural communities.
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Era of Culturally-Nested Learning (1980–2000)

As the Era of Culturally-Nested Learning began to take shape, there appeared to be
rather strong and contrasting perspectives on mathematics learning and teaching in
juxtaposition. While contrasting or competing views have always defined any pe-
riod in the history of mathematics education, this difference was somewhat unique.
For one, there were quite varied theoretical and empirical orientations among edu-
cational researchers generally, including those holding to more cognitive construc-
tivist and social constructivist perspectives. Moreover, there were clearly distinct
and seemingly conflicting orientations toward learning within the community of
mathematics education, as we will discuss. Further, the conceptualization and op-
erationalization of mathematics teaching and learning espoused among educational
researchers stood in sharp contrast to the conceptualizations and operationalizations
of mathematics teaching and learning operating within the educational system.

For instance, within the mathematics education community, there were those who
continued to give primacy to the individual mind (e.g., cognitive constructivists or
radical constructivists), whereas others held more steadfastly to a sociocultural or
sociocontextual frame (e.g., socioculturalists or situated cognitivists). These con-
trasting views were artfully captured in Sfard’s (1998) provocative article on AM
(acquisition metaphor) and PM (participation metaphor) perspectives on learning.

Yet, both of these metaphorical stances toward learning in mathematics and other
complex domains stood in sharp contrast to what was ongoing with regard to math-
ematics education within this historical timeframe. Specifically, this era saw a rise
in basic skill assessments within public schools and calls for teacher accountability.
On the other hand, what should count as “basics” for school mathematics curricula
was being questioned by some, and there was a concomitant rise in the mathematics
requirements for high-school graduation during this period. In addition, mathemat-
ics educators saw a need to go beyond computational skills to include estimation,
problem solving, and the use of technology (Lambdin and Walcott 2007; Walmsley
2007).

To this end, NCTM published the 1989 Curriculum and Evaluation Standards for
School Mathematics, with other documents to follow. This document emphasized
the importance of teacher-facilitated investigations for children, designed to help
foster problem solving, deep understanding, and ownership of mathematical ideas.
As an example, the investigative approach attempted to blend skills, concepts, and
mathematical inquiry by presenting children with worthwhile, challenging tasks or
projects that encourage exploration. Within this approach, students are encouraged
to share their ideas, and the teacher prompts and guides students when they are
struggling (Baroody 2004). This move within the mathematics education commu-
nity was supported by emerging research that illustrated young children are capable
of more sophisticated mathematical thought than was proposed by Piaget (Baroody
2000). However, heated debates about the balance between computational skill and
problem solving, known as the “math wars,” characterized the second half of this
era (Herrera and Owens 2001).

The expanding popularity and capabilities of hypermedia technology, which
would become even more apparent in the years to follow, were also having an effect
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on what was taught and how it was taught within schools and classrooms throughout
the industrialized world. From graphing calculators to personal computers and from
online communities to the proliferation of media sites dedicated to young children
and mathematics, it was becoming unnecessary and, perhaps, impossible to contain
children’s interactions to the classroom. The universe of actual and virtual “others”
who could afford scaffolding to children engaged in mathematics-related activities
was expanding by leaps and bounds—altering the face of mathematics teaching and
learning for all time (Shaffer and Kaput 1999).

Another circumstance adding to the “messiness” of this era was the globaliza-
tion of society and commerce and the ensuing international comparisons of student
academic performance. Specifically, international mathematics and science studies
that began in the 1990s highlighted the need for reform at all levels. Mathematics
educators and policymakers in Western countries were particularly alarmed at how
their students performed relative to many of the Asian countries. These results in-
spired several countries, including New Zealand, Australia, and Canada, to create
initiatives that targeted the early years (Young-Loveridge 2008).

Personages

Because of the influence of social and cultural anthropologists during this partic-
ular era, we want to describe the particular contributions of two such individuals,
Jean Lave and Barbara Rogoff. In decades past, anthropologists like Margaret Mead
brought their theoretical interests and research methodologies to the study of par-
ticular social and cultural groups (e.g., Samoans); often quite distinct from their
own. Over the course of this era, however, those trained as anthropologists found
compelling evidence of mathematical thinking and capabilities within certain com-
munities of practice such as apprentice tailors, milk deliverers, or dieters (Carraher
et al. 1985). In her groundbreaking volume on Cognition in Practice (1988), Lave
brought this fascinating work to the attention of the wider educational community
and argued compellingly that such everyday cognition should be valued since it
demonstrated evidence of mathematical thinking and learning within “authentic”
contexts.

As with her contemporary Lave, Rogoff (1990) was invested in the sociocultural
collective and was especially concerned with studying how children appropriate
or master patterns of participation in group activities, including those activities that
involved mathematical thinking and performing. For instance, in one of her classical
studies, Rogoff and colleagues (Rogoff et al. 1995) investigated Girl Scouts engaged
in the planning and tracking of orders and the delivery of cookie orders, offering
evidence of important conceptual and procedural learning within this community
valued activity.

There are several significant aspects to this sociocultural perspective for early
mathematics teaching and learning. For one, there was a rejection of the Vygot-
skian notion of internalization because it signified separate psychological planes
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for the individual and the community (Sawyer 2004), when the “child and the so-
cial world are mutually involved” and, thus, cannot be “independently defineable”
(Rogoff 1990, p. 28). As a consequence, determinations of young children’s math-
ematical capabilities had to rely on an analysis of the collective actions and social
interplay—not the assessments of any individual student. For another, classrooms
and schools were not held as the conduits of formal, abstracted mathematical con-
cepts or procedures but as sociocultural venues in which particular values, customs,
and participatory structures are developed.

Views of Children and the Teaching of Mathematics

The shifting perspective toward more socially-nested forms of learning mathematics
confronted differing orientations and agendas articulated by the educational and po-
litical establishments of this time. Specifically, the performance of young children in
mathematics across the global community did not necessarily or consistently favor
more participatory or social models of instruction as those advocated by sociocultur-
alists. Rather the international profile was quite mixed; from the structured and more
formal approach to early mathematics within certain countries (e.g., Singapore) to
more informal and exploratory methods of others (e.g., New Zealand). However,
international studies revealing these differences in teaching styles across various
countries highlighted the idea that even teaching is a cultural activity (Stigler and
Hiebert 1999). “Teaching, like other cultural activities, is learned through informal
participation over long periods of time. It is something one learns to do by growing
up in a culture rather than by formal study” (p. 2).

Despite the variable approaches to teaching mathematics, this era saw a rising
interest in non-school factors that influence the learning of mathematics. For ex-
ample, research with young children has illustrated that the degree to which stu-
dents struggle with mathematics can be highly context dependent. In other words,
knowledge learned in one situation does not necessarily transfer to other situations.
For example, work by Carraher et al. (1985) showed that Brazilian children who
demonstrated sophisticated thinking about arithmetic in contextualized settings of-
ten struggled with the same problems presented in numerical form (Sophian 1999).
These findings support the earlier notions that children can and do gain much in-
formal knowledge about mathematics outside of school, and that this knowledge
should be a source for learning. Connecting this knowledge to teaching has been the
focus of large-scale projects such as Cognitively Guided Instruction (Carpenter and
Fennema 1991).

The home environment also was seen to play a role in the early learning of
mathematics. For instance, in a study of four- to six-year olds, Blevins-Knabe and
Musun-Miller (1996) found that increased number activities in the home generally
predicted scores on standardized tests of mathematics achievement. However, this
pattern did not hold across all ethnic groups or across groups of varying levels of
education. More recently, Levine et al. (2010) further confirmed the importance of
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the home environment for later learning of mathematics. These researchers found
that the amount of number talk from parents to their 14- to 30-month-olds predicted
knowledge of cardinal number meanings at 46 months, even after controlling for
socioeconomic status (SES).

At the same time, cross-cultural studies indicated that SES does play a role in
early mathematical development. And while preschools do not inevitably close the
SES gap, they have the potential to do so when they include high quality mathemat-
ics curricula (Starkey and Klein 2008). A contributing factor to growth in knowledge
of mathematics during preschool is the degree to which teachers engage in math talk
(Klibanoff et al. 2006).

Competing Views

Although the research on sociocultural influences on mathematical learning has
been convincing, an opposing view has support as well. This view posits that
humans are pre-disposed to acquiring skill with numbers. In a pioneering study,
Starkey and Cooper (1980) were able to demonstrate that 16- to 30-week old infants
are sensitive to changes in sets of up to four objects. Since that time, a significant
amount of research has been conducted to substantiate the claim that humans have
an innate sense of numerosity (Butterworth 1999, 2005; Dehaene 1997).

Further, those who retained a more cognitive view of early mathematics learning
remained active during this period. Whether these examinations of young children’s
mathematical thinking and reasoning were conducted within research laboratories,
classrooms, and in home environments, they focused on the mental processing and
performance indicators that individual children demonstrated (e.g., Kerkman and
Siegler 1997; Rittle-Johnson and Siegler 1998). Although such cognitive emphases
were not commonplace among mathematics educators during this period, findings
from such studies, combined with the rising interest in neuroscience and neurobio-
logical served as omens to the now emergent era.

Emerging Era of Embodied Learning (2000–present)

There is always a tremendous risk involved in attempting to describe the current era.
Some degree of distance is critical in making the appropriate determination. That
being said, we will briefly consider what we see as signs or omens that distinguish
this present phase in the history of early mathematics education. Historically, math-
ematics or the teaching of mathematics has been considered either not important or
inappropriate for young children, but a significant body of research now suggests
otherwise. Mounting evidence illustrates that young children have the interest and
capacity to learn meaningful mathematics at early ages. That burgeoning research
also suggests that adult guidance and support is needed to fully realize this poten-
tial and that the level of necessary support may vary across individuals (National
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Research Council 2009). Moreover, there is significant evidence regarding the im-
portance of early mathematics skills and their predictive power for later learning
(Duncan et al. 2007).

In many ways, current beliefs about the learning of mathematics in early child-
hood represent an amalgamation of several perspectives highlighted during the past
century. Psychological, social, and cultural perspectives each contribute to our cur-
rent understandings of early mathematics education, and most recently, neurological
perspectives have shed light on the nature of mathematical development (Butter-
worth 1999; Dehaene 1997). Specifically, the sociocultural orientations that arose
in the prior era have remained evident within the educational research community,
whereas the persistence of investment in basic skills development and the assess-
ment of young children can still be identified within the K-12 experience.

We have chosen to label this final period as the Era of Embodied Learning be-
cause of the re-emergence of consideration of biological/neurological indicators of
mathematics learning and development. Greater funding is being directed toward
fMRI and ERP (event related potentials) studies of the young mathematical mind.
Further, entire conferences and volumes are now dedicated toward the genetic and
neurological foundations for mathematical learning and performance within very
young populations (Butterworth 2005). For example, Blair et al. (2008) asserted
that some children make arithmetic errors that reflect not only faulty procedural and
conceptual knowledge but also a failure of executive functioning processes such as
working memory and inhibitory control. Also considered to be an aspect of self-
regulation, inhibitory control was found to be especially important in both mathe-
matics and reading in the early years (Blair and Razza 2007). As a result, Blair and
colleagues suggested that executive processes need explicit attention in the class-
room.

Thus, the mind/body duality that had been characteristic of early decades has
begun to give way to a realization that not only is mind nested in the sociocultural
collective but also that the mind and the body of the child work as one. The more that
is understood about the whole child—neurologically, biologically, and cognitive—
individually and within the broader sociocultural context, then the better supportive
and facilitative environments can be devised to support that child’s mathematical
learning and development. That is the bottom line of this emergent era.

Conclusions

Over the past century, we have seen the views of young learners and their capac-
ity to understand and do mathematics shift as various theoretical perspectives have
come to the forefront, while others fade into the background. Currently, the re-
search community seems to have embraced multiple perspectives, simultaneously
acknowledging individual, social, and cultural influences on mathematical thought.
With these acknowledgments has come an increased awareness of the importance
of mathematics for young children and a belief in their interest and capacity for



Early Mathematics Learning in Perspective 25

learning it. Mathematics for all has been embraced by early childhood educators
and researchers alike, and the result has been a strong movement toward the recon-
ceptualization of mathematics learning for young children. As the ensuing chapters
illustrate, great strides have already been made in this direction.
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Early Awareness of Mathematical Pattern
and Structure

Joanne T. Mulligan and Michael C. Mitchelmore

Introduction

One of the most fundamental challenges for mathematics education today is to
inspire young students to develop “mathematical minds” and pursue mathematics
learning in earnest. Current research shows that young students are developing com-
plex mathematical knowledge and abstract reasoning much earlier than previously
considered. A range of studies in prior to school and early school settings indicate
that young students do possess cognitive capacities which, with appropriately de-
signed and implemented learning experiences, can enable forms of reasoning not
typically seen in the early years (e.g., Clarke et al. 2006; Clements et al. 2011;
English 2012; Papic et al. 2011; Perry and Dockett 2008; Thomas et al. 2002;
van den Heuvel-Panhuizen and van den Boogaard 2008; van Nes and de Lange
2007).

Our research aims to provide new insights into how young students can abstract
and generalize mathematical ideas much earlier, and in more complex ways, than
previously considered. Although there is a large and coherent body of research on
individual content domains such as counting and arithmetic, there have been remark-
ably few studies that have attempted to describe general characteristics of structural
development in young students’ mathematics. The Australian Pattern and Structure
Project, initiated in 2001, aims to develop a different approach to understanding
mathematics learning, beginning with very young students, that reaches beyond ba-
sic numeracy to one that cultivates mathematical patterns and relationships. Over
the past decade, a suite of studies with 4- to 8-year old students has found that an
awareness of mathematical pattern and structure is both critical and salient to mathe-
matical development among young students (Mulligan and Mitchelmore 2009). Our
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research aims to find reliable and consistent methods for describing the growth of
students’ awareness of mathematical structures and relationships over time. Utiliz-
ing this knowledge to develop quantitative reasoning at an optimum age, when they
are eager to learn, is central to this project.

One purpose of this chapter is to describe the construct, Awareness of Mathe-
matical Pattern and Structure (AMPS), which our research has shown generalizes
across early mathematical concepts, can be reliably measured, and is correlated with
mathematical understanding. It is our belief that a focus on AMPS could bring more
coherence to our understanding of mathematical development and the development
of effective pedagogical approaches. We refer to a range of studies with diverse
samples in order to describe as explicitly as possible the bases for our identification
of early developmental features of AMPS.

This chapter begins by focusing on the role of pattern and structure in early math-
ematical development. We then trace the development of our early studies on mul-
tiplicative reasoning, representations and spatial structuring that led to the Pattern
and Structure Project, and we describe the seminal study that established the AMPS
construct. The chapter concludes with several examples of developing structural
awareness in young students.

Pattern and Structure in Early Mathematical Development

Of particular significance in young students’ mathematical development are the rea-
soning processes they use in learning about their world, such as spatial and quanti-
tative reasoning, deduction and induction, analogical reasoning, and statistical rea-
soning. In essence, effective mathematical reasoning involves the ability to note
patterns and structure in both real-world situations and symbolic objects; such rea-
soning enables the formation of generalizations in which the abstraction of ideas
and relationships can take place (National Council of Teachers of Mathematics
2010).

Virtually all mathematics is based on pattern and structure. As defined in our
studies, mathematical pattern involves any predictable regularity involving number,
space, or measure. Examples include friezes, number sequences, measurement, and
geometrical figures. By structure, we mean the way in which the various elements
are organized and related. Thus, a frieze might be constructed by iterating a single
“unit of repeat”; the structure of a number sequence may be expressed in an alge-
braic formula; and the structure of a geometrical figure is shown by its various prop-
erties (Mulligan and Mitchelmore 2009). What we call structural thinking is more
than simply recognizing elements or properties of a relationship; it involves hav-
ing a deeper awareness of how those properties are used, explicated, or connected
(Mason et al. 2009).
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Spatial Structuring

The study of spatial structure has long been recognized as an important feature of
constructing measurement units and geometric properties. Battista (1999) defined
spatial structuring as:

the mental operation of constructing an organization or form for an object or set of objects. It
determines the object’s nature, shape, or composition by identifying its spatial components,
relating and combining these components, and establishing interrelationships between com-
ponents and the new object (p. 418).

Battista and Clements (1996) and Battista et al. (1998) found that students’ spatial
structuring abilities provided the necessary input and structural organization for the
numerical processes that the students used to calculate the number of squares in
an array. This finding explains how attempts at enumeration sometimes engender
spatial structuring, which in turn provides the input and organization for enumera-
tion. Hence, spatial structuring is “an essential mental process underlying students’
quantitative dealings with spatial situations” (Battista et al. 1998, p. 503).

Battista et al. (1998), Outhred and Mitchelmore (2000), and Reynolds and
Wheatley (1996) have all studied the development of students’ structuring of rect-
angular figures and arrays. They found that most students learn to construct the row-
by-column structure of rectangular arrays by about Grade 4 and have by that time
also acquired the equal-groups structure required for counting rows and columns in
multiples.

Further research has highlighted how structuring two- and three-dimensional
space contributes to students’ understanding of important mathematical procedures
and concepts such as multiplication, patterning, algebra, and the recognition of geo-
metric shapes and figures (see also Carraher et al. 2006; Clements and Sarama 2009;
Mulligan and Mitchelmore 2009; Papic et al. 2011; van Nes and de Lange 2007).

Numerical Structuring

Structure has also been a growing theme in the past two decades of research on stu-
dents’ development of numerical concepts. Many studies have examined counting,
subitizing, grouping, unitizing, partitioning, estimating, and notating as essential
elements of numerical structure (e.g., Clark and Kamii 1996; Hiebert and Wearne
1992; Lamon 1996; Steffe 1994; Wright 1994). In their studies of the base ten sys-
tem, Cobb et al. (1997) described first graders’ coordination of units in terms of
the structure of collections. Thomas et al. (2002) later identified structural elements
of the base ten system (such as grouping, partitioning, and patterning) in students’
images and recordings of the numbers 1 to 100. In a study of partitioning, Hunting
(2003) found that students’ ability to change focus from counting individual items
to identifying the structure of a group was fundamental to the development of their
number knowledge. Van Nes and de Lange (2007) also found a strong link between
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developing number sense and spatial structuring in Kindergartners’ finger patterns
and subitizing structures. Studies of partitioning and part-whole reasoning (Lamon
1996; Young-Loveridge 2002) indicate the importance of unitizing and spatial struc-
turing in the development of fraction knowledge.

Extensive research has highlighted young students’ strategies in recognizing the
structure of word problems (Mulligan and Vergnaud 2006) as well as structural re-
lationships such as equivalence, associativity, and inversion, and functional thinking
(Warren and Cooper 2006, 2008). Moreover, studies of multiplication and division
have indicated that composite structure is central to multiplicative reasoning (Steffe
1994).

Seminal work by our Australian colleague, Lyn English, has explored structural
mapping in students’ solutions to combinatorial problems, another multiplicative
field (English 1993, 1999). She found that ten-year-old students often had dif-
ficulties explaining the structure of the problems and rarely identified the cross-
multiplication feature.

Patterning and Data Representation

Much recent research has focused on students’ patterning and analogical reason-
ing skills (Blanton and Kaput 2005; Carraher et al. 2006; English 2004; Papic et
al. 2011). For example, the Dutch Curious Minds project highlights patterning and
spatial skills beyond early numeracy (van Nes and de Lange 2007). There is also
increasing evidence that early algebraic thinking develops from the ability to see
and represent patterns and relationships such as equivalence and functional thinking
in early childhood (Warren and Cooper 2008).

A recent focus of research has shown that data modeling, a developmental pro-
cess that begins with inquiries and investigations of meaningful phenomena (Lehrer
and Schauble 2005) also requires students to seek structure and recognize patterns.
Findings of a longitudinal study of data modeling in Grade 1 (English 2012) indicate
that students as young as six years old can successfully collect, represent, interpret,
communicate, and argue about the structure of data provided they address familiar
themes (see chapter Cognitive Guidelines for the Design and Evaluation of Early
Mathematics Software: The Example of MathemAntics, p. 83, this volume).

The Pattern and Structure Project

Studies on Multiplicative Structure

Our studies on the role of structure in students’ mathematical development can be
traced to the mid-1990s. In a longitudinal study of students’ intuitive models for
multiplication and division (Mulligan and Mitchelmore 1997), we studied the strate-
gies Grades 2–3 students use to solve a wide variety of multiplication and division
word problems involving grouping, partitioning, counting and patterning. We found
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that the intuitive model employed to solve a particular multiplicative word problem
did not necessarily reflect any specific problem feature but, rather, the mathematical
structure that the student was able to impose on it (Mulligan and Watson 1998). Stu-
dents acquired increasingly sophisticated strategies based on a developing aware-
ness of the equal-groups structure. Many students focused on additive rather than
multiplicative structure, which impeded the development of their solution strate-
gies. Other students demonstrated remarkable understanding of structural relation-
ships such as array structure, commutativity, and the inverse relationship between
multiplication and division, even in combinatorial problems.

A 3-year longitudinal study investigated the development of students’ represen-
tations of a range of numerical processes, including counting, grouping, base ten
structure, multiplicative and proportional reasoning, between Grades 2 and 5 (Mul-
ligan et al. 1997). We found that “low achievers” (as defined by their teachers)
were more likely to produce poorly organized representations and were only able
to replicate models of groups, arrays or patterns that had been produced by others.
They tended to use unitary counting exclusively, and appeared unable to visual-
ize part-whole relations. Moreover, they made little progress between Grade 2 and
Grade 5. “High achievers”, however, used abstract notational representations with
well-developed grouping, partitioning, and unitizing strategies from the outset; of-
ten looked for similarities and differences between their representations; and made
significant gains in their multiplicative thinking.

Structural Development of the Base Ten System

In other studies, we focused on students’ representations and conceptual understand-
ing of the structure of the base ten system. Thomas and Mulligan (1995) found that
the representations of counting and base ten made by mathematically gifted students
depicted robust numerical and spatial structures. We postulated two types of inter-
nal representation: dynamic (changing and/or encoding motion) and static. Students
with high levels of understanding of numeration showed evidence both of dynamic
imagery and of structural development in their representations of number.

A larger study of students aged 5–12 years followed, in which we explored
the relationship between students’ counting, grouping, partitioning, and place-value
knowledge and their development of the base ten numeration system (Thomas et
al. 2002). We were able to describe several mathematical structural features in their
representations: counting and symbols, number patterns and sequences, groupings
by tens, use of ten as an iterable unit, recursive grouping, and multiplicative struc-
ture supporting place value knowledge. We found a wider use of structure than we
had anticipated. For example, Fig. 1 shows how two Grade 2 students represented
the number 11. Both drawings show some attempt to utilize array structure, but one
is far more sophisticated than the other.

One of the key findings of this study was that students who used a variety of im-
ages to represent counting and numeration were more flexible in their thinking and
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Fig. 1 Two Grade 2 students’ representations of the number 11

tended to notice similarities and differences between representations. For example,
such a student might recognize a 5 by 5 square array in a 10 by 10 hundred square.

All our studies were consistent with the literature on the differential effects of
imagery use in the development of elementary arithmetic (Gray et al. 2000) and
the finding that students who recognize the structure of mathematical processes and
representations tend to acquire deep conceptual understanding (Pitta-Pantazi et al.
2004). We formed the hypothesis that the more a student’s internal representational
system has developed structurally, the more coherent, well organized, and stable in
its structural aspects will be their external representations and the more mathemat-
ically competent the student will be. What was unclear at this stage of the research
was whether students were aware of structural features and able to apply them to a
variety of situations. If so, what role could the recognition of such structural features
play in forming mathematical concepts? These research questions guided the next
stage of our research.

Awareness of Mathematical Pattern and Structure (AMPS)

In the light of the above hypothesis, we conjectured that young students might pos-
sess a general characteristic called Awareness of Mathematical Pattern and Struc-
ture (AMPS). Students with high AMPS would recognize and operate well with
a variety of early mathematical patterns and structures, whereas students with low
AMPS would have difficulty recognizing such patterns. High AMPS students would
tend to look for similarities and differences in new patterns and broaden their struc-
tural understanding accordingly, whereas low AMPS students were likely to focus
on idiosyncratic, superficial features and not notice underlying structural features.
AMPS was thus considered “to have two interdependent components: one cognitive
(knowledge of structure) and one meta-cognitive (a tendency to seek and analyze
patterns). Both are likely to be general features of how students perceive and react
to their environment” (Mulligan and Mitchelmore 2009, p. 39).

We tested our conjecture with a large study of Grade 1 students (Mulligan and
Mitchelmore 2009). In particular, we posed the following three research questions:
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1. Can the structure of young students’ responses to a wide variety of mathematical
tasks be reliably classified into categories that are consistent across the range of
tasks?

2. Do individuals demonstrate consistency in the structural categories shown in
their responses?

3. If so, is the individual student’s general level of structural development related
to their mathematical achievement?

We devised a set of 39 tasks that we judged, on the basis of previous research,
to be likely to show structural development in students’ responses and combined
them into the Pattern and Structure Assessment (PASA) interview. The tasks in-
volved key processes such as subitizing, unitizing, partitioning, repetition, spatial
structuring, multiplicative and proportional relationships, and transformation; they
all required students to identify, visualize, represent, or replicate elements of pattern
and structure. Some of the tasks extended well beyond state curriculum expectations
(e.g., constructing a pictograph) but these were included in order to yield a wider
range of responses than might otherwise be expected. Examples of these tasks, and
illustrations of student responses, are given later in this chapter.

Analysis gave positive answers to all three research questions. Firstly, we were
able to classify almost all student responses to all tasks reliably into four levels of
structural awareness:

• Prestructural. Students pick on particular features that appeal to them but are
often irrelevant to the underlying mathematical concept.

• Emergent. Students recognize some relevant features, but are unable to organize
them appropriately.

• Partial structural. Students recognize most relevant features of the structure, but
their representations are inaccurate or incomplete.

• Structural. Students correctly represent the given structure.

Secondly, students were remarkably consistent in the structural level they showed
across the various tasks. For every student, there was a clear modal response level,
with the modal class frequency having at least twice the frequency of each other
class. Thirdly, there was an extremely high correlation between students’ struc-
tural level and the total number of correct PASA responses, which we took to be
a measure of their mathematical achievement level. Moreover, teachers identified
all the prestructural students as low achievers and all the structural students as high
achievers.

A follow-up study investigated structural development among the eight lowest-
achieving students and the eight highest-achieving students over the subsequent 18
months (Mulligan et al. 2005). It was found that PASA responses could still be
reliably classified using the same four structural levels, but it was possible to add
an additional level (called advanced structural) to accommodate responses that also
generalized the underlying feature to other contexts. Consistent with earlier results,
substantial differences were found between the two groups of students. The high
achievers made significant progress over the 18 months and many of their responses
fell into the advanced structural level. By contrast, low achievers’ responses varied
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Fig. 2 A Grade 1 students’ three attempts to complete a rectangular grid

from one interview to the next but did not show any progress towards greater use of
mathematical structure. For example, Fig. 2 shows a low achiever’s responses to the
“complete the grid” task at the start, the middle, and the end of the study period. The
student had some idea of shape, congruence, and collinearity, but was struggling to
coordinate them. This student was judged to be at the emergent structural level on
all three occasions.

We regarded the results of the two studies as strong support for the existence
of AMPS as a psychological construct. In particular, they showed how low AMPS
could interfere with the acquisition of fundamental mathematical understandings
from an early age.

Examples of Structural Development

The remainder of this chapter is devoted to describing the development of structural
awareness, drawing on examples from various studies in the Pattern and Structure
Project. Students’ drawn responses and explanations to six PASA tasks are illus-
trated. In each case, students were asked to visualize, then draw and explain their
mental images. We use these examples to more clearly explicate the four levels of
AMPS that we outlined above, together with the advanced level subsequently added.

We use examples from drawn responses because they most vividly illustrate stu-
dents’ development. Some caution should be exercised in interpreting young stu-
dents’ drawings because of possible problems with fine motor coordination at that
age. However, it should be noted that students were routinely asked to explain the
images they were attempting to represent and were offered the opportunity to re-
peat their drawings if they were not satisfied with them. Furthermore, a very similar
pattern of development was observed in a wide variety of non-drawing tasks.

Structuring a Clock Face

In one PASA task, students are given a circle that is intended to represent an ana-
logue clock and asked to complete the drawing.
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Fig. 3 Prestructural representations of a clock face (drawn from memory by Grade 1 students)

Fig. 4 Structural development in depictions of a clock face

Figure 3 shows four students’ attempts to represent a clock face. The first ex-
ample only depicts one hand, and the next example suggests that the students knew
there is also something around the circumference. The third and fourth examples
are a little more advanced, suggesting the students were aware that a clock face has
numbers on it and ticks around the edge. In none of these drawings is there any in-
dication that the students perceived the structure of the clock face in terms of units
of time.

Figure 4 shows some typical drawings at the subsequent levels, from which we
can make inferences about students’ developing awareness of structure. Students at
the emergent level are aware that a clock face has some numbers in unitary counting
order around the edge, starting at 1 near the top. At the partial structural level they
realize that the numbers are restricted from 1 to 12, with 12 at the top. At the struc-
tural level, students have formed a clearer idea of how the numbers depicting hours
are distributed in equal spaced intervals around the clock. At the advanced level,
students find the positions of 12, 3, 6, and 9 before filling in the other numbers and
may indicate one minute intervals between the numerals.

Structuring Rectangular Grids

Another task requires students to briefly view a rectangular grid (2 × 3 or 3 × 4),
draw it from memory, find the total number of squares, and explain their strategy.
Table 1 outlines the criteria for classification of the drawings, with examples of some
typical responses to the 2 × 3 task. Development consists of increasing awareness
and coordination of the shape of the squares, their number, and how they fit together.
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Table 1 Typical student drawings of a 2 × 3 rectangular grid, by structural level

Structural level Description Examples

1. Prestructural Scattered squares or a row of squares.

2. Emergent An attempt to draw a grid or border,
but neither their numerical nor their
spatial structure is correctly
represented.

3. Partial
structural

A grid that is incomplete or
inaccurate in terms of the number of
squares drawn. For example:

(a) a grid with an incorrect number of
squares

(b) a correct grid but drawn in the
wrong orientation

(c) an array with the correct number
of squares, but with the squares
not touching.

4. Structural A grid of adjacent squares with the
correct number of rows and columns,
but with each square drawn
separately.

5. Advanced A grid of the correct number of
squares, drawn using continuous
horizontal and vertical lines.

Notice that drawings at both the structural and advanced levels are “correct”, but
the advanced level representation suggests a further advance in understanding that
allows generalization to different tasks of a similar nature (see the next item).

Structuring Area

Students are shown a 3 × 4 rectangle with squares drawn along two adjacent sides
and instructed to “finish drawing the squares, exactly like these, to cover all of this
shape”. We have already shown how one Grade 1 student responded to this task at
the emergent level (Fig. 2). Figure 5 shows some typical responses at all five levels.

Structural development on this task is very similar to that shown by the previous
task (see Table 1). Students at the prestructural level know only that there has to
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Fig. 5 Structural development in grid completion task

be something in the empty space and do not always draw squares. Emergent stu-
dents appear to have picked up on one or two features of grids (e.g., congruence,
alignment, contiguity, or borders) and reproduce this feature in some form without
filling the space systematically. Partial structural students attempt to fill the space,
but do not draw the correct number of squares or do not draw them touching cor-
rectly. Students at this level may indicate the beginning of multiplicative thinking
when they remark on the equal number of squares in each row or column. Structural
students have coordinated all the crucial features of a grid and know exactly where
the squares go; but they still draw them individually. By contrast, advanced struc-
tural students know that the edges of the contiguous squares form straight lines and
use this fact to construct the grid very quickly. Students at this level draw grids of
all sizes in the same way and are more likely to use multiplication to find the total
number of squares.

Structuring a Triangular Array

In another item, students are briefly shown a card with a triangular pattern of six dots
on it and asked to draw it from memory. The drawings in Fig. 6 show the progress
of a single student over an 18 month period. The first drawing was made at the
beginning of the Kindergarten year; it is classified as emerging because it is made
up of dots and has some indication of a triangular outline. The second drawing was
made by the same student at the end of the Kindergarten year and already shows the
triangular pattern adequately. In the third drawing, made in the middle of Grade 1,
the student has not only copied the given pattern accurately but has also extended it

Fig. 6 Three drawings of the triangular array made by the same student



40 J.T. Mulligan and M.C. Mitchelmore

Fig. 7 Three drawings of the triangular array made by a different student

more or less accurately to a fourth row. It appears that the student could extend the
pattern indefinitely; the drawing is therefore classified as advanced structural.

In contrast, Fig. 7 shows the very limited progression made by another student
over the same 18-month period. There is no evidence of any progress. The student
does not appear to recognize collinearity or triangularity, and would probably have
great difficulty in any mathematical topic where such ideas occur.

Structuring Length

In a further item, students are shown a drawing of a long thin rectangle, asked to
imagine that it is a ruler and asked to “draw things on it so that it becomes a ruler you
can measure with”. They are then asked to actually use it to measure the length of a
pencil. Figure 8 shows typical drawings at each of the first four levels of structural
development; the fifth level is achieved when a student explains how the number on
the ruler gives the length in terms of a unit of measurement.

The progression on this task parallels that of the clock task. A vague awareness
that there are some markings on a ruler gives way to knowledge that these are ticks
and numbers, which are then coordinated until equal spacing is achieved.

Structuring Data

In another PASA task, students are given a table listing a collection of animals
(7 dogs, 5 cats, and 3 birds) and asked to draw a graph to represent these data.
Grade 1 students are expected to draw a horizontal pictograph, the only type they
may have met in class. Figure 9 shows some typical drawings at the first four levels;
the fifth level is achieved when a student explains that the largest number of animals
is shown by the longest row (so that you do not need to count each row).

Prestructural drawings show one or more animals, not arranged in any order.
Emergent responses pick up on one or two aspects of pictograms; the example in
Fig. 9 shows an awareness that there are icons arranged in rows, but the numbers
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Fig. 8 Typical drawings of a ruler at the first four structural levels

Fig. 9 Typical pictograms drawn at the first four structural levels

bear no relation to the data. In partial structural representations, the icons are ar-
ranged in rows with the correct numbers of icons, but the icons are not aligned.
Finally, at the structural level the icons are aligned vertically so that the numbers
of each type of animal can be compared using the lengths of the rows. (Notice the
similarity to array structure.) From here, it is a small step to the basic principle of
graphical representation that equal numbers are represented by equal lengths.

Discussion

A growing body of research has established that a large and significant portion of
students’ mathematical thinking in early childhood can be described in terms of a
growing awareness of pattern and structure. Our research has enabled us to reliably
describe this development in terms of a number of structural levels.

As can be seen from the examples above, young students initially show no ev-
idence that they are aware of the mathematical structure implicit in a range of
tasks. They tend to focus on superficial features, which they select and organize
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in their own way. Gradually, however, they become more and more aware of math-
ematically relevant characteristics—various elements (numbers, lines, shapes) and
their arrangement (e.g., along a line or circumference, equally spaced, contiguous,
aligned). In each task we have examined, it has been possible to reliably classify
the growth of this awareness into four levels, starting with a single aspect of struc-
ture and culminating in a coordinated representation of all relevant aspects. Some
young students then make one further step. They realize that the structure is more
general than the specific task, enabling them to succeed on similar tasks or simple
extensions. However, some young students do not progress through these levels at
all. They may notice some aspects of mathematical pattern, but they do not become
sufficiently aware of how these aspects are organized to be able to advance beyond
the prestructural level. In fact, their representations often become more crowded and
chaotic.

Our research shows that, not only can students’ levels of structural development
through these five levels be reliably categorized, but students who show a particular
level of development on one task typical of the early mathematics curriculum also
operate at a similar level on other such tasks. This finding indicates an underlying
construct that we call Awareness of Mathematical Pattern and Structure (AMPS).

Our studies have also highlighted some big ideas underlying the development of
structural understanding in early childhood. The first is that of generality. Number
patterns are a prime example: There is always some general rule telling you how the
pattern is to be continued, whether it be a simple repetition of what has come before
or a continuation of some form of growth. Other generalizations that can arise from
the study of numerical patterns include commutativity of addition and multiplica-
tion. The study of spatial patterns leads to concepts such as collinearity, congruence
and symmetry and the formulation of general properties of basic two-dimensional
figures. For all the PASA tasks, the highest structural level always corresponds to
awareness of some such generalization. Finding and expressing such numerical and
spatial generalizations is the beginning of algebra and geometry, respectively.

A second important big idea is that of equal grouping. The perception of a repeat-
ing pattern as a number of identical “chunks” leads to the idea of skip counting and
then multiplication. Rectangular arrays and grids can be deconstructed into numbers
of equal rows or columns, so the same counting strategies can be applied. Number
lines and measurement scales represent replications of identical units and so are also
multiplicative, as is the decimal numeration system. Even graphical representation
requires equal grouping; for example, in a frequency chart each object must be rep-
resented by a fixed unit. Equal grouping is also required when a set of objects or
a quantity is partitioned into equal parts, the foundation of the concepts of division
and fractions.

Students with high AMPS are likely to have a better understanding of both these
Big Ideas than those with low AMPS. They are likely to look for, remember and
apply spatial and numerical generalizations and in particular are likely to grasp the
multiplicative relationships that underlie the majority of the concepts in the elemen-
tary mathematics curriculum. Not only are they better placed to understand propor-
tionality, but they have been primed to use mathematical reasoning in other areas.
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So it should not be surprising that students with high AMPS do well in mathematics
and that, conversely, students with low AMPS struggle (Mulligan 2011).

Conclusion

We regard the AMPS construct as a significant contribution to research into early
mathematics education. It provides a single lens with which to examine student
thinking in a wide variety of mathematical topics encountered in early childhood
and thus yields a more uniform approach than can be obtained by examining each
topic separately.

Our research has focused on students up to the second year of formal school-
ing, but our occasional explorations with older students suggest that the AMPS con-
struct could also have a much wider application. In particular, there is the possibility
that low AMPS in early childhood could predict poor performance in mathematics
throughout a student’s school career and even beyond. Extending the AMPS con-
struct to the later years of schooling is a promising field for further research.

Our research has also thrown up two vital questions: Is AMPS a fixed trait or can
it be taught? If AMPS can be improved by teaching, will there be a concomitant
improvement in mathematics achievement? A positive answer to the second ques-
tion would have particularly far-reaching implications for mathematics curriculum,
pedagogy, and assessment. Both questions were addressed within the Pattern and
Structure Project by developing the Pattern and Structure Mathematics Awareness
Program (PASMAP) to teach AMPS. These studies—which eventually led to the
large-scale evaluation study, Reconceptualizing Early Mathematics Learning, that
inspired this volume—are described in chapter Reconceptualizing Early Mathemat-
ics Learning: The Fundamental Role of Pattern and Structure, p. 47.
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Reconceptualizing Early Mathematics Learning:
The Fundamental Role of Pattern and Structure

Joanne T. Mulligan, Michael C. Mitchelmore, Lyn D. English,
and Nathan Crevensten

In chapter Early Awareness of Mathematical Pattern and Structure, we introduced
the Pattern and Structure Project, which focused broadly on the development of
patterning and structural development among 4 to 8 year olds in this project. Our
research has aimed to find reliable and consistent methods for measuring and de-
scribing the growth of students’ structural development in mathematics. We pro-
vided a rationale for the construct, Awareness of Mathematical Pattern and Struc-
ture (AMPS), which our studies have shown generalizes across early mathematical
concepts, can be reliably measured, and is correlated with mathematical understand-
ing (Mulligan and Mitchelmore 2009). Our belief is that the development of AMPS
can bring more coherence to mathematical development but this needs the support
of an innovative pedagogical approach and framework.

The challenge was to identify core features of AMPS and to design pedagogy
that explicitly improves students’ awareness of pattern and structure. To that end, the
Pattern and Structure Mathematics Awareness Program (PASMAP) was developed
concurrently with the studies of AMPS and the development of the Pattern and
Structure Assessment (PASA) interview. The culmination was a large-scale two-
year longitudinal study, Reconceptualizing Early Mathematics Learning (REML),
which was the inspiration for this volume.
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In this chapter, we summarize some early classroom-based teaching studies and
describe the PASMAP that resulted. We then outline the REML project and discuss
the consequences for our view of early mathematics learning.

Classroom-Based PASMAP Studies

PASMAP had its origin in a year-long numeracy initiative where our pattern and
structure approach was trialed in a New South Wales metropolitan state school ex-
periencing disadvantage and low achievement in numeracy. The project aimed to
develop in students an Awareness of Mathematical Pattern and Structure (AMPS)
based on structural aspects of mathematical development that had been identified
in previous studies. A research team worked for a year with 27 primary teachers
from Kindergarten to Grade 6 (683 students in total) to scaffold learning with small
groups of students within regular classroom time (Mulligan et al. 2006). Priority
was given to the professional learning and support of six lead teachers from Kinder-
garten to Grade 3.

Every teacher administered a PASA interview to all of their students and the re-
sults were then used to allocate students to small groups for instruction. The PASA
data comprised PASA total scores, and students’ strategies and drawn representa-
tions of solution processes. Data were summarized by the researchers for common
response patterns for individual students, teachers and grade levels. A framework for
developing and implementing a structural approach to learning mathematics was
then developed by the research team in collaboration with participating teachers.
The number system, counting patterns, multiplication and division, partitioning, and
fractions comprised the main focus.

Several professional development meetings supported the planning and imple-
mentation of the PASA and PASMAP, assisted by input from the school’s learning
support and mentoring teams. PASMAP was implemented across the school for
two consecutive terms, each of ten weeks duration. Teachers integrated PASMAP
learning experiences into their regular mathematics program to varying extents, de-
pending on the needs of the students and the support available. To assess progress,
the PASA interviews were repeated at the end of the intervention.

The results showed a marked improvement in correct responses and an increased
proportion of responses classified at the more advanced partial and structural lev-
els of development.1 The improvement was most marked in the Kindergarten and
Grades 1 and 2 where the most intensive support had been focused. Figures 1 and 2
summarize the PASA data for Kindergarten and Grade 1 students.

Substantial improvements were also found in school-based and system-wide
measures of numeracy achievement (NSW Department of Education and Training
2002), although they were less pronounced in the upper primary years. For exam-
ple, on the Schedule of Early Number Assessment (SENA 1) 89 % of students were

1See chapter Early Awareness of Mathematical Pattern and Structure, page 12 for an explanation
of the various structural levels.
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Fig. 1 Box and whisker plot
of Kindergarten and Grade 1
students’ (7 × Early Stage 1
classes) pre-(February) and
post-assessment (September)
PASA scores (n = 134)

Fig. 2 Box and whisker plot
of Grades 1 and 2 (6 × Stage
1 classes) students’
pre-(February) and
post-assessment (September)
PASA scores (n = 120)

categorized at the first three levels of counting and arithmetic knowledge (emergent,
perceptual and figurative counting) at pre-test; the post-test proportion of students at
these lower levels was only 56 %. Similarly, on the NSW Basic Skills Testing Pro-
gram Numeracy trend data, 23 % of Grade 3 students increased numeracy scores
from Levels 1 and 2 to Levels 3 or 4 but a smaller proportion at Grade 5 (16 %)
showed such an increase. The marked improvements shown in the SENA data were
achieved mainly in the Kindergarten and Grades 1 through 3, possibly because the
lead teachers were most consistent and given considerable support in comparison
with the upper grades.

This classroom-based work allowed PASMAP to be trialled with a large number
of students who struggled to achieve basic numeracy. Adopting the structural ap-
proach encouraged teachers and students to recognize similarities and differences in
mathematical representations and to form simple generalizations. A focus on multi-
plicative concepts (including understanding the base ten system, grouping, and par-
titioning) was found integral to building structural relationships in early mathemat-
ics and spatial structuring was necessary to visualize and organize these structures.
Teachers were therefore encouraged to focus students’ attention more explicitly on
spatial structuring in the development of number concepts including for example,
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the use of number patterns and the construction of base-ten knowledge. Teachers
found this approach a novel way of teaching compared to the traditional focus on
number concepts and skills in isolation.

Despite the promising results, a pilot project of this scale had many limitations
and it was not possible to generalize the findings to other settings. Many teachers
struggled to understand the goal of developing mathematical relationships and sim-
ple generalizations. However, the evaluation data obtained from the teachers were
invaluable in informing the subsequent development and expansion of PASMAP.

Preschoolers’ Patterning

A concurrent study by Marina Papic (Papic et al. 2011) was conducted in the prior-
to-school context in the belief that the early development of patterning could provide
a foundation for successful mathematical development. Papic found that preschool-
ers’ awareness of pattern could be reliably assessed and that development could be
scaffolded through a framework of patterning experiences. Since Papic’s study is
described in more detail in chapter The Role of Picture Books in Young Children’s
Mathematics Learning, we summarize some key findings.

In one pre-school, Papic worked with the teachers to develop a 6-month interven-
tion focusing on mathematical patterns. A matched preschool acted as a comparison
group. Individual task-based interviews were conducted before and after the inter-
vention, and the children from both groups were followed up into their first year
of formal schooling. Children in the intervention program showed more advanced
patterning skills than the non-intervention sample at the end of the pre-school year.
Compared to the non-intervention group, the intervention children created far more
complicated patterns, they were able to solve growing pattern tasks (which had not
been the included in the intervention), and they showed higher scores on a standard
numeracy assessment, the SENA (Department of Education and Training 2002).
It was also found that teachers in the intervention pre-school had spontaneously
amended their whole cross-curricula activities to take advantage of many more pat-
terning opportunities than had been included in their original curriculum.

In the patterning program, children were frequently exposed to the concept of a
unit of repeat as configurations were broken down into identical “chunks”. They also
engaged in skip counting (e.g., “2, 4, 6”) that promoted the language of multiplica-
tion (e.g., “3 times”). The patterning experiences may have promoted conceptual
understanding of the idea of composite unit that is fundamental to multiplicative
reasoning. This development may have made it easier for the children to use base-
ten structure and other multiplicative concepts more effectively in Kindergarten.
We suggest that the patterning program had in effect strengthened the preschool-
ers’ AMPS—not only in terms of their understanding of fundamental concepts but,
perhaps more importantly, in encouraging them to look for and analyze patterns.
One result was a level of understanding that readily transferred to more complex
patterning and counting tasks one year later.
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Fig. 3 Kindergarten child’s
incorrect attempt to make an
AAB pattern in chunks

An Intervention Study with Kindergarten Students

Inspired by the promising results in the study with preschoolers, PASMAP was fur-
ther developed as a connected set of instructional sequences that integrated pattern-
ing (repetitions and growing patterns) and functional thinking, units of space and
measurement, spatial structuring and number sense, skip counting and multiplica-
tive processes. Using a design study approach, Mulligan and colleagues explored the
impact of PASMAP on mathematics learning with a group of ten students aged 4 to
6 years in the first year of formal schooling (Kindergarten in the state of NSW), who
had been identified by teachers as needing additional support in numeracy (Mulli-
gan et al. 2008). A specially trained, experienced classroom teacher engaged the stu-
dents in PASMAP tasks over 15 weekly teaching episodes. Tasks were designed and
modified continuously, and differentiated for individuals. Students were assessed
pre- and post-intervention using a revised PASA interview and two sub-tests of the
Woodcock-Johnson mathematics test (Woodcock et al. 2001).

Every student showed improvement on PASA scores, with seven of the ten mak-
ing marked improvements (Mulligan 2011). There were however no significant
gains found on the Woodcock-Johnson test scores; possibly the limited 15-week
period did not allow sufficient time to show such growth. An alternative explanation
is that the test was not sensitive enough in scope or depth to detect conceptual prob-
lems related to mathematical pattern and structure. Advancement in structural de-
velopment was clearly evident in students’ solution strategies, their representations,
and their explanations of their responses. There was evidence that students invented
symbolizations and made emergent generalizations and marked growth in represent-
ing, symbolizing and translating simple and complex repetitions, structuring arrays
and grids and unitizing area. However, these improvements were not necessarily
consistent across tasks. It was concluded that PASMAP would have to be imple-
mented over a longer period if it was to have a measurable effect on mathematical
achievement.

Consistent with the work of Papic, students represented simple repetitions and
growing patterns in a variety of forms. We explicitly focused on “chunking” (break-
ing the unit of repeat into sections) and placing in the pattern sequence (see Figs. 3,
4, and 5).

Figure 5 shows a student’s drawing of an AAB repetition that they have made as
a tower with two different colored blocks. The student symbolizes this pattern as a
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Fig. 4 Kindergarten child’s
correct attempt to break an
AAB pattern of blocks into
chunks

Fig. 5 Kindergarten
student’s representation of
BBA repetition using two
different symbolizations

‘BBA’ repetition and writes the correct sequence to the left hand side of the drawing.
When asked if they could write this pattern in another way so that their friend could
make the same pattern the student uses symbols 0 and X. They explain that these
are the symbols you use when playing noughts and crosses but when making this
pattern its ‘00X’ repeated. The student has retained the initial pattern structure and
developed a correct but different symbolization of the unit of repeat.

Similarly, improvements in recognition of subitizing patterns, counting in multi-
ples in 2s, 3s and 4s and some partitive grouping strategies were also observed. This
improvement could be explained by the varied and repeated PASMAP experiences
in grouping and patterning using a unit of repeat. The development of spatial struc-
turing through individuals’ representations was encouraged, such as congruence of
shapes, partitioning, and collinearity (see Figs. 6, 7 and 8).
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Fig. 6 Child correctly aligns
squares and triangles
congruently on square and
rectangular cutout shapes
placed underneath

Fig. 7 Child places counters
randomly around the border
without noticing corners or
sides of equal length [The
smaller squares are later used
to structure the square into
quarters]

In Fig. 6 the child is required to place congruent triangles on single squares or
rectangles so that the shapes are aligned. Recognizing corners and/or the symmetry
of the triangles was observed.

In Fig. 7 the task required the child to place counters evenly spaced and aligned
around the border of a square.

In Fig. 8 the task required the child to place counters on each of the corners;
observation of the process by which the child noticed the corners and placed the
counters, albeit unsystematically was observed.

Another important observation was that students were initially unable to rep-
resent simple arrays and grids beyond a pattern of four units but by the end of the
program students could more readily represent the structure of rectangular grids and
arrays Students’ construction of a simple table of data showing functional thinking
was also demonstrated in the final teaching episodes (Fig. 9). The students explained
that “for each dog you have 4 legs, so its 4, 8, 12, 16, 20, . . . , for 5 dogs”.

This project illustrated the rich and diverse learning experiences by ten young
students in a program focused on structural awareness. However, the intervention
was limited to a small group of students withdrawn for individualized instruction,
and supported by specialist teachers and well-formulated resources, and we could
not assume that the success of this program could be generalized to other settings.
Nevertheless, our data did suggest that explicit assessment and teaching of struc-



54 J.T. Mulligan et al.

Fig. 8 Child places counters
randomly on corner positions
first but then attempts to fill
the spaces in the border

Fig. 9 Kindergarten
student’s attempt to represent
the number of legs on a dog
(4 legs) on increasing number
of dogs

ture had the potential to effectively improve students’ abstraction of mathematical
processes.

Summary of Early Research Findings

The early studies suggested or confirmed several mechanisms whereby a focus on
pattern and structure awareness promotes general mathematical development:

• Students become more aware of crucial structures such as rectangular arrays.
• Through the study of these structures, they more easily learn basic properties of

number, space, and measurement.
• Students learn to break down unfamiliar large patterns into smaller patterns that

they are familiar with—a process known as unitizing (Lamon 1996).
• The emphasis on reasoned comparisons, justifications, and generalizations fo-

cuses students’ attention away from non-mathematical pattern features and de-
velops a tendency to look for and explain patterns in new experiences.

• Identifying similarities and differences leads to abstraction and generalizations.
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The early classroom-based studies discussed above provided strong support to
the hypothesis that teaching young children about pattern and structure should lead
to a general improvement in the quality of their mathematical understanding. How-
ever, none of the studies had a sufficiently large or representative sample, most
lacked a comparison group and there was insufficient opportunity to track and de-
scribe in depth and the growth of structural development. A more comprehensive
study was needed to evaluate these findings more systematically over a longer pe-
riod of time within the regular school setting.

The Reconceptualizing Early Mathematics Learning Project

A new large study, the Reconceptualizing Early Mathematics Learning (REML),
was therefore designed to evaluate the effects of PASMAP on student mathematical
development in the first year of formal schooling. The aims of the study were to:

• Evaluate the effectiveness of a school-entry PASMAP on student mathematical
development and using classroom observations, interview-based student assess-
ment and standardized assessment.

• Document in detail the impact of PASMAP on learning mathematics.
• Track and describe students’ structural growth, particularly of high- and low-

achievers, through fine-grained analysis of the growth of structural awareness.

PASMAP was also evaluated in terms of professional learning of teachers as they
were supported in developing and evaluating the new approach.

The Sample

A purposive sample of four large primary schools, two in Sydney and two in Bris-
bane, Australia, comprising 316 students from diverse socio-economic and cultural
contexts, participated in the evaluation throughout the 2009 school year. At the
follow-up assessment in September 2010, 303 students were retained. From pre-test
data two focus groups of five students in each class were selected from the upper
and lower quartiles, respectively. These 190 students were monitored closely by the
teacher and research team throughout the study.

Procedure

Two different mathematics programs were implemented: In each school, two
Kindergarten teachers implemented the PASMAP and two implemented their reg-
ular program. A researcher visited each teacher on a weekly basis and equivalent
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professional development was provided for all teachers. The PASMAP framework
was embedded within but almost entirely replaced the regular Kindergarten math-
ematics curriculum. Features of PASMAP were introduced by the research team
incrementally, at approximately the same pace for each teacher, over three school
terms (May–December 2009). However, implementation time varied considerably
between classes and schools, ranging from one 40-minute lesson per week to more
than five 1-hour lessons per week.

The PASMAP Components

Core components of the PASMAP and the pedagogical approach focused explic-
itly on the development of students’ spatial structuring, multiplicative reasoning,
and emergent generalizations rather than developing procedural skills or number
concepts in isolation from other concepts. PASMAP provided an instructional ap-
proach where concepts were scaffolded and linked together to promote early alge-
braic thinking based on earlier approaches advocated by Blanton and Kaput (2005)
and Carraher et al. (2006). Although the framework was in its developmental stage,
these components could be described as potential trajectories of learning in a sim-
ilar way to those described by Clements and Sarama (2009). Drawing on previous
and current research on spatial structuring and early algebra, the PASMAP program
comprised subitizing and spatial arrangements (Bobis 1996; Hunting 2003); simple
and complex repetitions, growing patterns and functions (Warren and Cooper 2008);
spatial structuring (Battista 1999; van Nes and de Lange 2007); the spatial proper-
ties of collinearity, congruence and similarity and transformation; the structure of
measurement units and data representation, unitizing and multiplicative structure;
the structure of counting sequences and base ten, and equivalence and inverse oper-
ations. Emphasis was also laid on the development of visual memory and justifica-
tion for simple generalizations. Students were encouraged to seek out and represent
pattern and structure across different concepts and transfer this awareness to other
concepts.

This awareness was achieved through pattern-eliciting tasks that required stu-
dents to use spatial structuring to copy or reproduce a model or other representa-
tions. (For examples see later sections in this chapter.) The teacher used probing
questions to highlight important features of their models and drawings, to com-
pare them with others, and to focus their attention on similarities and differences
in crucial aspects of spatial and numerical structure. Tasks were modified and re-
peated regularly, reinforcing and extending generalizations and providing links to
prior learning in a similar way to earlier studies.

Assessment Interviews and Classroom Data

All students were administered the I Can Do Maths (ICDM) standardized test of
general mathematics achievement (Doig and de Lemos 2000) at the beginning and
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end of the 2009 school year and again in mid-2010. From the pre-test data, two focus
groups were selected in each class consisting of five students from the upper and
lower quartiles, respectively. These students were interviewed in more detail using
the PASA in February 2009, December 2009, and September 2010, the number
of students varying from 190 to 170. An additional “extension” version of PASA
was also administered in September 2010. The PASA items were parallel on all
three occasions, but increased somewhat in complexity to take account of students’
development.

Other evaluation data included video for a sample of PASMAP lessons for ev-
idence of AMPS and students’ articulation of emergent generalizations. Analysis
focused on the high ability and low ability focus students. Students’ explanations
and drawn representations, and photos of their responses to tasks were collected
during the implementation of PASMAP and were coded immediately after each les-
son for level of structural development. Evidence of student work, usually in the
form of worksheets, was also collected for focus students in the regular classrooms.
This evidence was digitally scanned and placed in individual profiles of learning.
As well, teachers’ views of the impact of the program on student learning and their
own professional learning was collected and later analyzed.

Results

Quantitative Outcome Analysis

Analysis of the various PASA and ICDM scores showed the expected differences
between ability levels and confirmed the equivalence of the two program groups.
There was, however, a significant difference between the schools, with classes in
the two Brisbane schools scoring lower than those in the two Sydney schools. No
significant interactions were observed.

Total scores on the PASA and ICDM administered at the end of the interven-
tion (December 2009) and at the retention point (September 2010) among the focus
students were analyzed using analysis of covariance (ANCOVA). In each case, the
covariates were the initial PASA and ICDM scores and the factors were school (one
of four), ability (high vs. low) and program (PASMAP vs. non-PASMAP).

Analysis of the ICDM scores indicated no significant interactions or main effects
apart from a school effect. In other words, the PASMAP and regular students made
very similar gains on ICDM over the period of the study, but Sydney students gained
more.

The analysis of the PASA scores also showed no significant interactions. How-
ever, there were two significant main effects at each point: a difference between
schools, with the Sydney classes showing higher adjusted means than the Brisbane
classes, and a difference between the program groups on each PASA assessment—
modest at the end of the intervention (p < 0.026), highly significant at the retention
point (p < 0.002), but only borderline (p > 0.11) for the extension section of the
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Table 1 Analysis of covariance of PASA scores at retention point

Source Type III
sum of
squares

df Mean
square

F Sig.

Corrected model 1048.432a 17 61.672 10.380 0.000

Intercept 53.229 1 53.229 8.959 0.003

Covariate: PASA 158.346 1 158.346 26.650 0.000

Covariate: ICDM 14.071 1 14.071 2.368 0.126

School 117.125 3 39.042 6.571 0.000

Ability 15.259 1 15.259 2.568 0.111

Treatment 61.653 1 61.653 10.376 0.002

School * Ability 11.643 3 3.881 0.653 0.582

School * Treatment 43.663 3 14.554 2.450 0.066

Ability * Treatment 0.217 1 0.217 0.037 0.849

School * Ability * Treatment 13.589 3 4.530 0.762 0.517

Error 802.130 135 5.942

Total 13412.000 153

Corrected total 1850.562 152

R squared = 0.567 (adjusted R squared = 0.512)

PASA. On each occasion, the PASMAP group scored higher than the regular group.
Table 1 provides a summary the ANCOVA for the PASA at the retention point.

We inferred that the PASMAP treatment was effective in promoting the con-
ceptual understanding of early mathematics, as measured by the PASA but not in
improving mathematical achievement as measured by ICDM.

Rasch Scale Analysis

The PASA total scores and the ICDM scores were used to construct a single Rasch
scale that incorporated all items along a continuum. The main advantage of using
Rasch analysis for constructing the PASA scale was that it could be used to link
different versions of the PASA used in this study (Andrich et al. 2001). The item
map indicated that the PASA items and the students were reasonably well matched;
in comparison, the ICDM items at the lower end of the scale did not sufficiently
challenge the majority of students, although some more difficult ICDM items filled
a gap between the PASA items (see Mulligan et al. 2011). The scale’s order of
item difficulty on PASA items provided a measure of the students’ overall level of
AMPS. Thus a conceptual analysis of the item and its position on the scale reflected
the complexity of the task in terms of pattern and structure as well as the reasoning
required to complete it successfully. What we aimed to achieve with the scale was
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Fig. 10 Structural development across selected PASA items at three interview points Feb 2009
(Pre-intervention), Dec 2009 (Post-intervention), Sept 2010 (Retention) in two Sydney schools

a picture of how the PASA measure of AMPS fitted with a standardized measure of
general numeracy ability over time.

Structural Outcomes Analysis

To supplement the quantitative analysis, we provide some examples of the analysis
of structural levels. Student responses on four PASA items requiring a drawn re-
sponse at the three administrations were systematically coded for level of structural
development (see chapter Early Awareness of Mathematical Pattern and Structure).
Coding showed an inter-rater reliability of 0.91. Figure 10 summarizes the results
for the Sydney students. It can be seen that the PASMAP students were initially
slightly more advanced than the regular program students, with about 5 % more stu-
dents in the partial structure and structural levels than the regular students. However,
this difference grew in the subsequent administrations, reaching about 20 % at the
retention point.

The following examples show how PASMAP learning experiences led to a deeper
structural understanding of mathematical concepts and encouraged the development
of emergent generalizations.

After a sequence of tasks focused on repetition and spatial patterns (Papic et al.
2011), there was a focus on constructing and analyzing simple grids. In the first of
these, students were shown a 2 × 1 grid for a few seconds and then asked to draw
it. The teacher then gave them a 2 × 1 grid and two matching squares and asked
how many squares were needed to cover the grid. Different strategies for placing
the squares were discussed, and students were also asked to fold the grid to explore
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Fig. 11 Two contrasting
representations of a 2 × 2 grid

the structure. The teacher then asked, “What’s the same?” and “What’s different?”
and students encountered ideas such as counting, shape, sides and vertices, rota-
tion (turning), congruence (same size and shape), and fractions (half). The grid and
squares were then removed and students drew the grid from memory in both hor-
izontal and vertical orientations. After sharing and discussing their drawings, the
class summarized what they had learnt and looked for links to their earlier tasks
(e.g., in the towers they had made from unifix cubes). This may have been a very
elementary task, but it was fundamental to developing spatial structure and many
students found it quite challenging.

The next lesson moved on to 2 × 2 grids (called “windows”), following a similar
procedure. Previous ideas were reviewed and extended, and further ideas of rows
and columns, clockwise and anticlockwise, vertical and horizontal, diagonals, and
even quarters were encountered. The difference between the high- and low-ability
students already became apparent, and student responses indicated to the teacher
how perceptive some students were in terms of recognizing structural features while
others paid little or no attention to mathematical features. Figure 11 shows two such
contrasting drawings. Heela2 had already recognized that she did not need to draw
separate squares, whereas Lateh struggled to draw congruent squares in the standard
orientation.

In subsequent lessons, the task was extended to larger rectangles. By repeatedly
looking at what is the same and what is different between a given grid and their
drawings, and by seeking generalizations from their observations, students grad-
ually learned that a grid can be drawn using equally spaced, perpendicular lines.
Each task reinforced the basic generalization that we call the ‘spatial structure’ of
the grid. Discussion of similarities and differences between student’s drawings high-
lighted the crucial fact that a square grid contains the same number of equally sized
rows and columns; further, the development of multiplication and commutativity
emerged as well as area measurement. These ideas were further developed through
a sequence of tasks focused on the pattern of squared numbers using square tiles
and grid cards.

Students were initially given small plastic squares and asked to use them to make
as many large squares as possible, in order of size, and to say how many small
squares were in each larger square. To explore the structure of the pattern of squares
students were given two sets of square grid cards (1 × 1, 2 × 2, 3 × 3, 4 × 4 and
5 × 5). After exploring systematic ways in which they could be fitted next to or

2Pseudonyms are used to preserve anonymity.
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Fig. 12 ‘Low ability’
Kindergarten student’s
drawing of emergent structure
of the pattern of squares from
memory

Fig. 13 ‘High ability’
Kindergarten student’s
drawing of the pattern of
squares from memory

on top of each other, or in various formations or sequence, the teacher posed the
questions, “Can you see a pattern? How many small squares are there on each card?
What is the best way to find out?” Students then cut up a second set of grid cards into
rows or columns, place the cut-outs on top of the first set of cards, and discussed
the numbers of rows or columns and the number of small squares in each. After
examining the resulting number pattern (1, 4, 9, 16, 25), the teacher removed all the
grid cards and cut-outs and challenged the students to reproduce the visual pattern
from memory, first on grid paper and then on plain paper.

Figures 12 shows attempts by a ‘low ability’ student to draw the pattern from
memory but the partial structure of the grid was counted and added as individual
units. The student does, however, recognize the growing pattern of squares. In this
case the student is assisted to use grid paper to form the squares in a sequence
and to trace the rows and columns so as to develop collinearity. Figure 13 shows a
‘high ability’ student’s structural development of the pattern of increasingly larger
squares using the alignment of the growing squares. He visualizes and generalizes
the pattern as “it goes up by one row and one column every time and it must be
a square”; he also explains the numerical sequence as multiplicative “1, 2 by 2, 3
by 3, 4 by 4”. His learning is extended by tasks such as “Can you work out what
the tenth square will look like and can you continue the pattern? Can you make a
growing pattern using triangles?”

In a follow-up task, students were given a 1 × 1 square and a 2 × 2 square and
asked how many small squares fit on to the larger one. They were then given fur-
ther 2 × 2 squares and asked to find the number of small squares in total, thus
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Fig. 14 Heela’s use of the
composite unit of 4 squares as
a functional relationship

constructing the sequence 4, 8, 12, . . . . Finally, they were asked to generalize their
findings. Heela invented a perfectly good means of symbolizing her results that
closely resembles algebraic notation (see Fig. 14). In fact, she was treating the task
as a functional relationship rather than a simple pattern continuation. Asked what
she had learnt from the exercise, she said “I made a pattern so 1 big square is 4 little
squares. So it’s 4 for each square. Every time you use the square it’s a four.” Further
tasks showed that she had generalized the relationship to all sizes of square and,
indeed, any type of rectangle.

Other tasks extended the basic (multiplicative) generalization to rectangles. For
example, students were asked to relate the number of unit squares needed to cover
a rectangle to the size of the unit.

During the PASMAP intervention students demonstrated development of AMPS
throughout the learning episodes in their representations and explanations. There
were particular gains found in the PASA items requiring extension of a growing
pattern and use of ten as a composite unit. More advanced responses were found
in the related areas of simple and complex repetitions, growing patterns, multiplica-
tive thinking (skip counting, partitioning and fractions), equivalence, and structuring
area and drawing of grids with collinearity. Students in the regular program did not
focus on growing patterns, multiplicative ideas or structuring measurement so their
responses were limited to simple repetitions, unitary counting and additive thinking,
and conservation of area. One of the most promising findings was that the PASMAP
focus students categorized as low ability were able to develop structural responses
over a relatively short period of time. The same gains were not evident for the regu-
lar group.

Discussion

The PASMAP students (and participating teachers) were systematically guided
through related teaching/learning experiences so that deep connections between
concepts were formed. This was in contrast to the regular program students where
the pedagogy changed focus, sometimes on a daily basis, from one concept to an-
other without opportunity for development of structural understanding and without
focusing on the relationships between concepts.
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Qualitative analyses of students’ profiles and the classroom observation data
showed stark differences in the way that the PASMAP students developed math-
ematical concepts and reasoning skills. PASMAP explicitly focused on the promo-
tion of students’ awareness of pattern and structure: the analysis of students’ learn-
ing showed that all the PASMAP students developed AMPS to varying extents and
greater gains were made than for the regular students.

Because PASMAP focused intently on developing structural relationships and
spatial structuring from the outset, the PASMAP students made direct connections
between numerical, measurement and spatial mathematical ideas, and formed emer-
gent generalizations such as those described in the previous section. For example,
students began to link simple skip counting to more complex multiples and arrays
through their experience of the unit of repeat in patterning and measurement con-
texts. The most able PASMAP students used particular spatial features of pattern
and structure to build more complex ideas. For example, they partitioned a 10 × 10
square into quarters and recognized that each of these squares formed a 5 × 5 array,
and knew that this quarter contained 25 squares from their experience of the growing
pattern of squares. Regular students could also solve tasks requiring multiplicative
thinking but these were considered by the students as separate mathematical skills;
for example, they learnt the skip counting pattern of 5s in isolation from all other
activities. These students could not explain what was similar or different, what was
the connection between ideas, or form simple generalizations.

A small proportion of students in the regular program did produce structural re-
sponses in the post-intervention PASA interview although they had apparently not
been given opportunities to describe or explain their thinking in class. It would seem
therefore that more advanced students may develop AMPS regardless of the instruc-
tion they receive. However, our results are indicative that such students are likely to
make greater progress in a program that encourages them to look for patterns and
explain their structure.

We must interpret our findings in light of one possible confounding factor: the
amount of time that individual PASMAP teachers devoted to the program implemen-
tation. Some PASMAP teachers completed only half of the program components
while others completed almost the entire program and revisited concepts regularly.
Thus, further analysis of the impact of PASMAP must consider individual teacher
effect, at least in terms of time on task, in order to evaluate the program’s full impact
on developing AMPS.

Conclusions and Implications for Further Research and
Teaching

The study produced a valid and reliable interview-based measure and scale of math-
ematical pattern and structure that revealed new insights into students’ mathemati-
cal capabilities at school entry. The PASA interview data indicated significant dif-
ferences between groups in students’ levels of structural development (AMPS) at
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the second and third assessments. Students participating in the PASMAP program
showed higher levels of AMPS than for the regular group, made connections be-
tween mathematical ideas and processes, and formed emergent generalizations.

There were no significant differences found between groups on the standardized
measure, ICDM. There are two possible reasons for this. The ICDM assessed nu-
meracy in a limited way using traditional multiple-choice paper and pencil format
and was quite different to the PASA interview. Secondly, the content of ICDM was
limited in scope and depth: these multiple choice tasks focused on unitary counting
sequences, recognizing simple two-dimensional and three-dimensional shapes and
informal units of measure. There were no items that assessed pattern and structure.

Our studies show encouraging results, but further longitudinal research is needed
with larger samples and more diverse samples, as well as utilizing digital learning
tools. In particular, research is needed to determine whether an explicit focus on pat-
tern and structure could later promote robust algebraic development—for example,
in functional thinking—as well as in other related areas of learning.

A successive longitudinal project Transforming Children’s Mathematical and
Scientific Development3 2011–2013, is in progress which extends the initial study
and employs the same research team with some students tracked through from the
2009–2010 study reported in this chapter. This new project explores the role of
pattern and structure in mathematics and science learning in Grades 1 to 3. In par-
ticular, the role of AMPS in structuring data is being investigated. Students are en-
gaged in an innovative program, usually withdrawn in small groups and taught by
the research team in collaboration with the teacher on a weekly basis for a 2-year
period. This research integrates English’s research on data modeling with the study
of pattern and structure (English 2012). As a result, it will be possible to describe
the structural development of young children’s mathematical and scientific thinking
extended to a wider range of concepts than previously studied.

Related studies at Macquarie University have also investigated structural devel-
opment in studies of preschoolers’ use of virtual manipulatives and dynamic inter-
active software in constructing patterns (Highfield and Mulligan 2007). A recent
design study describes the use of programmable robotic toys in terms of young chil-
dren’s representational structure of the dynamic pathways constructed in problem-
solving tasks (Highfield and Mulligan 2009). Further, Goodwin studied the effect
of digital media on young children’s representations of fractions (Goodwin 2009).
These studies suggest further possibilities for exploring early mathematics learning
through digital technologies [see chapter A Framework for Examining Technologies
and Early Mathematics Learning, this volume]. We question the impact of such
technologies on children’s developing AMPS.

Further research on the developmental precursors of AMPS is needed to deter-
mine why some children develop powerful mathematical structures and relation-
ships in the prior to school years, while others may be impeded by idiosyncratic im-
agery throughout their early schooling. Further studies need to articulate the learn-
ing trajectories of very young children whose structural development is enhanced

3Australian Research Council Discovery Project DP110103586 (2011–2013).
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by the PASMAP approach. There are many other factors that need investigating, for
example, the impact of different early child rearing practices, approaches to learn-
ing in early childhood and early schooling, and possible cognitive-neuroscientific
aspects—an emerging field of research in relation to mathematics learning (van Nes
and de Lange 2007).

Teaching and learning mathematics through a pattern and structure approach
may require fundamental changes to the way that mathematics learning, peda-
gogy, curriculum and assessment is conceptualized, structured, and implemented.
The PASMAP approach promotes conceptual knowledge that is interrelated and
pedagogical strategies that scaffold these interrelationships. Supporting teachers to
implement a structural approach may require professional learning support to pro-
mote deeper understanding of key mathematical concepts and to develop increased
teacher pedagogical content knowledge. The importance of pattern and structure in
mathematics learning is reflected to some extent in the new Australian Curriculum–
Mathematics under the Proficiencies (Understanding, Fluency, Problem Solving and
Reasoning), which support mathematics learning as patterns, relationships and gen-
eralizations (ACARA 2012). However, the key interrelationships between concepts
incorporated across the three stands of the Australian Curriculum–Mathematics are
not foregrounded. A structural approach could support the development of deep
conceptual understanding well beyond early algebra, and provide a framework for
developing these Proficiencies more effectively.
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Reconceptualizing Statistical Learning
in the Early Years

Lyn D. English

Introduction

This chapter argues for the need to restructure children’s statistical experiences from
the beginning years of formal schooling. The ability to understand and apply statis-
tical reasoning is paramount across all walks of life, as seen in the variety of graphs,
tables, diagrams, and other data representations requiring interpretation. Young chil-
dren are immersed in our data-driven society, with early access to computer technol-
ogy and daily exposure to the mass media. With the rate of data proliferation have
come increased calls for advancing children’s statistical reasoning abilities, com-
mencing with the earliest years of schooling (e.g., Langrall et al. 2008; Lehrer and
Schauble 2005; Shaughnessy 2010; Whitin and Whitin 2011).

Several articles (e.g., Franklin and Garfield 2006; Langrall et al. 2008) and pol-
icy documents (e.g., National Council of Teachers of Mathematics 2006) have high-
lighted the need for a renewed focus on this component of early mathematics learn-
ing, with children working mathematically and scientifically in dealing with real-
world data. One approach to this component in the beginning school years is through
data modelling (English 2010; Lehrer and Romberg 1996; Lehrer and Schauble
2000, 2007).

Data modelling is a developmental process, beginning with young children’s in-
quiries and investigations of meaningful phenomena, progressing to identifying var-
ious attributes of the phenomena, and then moving towards organising, structuring,
visualising, and representing data (Lehrer and Lesh 2003). As one of the major the-
matic “big ideas” in mathematics and science (Lehrer and Schauble 2000, 2005),
data modelling should be a fundamental component of early childhood curricula.
Limited research exists, however, on such modelling and how it can be fostered in
the early school years. The bulk of the research has focused on secondary and ter-
tiary levels, with the assumption that primary school children are unable to develop
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their own models and sense-making systems for dealing with complex situations
(Greer et al. 2007).

Recent research has indicated that young children do possess many conceptual
resources that, with appropriately designed and implemented learning experiences,
can be bootstrapped toward sophisticated forms of reasoning not typically seen in
the early grades (e.g., Clarke et al. 2006; Clements et al. 2011; English and Watters
2005; Lesh and English 2005; Papic et al. 2011; Perry and Dockett 2008). Most re-
search on early mathematics learning has been restricted to an analysis of children’s
actual developmental level, which has failed to illuminate children’s potential for
learning under stimulating conditions that challenge their thinking. “Research on
children’s current knowledge is not sufficient” (Ginsburg et al. 2006, p. 224). This
sentiment was further expressed by Perry and Docket (2008):

. . . young children have access to powerful mathematical ideas and can use these to solve
many of the real world and mathematical problems they meet. These children are capable of
much more than they are often given credit for by their families and teachers. . . The biggest
challenge. . . is to find ways to utilise the powerful mathematical ideas developed in early
childhood as a springboard to even greater mathematical power for these children as they
grow older. . . (p. 99).

This chapter is structured as follows. Consideration is given to data modelling
with a specific focus on structuring and representing data including the use of con-
ceptual and metarepresentational competence, informal inference (making predic-
tions), and the role of context. A longitudinal study of data modelling in grades one
to three is then addressed followed by a selection of findings.

Data Modelling

The starting point for developing statistical reasoning through data modelling is with
the world and the problems it presents, rather than with any preconceived formal
models. Data modelling is a developmental process (Lehrer and Schauble 2005) that
begins with young children’s inquiries and investigations of meaningful phenomena,
progressing to deciding what aspects are worthy of attention and how these might be
measured, and then moving towards structuring, organising, analysing, visualising,
and representing data (as indicated in Fig. 1). Conceptual competence and metarep-
resentational competence play a significant role in the overall modelling process, as
indicated later in this chapter.

The model created, which provides a solution to the children’s original ques-
tion/s, is repeatedly tested and revised, and ultimately allows children to draw in-
formal inferences and make recommendations from the original problem and later,
similar problems. Children’s generation, testing, and revision of their models, which
lie at the core of what it means to reason statistically, is an important developmental
process.

A data modelling approach to statistical reasoning differs in several ways from
what is typically done in early classroom experiences with data. In particular, data
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Fig. 1 Components of data modelling (adapted from Lehrer and Schauble 2004)

modelling engages children in problems that evolve from their own questions and
reasoning; there is a move away from isolated tasks with restricted data to compre-
hensive thematic experiences involving multiple data considerations; and the com-
ponents of data modelling involve foundational statistical concepts and processes
that evolve over time and are tightly interactive (as indicated in Fig. 1), rather than
rigidly sequential.

In the remainder of this section, I consider briefly some of the core components
of data modelling, namely, structuring and representing data, informal inference
(specifically, making predictions), and conceptual and metarepresentational compe-
tence. I also consider the role of task context in data modelling.

Structuring and Representing Data

Models are typically conveyed as systems of representation, where structuring and
displaying data are fundamental—“Structure is constructed, not inherent” (Lehrer
and Schauble 2007, p. 157). However, as Lehrer and Schauble indicated, children
often have difficulties in imposing structure consistently and often overlook impor-
tant information that needs to be included in their representations or alternatively,
they include redundant information. Providing opportunities for young children to
structure and display data in ways that they choose, and to analyse and assess their
representations is important in addressing these early difficulties.

The need for classroom experiences that provide such opportunities has been
emphasised over the years (e.g., Cengiz and Grant 2009; Curcio and Folkson 1996;
Friel et al. 2001; Hutchison et al. 2000; Lehrer and Schauble 2007; Russell 1991),
yet young children’s typical exposure to data structure and displays has been through
conventional instruction on standard forms of data representation. The words of
Russell (1991) are still timely today:

We have two choices in undertaking data analysis work with students: we can lead them to
organising and representing their data in a way that makes sense to us, or we can support
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them as they organise and represent their data in a way which makes sense to them. In the
first case, they learn some rules—and they learn to second-guess what they are supposed to
do. In the second case, they learn to think about their data. Students need to construct their
own representations and their own ways of understanding, even when their decisions do not
seem correct to adults (p. 160).

Metarepresentational and Conceptual Competence

Russell’s advice is reflected in the research of diSessa and his colleagues (e.g.,
diSessa 2004; diSessa et al. 1991), who proposed the term, metarepresentational
competence, to indicate the range of students’ capabilities in constructing and using
external representations. The prefix, meta, was used to caution against the typically
limited views of representational competence that have been assumed (and continue
to be assumed) of young learners. Unlike the standard representational techniques
students might have learned from specific instruction, metarepresentational com-
petence encompasses students’ “native capacities” (diSessa 2004, p. 294) to create
and re-create their own forms of representation. Indeed, such competence appears
to exist before instruction and to develop independently of it.

As indicated in this chapter, young children’s metarepresentational competence
involves generating their own forms of inscription. By the start of school, children
already have developed a wide repertoire of inscriptions, including common draw-
ings, letters, numerical symbols, and other referents. Children’s developing inscrip-
tional capacities provide a basis for their mathematical activity. Indeed, inscriptions
are mediators of mathematical learning and reasoning; they not only communicate
children’s mathematical thinking but they also shape it (Lehrer and Lesh 2003; Ol-
son 1994). As Lehrer and Schauble (2006) stressed, developing a repertoire of in-
scriptions, appreciating their qualities and use, revising and manipulating invented
inscriptions and representations, and using these to explain or persuade others, are
essential for data modelling.

Another issue that has received limited attention with respect to children’s
metarepresentational competence is the joint development of metarepresentational
and conceptual competence (diSessa 2004). As diSessa noted, research is scant
here and the role of student-created representations in conceptual development is
rather complex. Assuming that representations can “strongly mediate learning,” it
follows that metarepresentational competence can indirectly influence the devel-
opment of conceptual competence as students generate their own representations
(diSessa 2004, p. 304). However, as diSessa noted, it may be that metarepresen-
tational competence can directly influence conceptual learning and vice versa. In
essence, the questions that warrant attention include how certain strengths or limits
of metarepresentational competence might advance or hinder conceptual compe-
tence, and whether metarepresentational competence and conceptual competence
develop jointly.
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Informal Inference: Making Predictions

There has been limited research on young children’s abilities to make predictions
based on data, an important component of beginning, informal inference. Although
young children obviously do not have the mathematical background to undertake
formal statistical tests, they nevertheless are able to draw informal inferences based
on various types of data (Watson 2007). Predictions can be based on aspects of the
problem scenario and context, and children’s understanding of the data presented.
As pointed out by Watson (2006), one of the aims of statistics education is to help
students make predictions that have a high probability of being correct. Yet in the
real world, decisions are required where there is uncertainty and where several al-
ternatives might be reasonable. Hence, young children’s exposure to informal in-
ference involving uncertainty is an important learning foundation if a meaningful
introduction to formal statistical tests is to take place in the secondary school.

The Role of Context

The nature of task design, including the task context, is a key feature of data mod-
elling activities. Children need to appreciate that data are numbers in context (Lan-
grall et al. 2011; Moore 1990), while at the same time abstract the data from the
context (Konold and Higgins 2003). As Moore noted, a data problem should engage
students’ knowledge of context so that they can understand and interpret the data
rather than just perform arithmetical procedures.

The need to consider carefully task design is further highlighted in research
showing that the data presentation and context of a task itself have a bearing on
the ways students approach problem solution; presentation and context can create
both obstacles and supports in developing students’ statistical reasoning (Cooper
and Dunne 2000; Pfannkuch 2011).

In the remainder of this chapter, I address a longitudinal study of data modelling
across grades one to three and consider a selection of findings focusing on children’s
predictions for missing data, their structuring and representing of data, and their
metarepresentational and conceptual competence.

A Longitudinal Study of Data Modelling

A three-year longitudinal study of data modelling was conducted from 2009 through
to 2011 in an inner-city Australian school, situated in a middle socio-economic area,
with an enrolment of approximately 500 students from Prep-7. The three first-grade
classes (mean age of 6 years 8 months) continued into the second year (mean age
of 7 years 10 months), while only two of the classes were able to participate in
the third year (mean age of 8 years 8 months). A seventh-grade class (age range of
12–13 years) also participated in one of the activities during the second year of the
study.
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Table 1 Items Taken to Baxter Brown’s Picnic

Liver Straps Beef Discz Dentastix My Dog Gourmet Beef Bones Oinkers

Baxter B. 3 5 2 1 3

Monty 2 7 1 2 1

Fleur 4 0 3 4 5

Daisy 3 1 4 3 2

Lilly 5 3 0 2 4

Pierre 7 5 2 6 10

Activities and Procedures

Literature was used as a basis for the problem context in each of the activities im-
plemented across the three years. It is well documented that storytelling provides
an effective context for mathematical learning, with children being more motivated
to engage in mathematical activities and displaying gains in achievement (van den
Heuvel-Panhuizen and van den Boogaard, 2008). Storybooks, both purposefully cre-
ated and commercially available ones, were read to the children at the beginning of
each activity and referred to during the course of the activities. A central charac-
ter in many of the activities was Baxter Brown (a West Highlander X toy poodle),
given that the children requested further stories about him during the second and
third years.

For Baxter Brown’s Picnic (second year of the study), the class was presented
with a table of six different items that he and each of his five canine friends chose
to take on their picnic. The final column of the table was left blank, as indicated in
Table 1. After discussing what they noticed about the values and variation in values
across the table, the children were invited to predict the number of Oinkers that
Baxter Brown and each of his friends might take on the picnic.

For Planning a Picnic (grades 2 and 7; second year of study), an initial class
discussion focused on questions the children might ask about planning a class pic-
nic. In their groups, the children then listed five items they would like to take on
the picnic, which were recorded by the teacher in a table on an interactive white
board. The children were subsequently asked what might be done with the data and
what questions they might ask about the data. Each group’s question was recorded
on the board, with brief discussion on how some of the questions might be refined.
In their groups, the children proceeded to answer their question and were to display
their findings using whatever representation they liked. They were provided with a
range of recording material including blank chart paper, grid paper, and chart pa-
per displaying a circle shape. The children could use whatever of these materials
they liked; no encouragement was given to use any specific recording material. On
completion of the activity, the groups reported back to their class peers on how they
answered their question.

The grade 2 children were subsequently asked how their responses might com-
pare with those of the other grade 2 classes, and were then invited to consider how
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the grade 7 classes in their school might respond to the activity. On the suggestion
of one of the second-grade teachers, we administered the Planning a Picnic activity
in one seventh-grade class. We then brought together the teachers and students from
the second-grade class and the seventh-grade class for a sharing of how they worked
the activity.

For the Investigating and Planning Playgrounds activity (third year of the study),
which centred around the school’s new playground for the younger grades, the chil-
dren posed questions that might help them find out more about their classmates’
thoughts on their new play area. In their groups, the children created four survey
questions and were to provide four answer options for each question (e.g., one group
posed the question, How long do you spend on each piece of equipment? with the
response options of 30 mins, 15 mins, 5 mins, and 20 mins). On answering their
own questions, each group chose one focus question to which the other groups were
to respond. The children were to predict initially how their focus question might
be answered by the remaining groups. Each group subsequently analysed all their
collected data for their focus question and were to display their findings using their
choice of representation. As before, the children were encouraged to represent their
findings in more than one way, with no specific direction given.

Data Collection and Analysis

All class discussions, group work, and the grade 2/7 sharing of models were video-
taped and audiotaped and subsequently transcribed. All artifacts were collected and
analysed along with the transcripts. Where appropriate, iterative refinement cycles
for analysis of children’s learning (Lesh and Lehrer 2000) were used, together with
constant comparative strategies (Strauss and Corbin 1990) in which data were coded
and examined for patterns and trends.

In the next section, consideration is given to selected findings from two activi-
ties in the second year of the study, namely, Baxter Brown’s Picnic and Planning a
Picnic, and an activity in the third year, namely, Investigating and Planning Play-
grounds. For the second-year activities, attention is given to the nature of the three
grade 2 classes’ predictions for the missing values in the table of data (Table 1)
for Baxter Brown’s Picnic, and the questions posed and the representations cre-
ated by one second-grade class and one seventh-grade class in Planning a Picnic.
The metarepresentational and conceptual competence displayed in the sharing of
products between the second-grade class and the seventh-grade class is then ad-
dressed. Finally, consideration is given to the second-grade children’s application of
these competencies in undertaking the third-year activity, Investigating and Plan-
ning Playgrounds.
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Selection of Findings

Grade Two Children’s Predictions for Baxter Brown’s Picnic

In contrast to the children’s use of informal inference in the first year of the study
(English 2012), where they used the variation and range of values in a table of data
to predict unknown values, the context of the present activity appeared to inhibit the
children’s ability to abstract the data from the context (Konold and Higgins 2003).
Each class initially identified the blank column as the first feature they noticed, with
one child explaining, “Nobody wants Oinkers.”

In predicting how many Oinkers each of the dogs might take to the picnic, the
children predicted small values less than 10, with their reasoning mainly based on
the total number of other items each dog was bringing and the fact that if a larger
number of Oinkers were brought to the picnic, the dogs “might get sick,” “get a
tummy ache,” or “get fat.” One child suggested zero, “because there has to be some-
thing that he doesn’t like.”

There were some responses however, indicating an awareness of the need to con-
sider the nature of the existing values, such as, “Because he (Monty) doesn’t eat
that much of anything else so he mustn’t eat that much.” In response to a child
who predicted that Baxter Brown would take zero Oinkers, because he already has
many other items, the teacher accepted the response as a reasonable prediction. An-
other student, however, disagreed, stating, “I don’t think it’s reasonable because he’s
pretty of a greedy guts so I think he would have more” (basing her decision on the
existing item values for Baxter Brown).

On asking each class to consider the scenario of Baxter Brown taking 26 Oinkers,
Monty 33, Fleur 50 etc., the majority of children used the task context to decide that
these values were inappropriate. Comments such as, “They’re um too big, the dogs
would probably get a tummy ache and get sick” and “It’s too heavy for them to
carry to the picnic,” were common. On the other hand, other responses suggested
that some children were aware of the need to focus on the nature of the data, for
example, “They would be bigger than all the numbers,” “Ten is the highest number
you can go up to,” “There’s only one two-digit number,” and “Because there would
be too much.”

Children’s Questions and Representations for Planning a Picnic

The findings reported here focus on the responses of the selected second-grade class
and the seventh-grade class. The table created by the grade 2 class appears below;
a comparable table was developed by the grade 7 students.

Not surprisingly, the grade 2 students’ questions were less sophisticated than
their older counterparts, resulting in a few difficulties in answering their questions
and representing their findings. Nevertheless, the children’s questions reflected a
basic conceptual competence in their consideration of the frequency and mode of
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Table 2 Picnic Items Chosen by the Grade 2 Class

Group 1 Group 2 Group 3 Group 4 Group 5

choc chip cookies sandwiches blanket food cup cakes

fruit fizzy drinks fruit picnic basket cake

sausage rolls cookies cake sunscreen juice

cordial fruit esky drinks fruit soft drink

sandwiches fruit pudding soft drinks chairs carrots

the data they had generated, with their questions including: Is there a most popu-
lar food? Is there a most popular item? What are the different types of items? Did
everybody choose the same items? The grade 7 students’ questions, on the other
hand, indicated an understanding of percent and percentage together with a more so-
phisticated awareness of descriptive statistics. Their questions included: How many
different picnics brought 2 or more healthy foods? What percentage of foods are
unhealthy? What is the most popular item on the list, soft drink or sandwich? How
many items are processed foods in each picnic? What percentage of groups brought
fruit on their picnic? What percentage of groups chose sandwiches compared to
groups who chose fruit to bring on their picnic? What food group does the majority
of food from all of the picnics come from?

Although the grade 2 children’s questions were less sophisticated in terms of the
conceptual competence suggested, they nevertheless displayed metarepresentational
competence that appeared to rival that of the older students. The grade 2 children
generated a wider range of representations, with each group using inscriptions in
their analysis of the data of Table 2. For example, one group who addressed their
question, “Did everybody choose healthy items?” placed an X on what they consid-
ered to be unhealthy items, a * on healthy items, a 0 on “things that aren’t food,”
and a created symbol of mixed shapes for “fruit/sugar.” This group also drew a food
pyramid, with a focus on healthy and unhealthy items, and followed this with a third
representation, a circle divided into halves displaying drawings and labels of “junk
food” and “healthy foods.” Four of the 17 grade 2 groups made a list of selected
items, before constructing a bar graph (3 groups) or a circle graph (cut into thirds; 1
group). It is interesting to note the apparent interaction between children’s metarep-
resentational competence and conceptual competence in the following group’s real-
isation of how their representation (bar graph) changed their initial response to their
question, “Is there a most popular food?”

There is, there is, the answer was, there is not any popular food because there were, there’s
3 . . . we recorded how many different stuff there was and on one square (of their bar graph)
it means that um, it means that there was one thing, on two squares it means that’s there’s
two things and it keeps on going up to 6. And then we found out that there was no most
popular food. There were 3 tying, drinks, cakes and picnic stuff. . . We wrote first that there
was a popular thing but then when we ended up doing the graph, it ended up that there was,
um, three populars.

In contrast to the grade 2 children, all but one of the 11 grade 7 groups chose only
one representation, with vertical bar graphs and circle graphs being equally popular
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(each chosen by 5 groups, with the display of percentages prominent). One grade
7 group who created a circle graph also made a tally chart first. From this group’s
explanation of how they generated their final model, it appeared that their concep-
tual competence in determining the number of foods in each group and calculating
percentages facilitated their subsequent application of metarepresentational compe-
tence in displaying their data: “1. Study the collected data. 2. Discuss which food
groups the food falls into. 3. Make a list of our data. 4. Tally the number of foods in
each group and find percentages. 5. Record data on a pi-graph (sic) and show which
food group has the biggest percentage.”

The remaining grade 7 group created a line graph, displaying metarepresenta-
tional competence in explaining why they selected a line graph in preference to a
bar graph: “Well we thought because there are so many foods, drawing bars to make
them seeable would be quite squishy; we just thought it would be easier to read if it
was a line graph.”

Sharing Models for Planning a Picnic

Prior to the grade 2 class sharing their models with their grade 7 counterparts, the
grade 2 teacher asked her class to recall how they predicted the grade 7 students
might work the activity. The children’s responses suggested an awareness of differ-
ences in the competencies between the two grades, with comments such as, “They
won’t have the same ideas” and “We said that they might be better because they’d
had more years.”

As the grade 7 class presented their models to their younger counterparts, there
were several displays of metarepresentational and conceptual competence at both
grade levels. For example, one grade 7 group reported that they solved their ques-
tion using a bar graph that showed percentages of the particular items targeted in
their question. When asked why they chose this representation, the group explained,
“We tried a pie graph but we couldn’t like split it into the right amount of groups,”
suggesting awareness that their lack of conceptual competence prevented their con-
struction of such a representation. Other examples of metarepresentational compe-
tence occurred when the grade 7 students were invited to define a circle graph for
the grade 2 children. One group member explained, “A pie graph is a circle that you
put lines into and then colour sections which is what, yeah, is what you chose.” An-
other grade 7 group displayed metarepresentational competence in justifying their
selection of a bar graph in preference to a circle graph in answering their question,
“How many different picnics brought two or more healthy foods?” The group ex-
plained, “Cause if you did like a pie graph. . . you wouldn’t really show each group
and how many items each individual group brought.”

Although indicating an awareness of their conceptual limitations in interpreting
the more sophisticated models of the grade 7 class, the grade 2 children nevertheless
demonstrated metarepresentational competence in their interpretations. For exam-
ple, when asked to compare their bar graph representations with those of the older
students, they responded that theirs was easier to read as, “They (grade 7) used
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percentages and we don’t know about percentages yet.” In responding to how they
knew which were the most and least popular items in one of the grade 7 models, one
child explained, “Cause it’s got the names at the bottom (labels under X axis). I was
looking at the fruit one and I knew that it was the most. . . cause it’s got the highest
thing (bar) that goes up.”

A follow-up grade 2 class discussion on how their working of the activity com-
pared with the grade 7 students again suggested further application of conceptual
and metarepresentational competence, where the younger children explained that
they did not know how to construct circle graphs but they nevertheless knew that
the circle represented 100 %. The children could also interpret the grade 7 represen-
tations, explaining: “We took more healthy food than they did;” “They were really
bad choices;” “They did pie graphs and we didn’t know like how to;” and (they
did) “The line graph.” In a follow-up question, the grade 2 children commented that
100 % means “all of it” (circle) and “to understand the pie, we can look at it and see
if it adds up to 100 %.”

Children’s Conceptual and Metarepresentational Competence in Investigating
and Planning Playgrounds

A particularly interesting finding during the project was the grade 2 children’s trans-
fer of conceptual and metarepresentational competence on progressing into the third
year. Twelve months later, building on their developments in the second year, the
children showed increased sophistication in the use of multiple representations for
the playground activity. The classroom teachers had not focused specifically on any
one representation and, in particular, circle graphs were not a part of the third-grade
curriculum. The children not only displayed different approaches to creating a cir-
cle graph, but they also insisted on using percentages as well, albeit, mostly inac-
curately. Of the nine grade 2 student focus groups who progressed to the third year,
seven tried to apply their awareness of this concept. The children had not formally
studied percentages but were transferring their learning from their experience with
the grade 7 class (e.g., “Do we have to do percentages like the Year 7s did last
year?”) and sharing their ideas with those group members who were not involved
in the grade 2/7 experience. Children’s application of their conceptual competence
here is revisited subsequently in this section.

In attempting to represent their data in a circle graph, the focus groups primarily
used a ruler and/or estimation. For example, one group argued over how to estimate
a sector for each response option, with one child insisting that “You have to find the
middle first. That’s the first thing you actually do.” Using his conceptual competence
to guide him, he then placed the ruler through the centre of the circle and drew a
small sector to represent the two “for exercise” responses to the focus question,
“Why do you like the equipment you chose?”

The group’s explanation of their actions suggested an interactive application of
conceptual and metarepresentational competence: “Two will only be like this (draw-
ing a small sector and recording “2”). . . cause it’s a very small amount.” When asked
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how many “pieces of the pie” they needed, the group quickly replied “four, cause
there’s four of them (response options).” The group also commented that the four
sectors would not be the same size “because if there’s two people, this would have
to be a smaller piece to fit two people and a bigger piece to fit nine people in.” In
estimating the size of the sector to represent the nine responses of “It’s challenging,”
one child claimed that “nine would be half of it” (there was a total of 20 responses
to their focus question). After much discussion, the group decided “no, no, no, that
nine can’t be that big (half of the circle)” taking into account the frequencies of the
other response options (six, three, and two). One child subsequently tried to measure
the sectors with his fingers to make the nine sector smaller than the total of the other
response options (11), explaining, “Yeah, it actually does have to be a bit smaller.”

Returning to the children’s conceptual competence in dealing with percent, it was
interesting how the children negotiated the representation of 0 % (for the response
option that received zero votes, namely, fits more people than the oval) and 1 %
(for the response option, good views). Although most of the groups did not have the
conceptual competence to use percentages to construct their circle graphs, they nev-
ertheless demonstrated some metarepresentational competence in trying to display
0 % and 1 %. For example, after instructing Kim to “Write 12 percent” in one sector
of the circle graph (representing 12 responses), Belinda said, “Maybe you could rule
a little bit off it. . . that could be zero percent.” She further noted that the response
option of good views “only has one percent. . .” and “has to be really small, like that
small.” This group further struggled with their display of 0 %, claiming that there
was insufficient space to label the option of fits more people than the oval. When
their teacher asked, “How can you show 0 %,” Belinda responded that “You should
just rub that out. . . cause that got nothing.” But then Kim was puzzled by “How
would you do zero?” to which Belinda replied “Rub it out, rub it out.”

Another group, however, demonstrated an emerging conceptual competence in
applying their understanding of percentage to their circle graph construction. When
two group members recommended recording the number of focus question re-
sponses (to the question, “Why do you like the Spider Web”) in the circle graph
segments they had drawn, Hugh disagreed, saying “Do percent”. When the research
assistant queried the group on how they intended determining this, they explained
that they knew that the circle graph represents 100 % and that of the 20 votes for
their focus question, there were two responses that each received five votes, one
that received four, and one that scored six. Hugh explained that instead of recording
the actual number of focus question responses, percentages should be shown: “That
is 100 %, so we needed to do 25 %; that’s 25 (%), so that should be 24 (%), and
that should be 25 (%) and that one should be 26 (%).” Further explanation when
queried by the class teacher demonstrated how they used both their conceptual and
metarepresentational competence in constructing their circle graph:

Hugh: Well here we had six here, five here and five here and four there so we
wrote down 5, 5, 6, and 4.
Belinda: And she put 20.
Hugh: And we like, we measured up with the ruler to know which line goes
where, and we just put a 20 in front of it.
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Hamish: Cause it was 26 and 24.
Allya: And we knew that this 5 and 5 had to be half so it had to be 25 and 25 and
then we had to work out this has to be 26 and 24 which is, that plus that equals
50 and then that plus that equals 50.

Discussion and Concluding Points

As the chapters of this book attest, when we engage young children in challeng-
ing experiences that extend beyond the curriculum, their learning potential often
exceeds our expectations. This chapter has provided one example of such poten-
tial. In reconceptualizing early statistical learning, the present study has shown how
young children can deal effectively with experiences in data modelling. Specifically,
the children demonstrated skills in posing and researching their own questions; in
gathering, structuring, and representing data in ways they chose; and in drawing
informal inferences (making predictions) when faced with missing data. The chil-
dren’s application of conceptual and metarepresentational competence facilitated
their achievements here.

Four main issues arising from the data modelling activities are worth highlight-
ing—the role of task context, the posing of investigative questions, the application
of conceptual and metarepresentational competence, and the role of model sharing
in learning and the transfer of learning.

With respect to the first issue, as previously noted, children need to appreciate
that data are numbers in context, while at the same time abstract the data from the
task context. Although context provides meaning in statistics (Garfield and Ben-Zvi
2008), it can create both obstacles and supports in student’s statistical reasoning
(Pfannkuch 2011). The purposefully created context of Baxter Brown and his ca-
nine friends organising a picnic appeared to hinder the children’s analysis of the
table of data (Table 1). Only a few children justified their predictions by considering
the nature (range and/or variation) of the values displayed, with the majority making
contextual inferences such as the need to consider the dogs’ health. The role and im-
pact of task context require careful consideration in designing statistical activities;
clearly a good deal more research is needed here to guide the development of data
modelling in the early years.

Posing questions about the class selection of picnic items was a comparatively
new experience for the second-grade children, presenting a challenge as to how
some questions might be refined. Such difficulties can be expected—transforming
initial questions into more specific statistical questions is not an easy step, espe-
cially for young children (Konold and Higgins 2003). Not surprisingly, the grade
7 students generated more sophisticated questions, applying the conceptual compe-
tence that they had developed during their additional years of schooling. Neverthe-
less, the younger children displayed substantial metarepresentational competence in
generating a wider range of representations including the use of inscriptions. Such
competence also came to the fore, in conjunction with their conceptual competence,
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when the children realised that their initial response to a question was inappropriate
once they had displayed their data on a bar graph.

The children’s competencies in constructing circle graphs again revealed the ex-
tent of their potential for engaging in data modelling. The children had not been
taught to construct such representations yet chose different approaches in doing so,
in both the second and third years of the study. The interactions between conceptual
and metarepresentational competence were especially evident here, with children’s
graph construction facilitated by their knowledge that the sectors should be propor-
tional to the values being represented.

Further development of these competencies evolved from the children’s shar-
ing of their models with their older peers. Experiencing the models produced by
the grade 7 students generated an interest in the notion of percent and calculating
percentages—children added the percent inscription to their representations with
some also trying to calculate percentages to determine sector size. Although most
of the younger children could not calculate correct percentages, they nevertheless
displayed conceptual competence in their understanding of percent and its role in
constructing representations.

The sharing of models between the younger and older students was a rich
learning experience for both, providing opportunities for appreciating different ap-
proaches to dealing with data and for questioning, explaining, and interpreting the
data models of others. Consideration should be given to creating such sharing op-
portunities across grade levels.

The present study leaves a number of issues worthy of further investigation in
young children’s statistical learning. These include the nature and role of context in
the design of data modelling activities, the factors in a task context that either sup-
port or hinder children’s statistical reasoning, and ways in which we might capitalise
on literature and on children’s interests in data collection, display, and analysis (cf.
Whitin and Whitin 2011). Further consideration also needs to be given to how we
might advance young children’s conceptual and metarepresentational competence in
data modelling, the ways in which we might promote children’s skills in posing ef-
fective research questions, and the types of statistical experiences that can be shared
effectively by children across grade levels together with the nature of the learning
that takes place in such shared experiences.
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Cognitive Guidelines for the Design and
Evaluation of Early Mathematics Software:
The Example of MathemAntics

Herbert P. Ginsburg, Azadeh Jamalian, and Samantha Creighan

Introduction

This chapter shows how cognitive psychology can inform the design and evaluation
of software for early mathematics education, and how the resulting software can
provide new approaches to evaluation of learning and to basic cognitive research.

The need for improved early mathematics education is abundantly clear. Too
many children (at least in the U.S.) perform poorly in mathematics from the earliest
days of school (Mullis et al. 1997). The problem is especially acute in the case of
underprivileged, low-income children, who start behind (Starkey and Klein 2008)
and fall further behind as they grow older (Cunha et al. 2006; Duncan et al. 2007).

Although there are many contributors to low academic achievement, ranging
from poverty to teacher pay, the primary factor is not young children’s inability
to learn mathematics. A very large body of research shows that children naturally
develop a surprisingly proficient and complex “everyday mathematics” (Sarama and
Clements 2009b), which provides a useful foundation on which mathematics educa-
tion can build (Baroody 2004). The research also shows that quality early mathemat-
ics education can have long term positive impacts on achievement and can provide
substantial benefits for those who need the most help, namely underprivileged, low-
income children (Cross et al. 2009).

We propose that the affordances of computer technology, although hardly a
panacea, offer the possibility of transformative improvements in early mathematics
education. It is possible and desirable, we argue, to design software to help children
learn mathematics, to help teachers teach it, and to eliminate the need for textbooks
as we know them.

Our optimism (some concerns will follow) is fueled by two developments. One
is that education authorities now accept that computer technology has an impor-
tant place in education from elementary school through postgraduate studies. The
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second, and more important, is that touch screen devices, notably the iPad, have be-
come ubiquitous in a short period of time. Software developers have been releasing
very large numbers of mathematics apps for young children from age 3 upwards.
In July 2012 there were more than 20,000 education apps designed for the iPad,
and more than 1.5 million iPads in U.S. schools (Brian 2012). It is not uncommon
to see very young children using touch screen devices with reasonable proficiency.
Even toddlers navigate the screen, access their favorite app icons, and play with the
software for long periods of time.

Although only in their infancy (like some of their users), the new touch screen
devices seem ideal for the population on which this paper focuses: young children
from roughly age three to six whose reading ability is limited or non-existent and
who may be unable to move a mouse with facility but can nevertheless touch and
manipulate attractive virtual objects on a brilliantly vivid screen. Touch screen de-
vices that can talk to young children (when they tap on a word or numeral or perform
certain actions) and that allow them to touch and manipulate virtual objects can set
the stage for—but definitely do not guarantee—dramatic advances in the quality of
software.

Yet there is reason for concern. The availability of large numbers of apps does not
in itself solve the educational problem. Individual apps by the hundreds or thousands
seem to emerge with no evident plan, rhyme or reason. Some of the most popular
apps have a limited focus. For example, Space Math (Mclean 2012) drills students
on number facts but is little more than an efficient worksheet that does not promote
conceptual knowledge. Although drill can be useful, there seem to be few examples
of mathematics software for young children that promote conceptual understanding
and non-trivial problem solving.

Further, although rigorous evaluations are rare, our informal observations sug-
gest that the quality of mathematics apps and other software is generally not im-
pressive. Many designers and publishers claim that their software is of high quality
because it is “research-based.” Yet these assertions need to be taken with a very
large grain of salt. Educational researchers have argued that research is seldom used
in meaningful and effective ways in software development (Sarama and Clements
2002). There are exceptions, an example of which is The Number Race, designed
for 7- to 9-year-olds with mathematical difficulties, which focuses on improving
number sense through number comparison tasks (Wilson et al. 2006a, 2006b). An-
other exception is Dots2Track (Butterworth and Laurillard 2010), which also targets
children with mathematics learning difficulties. Both of these software programs
derive from a research-based analysis of children’s learning difficulties, and show
promise of correcting cognitive deficiencies and promoting mastery of early math-
ematics.

We propose that cognitive science (which for purposes of this paper we define
as including contributions from the overlapping and sometimes vaguely defined dis-
ciplines of cognitive developmental psychology, educational psychology, learning
science, cognitive psychology, and mathematics education) can and should play an
essential role in exploiting the powerful affordances of computers in the service
of education. First, cognitive principles can provide a framework for the design of
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educationally rich software, ensuring that its pedagogy effectively promotes mathe-
matical proficiency in the broad sense, including both the motivated learning of rich
content and the development of genuine mathematical thinking. Such software can
help teachers to change their roles and improve their teaching, and eventually will
make traditional textbooks obsolete. Second, the cognitive principles can contribute
to the usability testing and meaningful evaluation of software designs. The cogni-
tive principles can also guide the formative and summative assessment of children’s
learning, as well as the evaluation of achievement and the effectiveness of software.
And finally software based on cognitive principles can return the favor by setting the
stage for new kinds of basic research into children’s mathematics learning in rich
environments.

Cognitive Principles for the Design of Software

We begin with what the computer can do. We know that software affordances can
support learning (Sawyer 2006) in several ways. Computers can represent abstract
knowledge in interactive visual models; touch screens allow children to manipu-
late virtual objects; computer tools provide opportunities for learners to explore and
develop solutions to interesting problems; and computers allow building a commu-
nity of learners and collaborative learning. Software can also engage children in
“microworlds”—artificially designed “mathemagenic” environments that entail and
stimulate the exploration of mathematical ideas, foster the development of thought
and skill, and offer children powerful tools to do significant mathematics (Hoyles
and Noss 2009; Hoyles et al. 2002; Papert 1980). Microworlds can include goal-
driven activities, virtual objects, tools, representations, scaffolds, feedback, peda-
gogical agents, interaction, fantasy, challenges, communication and collaboration,
record keeping and reporting.

We propose 6 cognitive design principles that can exploit these affordances.

• Engage children in cognitively and mathematically appropriate activities.
• Develop effective models for representing abstract ideas.
• Encourage accurate and efficient strategies.
• Identify and eliminate bugs and other misconceptions.
• Design appropriate physical interactions.
• Integrate narratives and stories with mathematical concepts.

For each design principle, we outline important issues that software developers
need to consider, and then we discuss examples of how cognitive principles can
inform design.
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Engage Children in Cognitively and Mathematically
Appropriate Activities

The first step in designing learning activities is to clearly define the content to be
learned and taught. The new Common Core State Standards Initiative (2010) pro-
vides broad guidance, based extensively on cognitive developmental research. For
example, the Kindergarten Standards propose that children should learn the number
names and count sequence to 100; count to tell the number of objects; and compare
numbers.

To those unfamiliar with cognitive psychology, teaching this content would ap-
pear to be easy. After all, what can young children learn beyond a little counting,
names of shapes, and memorized facts? But neither the mathematical content nor
its learning and teaching are simple. Software developers have produced many apps
and programs designed to help children learn these important topics. Unfortunately
too many apps focus on the rote teaching of number words and simple enumera-
tion without regard to its meaning (for example, Toddler Counting, iTot Apps, LLC
2011). Although knowing the number words and being able to recite the list in the
correct order is important, children need to learn a great deal more about number
than current software apps teach. Rich content should include thinking as well as
facts and procedures.

To develop effective software that can help implement the Core Standards, de-
signers need to understand the specific cognitive processes and obstacles involved in
young children’s learning the counting words, enumeration (determining the num-
ber of a set of objects), and number comparisons of various types. And it goes with-
out saying that designers need to have a deep knowledge of the mathematics itself,
which in the case of young children is far from trivial: it deals with fundamental
concepts of number theory.

Fortunately, a substantial body of research can provide guidance for software
development in the area of early number. Gelman and colleagues (Cordes and Gel-
man 2005; Gelman and Gallistel 1978; Gelman 1993; Gelman and Gallistel 1986)
show that learning to enumerate involves several components. The child must ac-
quire three “how-to-count” principles: (1) stable order principle, (2) the one-to-one
correspondence principle, and (3) the cardinal principle. The Stable Order Princi-
ple requires that symbols have a consistent order across counting occurrences. The
One-to-one Correspondence Principle explains that for every object in the count-
ing set only one and one counting symbol is applied. The Cardinal Principle refers
to the fact that the last symbol of a count represents number of objects in the set
that has been counted. A child who counts 6 candies as “1, 2, 3, 4, 5, 6” and says,
“I have 6 candies,” knows the Cardinal Principle, at least for the number 6. Gelman
and Gallistel (1986) also define two “what-to-count” principles: (1) the Abstraction
Principle states that any combination of discrete objects could be counted (e.g. a set
of heterogeneous farm animals or abstract entities such as months in a year), (2) the
Order Irrelevance Principle states that a set can be counted in any order (left to right,
right to left, or any other order) and yet the cardinality of the set does not change.
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Children also need to understand the meaning underlying the distinctive sym-
bolic language of mathematics and more generally to appreciate that mathematics
is meaningful. Vygotsky (1978) proposed that early mathematics education should
help children learn to synthesize their “spontaneous concepts” (everyday mathe-
matics) with “scientific concepts” (the organized, formal mathematics that consti-
tutes the accumulated cultural wisdom and that schools try to teach). “The strength
of scientific concepts lies in their conscious and deliberate character. Spontaneous
concepts, on the contrary, are strong in what concerns the situational, empirical,
and practical” (Vygotsky 1986, p. 194). This approach, similar to Dewey’s (1976),
aims to integrate the best of the vital and spontaneous with the best of the rigorous
and scientific so as to produce meaningful knowledge. Another way of saying this
is we should help children to mathematize their meaningful everyday mathemat-
ics.

To create useful software, designers need to draw upon cognitive research to
develop clear answers to the following three questions relating to content:

1. What should be the specific mathematical and cognitive content of the activity?
2. What is the developmental trajectory for mastering the concepts and skills in

question?
3. What prior knowledge is required to master understanding of the new concept?
4. How does the software promote understanding of symbols?

To illustrate how this can be done, we consider one set of MathemAntics activi-
ties designed to help pre-school children learn about numerical relations and com-
parison of set sizes. To design the content for the activities, we first analyzed the
developmental trajectory for mastering the number relation concepts.

2- and 3-year-old children begin to learn relations such as more and same
(Clements and Sarama 2007, 2008; Fuson 1992a, 1992b; Ginsburg 1989). Chil-
dren can compare two sets using subitizing (seeing the number immediately with-
out counting), length, or density strategies (Mix 1999). We based the content of the
simplest Equivalence activities in MathemAntics on what we know about children’s
knowledge, and synthesized activity content with their mathematical understanding.
The simplest activity encourages the child to visually inspect two sets of 3 or fewer
objects arranged in a row or in a column, with the length of the rows congruent with
the cardinal values. In higher levels, larger sets with numbers of objects beyond
the subitizing range are presented to the child for comparison, and the child may
still use length or density strategies to compare these sets. In the Hens Laying Eggs
activity, for example, children are asked whether Fluffy and Fancy Pants have the
same number of eggs (see Fig. 1). The eggs for each hen are arranged in a row, and
the length of each row is congruent with the cardinality of that row (i.e. the set with
fewer eggs is arranged in a shorter row).

Another simple activity called Bedtime (see Fig. 2) encourages children to com-
pare two sets by matching objects from one set to the other set. Children put each
animal in a bed to help it get ready to sleep, and ring a bell when they are done. The
one-to-one activity not only emphasizes the matching strategy but also highlights
the one-to-one counting principle.
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Fig. 1 Level 1 of Hens
Laying Eggs activity

Subitizing, length, or density strategies are not efficient for comparing two sets
that are larger than 3, have close to a 1:1 ratio, or have incongruent physical and
numerical attributes (e.g., two equal sets with different densities). By the age of 4,
children should be able to use counting and matching strategies to compare the size
of sets with 5 or fewer objects (Cross et al. 2009). To use counting successfully,
children need to be able to count each set accurately, remember the cardinality of
the first set while counting the second set, and then compare the cardinalities of
the two sets. Fluency in counting is important. Without it children may forget their
first count result by the time they have counted the second set. Children also need
to know order relations of cardinal numbers—the further numbers are along in their
counting list, the larger quantities they represent (e.g., Fuson et al. 1982). Therefore,
fluency in counting (i.e. mastering all 5 counting principles) is the required prior
knowledge for using counting to compare two sets. For example, to compare the
two schools of fish in the Pop the Bubble activity, children need to count each set
separately and pop the bubble that has more fish in it (see Fig. 3).

In addition to counting fluency and knowledge of order relations of cardinal num-
bers, executive function skills are critical in the successful use of counting strategies.
Inhibitory skills, working memory, and cognitive flexibility (Diamond 2008) are of
particular importance. To compare two sets, children need to be able to count one
set, stop, and start from number 1 to count the other set. In fact, in our own usability
research we observed that some 4 year olds fail to stop after counting the first set
and continue counting the second set together with the first set. Children who are
able to count two sets separately may also fail to compare the two sets based on
their counting results due to working memory limitation: by the time they count the
second set they may forget the counting result for the first set. To assist their mem-
ory and to teach them the meaning of the symbol, we provide the option to have the
numeral for each set written at the top of the bubble. So, when the child indicates
how many fish are in a bubble, the numeral will appear on top of the bubble and stay
on the screen (see Fig. 4). This helps the child to learn to read the written numerals
and understand what they mean.

By the age of 5, children should be able to use counting strategy to find out which
is more and which is less for two numbers ≤10 (Cross et al. 2009). In the Pop the
Bubble activity for example, we ask children to compare two sets of fish and pop
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Fig. 2 Bedtime activity

Fig. 3 Pop the Bubble
activity

the bubble with fewer or more fish in it. At this age, children also need to learn the
meaning of the equal and non-equal symbols, and we introduce these symbols as
part of the activities so that children will be able to achieve a synthesis between their
everyday knowledge (this group has more than that) and the appropriate symbol.
For example, in the Quick Compare activity, we ask the child to compare number of
animals in two barns by clicking on the equal or non-equal signs (see Fig. 5).

By first grade, not only do children need to know which set has more, but they
should know “how many more”, or “fewer” objects one set has compared to another
(Cross et al. 2009). For example, in more difficult levels of the Hens Laying Eggs
activity we ask children to make Fluffy have 2 more eggs than Fancy Pants. The
child may remove eggs by clicking on them, or touch a chicken’s belly to have her
lay an egg. At this age, children are again introduced to “more than” or “fewer than”
symbols and number sentences in the context of their own everyday mathematics.
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Fig. 4 Pop the Bubble
activity with number symbols

Conclusion We have seen that cognitive psychology provides detailed and spe-
cific information concerning the cognitive content of the mathematics to be
learned—cardinality, number comparison, and the rest—and the struggles children
have in learning it. Key learning and teaching principles should inform the design of
software. For example, to produce a meaningful synthesis between informal knowl-
edge and the formal symbolism of mathematics, we linked the eggs in the Hens
Laying Eggs activity with the number sentence (8 > 6 in Fig. 6).

Fig. 5 Quick Compare activity
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Fig. 6 Hens Laying Eggs activity with number sentence

Develop Models Representing Abstract Ideas

Perhaps the most important educational goal is to promote deep understanding of
mathematical principles. Mathematics educators use a variety of instructional aids
to help children learn abstract concepts. These aids can take the form of visual rep-
resentations, models, tools, or manipulatives. Whatever the name, the goal is the
same—to represent a mathematical concept or relationship in a meaningful way.
Many mathematical ideas can be modeled through such representations, such as
representing the number five as five objects, a block with five discrete units, or a
continuous line shading five units on a number line. The way in which a concept is
modeled can directly influence the way the child conceptualizes and understands the
mathematics. For example, modeling the multiplication problem 3×4 as three equal
groups of four is different than representing the problem as the area of a rectangle
that is 3 units long and 4 units wide. Though an adult understands that both of these
representations will yield the same total, 12, a child new to the concept may strug-
gle to synthesize multiple representations. And indeed the two representations are
in fact different. The rectangle representation can be used to deal with continuous
area while the group of objects representation must involve discrete quantities.

A powerful way to teach children about abstract mathematical ideas is through
manipulatives embodying various kinds of representations (Mix 2010). The basic
idea is that manipulatives—things that hands can touch, feel and move—can help
students to create mental representations of mathematical ideas and procedures. Ma-
nipulatives are not just things to play with, but artifacts designed to help the learner
construct sound ideas. Manipulatives are successful when they can be abandoned
because they are no longer needed to support the ideas.

Used properly, manipulatives can advance our general educational principles.
They are responsive to the child’s current cognitive state in that they may involve,
for example, manipulating sets of objects instead of symbolic statements. Manipula-
tives elaborate on everyday knowledge by helping the child to perfect judgments of
numerical magnitude (for example, by providing practice in comparing the numbers
of sets of objects). Activities involving manipulatives can help the child mathema-
tize by showing the numerals corresponding to various numbers of objects (for
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example, the numeral 10 next to a collection of 10 blocks). Manipulatives can also
promote a synthesis of everyday mathematics (this is a much taller tower of blocks
than that tower) with the symbolic (this tower has 13 blocks but that tower has
only 5).

Concrete manipulatives like Cuisenaire Rods or Unifix Cubes have been used
for a long time to teach fundamental concepts of number. Virtual manipulatives (as
defined by Moyer et al. 2002) and models can also help visually represent math-
ematical ideas and relationships (Mix 2010). Indeed computer technology can be
used to create virtual manipulatives that in some ways may be more powerful than
their concrete counterparts. Although it is virtually impossible to have the child
work with 5,000 blocks, doing so can be child’s play on the computer screen. The
representation can be visual or pictorial (as when a child sees a randomly arrayed
collection of animals on the screen), which can be manipulated by a mouse or by
the fingers on a touch screen (for example, into groups of 3 animals in a line),
and can be connected in real time to symbolic representations (for example, if the
line is 3 long the numeral is 3, but if an object is added to the line the numeral
changes to 4) (Moyer-Packenham et al. 2008). To fully understand and embody the
mathematics, a child must be able to flexibly connect and utilize multiple repre-
sentations, understanding that a virtual group of five chicks can be represented by
a five block (comprised of 5 connected unit blocks) and by the numeral 5. If the
child sees the numeral 5, she should be able to represent it with the 5 block or the
5 virtual chicks. This is the kind of flexible synthesis entailed in deep understand-
ing.

Although work with manipulatives and models is widespread and often ac-
claimed as beneficial, research regarding their effectiveness shows that their use
does not necessarily ensure deep understanding (Moyer-Packenham et al. 2008;
Mix 2010). The issue is not simply whether or not manipulatives are used. It should
come as no surprise that the fundamental question seems to lie in the circumstances
in which particular models and manipulatives can be used most effectively for par-
ticular purposes. Moreover, children need enough time to interact with a specific
representation to fully understand the underlying mathematical content, must be
carefully introduced to new representations, and must be provided with scaffolds to
connect multiple representations in meaningful ways (Sarama and Clements 2009a;
Mix 2010).

Unfortunately, current software seldom uses virtual representations in meaning-
ful ways. Some utilize multiple representations for the same concept but lack the
scaffolding to promote synthesis. Others provide representations that are concep-
tually confusing (for example, representing one as eight fish forming the numeral
one!) or are inappropriate for the intended age (having instructions appear as writ-
ten text only for preschoolers!). Other mathematics software programs stress rote
learning of number facts and make almost no use of virtual manipulatives that offer
useful representations.

Given the potential importance of virtual manipulatives, designers need answers
to the following three questions:

1. What models can be used to represent a concept?
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2. What are their possible benefits?
3. How can they be connected with other models?

What Models Can be Used to Represent a Concept? When designing educa-
tional software, designers must first consider the different ways in which the con-
cept could be modeled. Inspiration may be drawn from existing school curricula or
from the cognitive psychology literature. The most effective models clearly and ap-
propriately represent and help the child form a useful mental representation of the
abstract mathematical concept. For example, the multiplication problem 3 × 4 can
be represented as an array of 3 rows of 4 dots each; a rectangular array of 3 by 4
squares; 3 jumps of length 4 on a number line; and 3 plants with 4 flowers on each.
These are all different ways of thinking about 3 times 4, and each has its specific
strengths and weaknesses. As mentioned earlier, a discrete array cannot represent
area, and neither can jumps on a number line, which in turn cannot represent the
idea of “number of elements per unit” as well as the flowers can. Given these pos-
sible representations that are useful for different purposes, designers may be able to
transform the appropriate model into a powerful virtual manipulative.

Benefits Although we have highlighted the importance of using multiple models,
we will provide an in-depth look at one, the number line. The number line is versatile
in that it can be thought of as a visual representation of number, but it can also
model mathematical relationships (such as modeling how 80 is larger than 30), and
serve as a mathematical tool to solve problems (such as solving 3 + 5 by making
jumps on a number line). Psychological research has shown that the number line is
very powerful in representing mathematical concepts such as numeral identification,
counting, and most importantly numerical magnitudes. Working with the number
line can build number sense and contribute to the development of a mental number
line (Jordan et al. 2006).

As children begin to study the symbolic number system, they may learn to map
magnitudes onto a mental number line. They may know that 3, 4, and 5 are pretty
close to one another, but that 100 is far away. However, their mental number line is
imperfect. It follows a logarithmic representation for larger and unfamiliar quanti-
ties. In other words, children have a pretty good idea of where the smaller numbers
fall on the line, but after a certain limit, the larger numbers tend to be jumbled to-
gether as very big. To examine the mental number line, researchers have used a task
that involves giving a child to place various target numbers on a blank number line
with only the endpoints marked (Booth and Siegler 2006; Laski and Siegler 2007;
Moeller et al. 2008). Instruction and exposure to larger numbers, as well as feed-
back on performance on the number line estimation task, help children to shift from
a logarithmic representation to a more accurate linear mental number line. Several
interventions that focus on the number line—for example, Early Learning in Math-
ematics (Chard et al. 2008), The Number Race (Wilson et al. 2006a), and The Great
Race (Ramani and Siegler 2008)—have reported successful outcomes. Siegler and
Booth (2004) also found that instruction of this type may have long-term benefits in
other areas of mathematics: the likelihood of using a linear representation of number
is highly predictive of later mathematical achievement.
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Fig. 7 Basic Number Line
activity

When designing MathemAntics we aimed to use the number line as a powerful
virtual manipulative. For example, in MathemAntics, as in the traditional number
line estimation task, the child places various target numbers on a number line. But
then the software gives the child multiple attempts and specific verbal and visual
feedback, which has been shown to assist children in forming an accurate linear
mental representation of number (Laski and Siegler 2007). And of course, the com-
puter allows the educator to set various parameters such as the length of the line, the
presence or absence of hash marks in any places.

Figure 7 shows an example of the basic number line activity in MathemAntics.
The gray arrow denotes the child’s incorrect first attempt; the red arrow denotes the
child’s current attempt; and the correct position of the target, 66, is shown in red as
visual feedback.

We have also designed an activity that allows children to build their own number
line by positioning numerals on the line. This activity scaffolds children to pay care-
ful attention to the order and spacing of the numbers. When finished, the child can
compare his number line to a correct number line above, and fix the former accord-
ingly. This activity is intended to encourage children to explore and learn number
relations.

Adjusting the parameters of the number line allows modeling of other important
mathematical concepts such as number operations (modeling addition as jumps on
a number line), place value (labeling the decades only on a 0–100 number line)
(Moeller et al. 2008), measurement (Petitto 1990), and rational number (Schneider
and Siegler 2010). The number line is a highly versatile model capable of conveying
many mathematical concepts. However, designers should be aware that simply in-
cluding a number line does not guarantee the child will master all of these concepts.
This reiterates the importance of the first cognitive design principle, knowing the
specific developmentally appropriate conceptual content. We will revisit this issue
in the discussion of later principles and provide examples of how designers can use
the number line in useful ways to encourage deep understanding.
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Fig. 8 Enumeration activity
using the number line as
response mechanism

Ways to Connect Multiple Representations As we have seen, the number line
can be a useful tool for teaching many concepts, from order to rational number. It
can also be used to integrate multiple representations, thus promoting the synthesis
of different areas of mathematical knowledge.

To achieve this goal, the number line appears in other MathemAntics activities
as a response mechanism or tool. In early enumeration activities, a child may ex-
plore the learning environment by adding or taking away chicks in a field. The total
number of chicks is simultaneously represented with a yellow magnitude bar on a
number line that changes in real time based on the child’s actions. In a later enumer-
ation activity, the child indicates his answer by clicking the corresponding numeral
on the number line (see Fig. 8).

Feedback or scaffolding can highlight and count the animals out loud while a
yellow magnitude bar represents the quantity on the number line, thus aiming to
carefully connect the representations for the child. Once the child masters enumer-
ation, the concrete representation of chicks in a field may be taken away leaving
only the number line. In later activities, the child may choose to use various tools,
like the number line, to solve problems involving mathematical operations. In this
advanced case, the child has already been introduced to multiple representations,
provided with appropriate scaffolds to connect them, and may now choose how to
represent the problem.

Conclusion Many kinds of manipulatives can be used to represent mathematical
ideas. As a virtual manipulative, the number line can be used to promote number
sense and a more accurate mental number line; to teach ideas of order and rational
number (as well as any of the operations on the whole numbers); and to promote a
synthesis between the written numbers and important mathematical ideas.
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Encourage Accurate and Efficient Strategies

Learning mathematics is not only about providing correct answers to problems, but
also using efficient strategies to solve those problems. Strategies may be efficient or
inefficient, accurate or inaccurate. One major goal of mathematics education is to
encourage children to use increasingly effective strategies for solving problems.

When designing learning activities to teach new strategies, two points are impor-
tant to consider. First, adoption of new strategies is often quite slow: children may
continue using prior strategies even if newly adopted ones have clear advantages
that the children themselves can explain (Siegler and Jenkins 1989; Alibali 1999;
Chen and Klahr 1999; Goldin-Meadow and Alibali 2002; Granott 2002; Kuhn et al.
1995). Second, rate of adoption of new strategies varies in relation to two factors:
accuracy and efficiency (Siegler and Svetina 2006). If the newly adopted strategy
significantly improves accuracy relative to a prior strategy (generally from consis-
tently incorrect to consistently correct), it will quickly replace the old one. If both the
new and old strategies result in correct performance, children adopt new strategies
that boost speed or dramatically reduce processing more quickly than do strategies
with less substantial advantages. Thus, differences in both accuracy and efficiency
of the new and old strategies contribute to the rate of adaptation, with accuracy being
the more powerful factor.

Very few mathematics apps for children consider strategy use. Many apps employ
a multiple-choice format and simply ask children to provide an answer. Although
these apps may help children to practice and improve their mastery of number facts
and calculation skills, effective mathematics education requires more apps that pro-
mote the adoption of effective strategies for problem solving.

Prior to designing an app to promote strategy learning, three questions should be
answered:

1. What are the possible strategies to solve the problem?
2. Which strategies lead to more accurate answers and under what conditions?
3. What strategies are more efficient than the others for a specific problem?

To answer these questions, we draw upon findings of cognitive psychology, as
well as our clinical interviews and observations during usability and play testing.
Usability testing involves determining whether the user can do whatever he/she is
supposed to do. For example, can a 3 year old drag objects on a touch screen? Play
testing involves determining whether the child uses software as it was designed to
be used. For example, if the software offers a potentially useful tool, does the child
use it for the intended purpose? We then illustrate answers to these questions by
considering the design of MathemAntics activities.

Different strategies may be employed to compare magnitudes of two sets de-
pending on the features of the problem. Perceptual subitizing, length, or density
strategies are the most basic. If the set sizes are less than 3 or 4, the child may sim-
ply subitize—quickly “see”—the number of objects in each set and evaluate if they
are the same or one is more. For young children, fast subitizing is only efficient and
accurate if the number of objects in each set is less than 4 (Sarama and Clements
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Fig. 9 Encouraging visual
comparison in Hens Laying
Eggs activity

2009b). When comparing large sets of objects (more than 4), children may employ
visual comparison strategies employing length or density. Children judge a group
of objects to be greater in number when it is either longer or denser than another
group. Visual comparison strategies are efficient and relatively accurate if the sizes
of objects in the two sets are similar, and the area occupied by each set is congru-
ent to its numerical value (Mix 1999). Further, the visual comparison strategies are
accurate within a ratio limit (Feigenson et al. 2004). Thus, it is easier to see the dif-
ference between 4 and 5 than between 94 and 95. However, comparing cardinality
of two sets based on visual attributes such as length and density is not accurate if
the two sets have a close to 1:1 ratio, or if the visual attributes are incongruent with
the numerical property of the sets. Conceivably counting was developed to deal with
relatively difficult problems like these.

Children may also use a matching strategy when comparing two relatively small
sets. For example, a child may examine whether there are the same number of beds
as there are animals by corresponding each animal with one bed. However, matching
is not efficient when comparing 20 beds and 20 animals or when sets are not in close
proximity. Counting is a more efficient and sophisticated strategy for comparing the
quantities in situations where visual comparison strategies are not efficient.

Software has unique affordances to encourage the use of strategies by highlight-
ing the advantages of new strategies or limiting the resources needed to use another
strategy. Following are five design scenarios.

Visual Representations The visual properties of a problem can be set to en-
courage certain strategies over others. For example, to encourage visual comparison
strategies to compare the quantity of two sets, objects in each set could be posi-
tioned in rows and columns inviting the child to compare the length of the rows: see
Fig. 9.

As another example, to encourage use of the “count on” strategy to solve an
addition problem, the bigger addend could be represented with a number, and the
smaller addend with discrete objects, as in this hypothetical example (see Fig. 10).

Tools Tools can encourage the use of specific strategies to solve problems. For
example, to encourage comparing quantity by matching, in MathemAntics children
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Fig. 10 Encouraging “Count
On” strategy for addition

may have access to a “line-up” tool that arranges objects in a row and thus provides
an organized visual comparison (see Fig. 11).

Note that the same tool that is designed to highlight a strategy may hinder ap-
propriate use of another strategy. For example, if the activity aims to encourage
comparing quantity by counting, the line-up tool should not be accessible. In higher
levels of the activity, the “line-up” tool is no longer available, but the child may
drag objects and arrange them in a certain way. To encourage counting, the drag-
ging option could be made inaccessible. Thus, tools and virtual manipulatives can
focus student attention on specific mathematical relations and processes in order to
encourage one strategy over another, a method called “focused constraint” (Moyer-
Packenham and Westenskow 2013).

Setting Parameters of the Problem Parameters—special features of a problem,
like the number of objects or their spatial arrangement—can be adjusted to encour-
age certain strategies or discourage others. Petitto (1990) used number line esti-
mation and specially designed rulers to explore the development of numerical pro-
portion abilities and understanding of units of measurement. She found that in the
number line estimation task children use many different (often inefficient) strategies
that suggest limited understanding of proportional reasoning. For example, younger
children often utilize counting strategies (either counting up from left to right or
counting down from right to left), oftentimes with inaccurate units. By contrast,
older children begin to correctly utilize the midpoint strategy when appropriate (e.g.
counting on from 50 to get to 53 on a 0–100 line).

The specific parameters that can be manipulated in the MathemAntics version
of the number line estimation task, such as providing tick marks of varying inter-

Fig. 11 Using the Line-Up tool to encourage visual comparison strategy
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Fig. 12 Adjusting parameters of the number line to encourage different strategies

vals that can be labeled or not, may encourage the use of different effective strate-
gies. However, the presence of tick marks may also encourage precise but tedious
counting rather than estimation based on number sense. Further, showing the tick
marks may prevent a child from shifting to using a more advanced midpoint strat-
egy. Hence, the parameters of the number line may also be set so that the midpoint
(rather than the tick marks) is always visible. In the left image of Fig. 12, we see
a number line set to display tick marks encouraging precision and counting-based
strategies whereas in the right image we see a number line with only the midpoint
visible, encouraging the midpoint and more approximation-based strategies.

Feedback Simply indicating correctness or incorrectness of an answer may not
be the best way to respond to a child’s efforts. Instead, feedback may be designed
to encourage a certain strategy. For example, if the goal of an activity is to urge
children to compare sets by counting, the software feedback to an incorrect response
could be “Oops, you were wrong this time. Let me show you how I know that.
Fluffy has 1, 2, 3, 4—4 eggs altogether, but Fancy pants has 1, 2, 3, 4, 5—5 eggs
altogether. They don’t have the same number of eggs.” On the other hand, if the
activity aims to encourage comparing quantity by matching, the feedback could be
a simple animation, matching eggs of the two hens and highlighting the leftovers.

Scaffolding Carefully designed scaffolds could also help a child in adopting a
new strategy. Scaffolding may highlight the features of the problem that are relevant
to a strategy, ease the difficulties involved in adaptation of a new strategy, and model
the strategy for the child. These scaffolds may be implemented in the software as
feedback to the child’s wrong answer. The MathemAntics version of the number
line activity provides scaffolds designed to help children to utilize certain strategies.
In the standard version of the activity, the computer provides the child with a target
number that the child must place on a number line. The child must click on the num-
ber line where he thinks the target number belongs. Once the child clicks, an arrow
appears. The child can move the arrow to adjust his answer using the arrow keys
or clicking in a different spot on the line. Once the child believes he has found the
target number, he presses the space bar to submit his answer and receive feedback.
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To scaffold a specific strategy, the arrow can already be presented to the child
in a specified location. The arrow serves as a visual cue to help the child focus
his attention on the relevant portion of the number line. Then, the child may move
the arrow left or right to find the target number and submit his answer using the
spacebar. For example, if a child must place 5 on a 0 to 100 line, the arrow will
appear close to the left endpoint whereas if a child must place 80, the arrow will
appear close to the right endpoint. Similarly, if a child must place 53, the arrow may
appear close to 50, making it easier to use the midpoint strategy and encouraging
the use of the most appropriate strategy based on the target number.

Conclusion Learning strategies is at least as important as memorizing facts or
learning procedures. Cognitive psychology has identified the major strategies chil-
dren use as well as the conditions under which the strategies can be effective. Soft-
ware designers should aim to promote those strategies using the special affordances
of computers, including visual representation, tools, setting problem parameters,
feedback, and scaffolding.

Identify and Eliminate Bugs and Other Misconceptions

Children (and adults) make mistakes, some of which are unsystematic. Children may
guess an answer if they don’t understand the question, or if they don’t know how
to solve a problem. Unsystematic errors could also result from boredom or care-
lessness. On the other hand, children’s mistakes may result from systematic use of
an inefficient strategy or rule—a “bug”—that may have sensible origins (Ginsburg
1989). Computer programs are not the only operating systems that may suffer from
bugs! For example, Sarah may say that 12 + 35 is 38, 23 + 13 is 54, and 1 + 25 is
17. At first glance, the child’s answers may seem to be absurd and nonsensical, and
one may speculate that the child is simply guessing the answers. However, a closer
look clarifies that Sarah is systematically using an incorrect rule to find the answers.
She first adds the digits of the double-digit numbers, and then puts results together
to form a new number: 12 + 35 = (1 + 2) + (3 + 5) = 38.

When Bob was asked to identify the hen with more eggs, (see Fig. 9), he always
responded with the hen on the right side. Was he guessing or did he simply like the
hen on the right side (Fancy Pants) more than the one on the left side (Fluffy)? Or,
is it possible that his mistake is based on an incorrect strategy use? We asked Bob
to show us how he knows Fancy Pants (who had 4 eggs) has more eggs than Fluffy
(who had 5). Starting on the left side, he counted all the eggs for both hens together,
and said “Fluffy has 5, and Fancy Pants has 9, so Fancy Pants has more.” Because
systematic errors are fundamentally different from random mistakes, designers and
educators must examine not only accuracy but also attempt to discover why the child
was incorrect.

To create useful software, designers need to draw upon cognitive research to
develop clear answers to the following three questions related to errors and miscon-
ceptions:
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1. What are the possible bugs and other misconceptions underlying mistakes?
2. How do we assess the bugs, misconceptions and other sources of errors?
3. What can be done to help children eliminate the errors?

Possible Bugs and Their Sources The cognitive psychology literature (Brown
and VanLehn 1982) provides detailed information concerning children’s “buggy”
solutions in arithmetic. For example, given the problem

21
−19

children often get the answer 18, because they always “take away” the smaller num-
ber from the larger. Or given the problem

21
+19

they get the answer 310 because they fail to regroup the ten (or “carry”).
In our own work with MathemAntics, we found many systematic errors and mis-

conceptions when children compare quantities of two sets. Some of these systematic
errors were already described in the literature as far back as Piaget (1952a). Some
children had no difficulty identifying the set with more objects when the spatial
attributes and numerical magnitude were congruent (as when both the length and
number of objects in one row is greater than the length and number of objects in the
other row), but failed to answer correctly when the spatial and numerical properties
of the sets were incongruent (as when the shorter row has more objects than the
longer). These children were inappropriately using a visual comparison strategy.

What are the sources of errors? In many cases it is hard to choose among sev-
eral possibilities. Some of the errors and misconceptions are directly related to the
child’s mathematical understanding. Saxe et al. (2010) found that although the num-
ber line affords representing powerful mathematical ideas, and many children have
used the number line in the classroom, they have misconceptions about its key prin-
ciples. When asked to place various targets on the line (e.g., 9, 12, 13) children
placed the targets in the correct numerical order from left to right, but failed to
space them correctly according to linear units. Our informal pilot work revealed
similar findings. Second-grade children placed all targets (1–9) on an open number
line marked 0–10 equidistant in relation to one endpoint while ignoring the other
endpoint, resulting in a line clustered close to the left endpoint. These children re-
ported that the number lines they constructed were correct, indicating they were
attending to the order of numbers on the number line while ignoring the proportion-
ality. In this case, the misconception stems from lack of understanding of the key
features of the number line. Through a carefully designed tutorial integrating the
number line with additive numerical units, Saxe et al. (2010) were able to mitigate
these misconceptions.

However, other errors may be due to limitations in procedural and utilization
skills, or components of executive functioning such as working memory, inhibition,
task-switching, and updating (Bull and Scerif 2001) rather than a lack of under-
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standing the mathematical concepts. It is important to consider domain general cog-
nitive skills of a child and how these skills contribute to the child’s understanding
(or misunderstanding) of a topic. For example, a child whose comparison judgment
does not match his counting may have forgotten the counting results by the time he
judges which set has more (hence, limitation in working memory). Another expla-
nation is that the child does not know the meaning of all the counting words (hence
has not mastered the counting principles), or the child simply does not understand
the question that has been asked.

To highlight another example, when completing the MathemAntics version of
the number line estimation task, one first-grader worked with a number line marked
from 0–10 on his first few sessions. Once he mastered the 0–10 line, he moved on
to work on a number line marked from 0–100. When presented with 10 as a target
number, he immediately placed it at the right endpoint. While he correctly identified
the right endpoint as being 100 he continued to make a perseveration error: he was
unable to inhibit the response of placing 10 at the right end point. This seems to
indicate difficulty with inhibition and task switching as much as difficulty with the
mathematics itself.

Identifying and Assessing Errors

In developing MathemAntics, we used careful observation to identify the bugs, mis-
conceptions, and other sources of children’s errors. We also conducted informal
“clinical interviews” with the children as they used the software. We asked ques-
tions like, “How did you get that answer?” or “How did you know? Show me.” In a
later section, we expand on the rationale for use of the clinical interview.

We recorded our observations and interviews with Silverback© software (Clear-
left Limited 2010), which keeps a video record of everything the child does on the
computer screen and also makes a video of the child’s face and anything said during
the session. At the end, Silverback© exports a video showing both the child’s work
on the screen as well as her behavior, including her responses to clinical interview
questions. This is an extremely efficient tool for recording, identifying, and later
coding children’s strategies and concepts as they use the software.

Having used observations and the clinical interview to obtain useful information
about children’s thinking, we are able to design “stealth assessment” of the child’s
learning. For example, if we learn that children typically use certain bugs, such
as always subtract the smaller number from the larger, we can have the computer
identify the wrong answers as those likely to have been produced by that bug: thus,
12 − 5 = 13 and 12 − 3 = 11. This method originates in the seminal work of Brown
and Burton (1978).

To investigate whether a child uses area rather than number to compare the quan-
tity of two sets, the software could analyze the child’s answers to the problems in
which area and number magnitudes are congruent and in those that are not con-
gruent. If the child is always correct for the congruent problems, and not correct
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for the incongruent problems, the child is using a visual comparison strategy inap-
propriately. Subsequently, appropriate feedback and scaffolding may be provided to
eliminative such systematic inappropriate strategy use. If we fail to conduct this kind
of analysis, we might incorrectly conclude that the child’s performance is simply a
result of random response.

Helping Children Overcome the Errors Having identified children’s system-
atically incorrect thinking (like buggy strategies), well-designed software needs to
help children to understand the error of their ways (and the ways of their errors). Di-
rect scaffolding is one approach. The software can first identify the child who fails
to choose the hen with more eggs when area and numerical magnitudes are incon-
gruent. Next the software can tell the child that he needs to count each set separately
and then use this information to identify the set with more objects. Scaffolding with
explanation and clarification is an even better approach. For example the software
could arrange the eggs in rows and columns, match the eggs from one hen to the
other, and point to the hen that has more eggs. Then, it could explain that greater
area does not necessarily mean the higher number, and to know which hen has more,
counting is a better strategy.

In some other scenarios, there is even a better approach, one that involves active
participation of the child. The boy who failed to inhibit the response to place 10 at
the right endpoint of a hundreds number line inspired the design of a “count by 10s”
scaffold. The MathemAntics software can identify a child who is making this type of
perseveration error (e.g. placing 2 in the place of 20), show him a number line with
the decades marked, and then instruct him to count by 10s, as each decade number
highlights along with an audio that speaks the decades name.

The simple theory underlying our approach is that you need to understand chil-
dren’s errors before you can help children to overcome them. And if the software
can identify the thinking underlying the errors, then we can program the software to
help the child construct a better understanding that will in turn eliminate the errors.

Conclusion Cognitive psychology can provide detailed information concerning
children’s systematic errors (or “bugs”) in arithmetic. Guided by the cognitive prin-
ciple of starting with the child’s current state, designers need to produce software
that can identify the errors and then correct them. Furthermore, designers should
use clinical interviews in usability testing to identify systemic errors connected with
the software itself. The basic principle is to identify, understand, and respond to the
systemic ways in which users misunderstand the mathematics or the software.

Design Appropriate Physical Interactions

Until now, we have introduced each principle with important lessons from cognitive
psychology and have stressed how to apply them to designing educational software.
In the case of interactions, we must first begin with the possibilities that the technol-
ogy affords. With computer software, a child may click, drag, or use the keyboard
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to interact with the program. As new technologies emerge, especially multi-touch
devices, the ways in which the child can interact with the program evolve as well.
Designers can now deploy a plethora of interface interactions such as touch, drag,
swipe, squish, expand, rotate, blow, tilt, or shake, fling, and flick all of which can
add to the interest, functionality, effectiveness, and creativity of the software.

Decisions about which interface interactions to include in the design are not triv-
ial. Children are physically and cognitively different from adults and these differ-
ences have important implications for software design. Some design decisions are
related to physical usability. Can the young child touch and drag an object on the
screen? Can the child use her fingers to pinch objects so as to reduce their size?
Other design decisions must be based on cognitive psychology. We focus here on
how cognitive psychology can inform the following question regarding interface
interactions: What are the cognitive benefits and limitations of different kinds of
interface interactions, particularly on touch screen devices?

Benefits and Limitations Clearly, new and more complex interface interactions
may help make the software more engaging and motivating, but can children use
and learn from them? Shuler (2009) warns that the limiting physical attributes of
mobile devices (such as restricted text entry and small screen size) as well as the
usability difficulties of poorly designed interface interactions may distract children
from their learning goals. Poorly designed applications fail to consider usability
issues and motor development of children at various ages.

Young children may have physical difficulty with some standard (not touch-
screen) computer interfaces. Using the mouse to click on an icon, drag items on
a screen, rotate, tilt, and draw requires a degree of fine motor development typically
lacking in young children. Hourcade et al. (2004) found that preschool children were
slower and less accurate than older children in using the mouse for point-and-click
tasks, especially when the target size was small. This difficulty can be attributed to
under-development of fine-motor skills and is likely to distract from learning. Fisher
(2012) recommends providing large icons with “large hotspots” around the target,
and avoiding drag-and-drop if possible. Further, in the case of touch-screen design,
she recommends leaving a “safe-zone” around the edges to avoid any accidental
touch when holding the device, and having the software respond to the child’s touch
only when an object is meant to be touched. The object then may make a noise,
change color, wiggle, or make something happen in the activity.

Physical activity is important for designers not only because it can become a
limiting factor for usability but also because it can promote the development of
thinking. In Piaget’s (1952b) view, children’s cognitive development begins with
physical activities like sorting objects, causing things to happen (like making an
object move), comparing objects’ size and weight, and pointing to things during
counting. Gradually these physical activities become internalized as cognition. Now
the child can think about sorting, about causality, and comparisons. Now the child
can do mental counting and addition.

Complex cognitive processes appear to be grounded in the body’s interactions
with the learning environment (Wilson 2002). Multi-touch devices afford gestural
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interactions that build upon children’s natural inclinations. Fingers are a child’s first
tools in learning mathematics. Children use their fingers to represent quantities, they
point to objects to count them, and they use their fingers to add and subtract num-
bers (Butterworth 1999). A substantial body of literature calls attention to the signif-
icance of gesturing in learning and development (Dick et al. 2012; Goldin-Meadow
and Alibali 2013; Ping and Goldin-Meadow 2008), and especially in learning and
explaining mathematics (Cook et al. 2012; Goldin-Meadow et al. 2009). Gestur-
ing might encourage children to extract meaning implicit in their hand movements
(Goldin-Meadow et al. 2009); gesturing might help children to structure abstract
ideas and map them metaphorically onto the visual space, the screen with which
they are working (Kessel and Tversky 2006); gesturing might help children to focus
their attention and embody the relevant information in the task.

Note that gesturing and hand movements matter, but also the form of gesturing is
important in changing thought. In one study, Jamalian and Tversky (2012), showed
that circular gesturing while explaining a cyclic sequence of events (such as the
growth from seed to flower) helps adults to overcome their linear bias and instead to
adopt more complex cyclical thinking. In another study, Segal (2011) investigated
children’s performance in discrete (single-digit addition) and continuous (number
line estimation) mathematics problems while controlling for the type of gesture. In
the continuous mathematics problem condition, 1st and 2nd grade children were
asked to estimate a quantity on a number line shown on a computer interface. In
this condition, children became more accurate when they dragged their finger or
mouse on the number line as opposed to when they simply pointed and clicked on
the number line. The gesture and the nature of the problem are both continuous. On
the other hand, when solving addition problems, children were more accurate and
adopted more advanced strategies when they pointed or clicked on each object to be
counted/added comparing to clicking on a single button representing the total num-
ber of objects to be added. Segal argues that performance improves when the form of
gesture is congruent with the problem-solving thinking process, and worsens when
gesture is incongruent.

The educator’s job is to help the child progress from physical to mental activity.
Work with physical and virtual manipulatives should be designed to promote think-
ing, not merely playing with physical and virtual objects, no matter how attractive
they may be. Engagement with physical and virtual objects is educationally useful
only insofar as it eliminates the need for itself because what was on the “plane of
action” is now transformed in the “plane of thought.”

Given all this, a fundamental cognitive design principle is that the type and na-
ture of gestures and other physical movements on both touch and mouse dominated
screens can have an important influence on children’s strategies and accuracy. This
principle guided our design of the MathemAntics version of the number line activity.
To allow flexible strategy use, we included many ways the child can place targets
on the line. The child may use the mouse to click anywhere on the line, or use
the left and right arrow keys to make small adjustments. Usability and play testing
revealed that some children used the arrow keys to count discrete units from zero
to reach the target number. Such counting strategies are useful, but inefficient and
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time-consuming, especially for larger target numbers (such as 98 on a 1–100 number
line). To discourage the use of this strategy, we revised the activity so that the arrow
keys still make small adjustments, but these adjustments no longer correspond to
correct discrete units. Through feedback, the child will quickly discover that using
the arrow keys to count to the target number will not lead to the correct answer and
will encourage strategies based on approximate reasoning.

When implementing interactions, designers must also consider how the child will
indicate he is ready to submit his answer. Far too many applications allow the child
to succeed “by accident.” For example, one simple enumeration app asks the child
to put out 4 tokens, and the child may begin dragging tokens. But a close look at
the child’s strategy raises the possibility that he may be unsystematically dragging
as many tokens as he can without counting or may be counting incorrectly. Yet once
the child puts out 4 tokens, the trial ends and the child is given positive feedback
about his performance, despite the fact that the child may have been trying to put
out more than 4. This child does not have the option to carry out his plans and thus
is missing an important learning opportunity that might result from his failure. We
considered this issue in the design of MathemAntics and included a way for the child
to indicate he is done working and ready to submit his answer. In our number line
activities, the child has the flexibility of moving the cursor along the number line
until he chooses to press the spacebar, which submits the answer and then results in
the appropriate feedback.

Conclusion Computers allow children to interact with the computer interface in
many different ways, from clicking and dragging to pinching with the fingers. De-
signers need to pay close attention to usability issues resulting from young children’s
limited fine motor skills. But more importantly, cognitive psychology suggests that
children’s gestures and other movements have important influences on what they
learn and how they think, and that computer software needs to engage children in
meaningful gestural interactions that promote deep learning.

Integrate Narratives and Stories with the Mathematical Concepts

Cognitive development in general and development of mathematical concepts in
particular should take place in the context of supporting environments (Gelman et al.
1991). These environments can be social, cultural, natural (Gelman et al. 1991), or
virtual. Gelman and Gallistel (1986) highlight the importance of meaningful context
for measuring and promoting young children’s number competence. Carpenter and
Moser (1984) show that children’s solutions to addition and subtraction problems
reflect the semantic structure of the problem. Carpenter and Moser (1984) report
that different contexts for subtraction word problems such as separating, joining,
part-part-whole, comparison, influence the child’s strategy use and responses. Other
researchers (Barlow and Harmon 2012) point out benefits of problem contexts such
as balancing and jig-saw problems for thinking about equality and the meaning of
the equal sign.
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Well-designed software can make learning meaningful through use of narratives.
Narratives can help children to elaborate their everyday mathematics, for example
by considering the number of monkeys falling off a bed one at a time. Narratives can
help children synthesize concepts from the ordinary world with those in the abstract
world of formal mathematics, for example by mathematizing the unfortunate mon-
keys as a series of subtraction statements. Narratives can give meaning to otherwise
hard-to-comprehend symbols and operations, helping children to appreciate math-
ematics as a problem-solving discipline as opposed to a collection of meaningless
facts and procedures to be memorized. In order to be successful, the goals of the nar-
rative should be congruent with the goals of the mathematics. An effective narrative
will assist the child in focusing attention on the relevant mathematical information,
rather than distracting from it (Lepper and Malone 1987).

Stories, narratives, and fantasy also have the potential to enhance the learning
experience by increasing motivation and engaging the learner (Malone and Lepper
1987). A meaningful narrative may help a child identify with the story and connect
with the characters on an emotional level. Thus, the child’s interest in the activity
grows which in turn may build intrinsic motivation—interest in the activity for its
own sake.

As promising as narratives are for learning, some designers fail to use them ef-
fectively. All too often the narrative is violent frosting on the number fact cake, as
when the child is asked to shoot down correct number facts floating in the mathe-
matical sky. Sometimes developers use a narrative that does not support or interferes
with a meaningful learning process, as in the case of Rocket Math (Russell-Pinson
2012). In this game, students build a rocket and launch their rocket into space for
math-based missions like solving addition or multiplication equations. Students earn
“money” for their successful completed missions and they can use that money to up-
grade and improve their rockets. The game is fun to play for many children, but in
our own testing, we realized that students often spend more time buying boosters,
fins, and decorations for their rocket than solving the math problems. Some children
have even difficulties in building a rocket in the first place to launch into space so
their rockets cannot even fly to solve the missions; for these children, the game-play
gets focused on “how to build a good rocket” rather than learning the math facts.

We propose that it is important to consider the following three questions regard-
ing to stories and contexts when designing learning activities.

1. What are the different contexts in which to situate an abstract concept?
2. What does the context add to the learning experience?
3. How could we integrate stories and the mathematical concept?

We illustrate the role of narratives and context with examples of MathemAntics
activities focused on numerical relations and the equivalence of two sets. By defini-
tion, two sets are numerically equivalent if for every object in one set there is one
and only one object in the other set.

Recognizing numerical equivalence between two sets, despite any visual differ-
ences, is a fundamental numerical competence (Mix 1999) that many adults may
take for granted, but young children find cognitively challenging. Narratives can
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Fig. 13 Bedtime activity

situate this abstract concept in a meaningful context, helping children to better com-
prehend it. Containers, for example, are a natural match for objects. Children could
start thinking about one-to-one correspondence by placing objects in containers and
checking whether all objects have a container to go in to. In MathemAntics, we
have chicks and beds, birds and nests, apples and baskets (see Fig. 13). Children are
asked to put each chick in a bed, each bird in a nest, each apple in a basket, and
check whether there are the same in number.

Feeding animals is another natural context in which the concept of numerical
equivalence could be situated. Children are asked to pick as many apples as there
are goats to feed, and ring the bell when they are done. After ringing the bell, apples
get distributed among the goats and the child can check if he picked more, fewer, or
just the same number of apples as there are goats (see Fig. 14).

In another activity we use the social schema of “ownership” and “having” to
situate the concept of equivalence. Remember Fluffy and Fancy Pants? In earlier
levels of the activity we ask children to judge whether the two hens have the same
number of eggs. In more advanced levels of the activity, children are asked to make
Fluffy and Fancy Pants have the same number of eggs, or make one of them have
more or fewer eggs than the other. Children can touch the chicken’s belly to lay an
egg or touch an egg to hatch it.

“Friendship” in the sense of pairing is another everyday social schema that can
bring up the idea of equivalence. In the Matcher activity children are in charge of
finding friends for the chicks who are new to the farm (see Fig. 15). The child is
asked to open the corral that has the same number of animals inside it as there are
chicks so that each chick will have a friend. If the child opens the horses’ corral, they
come out, pair up with the chicks and dance in pairs. If the child opens the goats’
corral, they come out, pair up with chicks, and the two extra goats weep complaining
that they do not have any friends.
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Fig. 14 Feeding Animals activity

Fig. 15 Match Friends
activity

In more advanced activities we ask the child to directly compare the number of
objects in two sets. Children are asked whether there is the same number of yellow
fish as green fish, to pop the bubble that has more fish in it, or pop the bubble with
fewer fish. (See Fig. 16. Note that the green swordfish pops the bubble.)



110 H.P. Ginsburg et al.

Fig. 16 Fish in the pond
narrative in the Pop the
Bubble activity

In all these activities, we introduce formal mathematical language such as
“same”, “more”, “fewer”, “most”, “fewest”, “greater”, “less”, verbal and written
number words, mathematical symbols such as “> = �= <”, and number sentences.
The formal mathematics is thus integrated into the overall narrative as part of in-
struction, feedback, scaffolding, or response mechanism.

Elements of narratives other than the content may also enhance the learning ex-
perience. For example, pedagogical agents could be characters in the story and play
a central role in the learning process. In MathemAntics, we have a farmer who asks
children to feed animals in the farm, count number of chicks in the barn, play with
the fish in the pond, make the hens lay equal numbers of eggs, or estimate the amount
of dough required for making cookies. The farmer provides feedback and scaffold-
ing and rewards children with tools such as the “line-up” tool, or the “pair-up” tool,
which children can use to solve more challenging problems.

Conclusion For learning to be effective, it may benefit from being situated in a
meaningful context that gives it a purpose. Stories can promote and motivate math-
ematics learning. Unfortunately, some software employs narratives that are essen-
tially irrelevant to the mathematics and also entail unnecessary violence, like shoot-
ing down rockets. But narratives and characters can promote meaningful mathemat-
ics learning if they are congruent with the mathematical ideas to be learned.

Evaluations and Assessments

Cognitive principles can guide evaluation and usability testing of software designs,
and can also provide useful approaches to formative and summative assessment and
to the evaluation of achievement and software effectiveness.
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Cognitive Evaluation and Usability Testing of Software

At the beginning, designers should determine whether the software under develop-
ment is congruent with the cognitive design principles described above. For exam-
ple, does the software deal with the appropriate cognitive content? Does it promote
thinking as well as procedure and memorized facts? Does it employ powerful visual
models? Does it offer powerful tools? Does it identify bugs and misconceptions
underlying errors? We propose that designers not conversant with the cognitive psy-
chology of children’s thinking and learning cannot create educationally effective
software. The lack of this knowledge is one reason why many apps and software
programs are of poor quality. What to do? One solution is to collaborate with psy-
chologists. Every design company should hire at least one person knowledgeable in
cognitive psychology!

Even if the software seems to pass the cognitive psychology design test, design-
ers should conduct usability testing to see whether the software “works” in sev-
eral senses. Designers want to determine whether the software contains any bugs,
whether the children understand the function of a particular feature (like an icon
that must be pressed to submit an answer), whether children can navigate through
the material effectively (first use this icon and then use that), and whether they mis-
interpret the purpose of the activity. All good designers are well aware of the need
for early and fast usability testing. The common practice is to closely observe the
user interact with the software; users may ask questions and are encouraged to ex-
press their difficulties, feelings, or comments; however, designers are encouraged
not to interfere with the experience and not to answer any of those questions. The
goal is to investigate whether the user interacts with the software as predicted, if
the user enjoys the interaction, and whether there are any usability or navigation
problems.

Although observational usability testing can yield important information, we
propose that observation is not sufficient and must be supplemented by intensive
questioning—a “clinical interview usability method” that in turn leads to methods
for helping children to understand the task and to perform more effectively.

The clinical interview method, originally developed by Piaget (1976), involves a
flexible questioning of the subject, child or adult (Ginsburg 1997). The interviewer
attempts to identify the thinking underlying the subject’s overt behavior by asking
relevant questions, modifying them, and following up with probing questions such
as: “Why did you do that?,” “How did you know?,” and “How did you figure it out?”
These kinds of questions need to be guided by as much knowledge of children’s
thinking as possible. For example, the interviewer who has extensive knowledge of
the bugs that typically infest children’s calculation methods is more likely to ask
penetrating questions than the interviewer ignorant of them. In general, the more
you already know about children’s thinking (or almost anything else) the more can
you learn about it. But you have to start somewhere, and the question “How did you
do it?” is a good first step.

The challenge for designers becomes how to embed clinical interview methods
into the usability testing of the software. Again, the main solution is to collaborate
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with cognitive psychologists. Every design company should hire at least one per-
son knowledgeable in the clinical interview (as well as in cognitive psychology as
described above—ideally the same person).

Formative and Summative Assessments

As we showed earlier, the computer software can be used to conduct “stealth assess-
ment” of the child’s learning. For example, if we learn from cognitive psychology
or pilot work that children consistently believe that physically larger sets are more
numerous than smaller ones (for example, 3 elephants are “more” than 5 ants), we
can program the computer to identify these “size bugs” by tracking wrong answers
in response to similar problems contrasting size and number. The software can also
identify such important behaviors as accuracy; latency in response to different types
of problems (some of which benefit from speed, like retrieval of number facts) and
some of which, by contrast, require careful contemplation (as in the case of word
problems); and the frequency of certain kinds of choices (as when the child is given
the opportunity to employ different tools and strategies).

Stealth assessment can provide teachers with valuable “formative assessment”
reports on individual students or the whole class, as well as suggestions of activities
that might benefit individual students or even the whole class. For example, if a
student can accurately retrieve “number facts” (like 2 + 3) but has no strategies
to figure out facts that have not been memorized, the computer can offer activities
designed to promote use of strategies. By contrast, the student who possesses good
strategies for figuring out number facts but cannot recall them quickly and accurately
may benefit from drill. The suggestions need not be limited to computer activities,
but could also involve textbook lessons, work with physical manipulatives, or even
a mandate to avoid spending too much time working with computers and instead to
go out and play in the non-virtual world of sun and fresh air.

Stealth assessment can also be extremely valuable for “summative” data by track-
ing progress during the school year and providing pre- and post-test indicators of
student achievement. Unlike most conventional achievement tests, stealth assess-
ments also have the ability to describe the trajectory of the individual child’s (and
the class of children’s) learning. The assessments can depict the evolution of accu-
racy, concepts, and strategies, and even engagement and interest (Rodrigo and Baker
2011). Moreover, these portraits are based on many data points—literally thousands
for children using the computer on a daily basis. The volume of data can overcome
the inevitable noise produced by children’s fluctuating attention and other sources
of error variance. Moreover, the assessments draw upon problems of obvious ed-
ucational relevance and thus have good “face validity.” Conventional achievement
tests may correlate highly with other conventional achievement tests, but this may
be merely an artificial dance in which the blind lead the blind. What could be more
“valid” than reports using very large amounts of data to depict the development of
children’s performance, strategies and concepts?
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Finally, summative assessments of this type can serve as the foundation for evalu-
ating particular software programs or apps. The summative data can be used to com-
pare the overall effectiveness of different software programs, but more importantly
can be used to compare the effectiveness of particular activities within a software
program. For example, one activity within a comprehensive computer program may
be successful at teaching concepts but not so effective at promoting recall, whereas
an activity within another program may promote recall but not concepts. Assess-
ments of this type can help a school district evaluate educational software in a more
nuanced manner than can a conventional evaluation providing pre- and post-tests of
dubious validity. And they can help designers improve specific activities within a
software package.

Conclusion Cognitive principles can provide a preliminary basis for evaluating
software. They can reveal whether the software as constituted seems to focus on
important aspects of learning and use sound pedagogy. The cognitive principles and
the method of clinical interview can also guide usability research. Sound software
based on these principles can provide teachers with formative assessments of stu-
dent performance, learning and thinking, and suggest approaches to instruction. The
software’s summative assessments can serve as valid indicators of student achieve-
ment, and might even eliminate the need for traditional evaluation measures or at
least assign them a secondary role.

From Software to Research

We have shown that cognitive psychology can and should guide software design,
evaluation and assessment. Here we argue that high-quality software offers new
ways to conduct cognitive research and a powerful lens for examining the child’s
mind.

Most research studies on the development of mathematical thinking use a cross-
sectional approach to investigate children’s current cognitive status at several age
levels. The outcomes of this kind of research have been enormously useful for both
psychology and education, and have indeed revolutionized our views of children’s
mathematical development. We know a good deal, for example, about young chil-
dren’s everyday addition and how it influences the understanding of the symbolic
addition taught in school. The research is not only of theoretical interest but can be
used to guide teaching and assessment.

At the same time, this important research is limited in a key respect. Vygotsky
(1978) makes a distinction between the “actual developmental level” (p. 85), which
is the child’s current state, vs. the level of “potential development as determined
through problem solving under adult guidance or in collaboration with more capa-
ble peers” (p. 86). The essence of the distinction is the idea that the child’s current
performance may not indicate underlying competence and potential for learning.
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Vygotsky stresses the importance of examining the “. . .dynamic mental state, al-
lowing not only for what has been achieved developmentally but also for what is in
the course of maturing” (p. 87).

We think it is fair to say that most research studies on cognition generally, and
on the trajectories of mathematical development in particular, do not follow Vygot-
sky’s advice. Instead the research often uses cross-sectional studies to investigate
children’s current cognitive status at several age levels. Because this enormously
valuable research largely does not deal with children’s “dynamic mental state,” we
need to take the idea of “developmental trajectories” with a dash of Vygotskian salt.
It is possible that current views of developmental trajectories underestimate what
children can do and learn.

One way to investigate this issue is by closely examining children’s mathemati-
cal thinking in the context of stimulating software such as MathemAntics. As noted
earlier, Papert (1980) made the argument that children’s mathematical thinking may
look very different in rich “microworlds”—artificially designed “mathemagenic”
environments—than it would in the context of the not-very-dynamic school or
home. This argument is especially important in the case of disadvantaged children
and those with disabilities. Our own preliminary observations suggest that low-SES
children may perform much better than expected when engaged in MathemAntics
software. And some early research on LOGO suggests that mathemagenic computer
environments enable severely disabled individuals to perform at unexpected levels
(Weir et al. 1982).

Not only does the mathemagenic environment provide the context for dynamic
learning, but the software also supplies the means for studying it. MathemAntics in-
cludes a control panel, hidden from the child, that allows the adult to vary key prob-
lem features, like the number, size and shape of virtual objects, the availability of
tools, and the nature and timing of feedback. Other software (unless it is extremely
simple and rigid) must have controls like these as well, even if they are hidden from
the user and anyone else. The control panel is an experimenter’s delight. It allows
for easy manipulation of all or any of the available variables. In effect, the panel
provides the opportunity for factorial designs. (We plan to make our MathemAn-
tics software and panel available to researchers willing to share data with us.) And
because children do the activities repeatedly, over time, the software provides the
opportunity for microgenetic research—the investigation of learning over a not too
brief time period of say a few weeks or months. Of course, if children are engaged
in the various activities over a period of years, the opportunities for longitudinal
research are evident.

Further, as we have seen, the software can help to measure children’s perfor-
mance, accuracy, latencies, and even the kinds of strategies they employ. This stealth
assessment can be useful for the researcher, as well as the teacher. But in either
event, the development of stealth assessment requires considerable pilot research.
Some may require close observation of children working with the software, as we
described earlier. Of course, stealth assessment may not produce a complete picture,
and therefore may need to be supplemented by other kinds of measures (like coding
video segments of children as they work with computers). But the software does
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make possible computer generated descriptive reports, like frequencies of strategy
use, or the conditional probability of strategy use given certain conditions. For ex-
ample, does the child use the counting on strategy for addition on the problems for
which it is most appropriate? The reports can be imported into a statistical program
so as to permit instant analysis of very large amounts of data. In principle, the soft-
ware could easily generate reports and analyses of thousands (why not millions?) of
children working with the software.

Conclusion The development of exciting, meaningful and motivating software
provides researchers with the opportunity to study children’s learning in a con-
text that may elicit from them more advanced performance and thinking than they
display in standard experimental tasks. The software may reveal surprising devia-
tions from known developmental trajectories, especially in disadvantaged and hand-
icapped children. In any event, the software makes it feasible to conduct microge-
netic and longitudinal studies, to gather data on very large numbers of children, and
conduct stealth assessments that reveal much more than accuracy. These possibili-
ties may in turn require the development of new statistical approaches to apply to
massive microgenetic research studies.

Final Remarks

We have argued that cognitive principles can and should shape the development of
software, which in turn can improve learning, teaching and testing. We used exam-
ples from MathemAntics to show that such software is not a figment of our imag-
ination. But examples—even though providing a kind of existence theorem—are
insufficient in the absence of solid data. Skepticism is appropriate because many
educational innovations fail, and computers are no exception to the rule.

But suspend disbelief and suppose that we can create an effective and compre-
hensive system of early mathematics software guided by cognitive principles. The
possibilities for transforming education are enormous.

The software will enable children, especially the disadvantaged, to reach higher
levels of mathematics achievement than they do now. They will learn both concepts
and skills; they will think as well as remember; and they will use sensible strate-
gies as well as apply standard algorithms. And they will enjoy learning meaningful
mathematics.

The software will enable children to explore and learn on their own and at their
own pace. This can be a lifeline for students with weak teachers—who are unfor-
tunately more numerous than we would like. The software will also help children
work with each other on common problems, engage in productive argument, and
share solutions.

Children will not make a strong distinction between literature and mathematics.
They will read and engage with mathematical stories and enjoy both the mathemat-
ics and the stories.
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Comprehensive mathematics education software will supplement, eliminate, or
transform traditional textbooks. Static two-dimensional representations on paper are
clearly ineffective for portraying many kinds of transformations (like subtraction)
and other mathematical processes (like splitting a segment on a number line into a
thousand pieces) and for providing opportunities for interactive learning. At the very
least, comprehensive mathematics software can supplement traditional textbooks.
But two other possibilities are more attractive. One is replacing textbooks entirely,
especially for young children who cannot read well. Older children might be better
served by a hybrid textbook/software system that preserves the written word but also
offers interactive software. In other words, textbooks can take the form of e-books
that embed the mathematics software in a coherent manner.

As children in the class work on computers, the teacher can attend to the needs
of individual children more frequently and effectively than is possible in a large
classroom without computers.

The software-based formative assessments will help teachers learn to understand
children as individuals and will guide teaching. The assessments can be seen as
a kind of professional development for teachers who know little about underlying
principles of student learning and thinking and who do not know how to conduct
effective assessments of individual students.

The assessments can change the practice of evaluation. Because it provides so
much rich data, stealth assessment should largely replace other assessment and test-
ing procedures. What could be more ecologically valid and useful than detailed
portraits of children’s learning over the course of a year or longer?

Software can set the stage for a different kind of basic research that exam-
ines children’s learning and thinking in rich and adaptive educational environments
over long periods of time. The number of children and number of “trials” will be
enormous—for example, hundreds or even thousands of children working with com-
puters all year long and providing many thousands of data points. In this kind of
adaptive learning environment, no two children may have exactly the same learning
experiences or the same number of them. To deal with these complexities, use of
novel statistical methods will be essential. Analyses created for basic factorial de-
signs will not be helpful. Use of effect size to determine the significance of mean
differences in achievement will become obsolete.

And finally we observe that apps can introduce a large amount of whimsical fun
(think Fluffy and Fancy Pants) into children’s mathematics learning. This is not
trivial: the antic (as in MathemAntics) is intended not only to amuse but to show that
thinking needs to be liberated from dull convention.
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Rethinking Early Mathematics: What Is
Research-Based Curriculum for Young
Children?

Douglas H. Clements and Julie Sarama

How many times have you heard, “Our mathematics curriculum is based on re-
search”? Have all these curricula (including early childhood education programs,
educational software, teaching strategies, etc.) been similar? Have they all been ef-
fective? Many who publish a curriculum, or write or speak about a teaching ap-
proach, claim their approach is based on research, even though they vary widely
(Battista and Clements 2000; Clements 2007; Senk and Thompson 2003). Such
claims are often vacuous, including general statements about what “the research
says.” Unfortunately, such overuse of the phrase “research-based” undermines at-
tempts to create a shared research foundation for the development of, and informed
choices about, classroom curricula (National Research Council 2002, 2004).

We believe that researchers and practitioners can work together to ameliorate this
situation and develop, evaluate, and use valid research-based approaches. To sup-
port such collaborative activity, we have developed two major conceptual tools. The
first is a set of learning trajectories that describe how children learn major topics
in mathematics and how teachers can support that learning. Based upon studies in
fields ranging from cognitive and developmental psychology to early childhood and
mathematics education, these guide the creation of standards, curricula, and teach-
ing strategies. They also are at the core of the second conceptual tool, a framework
for developing curricula and teaching strategies. This framework describes criteria
and procedures for creating scientifically-based curricula.

Learning Trajectories

Research-based learning trajectories are tools educators can use to improve mathe-
matics learning and teaching (Simon 1995). Our learning trajectories are based on
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evidence that children generally follow natural paths—sequences of increasingly
sophisticated levels of thinking—as they learn mathematics topics (Clements and
Sarama 2009; Sarama and Clements 2009b). These sequences can be described as
developmental progressions. When teachers understand these developmental pro-
gressions, and use them in selecting and sequencing instructional activities, they
can build more effective mathematics learning environments.

A complete learning trajectory has three parts: a goal, a developmental pro-
gression, and instructional activities. To attain a certain mathematical competence
within a given domain (the goal), children typically learn each successive level of
thinking (the developmental progression), aided by activities (instructional tasks)
designed to build the mental actions-on-objects that enable thinking at each higher
level (Clements and Sarama 2004b).

Early Addition and Subtraction: An Example

The main goal of the counting-based addition and subtraction learning trajectory is
that children learn to solve different types of arithmetic problems (Carpenter et al.
1988) and develop accuracy and eventually fluency with arithmetic combinations.
The second component of the learning trajectory is the developmental progression,
which describes a typical counting-based trajectory children follow in developing
understanding and skill in arithmetic. The left column in Fig. 1 describes several
levels of thinking in the learning trajectory and provides examples of children’s be-
havior for each level. The right column provides examples of instructional tasks,
matched to each of the levels of thinking in the developmental progression. These
tasks are designed to help children learn the ideas and skills needed to achieve
that level of thinking. However, instructional tasks are always examples—many
tasks and approaches to teaching are possible. Therefore, curriculum developers
and teachers should translate developmental progressions and instructional tasks for
specific cultural, school, and individual contexts. That is, to re-think mathematics
education, we must also re-consider the cultural and sociopolitical contexts children
experience (Wager and Carpenter 2012, discuss these issues at length). Thus, there
is no single or “ideal” developmental progression, and thus learning trajectory. The
following presents just one example.

Summarizing, learning trajectories describe the goals of learning, the devel-
opmental progression through which children pass, and the learning activities in
which children might profitably engage. They are based on research first because
the sources of the developmental progressions are extensive research reviews and
empirical work (Sarama and Clements in press). They are also research-based be-
cause whenever possible, the instructional tasks are guided by this same empirical
work and by classroom-based research and the wisdom of expert teacher practice.
Although it is beyond the scope of this chapter to present this body of research (see
Sarama and Clements 2009b), along with the complex, cognitive actions-on-objects
that underlie all the example behaviors in Fig. 1, we will provide one illustration of
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Goal: Children solve different types of arithmetic problems and develop
accurate and eventually fluent competencies with arithmetic combinations

Developmental Progression
(including Example
Behaviors for each Level of
Thinking)

Instructional Tasks

Nonverbal +/− “Blocks in the Box”: Children play
a game in which, for example,
2 blocks then 1 block go into a box,
and try to “guess” how many are in
the box. The cover is taken off and
the blocks counted to check.

Adds and subtracts very small
collections nonverbally.

Shown 1 object then 1 object
going under a cover, identifies
or makes a set of 2 objects to
“match.”

Small Number +/−
Finds sums for joining
problems up to 3 + 2 by
counting-all with objects.

Asked, “You have 2 balls and
get 1 more. How many in all?”
counts out 2, then counts out 1
more, then counts the total.

“Word Problems (Join result unknown or
separate, result unknown (take-away) problems,
numbers < 5)”:

“You have 2 balls and get 1 more. How many in
all?”

“Finger Word Problems”: Tell children to solve
simple addition problems with their fingers. Use
very small numbers. Children should place their
hands in their laps between each problem.

To solve the problems above, guide children in
showing 3 fingers on one hand and 2 fingers on the
other and reiterate: How many is that altogether?
Ask children how they got their answer and repeat
with other problems.

Fig. 1 Samples from the Learning Trajectory for Counting-based Arithmetic (addition and sub-
traction, adapted from Clements and Sarama 2009, 2012; Sarama and Clements 2009b)∗

both the cognitive actions-on-objects that underlie the levels of thinking and how
different trajectories grow not in isolation, but interactively.

Consider learning a critical competence for early arithmetic—counting on, used
especially at the Counting Strategies level in Fig. 1. Children need to develop com-
petencies from three learning trajectories to learn to count on meaningfully. Two
provide support: (1) counting (Fuson 1988) and (2) subitizing, the quick recogni-
tion of the number in small sets without counting (e.g., Antell and Keating 1983;
Kobayashi et al. 2004). (These two learning trajectories are described in Clements
and Sarama 2009; Sarama and Clements 2009b.) The third, of course, is the arith-
metic learning trajectory from Fig. 1.
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Find Result +/−
Finds sums for joining (you had
3 apples and get 3 more, how
many do you have in all?) and
part-part-whole (there are 6
girls and 5 boys on the
playground, how many children
were there in all?) problems by
direct modeling, counting-all,
with objects.
Solves take-away problems by
separating with objects.

Asked, “You have 2 red balls
and 3 blue balls. How many
in all?” counts out 2 red, then
counts out 3 blue, then counts
all the balls.
Asked, “You have 5 balls and
give 2 to Tom. How many do
you have left?” counts out 5
balls, then takes away 2, and
then counts remaining 3.

“Word Problems”: Children solving all the above
problems types using manipulatives or their
fingers to represent objects.
For Separate, result unknown (take-away),

“You have 5 balls and give 2 to Tom. How many do
you have left?” Children might counts out 5 balls,
then takes away 2, and then counts remaining 3.

For Part-part-whole, whole unknown problems,
they might solve

“You have 2 red balls and 3 blue balls. How many
in all?”

“Places Scenes (Addition—Part-part-whole,
whole unknown problems)”: Children play with a
toy on a background scene and combine groups.
For example, they might place 4 tyrannosaurus
rexes and 5 apatosauruses on the paper and then
count all 9 to see how many dinosaurs they have
in all.

Fig. 1 (Continued)

From the counting learning trajectory, children learn to count forward starting
with any number. Then, they learn to understand explicitly and apply the idea that
each number in the counting sequence includes the number before, hierarchically.
That is, 5 includes 4, which includes 3, and so forth. For example, 3-year-old Abby
could count up past 20, but always had to start at one. Asked to start at four, she
hesitated, then said, “One, two three four, five. . . .” Her teacher played informal
games with her such as placing a couple of blocks in a box, asking, “How many
are in the box now?”, adding one, and repeating the question. She also had Abby
work on the computer activities in Fig. 2a. In Build Stairs 2, children slowly count,
clicking on the next number. In the next level, they have to see that 4 comes after 3.
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Counting Strategies +/−
Finds sums for joining (you had
8 apples and get 3 more. . .) and
part-part-whole (6 girls and 5
boys. . .) problems with finger
patterns and/or by counting on.

Counting-on. “How much is 4
and 3 more?” “Four. . . five,
six, seven [uses rhythmic or
finger pattern to keep track].
Seven!”
Counting-up-to May solve
missing addend (3 + _ = 7)
or compare problems by
counting up; e.g., counts “4, 5,
6, 7” while putting up fingers;
and then counts or recognizes
the 4 fingers raised.
Asked, “You have 6 balls. How
many more would you need
to have 8?” says, “Six, seven
[puts up first finger], eight
[puts up second finger]. Two!”

“How Many Now?”: Have the children count
objects as you place them in a box. Ask, “How
many are in the box now?” Add one, repeating
the question, then check the children’s responses
by counting all the objects. Repeat, checking
occasionally. When children are ready,
sometimes add two, and eventually more, objects.

Variations: Place coins in a coffee can. Declare that
a given number of objects are in the can. Then have
the children close their eyes and count on by listen-
ing as additional objects are dropped in.

“Double Compare.” Students compare sums of
cards to determine which sum is greater.
Encourage children to use more sophisticated
strategies, such as counting on.

“Easy as Pie”: Students add two numerals to find
a total number (sums of one through ten), and
then move forward a corresponding number of
spaces on a game board. The game encourages
children to count on from the larger number (e.g.,
to add 3 + 4, they would count “four . . .5,6,7!”)

Fig. 1 (Continued)
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Deriver +/−
Uses flexible strategies and
derived combinations (e.g.,
“7 + 7 is 14, so 7 + 8 is 15) to
solve all types of problems.
Includes
Break-Apart-to-Make-Ten
(BAMT). Can simultaneously
think of 3 numbers within a
sum, and can move part of a
number to another, aware of the
increase in one and the
decrease in another.

Asked, “What’s 7 plus 8?”
thinks: 7 + 8 —> 7 + [7 + 1]
—> [7+7]+1 = 14+1 = 15.
Or, using BAMT, thinks, 8 +
2 = 10, so separate 7 into 2
and 5, add 2 and 8 to make 10,
then add 5 more, 15.

(The BAMT strategy is taught here.)
“Tic-Tac-Total”: Draw a tic-tac-toe board and
write the numbers 1 to 10. Players take turns
crossing out one of the numbers and writing it in
the board. Whoever makes 15 first wins.
“21”: Play cards, where Ace is worth either 1 or
11 and 2 to 10 are worth their values.

Dealer gives everyone 2 cards, including herself.
On each round, each player, if sum is less than 21,
can request another card, or “hold.”
If any new card makes the sum more than 21, the
player is out.
Continue until everyone “holds.”
The player whose sum is closest to 21 wins.

Problem Solver +/−
Solves all types of problems,
with flexible strategies and
known combinations.

“Word Problems (all types of problem structures
for single-digit problems)”

∗ Note that these counting-based strategies are only one of the paths to arithmetic
(see Chap. 6 in each of two companion books, Clements and Sarama 2009; Sarama
and Clements 2009b)

Fig. 1 (Continued)

Both activities benefit from computer technology. Young children find computer
interactions motivating, especially in narrative contexts in which they help animals
(Sarama and Clements 2002). The computer manipulatives are just as easy for them
to use, and often provide better supports for learning (Sarama and Clements 2009a).
Finally, children receive immediate, patient feedback on their actions (Clements and
Sarama 2002). After these experiences, Abby could start at any number up to 10 and
count forward or backward.

From the subitizing learning trajectory, children learn to quickly recognize the
number in visual sets, such as a triangle pattern of blocks or a spatial pattern of three
fingers. Importantly, they also learn rhythmic patterns. For example, they learn the
rhythm of three (“Doo—Day—Doo” or hearing three taps, etc.). In the same time
period as she learned the counting skills, Abby engaged in a series of activities that
developed her ability to subitize small numbers. Figure 2b illustrates the type of
activity that helped Abby become fluent in this ability. The activity “Snapshots”
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a. Counting from any number b. Subitizing
“Build Stairs 2”: Students identify the
appropriate stacks of unit cubes to fill
in a series of staircase steps.

“Build Stairs 3”: Students identify the
numeral that represents a missing
number in a sequence.

In “Snapshots”: (b-1) Children are
shown an arrangement of dots for 2
seconds. (b-2) They are then asked to
click on the corresponding numeral.
They can “peek” for 2 more seconds if
necessary. (b-3) They are given feedback
verbally and by seeing the dots again.
b-1

b-2

b-3

Fig. 2 Teaching the levels of thinking from different learning trajectories that help children learn
to count on
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c. The main addition and subtraction
learning trajectory
(c-1) “Pizza Pazzazz 4”: Students add
and subtract numbers up to totals of 3,
(with objects shown, but then hidden)
matching target amounts.

(c-2) “Dinosaur Shop 3”: Customers at
the shop asks students to combine their
two orders and add the contents of two
boxes of toy dinosaurs (number
frames) and click a target numeral that
represents the sum.

(c-3) “Bright Idea”: Students are given a
numeral and a frame with dots. They
count on from this numeral to identify
the total amount, and then move forward
a corresponding number of spaces on a
game board.

Fig. 2 (Continued)

from Building Blocks (Clements and Sarama 2007a) moves along a learning tra-
jectory from the smallest numbers (1–2) to slightly larger sets (3–5) and also from
matching exact dot arrangements to different dot arrangements to matching dots to
numerals, as shown in Fig. 2b. Children can ask for a “Peek” to see the set again
before giving their response (but only once more).

From the addition and subtraction learning trajectory, children learn to interpret
additive situations mathematically, such as interpreting a real-world problem as a
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“part-part-whole” situation. Examining a small part of the developmental progres-
sion, at the earliest level of thinking (see Nonverbal +/− in Fig. 1), children use
initial bootstrapping abilities (inchoate premathematical and general cognitive com-
petencies and predispositions at birth or soon thereafter) and intuitive competencies
based on mental images of very small sets. Children later learn to use counting to
determine the number in each part and in the whole, originally needing to directly
model the situation, using one object for each element in the problem and counting
each part and the whole starting from “one” each time (see the subsequent two lev-
els, Small Number +/− and Find Result +/−). Abby had quickly worked through
the Nonverbal +/− level activity, “Pizza Pazzazz 4” (Fig. 2-c-1) up to the Find Re-
sult +/− activity “Dinosaur Shop 3.” Generally, she counted all objects. That is,
she counted out 5 green toy dinosaurs, then 3 red dinosaurs, then counted them all,
starting at 1, clicking on the “8,” thereby showing she understood the task.

Next, through the constructive synthesis of the levels of thinking from these
three learning trajectories, counting, subitizing, and addition and subtraction, chil-
dren learn to solve problems such as, “You have three blue blocks and seven red
blocks. How many blocks do you have in all?” by modeling the problem situation
and counting on Carpenter and Moser (1984). They understand that these numbers
are two parts and that they need to find the whole. They also understand that the
order of numbers does not matter in addition. They know, in practice, that the sum
is the number that results by starting at the first number and counting on a number of
iterations equal to the second number. They can use counting to solve this, starting
by saying “seven. . .” because they understand that word can stand for the counting
acts from 1 to 7 (because 7 includes 6, and 6 includes 5. . .). The elongated pronun-
ciation may be substituting for counting the initial set one-by-one. It is as if they
counted a set of 7 items. Finally, they know how many more to count because they
use the subitized rhythm of three, so they then say, “eight, nine, ten!”

To develop this level of thinking, Abby engaged in many activities. Illustrated in
Fig. 2-c-3, “Bright Idea” is a game in which, for the first time in a series of similar
board games, not all quantities were represented by sets of dots. Instead, one of the
addends is represented by a numeral (and a large single-digit at that), which research
(Siegler and Jenkins 1989) shows encouraged Abby to count on: “9, 10, 11, 12, 13!”

Abby learned more quickly than most, but the Building Blocks Software’s
(Clements and Sarama 2007a) automatic movement along the learning trajectory
supported her learning and illustrates the great potential children have to learn math-
ematics. By four years of age, Abby was given five train engines. She walked in one
day with three of them. Her father said, “Where’s the other ones?” “I lost them,”
she admitted. “How many are missing?” he asked. “I have 1, 2, 3. So [pointing in
the air] four, five. . .two are missing, four and five. [pause] No! I want these to be
[pointing at the three engines] one, three, and five. So, two and four are missing.
Still two missing, but they’re numbers two and four.” Abby thought about counting
and numbers—at least small numbers—abstractly. She could assign 1, 2, and 3 to
the three engines, or 1, 3, and 5! Moreover, she could count the numbers. That is,
she applied counting. . . to counting numbers.
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Reflection: How Learning Trajectories Require Rethinking Early
Mathematics

Developing and implementing learning trajectories such as these has several im-
plications for reconceptualizing early childhood mathematics education, some of
which may be more apparent than others. We mention just a few.1

• Rethinking goals. Counting and arithmetic are standard curriculum content. How-
ever, subitizing has too often been ignored. Although it is the first-developing
numerical competence (e.g., Antell and Keating 1983), the lack of attention to
it may result in children regressing in their subitizing skills (Wright 1994). Not
only is it a valuable competence itself, but also the brief discussion of arithmetic
showed how it supports later learning of other topics. As a second example, goals
for children have often been thought of mostly as procedural skills. The levels of
thinking presented within learning trajectories combine conceptual knowledge,
skills, and problem-solving competencies.

• Rethinking curricular sequences. A typical traditional sequence of instruction is
teaching counting in kindergarten and then introducing addition and subtraction
the next year (first grade or Year 1). In contrast, research underlying the learning
trajectories indicates that counting and arithmetic begin in the first years of life
(e.g., Kobayashi et al. 2004; Wynn 1992), and develop in parallel, gradually be-
coming increasingly intertwined and connected (e.g., Baroody 2004; Fuson 1988,
2004).

• Rethinking goals for specific age children. Children may benefit from working
on topics previously thought too difficult for their age (National Research Coun-
cil 2009). Examples include the incorporation of much larger numbers, activities
involving challenging reasoning, and rich geometry (e.g., symmetry, composi-
tion, motions, notions to which we return) (Carpenter et al. 1988; Clements and
Sarama 2009; Sarama and Clements 2009b; Zvonkin 2010). Although Abby was
an exceptional learner, her thinking makes it clear that mathematical goals need
to be reconsidered, as they often underestimate what young children can learn.

• Rethinking curriculum and teaching strategies. Recognition of the sequence of
levels of thinking (as opposed to simple accumulation of facts and skills) implies
a different view of curriculum and teaching (Fuson et al. 2000). Further, available
research can sometimes give quite specific guidance on teaching strategies.

Let’s examine two examples of such specific guidance for early arithmetic, ad-
dressing two critical points in the learning trajectory, learning to count on and learn-
ing arithmetic combinations. Regarding the former, most children can invent count-
ing on in environments in which children’s inventions and discussions of strategies

1These are not limited to recent work on learning trajectories, of course. They have been raised by
other projects, such as cognitively-guided instruction (Carpenter and Franke 2004) on which our
notion of learning trajectories are based (for a discussion of these roots, see Sarama and Clements
in press).
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are encouraged. However, for a variety of reasons, some individuals may have dif-
ficulty learning counting on. The teaching sequence in Fig. 3 has proven effective
(El’konin and Davydov 1975; Fuson 1992). These understandings and skills are
reinforced with additional problems and focused questions.

Besides carefully addressing necessary ideas and subskills, this instructional ac-
tivity is successful because it promotes psychological curtailment (Clements and
Burns 2000; Krutetskii 1976). Curtailment is an encapsulation process in which
one mental activity gradually “stands in for” another mental activity. Children must
learn that it is not necessary to enumerate each element of the first set. The teacher
explains this, then demonstrates by naming the number of that set with an elongated
number word and a sweeping gesture of the hand before passing on to the second
addend. El’konin and Davydov (1975) claim that such abbreviated actions are not
eliminated but are transferred to the position of actions which are considered as if
they were carried out and are thus “implicit.” The sweeping movement gives rise
to a “mental plan” by which addition is performed, because only in this movement
does the child begin to view the group as a unit. The child becomes aware of ad-
dition as distinct from counting. This construction of counting on must be based
on physically present objects. Then, through introspection (considering the basis of
one’s own ways of acting), the object set is transformed into a symbol (El’konin and
Davydov 1975).

Our second example of instructional activities supported by specific research ev-
idence is found in the next level in Fig. 1, Deriver +/−. The goal is to build fluency
with basic combinations while maintaining understanding. Teaching the BAMT
Strategy actually consists of a series of instructional activities involving several in-
terrelated learning trajectories (from Murata 2004). BAMT stands for Break-Apart-
to-Make-Ten. Before lessons on BAMT, children work on several related learning
trajectories. They develop solid knowledge of numerals and counting (i.e., move
along the counting learning trajectory). This includes the number structure for teen
numbers as 10 + another number, which is more straightforward in Asian languages
than English (“thirteen” is “ten and three”—note that U.S. teachers must be partic-
ularly attentive to this competence). They learn to solve addition and subtraction of
numbers with totals less than 10, often chunking numbers into 5 (e.g., 7 as 5-plus-2)
and using visual models.

With these levels of thinking established, children develop several levels of think-
ing within the composition/decomposition developmental progression. For example,
they work on “break-apart partners” of numbers less than or equal to 10. They solve
addition and subtraction problems involving teen numbers using the 10s structure
(e.g., 10 + 2 = 12; 18 − 8 = 10), and addition and subtraction with three addends
using 10s (e.g., 4 + 6 + 3 = 10 + 3 = 13; 15 − 5 − 9 = 10 − 9 = 1).

Teachers then introduce problems such as 9 + 6. They first elicit, value, and
discuss child-invented strategies (such as counting on) and encourage children to
use these strategies to solve a variety of problems. Only then do they proceed to the
use of BAMT. They provide supports to connect visual and symbolic representations
of quantities. In the example 9+4, they show 9 counters (or fingers) and 4 counters,
then move one counter from the group of four to make a group of ten. Next, they
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1. Make sure the child can count starting at numbers other than one (see the
“Counter from N (N + 1,N − 1)” level in the counting learning trajectory,
Clements and Sarama 2009; Sarama and Clements 2009b).

2. Try larger numbers: several such as 22 + 1, then problems such as 1 + 18. Al-
though smaller numbers are beneficial to children in many situations, here, the
child’s desire to find a simpler way can often motivate the invention and use of
counting on.

3. If these fail, teach individuals or small groups each component of counting on as
follows.

Lay out the problem (6 + 3) with
numeral cards. Count out objects
into a line below each card.

Ask child to count out a set of 6.
When they reach the sixth object,
point to numeral card and say, “See
this is six also. It tells how many
dots there are here” (gesture
around all 6 dots).
Solve another problem. If the child
counts the first set starting with one
again, interrupt them sooner and
ask what number they will say
when they get to the last object in
the first set. Emphasize it will be
the same as the numeral card.

Point to the last dot and say (using
6 + 3 again for this example) “See,
there are six here, so this one
(exaggerated jump from last object
in the first set to first object in the
second set) gets the number seven.”

Repeat with new problems. As
necessary, interrupt child’s
counting of the first set with
questions: “How many are here
(first set)? So this (last of first) gets
what number? (“Six!”) And what
number for this one”? (“Seven!”)

Fig. 3 Teaching counting on skills to children who need assistance to use counting on, or do not
spontaneously invent this strategy
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The line slants
between the
numbers, indicating
that we need to find a
partner for 9 to
make 10.

Four is separated
into two partners,
1 and 3.

The ring shows how
the numbers
combine to make 10.

Ten and three are
shown to add to
13.

Fig. 4 Teaching BAMT (modified from Murata 2004)

highlight the three left in the group. Then children are reminded that the 9 and 1
made 10. Last, children see 10 counters and 3 counters and think ten-three, or count
on “ten-one, ten-two, ten-three.” Later, representational drawings serve this role, in
a sequence such as shown in Fig. 4.

Teachers spend many lessons ensuring children’s understanding and skill using
the BAMT strategy. Children are asked why the strategy works and what its advan-
tages are. Extensive use of BAMT to solve problems helps children develop fluency.

Not all instructional tasks are as specific as these just outlined. In many cases, the
instructional tasks presented with the learning trajectories are simply illustrations of
the kind of effective activities that would be appropriate to reach a certain level of
thinking. For example, the problems suggested for each level should be changed for
different children, but the type of problem is important.

A final observation regarding our Fig. 1 discussions is that learning trajecto-
ries promote learning skills and concepts together, as mentioned previously (see
“Rethinking goals”). Learning skills before developing understanding can lead to
learning difficulties (Baroody 2004; Fuson 2004; Kilpatrick et al. 2001; Sophian
2004; Steffe 2004). Further, effective curricula and teaching often build on chil-
dren’s thinking, provide opportunities for both invention and practice, and ask chil-
dren to explain their various strategies (Hiebert 1999). Such programs facilitate con-
ceptual growth and higher-order thinking without sacrificing skill learning. Effec-
tive teachers also consistently integrate real-world situations, problem solving, and
mathematical content (Fuson 2004). Making connections to real-life situations also
enhances children’s knowledge and positive beliefs about mathematics (Perlmutter
et al. 1997). Thus, a critical task for teachers is to adapt activities such as those in
Fig. 1 so that they are relevant and appropriate to their own students.

Rethinking Curriculum Development: What Is a Research-Based
Curriculum?

Children’s progress through learning trajectories is profoundly influenced by their
first educational experiences. Indeed, “the early grades may be precisely the time
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that schools have their strongest effects” (Alexander and Entwisle 1988). Research
also suggests that early childhood classrooms underestimate children’s ability to
learn mathematics and are too often ill suited to help them learn due to lack of
knowledge of the variety of learning trajectories. Thus, children actually regress
on some math skills during kindergarten (Wright 1994). For example, perhaps be-
cause they do not understand the idea and importance of subitizing, kindergarten
teachers often told children who had already subitized a small collection correctly,
to “Count them!” thus undermining children’s use of a valuable practice. We need
more structured, sophisticated, better-developed and well-sequenced mathematics
in early childhood education. How do we do that well? How do we avoid the prob-
lem mentioned in the introduction: that it is difficult to know how to evaluate if a
curriculum truly is “based on research”?

A Framework for Research-Based Curricula

Based on a review of research and expert practice (Clements 2008), we con-
structed and tested a framework for the construct of research-based curricula. Our
“Curriculum Research Framework” (CRF, Clements 2007) rejects the sole use of
commercially-oriented “market research” and “research-to-practice” strategies. Al-
though included in the CRF, such strategies alone are inadequate. For example,
research-to-practice strategies are flawed in their presumptions because they em-
ploy one-way translations of research results, are insensitive to changing goals in
the content area, and are unable to contribute to a revision of the theory and knowl-
edge. Such knowledge building is—alongside the development of a scientifically-
based, effective curriculum—a critical objective of a scientific curriculum research
program. Indeed, a valid scientific curriculum development program should address
two basic questions—about effects and conditions—in three domains-practice, pol-
icy, and theory. For example, such a program should address the practical question
of whether the curriculum is effective in helping children achieve specific learn-
ing goals, but also under what conditions it is effective. Theoretically, the research
program should also address why it is effective and why certain sets of conditions
decrease or increase the curriculum’s effectiveness.

To address all these issues, the CRF includes three broad categories of research
and development work, within which there are ten phases through which a curricu-
lum should be subjected to warrant the claim that it is based on research. The three
categories are: (1) reviewing existing research (A Priori Foundations), (2) building
models of children’s thinking and learning in a domain (Learning Trajectories), and
(3) appraising the effectiveness and general worth of the result (Evaluation, both
formative, leading to revisions, and summative, to determine the effects of the com-
pleted curriculum). The categories and phases within them are outlined in Table 1.
The categories are described in the leftmost column. The questions addressed are
provided in the middle column, and the specific methodologies to address these
questions within each phase are described in the rightmost column.
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Table 1 Categories and Phases of the Curriculum Research Framework (adapted from Clements
2007)

Categories Questions Asked Phases

A Priori Foundations:
In variants of the
research-to-practice
model, extant research
is reviewed and
implications for the
nascent curriculum
development effort
drawn.

What is already
known that can be
applied to the
anticipated
curriculum?

Established review procedures and content
analyses are employed to gather knowledge
concerning the specific subject matter
content, including the role it would play in
students’ development (phase 1); general
issues concerning psychology, education, and
systemic change (phase 2); and pedagogy,
including the effectiveness of certain types of
activities (phase 3).

Learning Trajectories:
Activities are
structured in
accordance with
empirically-based
models of children’s
thinking and learning
in the targeted
subject-matter domain.

How might the
curriculum be
constructed to be
consistent with
models of students’
thinking and
learning?

In phase 4, the nature and content of activities
is based on models of children’s mathematical
thinking and learning. Specific learning
trajectories are built for each major topic.

Evaluation:
In these phases,
empirical evidence is
collected to evaluate
the curriculum,
realized in some form.
The goal is to evaluate
the appeal, usability,
and effectiveness of
an instantiation of the
curriculum.

How can market
share for the
curriculum be
maximized?

Phase 5 focuses on marketability, using
strategies such as gathering information about
mandated educational objectives and surveys
of consumers.

Is the curriculum
usable by, and
effective with,
various student
groups and teachers?

Formative phases 6 to 8 seek to understand
the meaning that students and teachers give to
the curriculum objects and activities in
progressively expanding social contexts; for
example, the usability and effectiveness of
specific components and characteristics of the
curriculum as implemented by a teacher who
is familiar with the materials with individuals
or small groups (phase 6) and whole classes
(phase 7) and, later, by a diverse group of
teachers (phase 8). The curriculum is altered
based on empirical results, with the focus
expanding to include aspects of support for
teachers.

The first curriculum to be developed using the Curriculum Research Framework
(CRF) was Building Blocks (Clements and Sarama 2003, 2007b, 2013), a NSF-
funded PreK to grade 2 mathematics research and curriculum development project
that was one of the first to develop materials that comprehensively address recent
standards for early mathematics education for all children (e.g., Clements and Con-
ference Working Group 2004; National Council of Teachers of Mathematics 2000,
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Table 1 (Continued)

Categories Questions Asked Phases

What is the
effectiveness (e.g.,
in affecting teaching
practices and
ultimately student
learning) of the
curriculum, now in
its complete form, as
it is implemented in
realistic contexts?

Summative phases 9 and 10 both use
randomized field trials and differ from each
other most markedly on the characteristic of
scale. They both examine the fidelity or
enactment, and sustainability, of the
curriculum when implemented on a small
(phase 9) or large (phase 10) scale, with
phase 10 also investigating the critical
contextual and implementation variables that
influence its effectiveness. Experimental or
carefully planned quasi-experimental designs,
incorporating observational measures and
surveys, are useful for generating political
and public support, as well as for their
research advantages. In addition, qualitative
approaches continue to be useful for dealing
with the complexity and indeterminateness of
educational activity.

2006). We will illustrate the CRF by giving concrete descriptions of how the phases
were enacted in the development of the Building Blocks preschool curriculum.

A Priori Foundations

The first category includes three variants of the research-to-practice strategy, in
which existing research is reviewed and implications for the nascent curriculum
development effort are drawn.

(1) In General A Priori Foundation, developers review broad philosophies, the-
ories, and empirical results on learning and teaching. Based on theory and research
on early childhood learning and teaching (e.g., National Research Council 2001),
we determined that Building Blocks’ basic approach would be finding the mathe-
matics in, and developing mathematics from, children’s activity. That is, we wanted
to “mathematize” everyday activities, such as puzzles, songs, moving, and build-
ing. For example, teachers might help children mathematize moving their bodies in
many ways. Children might count their steps as they walk. They might also move
in patterns: step, step, hop; step, step, hop. . . . They might do both, counting as they
walk, “one, two, three, four, five, six,. . .”. These examples show that mathematiz-
ing means representing and elaborating everyday activities mathematically. Chil-
dren create models of everyday situations with mathematical objects, such as num-
bers and shapes; mathematical actions, such as counting or transforming shapes;
and their structural relationships—and use those understandings to solve problems.
They learn to increasingly see the world through mathematical lenses.
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(2) In Subject Matter A Priori Foundation, developers review research and con-
sult with experts to identify topics that make a substantive contribution to children’s
mathematical development, are generative in children’s development of future math-
ematical understanding, and are interesting to children. We determined the topics
that fit those criteria by considering what mathematics is culturally valued and em-
pirical research on what constituted the core ideas and skill areas of mathematics
for young children (Baroody 2004; Clements and Battista 1992; Clements and Con-
ference Working Group 2004; Fuson 1997). We then organized for the development
of learning trajectories in the domains of number (counting, subitizing, sequencing,
arithmetic), geometry (matching, naming, building and combining shapes), pattern-
ing, and measurement.

(3) In Pedagogical A Priori Foundation, developers review empirical findings
on making activities educationally effective—motivating and efficacious—to create
general guidelines for the generation of activities. As an example, research using
computer software with young children (Clements et al. 1993; Clements and Swami-
nathan 1995; Steffe and Wiegel 1994) showed that preschoolers can use computers
effectively and that software can be made more effective by employing animation,
children’s voices, and clear feedback. Although such software is only a small com-
ponent of the Building Blocks curriculum, it makes a significant contribution, be-
cause research was used in its development, giving the developers information on
how to make the software targeted and effective.

Learning Trajectories

In the second category, developers structure activities in accordance with theoretic-
ally- and empirically-based models of children’s thinking in the targeted subject-
matter domain. This phase involves the creation of research-based learning trajec-
tories. Figure 1 illustrated a part of our arithmetic learning trajectory. We turn to
one in geometry so we do not give the misimpression that learning trajectories only
apply to numerical domains.

When we were working with kindergartners, one of us (Sarama) observed that
several children followed a similar progression in choosing and combining shapes
(e.g., rhombi or equilateral triangles) to make another shape (e.g., to cover a hexagon
as in Fig. 5) (Sarama et al. 1996). Initially, they merely appreciated how one pattern
block could be made using other pattern blocks, but their efforts to cover a hexagon
with other pattern blocks was by trial-and-error. Later, they explicitly recognized the
hexagon could be made with 2 trapezoids, followed by other combinations. Sarama
reviewed the behaviors of all the kindergarten children. She found several similar
sequences and noted that, throughout the study, children’s development appeared to
move from placing shapes separately to considering shapes in combination; from
manipulation- and perception-bound strategies to the formation of mental images
(e.g., decomposing shapes imagistically); from trial and error to intentional and de-
liberate action and eventually to the prediction of succeeding placements of shapes;
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Fig. 5 How children might cover a pattern block hexagon with other pattern block shapes

and from consideration of visual “wholes” to a consideration of side length, and,
eventually, angles.

Based on these observations, we wrote a tentative set of levels of thinking, the
first draft of the developmental progression, then revised it as we studied the re-
sults of other researchers (Mansfield and Scott 1990; Sales 1994; Vurpillot 1976).
At this point, we involved several additional teachers, because any learning trajec-
tory should “speak” to practitioners as well as researchers. Eight volunteers who
were helping us develop the Building Blocks curriculum worked with us for six
months testing and refining activities (for the complete story, see Clements et al.
2004). Their case studies indicated that the work of about four-fifths of the children
studied was consistent with the developmental progression. Finally, we conducted
a study with David Wilson, utilizing 72 randomly selected children from pre-K to
grade 2. Analyses again indicated child progress consistent with the developmental
progression (Clements et al. 2004).

In this way, through cycles of curriculum revision and observations, we created
the complete learning trajectory, including the developmental progression and a set
of instructional tasks, which include on- and off-computer puzzles, that appeared
to facilitate growth for children at different points along the trajectory (as embodied
now in the Building Blocks concrete puzzles). Figure 6 illustrates several early levels
of the learning trajectory.

Again, computer technology makes a substantive contribution. First, the Building
Blocks Software (Clements and Sarama 2007a) moves children forward (or back-
ward) along the learning trajectory automatically based on children’s performance.
Second, the tasks are designed to fit the trajectory precisely. For example, children’s
work is initially scaffolded by the inclusion of internal line segments in most cases,
but these are faded in subsequent puzzles. Third, analyses of children’s responses
are often superior to situations using physical manipulatives. For example, children
will often place physical shapes so that they cover a puzzle but also “hang over”
outside of the puzzle—and they and their teachers rarely notice this. Computers de-
tect every error. Fourth, when such errors are detected, the feedback is immediate
and in some ways superior. For example, the shapes placed by the child can be made
translucent, clearly showing the mismatch between the child’s solution and the ac-
tual puzzle. In these ways, work with computers provides a unique and substantial
contribution to children’s learning.
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Evaluation

In the third category of the CRF, developers collect empirical evidence to evaluate
the appeal, usability, and effectiveness of a version of the curriculum. Past phase
(5) Market Research is (6) Formative Research: Small Group, in which developers
conduct pilot tests with individuals or small groups on components (e.g., a particu-
lar activity, game, or software environment) or sections of the curriculum. Although
teachers are involved in all phases of research and development, the process of cur-
ricular enactment is emphasized in the next two phases. Studies with a teacher who
participated in the development of the materials in phase (7) Formative Research:
Single Classroom, and then teachers newly introduced to the materials in phase (8)
Formative Research: Multiple Classrooms, provide information about the usabil-
ity of the curriculum and requirements for professional development and support
materials. We conducted multiple case studies at each of these three phases (e.g.,
Clements and Sarama 2004a; Sarama 2004), revising the curriculum multiple times,
including two distinct published versions (Clements and Sarama 2003, 2007c).

In the last two phases, (9) Summative Research: Small Scale and (10) Summative
Research: Large Scale, developers evaluate what can actually be achieved with typ-
ical teachers under realistic circumstances. To avoid the misconstrual that the CRF
privileges scientific research of a limited nature, note that the first 8 phases involve
only qualitative research and the last two combine quantitative and qualitative re-
search. The CRF uses a wide range of methods, omitting no genre of educational
research.

An initial phase-9 summary research project (Clements and Sarama 2007d)
yielded effect sizes between 1 and 2 (standard deviation units). However, this study
only involved 4 classrooms. Thus, we moved to phase 10, which also uses ran-
domized trials, which provide the most efficient and least biased designs to as-
sess causal relationships (Cook 2002), where the curriculum is implemented in a
greater number of classrooms, with more diversity, and less ideal conditions. In a
larger study (Clements and Sarama 2008), we randomly assigned 36 classrooms to
one of three conditions. The experimental group used Building Blocks (Clements
and Sarama 2007b). The comparison group used a different preschool mathematics
curriculum—the same as we previously used in the Preschool Curriculum Evalu-
ation Research (Preschool Curriculum Evaluation Research Consortium 2008) re-
search (mainly Klein et al. 2002). The control used their schools’ existing curricu-
lum (“business as usual”). Two observational measures indicated that the curricula
were implemented with fidelity and that the experimental condition had significant
positive effects on classrooms’ mathematics environment and teaching. From the
beginning to end of the school year, the experimental group score increased sig-
nificantly more than the comparison group score (effect size, .47) and the control
group score (effect size, 1.07). Focused early mathematical interventions, especially
those based on a comprehensive model of developing and evaluating research-based
curricula, can increase the quality of the mathematics environment and teaching,
and can help preschoolers develop a foundation of informal mathematics knowl-
edge (Clements and Sarama 2008). We believe that these positive effects, even
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when compared to another curriculum supported equivalently, were due to Build-
ing Blocks’ development within the CRF and especially the core use of learning
trajectories.

Conclusion

Through our collaboration with teachers, administrators, and other researchers, we
believe we have developed and evaluated truly research-based approaches. The two
major conceptual tools, sets of learning trajectories and the Curriculum Research
Framework, have shown their effectiveness in a number of studies. We hope others
test whether these and other similar tools (see Maloney et al. in press) contribute to
a scientific base for early mathematics education.
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Reflecting on Young Children’s Mathematics
Learning

Bob Perry and Sue Dockett

Over the last 6 years, South Australian preschool and first years of school educators1

have come together to consider how they can facilitate young children’s2 learning
of powerful mathematical ideas without jeopardizing the well-established benefits
of young children learning through play. The chapter begins with a brief discus-
sion around the recognition of young children as powerful mathematicians and how
this recognition is facilitated through the documentation of children’s mathemat-
ical learning using learning stories. It then introduces the Early Years Numeracy
Project in South Australia and reviews the development of a major artifact from
the project—the Reflective Continua. Ways in which educators have used the Re-
flective Continua to stimulate the powerful mathematics learning of young children
complete the chapter.

Young Children as Powerful Mathematicians

It is well known that young children can be powerful mathematicians and that they
are able to demonstrate this power through their actions in both play and structured
learning (Hunting et al. 2012; Kilpatrick et al. 2001; Lee and Ginsburg 2007; Perry
and Dockett 2008; Sarama and Clements 2009; Thomson et al. 2005). The Aus-
tralian Association of Mathematics Teachers (AAMT) and Early Childhood Aus-
tralia (ECA) (2006, p. 1) state that

1The term ‘educators’ is used throughout this chapter to designate anyone working with children
in prior-to-school or school settings who may impact on the children’s learning. For example,
‘educators’ may be teachers, assistants, preschool directors, and school principals.
2The term ‘children’ is used throughout this chapter rather than ‘students’. This allows the one
word to be used for young people in preschool and school settings.
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all children in their early childhood years are capable of accessing powerful mathematical
ideas that are both relevant to their current lives and form a critical foundation to their future
mathematical and other learning. Children should be given the opportunity to access these
ideas through high quality child-centred activities in their homes, communities, prior-to-
school settings and schools.

The first curriculum framework for Australian early childhood education—Early
Years Learning Framework for Australia (Department of Education, Employment
and Workplace Relations (DEEWR), 2009, p. 38) provides a list of these powerful
mathematical ideas:

Spatial sense, structure and pattern, number, measurement, data, argumentation, connec-
tions and exploring the world mathematically are the powerful mathematical ideas children
need to become numerate.

Australia has also recently introduced its first national curriculum in mathemat-
ics (Australian Curriculum, Assessment and Reporting Authority (ACARA) 2011)
which contains a similar list of powerful mathematical ideas: number and algebra;
measurement and geometry; statistics and probability; understanding; fluency; prob-
lem solving; and reasoning. These powerful mathematical ideas form an important
foundation for the Reflective Continua to be investigated in this chapter. Another
foundation is the notion of learning stories.

Learning stories (Carr 2001; Carr and Lee 2012)

are qualitative snapshots, recorded as structured written narratives, often with accompa-
nying photographs that document and communicate the context and complexity of chil-
dren’s learning (Carr 2001). They include relationships, dispositions, and an interpretation
by someone who knows the child well. They are “structured observations in everyday or ‘au-
thentic’ settings, designed to provide a cumulative series of snapshots” (Carr and Claxton
2002, p. 22). Learning stories acknowledge the multiple intelligences and holistic nature
of young children’s learning, educators’ pedagogy, and the context in which the learning
takes place. Educators use their evaluation of the learning story to plan for future, ongoing
learning (Perry et al. 2007a).

Such learning stories have allowed the components of the Reflective Continua to
be demonstrated through the use of ‘work samples’ created by children and educa-
tors in authentic contexts. Links between a young child’s observed and documented
activity, and powerful mathematical ideas are illustrated through the following ex-
ample of a learning story, written by a preschool educator, which considers 4-year-
old Rachel’s interest in shapes (Fig. 1).

Rachel likes to play with shapes and was laying out the shapes on the table and putting them
together so there were no gaps. She used the colours and the shapes to create a pattern. She
stood some of the blocks upright to make a border around her pattern. Rachel could tell me
[the educator] what colours she had used and how she had made her pattern. When I asked
her why she thought it was a pattern she said “It goes green triangle, then red square, then
red square and back to green triangle”. I asked her why she had put the shapes standing up.
She replied “This is the border and they are all the same shape”.

Rachel has a clear view of what a pattern is and how patterns can be used in her
play and learning. She is able to explain and justify her decisions and to use the
results of her investigations to extend her thinking. Powerful ideas in mathematics
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Fig. 1 Rachel—powerful
mathematician

and Rachel’s play have coalesced to provide an opportunity for learning in a rele-
vant and meaningful context. How educators recognise these powerful mathematical
ideas and undertake their own pedagogical inquiry about planning future mathemat-
ical learning experiences for their children provide the focus of this chapter.

The Early Years Numeracy Project

The Early Years Numeracy Project (EYNP) ran in various guises from 2004 to 2011
in the state of South Australia using a collaborative approach to professional devel-
opment for both preschool and first years of school educators (Perry 2011; Perry
et al. 2007b). While there have been many positive outcomes from this project,
the two most tangible artefacts have been the Numeracy Matrix and the Reflective
Continua. The development and use of the Numeracy Matrix have been reported
elsewhere (Harley et al. 2007; Perry et al. 2012). In this chapter, we consider the
development and use of the Reflective Continua.

The Reflective Continua

The final phase of EYNP, from 2009 to 2011, had the following aims:

• to develop the mathematics content knowledge and pedagogical content knowl-
edge of the site-based early childhood educators;

• to build on previous work that had led to the development of the numeracy matrix
linking powerful mathematical ideas to developmental learning outcomes; and

• to develop and trial reflective continua based on the numeracy matrix and the use
of learning stories (Carr 2001) to guide mathematics teaching and learning for
children aged 3–8 years in preschools and the first years of school.

This chapter reports on the fulfilment of the third of these aims.
For the development of the Reflective Continua, the researchers worked with four

Numeracy Leaders—three from the first years of school, and one from preschool.
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The Numeracy Leaders’ role was to work with a total of 45 site-based early child-
hood educators in preschools and schools to introduce and implement the Reflective
Continua.

From July, 2009 until December, 2010, regular professional learning meetings
were held for the four Numeracy Leaders. These meetings were led by the re-
searchers and centred on powerful mathematical ideas and links to both school and
preschool curricula. The professional learning meetings also focused on the role
of Numeracy Leaders in the development of collaborative partnerships with col-
leagues. The role of the Numeracy Leaders was challenging, as each was responsi-
ble for engaging and guiding both preschool and school educators in their clusters.
Ongoing support from each other and the project leaders was a critical element of
the Numeracy Leaders’ programs.

Educator reflection on their own pedagogical practice had been a key component
of the EYNP from its inception (Perry et al. 2007a, 2006). Hence, the development
of a Reflective Continuum for each of the powerful mathematical ideas that encap-
sulated the pedagogies of their settings was a natural consequence of the earlier
work.

Through an iterative approach involving the Numeracy Leaders and the educators
in the clusters, the Reflective Continua were created.

What Are the Reflective Continua?

In their final form, the Reflective Continua consist of a set of seven tables—one
for each of the strands and competencies (powerful mathematical ideas) in the Aus-
tralian Curriculum—Mathematics (ACARA 2011): number and algebra; measure-
ment and geometry; statistics and probability; understanding; fluency; problem solv-
ing; and reasoning—which provide frameworks to guide educator reflections on
children’s mathematical work. Such reflective practice is designed to assist educa-
tors plan future learning experiences for their children. Each Reflective Continuum
highlights a progression of development and engagement with the relevant power-
ful mathematical idea. These progressions have been developed by the site educators
under the tutelage of the Numeracy Leaders and the researchers, using the current
curriculum documents for guidance.

Four levels of development and engagement are used to demonstrate children’s
progression—Emerging, Investigation, Application and Generalisation. The mean-
ings given to each of these levels are:

• Emerging: the learner is beginning to understand the basic concepts involved in
the powerful mathematical idea but is not yet able to use this early understanding;

• Investigation: the learner is confident enough in her/his understanding of the pow-
erful mathematical idea to explore problems and real-life situations;

• Application: the learner’s knowledge and understanding of the powerful mathe-
matical idea can be applied to find solutions to problems;
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• Generalisation: the learner is able to transfer her/his knowledge and understand-
ings between powerful mathematical ideas and/or powerful ideas from other key
learning areas.

An example of one Reflective Continuum is given in Fig. 2.
For each level in each Reflective Continuum, a number of ‘indicators’ are pro-

vided as guidance to educators about what might be expected to be observed from
children working at the level. As well, there are children’s names in each column
which are hyperlinked to work samples and/or learning stories. For example, click-
ing on Example 2: Sol in the ‘Emerging’ column leads to the following learning
story:

Sol went over to the toy tray and pulled out the stacking cups. Very carefully, with lots of
balance, she began to stack the cups in sizes. She tried different sizes at first realising a
smaller cup would disappear inside a larger one. With trial and error she built a big tower.
Sol is showing reflective thinking and problem solving skills which are basic numeracy
skills. We could extend her numeracy skills by introducing basic shapes.

This story provides one example of what the Emerging level could look like in
Measurement and Geometry. For every level in every continuum, there is at least
one example from preschool and one from the first years of school, thus illustrating
that all levels are possible in both settings.

The Reflective Continua are designed to allow educators to ascertain quickly at
which level each of their children is demonstrating her/his knowledge of the pow-
erful mathematical ideas. Children’s work samples are provided to illustrate how
each level might present in preschools or the first years of school. For example, a
preschool child at the Application level of the powerful idea Measurement and Ge-
ometry might ‘describe position in relation to surroundings’ by applying proximity
terminology such as ‘next to’ or ‘close’. On the other hand a child in the first years
of school might use units of measure or directions to describe her/his position.

The Reflective Continua help educators make sense—in terms of powerful math-
ematical ideas—of their observations of learners that they make as part of the nor-
mal routine of each day. By reflecting on observations of learner actions and cou-
pling these to the educators’ own understandings of hypothetical learning trajecto-
ries (Sarama and Clements 2009), progress towards developing and understanding
the seven powerful mathematical ideas can be observed.

There is no suggestion that any child would perform at the same level for each of
the powerful mathematical ideas and, therefore, be labelled with one of these level
names. As well, there was no attempt to link the Reflective Continua levels with
either curriculum or Year/age stages. Instead the levels provide a hypothetical learn-
ing trajectory (Sarama and Clements 2009) for each of the powerful mathematical
ideas. It would be eminently possible for a child in preschool to be demonstrating
behaviours that would suggest positioning her/him at, say, the Application level for
one of the powerful mathematical ideas while, by contrast, a child in Year 2 might
be engaging with this idea at the Emerging level.

There were a number of other issues raised by the Numeracy Leaders and their
cluster colleagues during the development of the Reflective Continua. Four are of
interest here.
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Profiling of Children

The possibility of using the Reflective Continua to produce individual profiles of
children across the seven powerful mathematical ideas was considered but was de-
termined not to be of sufficient value to the educators and children to justify the time
that would be necessary to develop profiles.

Local Development of Indicators of Development and Engagement

The possibility that levels of development and engagement with each of the power-
ful mathematical ideas could be rewritten or substituted by individual educators in
order to reflect the particular contexts of the learners was considered. This consid-
eration was seen by the Numeracy Leaders as a positive engagement by the cluster
educators with the Reflective Continua. However, it was felt that educators needed
to become familiar with the continua and use them in their own contexts before they
would be able to change the indicators with reliability. Hence, it was communicated
to educators in the clusters that they should remain with the published indicators
initially, with the aim of changing them to suit only after more extensive use.

Consistency of Judgement

Consistency of educator judgement has been a critical issue in classroom assess-
ment for many years in Australia. It is well known that “a variety of influences
and knowledges impact on teacher judgement” (Connolly et al. 2011). The im-
portance of moderation through consultation, negotiation and use of standards in
achieving consistency of judgement has also been established (Klenowski and Adie
2009; Wyatt-Smith et al. 2010). Such consistency was an issue for some of the
Numeracy Leaders and many of the educators in the clusters. Many of the cluster
educators were concerned that they might make different judgements from other
educators and that they ‘would not get it right’. However, it was determined that,
given the primary purpose of the continua was to encourage and facilitate reflection
on the part of educators, rather than assessment of the children’s mathematics, it
did not matter whether one educator made precisely the same judgement based on
a particular work sample as others. In the documentation introducing the Reflective
Continua, it is stated explicitly that the decision about placement of a child on a
continuum should be made by an educator who knows the child and has observed
the learning experience being judged. As the purpose of the decision is to reflect on
the child’s work within the learning experience and to answer the question ‘Where
to next?’, there is no need for consistency of judgement. What is important is that
the educator making the judgement is able to use that judgement to facilitate further
learning by the child.



156 B. Perry and S. Dockett

Expectations of Levels of Development and Engagement for Preschool and
First Years of School Children

Not surprisingly, many educators assume that younger children will not be able to
develop and engage with powerful mathematical ideas to the same levels as older
children (Hunting et al. 2012). This was the case for many of the cluster educa-
tors. These educators had not taken into consideration that children’s development
and engagement with powerful mathematical ideas is determined not only by what
the children could do but also by what the educators did. Children are unlikely
to demonstrate their full potential unless they are provided with the challenging
and supportive contexts that allow them to do so (Bobis et al. 2012; Hunting et al.
2012). The Numeracy Leaders were adamant that the final version of the reflective
continua had to demonstrate that children in preschool and the first years of school
could perform at all four of the levels. The way of demonstrating this was through
the provision of work samples and learning stories from children and educators in
both sectors.

Learning Stories

Learning stories and other work samples have been used in the Reflective Continua
to provide guidance for educators about how children might indicate the level of
their development and engagement with each of the powerful mathematical ideas;
and, then, what both the educators and the children might do next. At each level
of each Reflective Continuum, work samples and learning stories are provided from
both preschool and school children, illustrating what performance at this level might
look like in these settings. We conclude this chapter with several examples of the
links between work samples/learning stories and levels in the Reflective Continua,
using the measurement continuum introduced earlier as an exemplar. All of the
judgements concerning the levels illustrated by the samples have been made by clus-
ter preschool and school educators under the guidance of the Numeracy Leaders.

Emerging An example from this level (Sol and the stacking cups) has already
been provided earlier in the chapter. However, another is added here for completion.

This learning story reports on a group activity in a first year of school class when
the children had been set the task of making gnocchi.

Leon and some other children were making gnocchi using a recipe that had to be read before
cooking the potatoes and mixing them with the flour. While rolling the dough, the children
compared size and shape to see if they were on the right track. Leon was particularly keen
to make the gnocchi into uniform shapes (same shape and size). We can look for other
opportunities to make uniform shapes.

Investigation The following learning story (Fig. 3) developed by a preschool
teacher provides evidence of the indicator, ‘Uses relevant non-standard units to
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Fig. 3 Using non-standard
units of
measurement—investigation

measure through comparing, counting and describing the results in appropriate lan-
guage’. The educator also notes in the learning story that the children have demon-
strated their learning with other powerful mathematics ideas such as Number and
Algebra.

Today we gave the children the opportunity to measure shapes with some non-standard units
of measurement—pebbles, seed pods, shells and dried beans. The children enjoyed chatting
to each other about how many of the resources were needed to go around the perimeter of
each shape. Once they had measured with one of the resources they would choose another
and compare their results. The children were encouraged to record their findings and they
did this by writing down the number of shells, pebbles etc they had used and then they drew
the shape they had measured. It was interesting to note that they then started to form patterns
around the perimeters of the shapes using the pebbles, pods, shells and beans. Bolek went
out into the garden and found sticks and rosemary twigs and used these to measure around
the shapes, showing that he had an understanding of the fact that many things can be used
to measure. The children also noticed that more small objects and less large objects were
required to measure the perimeter of a given shape. I need to provide more opportunities
for them to explore this further.

Application The use of standard units—represented here by the materials avail-
able to the child—and the applications required to undertake estimation in measure-
ment are illustrated by Katrina’s understanding of the measurement of area in this
learning story (Fig. 4).

Today the children were given the opportunity to measure the area of different sized leaves
using Unifix blocks. Katrina set to work and covered a leaf with blocks and discovered that
she had used 18 blocks to cover the area of the leaf. She then chose a smaller leaf and I
asked her how many blocks she thought she would need to cover this leaf. I explained to

Fig. 4 Learning about
area—application
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her that this was called estimating and she predicted that the leaf would be covered with 8
blocks. Katrina’s estimation was very good as the area of the leaf was in fact 7 blocks. She
continued to choose leaves and cover them with blocks, estimating each time the number
of blocks she thought she would need. For a middle sized leaf she estimated 9 and the area
was in fact 10, for a bigger leaf she estimated 28 and the area was in fact 25.
Through this activity Katrina demonstrated that she can use relevant units to measure at-
tributes of objects, through comparison and counting and describe the results in appropriate
language. She is also aware that number has meaning in everyday worlds, can count in rote
and she also recognises patterns of numbers to quantify small collections without counting.

Generalisation This example from a Year 4 class provides an insight into how
school educators might utilise learning stories and the power it can give the edu-
cator to reflect on children’s learning. Even though the Reflective Continua were
developed for use in early childhood settings, it would seem that they might have
application with older children.

Corbie was working in a group of five children and their task was to measure and give
directions from the classroom to the flying fox, but they had to travel around the hitting
wall. They were asked to choose appropriate measuring tools and estimate as they went.
The group decided to bring a trundle wheel and a measuring tape.
The first suggestion for the first step was, “Go out the door and walk down the ramp.”
Corbie didn’t think this should be the first step as there was no measurement involved.
Corbie: We could say go through the door and turn to the left and then we could measure
all the way to the end of the art room because we don’t have to change direction until then.
Educator: How far to the left would you need to turn?
Another group member: A quarter turn?
C: Can I write 90˚ instead?
E: Is it the same as a quarter of a turn?
C: Yeah.
E: Then of course you can use it in your recording.
The group then estimated how far they thought it was to the end of the art room and mea-
sured it with the trundle wheel. Corbie took great care to ensure that the trundle wheel was
stopped precisely on the measurement he recorded and started from that exact same spot.
As they worked their way towards the hitting wall, there were a couple of measurements
that were much shorter. Corbie suggested we use the tape measure for these measurements
as it was far more accurate as it had mm on it. They then reached a point that they would
have to make continual quarter turns and walk short distances in between each turn.
E: Is there a simpler way to get there rather than making all these quarter turns?
C: Yeah, we could make half a quarter turn and that would take us straight to the flying fox.
E: What would half a quarter turn be?
C: An eighth of a turn.
E: How do you know that half of a quarter is an eighth?
C: I learnt ages ago that if you halve a fraction, you double the denominator.
When looking back at Corbie’s work, I noticed that instead of recording this as an eighth of
a turn, he had changed it to a 45˚ turn to fit in with the way he had recorded his other turns.
I think Corbie is working at Generalisation level because he makes strong links between
Spatial Sense and Geometric Reasoning and Measurement. He uses the generalisation about
fractions that he has picked up from previous learning and applies it to help solve the prob-
lem.

The examples illustrate the potential of the Reflective Continua to support edu-
cators in the interpretation of their observations and reflections. While not all ob-
servations need to be transformed into learning stories, this format does provide a
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rich perspective from which educators can develop future plans for children’s math-
ematics learning. By providing a stimulus and structure for reflection, the Reflective
Continua provide a tool for educators to use in their quest for excellence in the
development of young children’s powerful mathematical ideas.

Conclusion

During the Early Years Numeracy Project and afterwards, both the Numeracy Matrix
and the Reflective Continua have been utilised by educators in South Australia to
assist them in facilitating the learning of mathematics in both preschools and the
first years of school. At the conclusion of the Early Years Numeracy Project, one of
the Numeracy Leaders reported that she was using the Reflective Continua to assist
her identify different levels of mathematical thinking and that “this tool has really
motivated me to explore how children think and ways of extending their thinking”
(personal communication). Another cluster educator working in the first years of
school wrote:

I know that my time with the numeracy project supported me to develop a wider view of
the learner, to learn more about the child’s context, needs and abilities. It is a model that I
can use in my current site with my own class, of inquiring into what I am doing to make a
difference for children learning mathematics.

Another of the cluster educators summed up her experiences with the Early Years
Numeracy Project in the following words.

For many years I have craved the opportunity to be challenged in my thinking and profes-
sional practice. I have been constantly trying to do this myself but it is difficult without
a structure and time for reflection and professional dialogue. This project, and in particu-
lar the reflective continua have provided the most wonderful opportunity for me to receive
this challenge to my professional practice. . . . It has been an awesome scaffold for that
professional dialogue and also that self/professional reflection. I believe that I am a better
practitioner as a result and will continue to strive to better myself.

The need for educators to reflect on their own pedagogy is well recognised
(Grossman and McDonald 2008; Moyles et al. 2006) but many early childhood
educators find this difficult to achieve in mathematics because they lack sufficient
knowledge of, and confidence in, their own mathematics (Anthony and Walshaw
2007; Perry and Dockett 2008). While they might be able to see their children as
powerful mathematicians, they do not necessarily see themselves in this way. The
Reflective Continua have provided participants in the Early Years Numeracy Project
with a scaffold through which to structure their reflections and their pedagogical
actions. The impact within the project and beyond suggests that such an approach
to pedagogical inquiry can be very beneficial to educators, and children.
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Practices that Support Mathematics Learning
in a Play-Based Classroom

Anita A. Wager

The importance of providing young children with opportunities to learn mathe-
matics is well documented in this volume and elsewhere. Studies have found that
success in early mathematics is a predictor of later learning in both mathematics
(Jordan et al. 2009) and overall achievement (Duncan et al. 2007; Romano et al.
2010). This evidence has led to increased attention to early mathematics learning,
yet growing international concerns that young children are not prepared academi-
cally to enter school has resulted in calls for more explicit mathematics instruction,
particularly for children from historically marginalized communities (Fleer 2011;
Zigler and Bishop-Josef 2006). As standards-based accountability works its way to
early childhood mathematics, the field is confronted with the challenge of maintain-
ing play-based pedagogy that is developmentally appropriate rather than adopting
academically oriented programs (Fleer 2011).

In a report summarizing a conference on early childhood mathematics [Berkeley
Pathways Report], Schoenfeld and Stipeck (2012) recommended that preK teachers
devote 30 minutes a day to focused mathematics instruction. This recommendation
and other calls for an increase in focused mathematics instruction (National Re-
search Council [NRC] 2009) may be interpreted as a shift away (or at least some
time away) from the play-based curriculum that scholars in early childhood ed-
ucation have identified as most appropriate. From an early childhood perspective
these demands for mastery are incongruent with what is developmentally appropri-
ate and may be “insensitive to individual, cultural, and linguistic variation in young
children” (Bredekamp 2004, p. 78). Yet, there is evidence that children engage in
“powerful mathematical ideas” in play based preK settings and that by attending to
these ideas, teachers can support children’s mathematical learning and preparation
for more academic schooling (Perry and Dockett 2008a, 2008b; Perry et al. 2012).
In this chapter I report on a case study of one teacher’s play-based preK classroom
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to uncover ways to “foster the prerequisites for the academic skills [ ] through play”
(Bodrova 2008, p. 358). Here I provide an interpretation of ‘focused’ instruction
that minimizes teacher-centered practices and privileges play.

Learning Mathematics in Play

Mathematics learned in and through play has a long history of study. Comenius,
Pestalozzi, Froebel, Reggio Emilio, and Montessori each extolled the benefits of
and opportunities to learn mathematic through play (Shapiro 1983). In the past cen-
tury new perspectives on play, including developmental (Piaget 1962), naturalistic
(Dewey 1944) and social-constructivist (Vygotsky 1978), further highlighted the
need to understand how children learn mathematics through play and how teach-
ers should support that learning. More recently research in early childhood recom-
mended that instruction be rooted in play in order to provide the most developmen-
tally appropriate approach and support young children’s growth in multiple domains
(Bodrova 2008; Copple and Bredekamp 2009).

According to social constructivist theory the benefits of play go beyond socio-
emotional development to mediate young children’s learning (Jones and Reynolds
2011; Vygotsky 1978). In describing a Vygotskian approach to teaching, Bodrova
(2008) suggested that make-believe play is both a source of development and a pre-
requisite to learning. Fleer (2011) argued that children’s flexible movement between
the real world and imaginary situations reflect their learning and that imagination is
“the bridge between play and learning” (p. 224). From a cultural-historical perspec-
tive the “bridge” should be mediated by the teacher. Van Oers (2010) builds on the
principle that young children can learn mathematics when adults (teachers) math-
ematize unintentional mathematical engagement in play. I suggest these scholars
are considering play from the viewpoint of what it ‘means for’ children rather than
what it ‘does to’ them (Wood 2010). Using Wood’s perspective, learning mathemat-
ics in a play-based classroom suggests that children have regular opportunities to
engage in mathematics throughout the day and throughout the classroom. Teaching
young children with an eye toward what it ‘means for’ them is not easy; teachers
must do so in an integrated, culturally responsive way. In the literature review that
follows, I refine Wood’s (2010) view of an “integrated pedagogical approach” to de-
scribe teaching mathematics that (a) plans and prepares for mathematics learning;
(b) builds on children’s understanding, interests and cultural practices; and (c) rec-
ognizes and responds to mathematics that emerges in play.

Planning and Preparing for Mathematics Learning Free play alone is not suf-
ficient to support young children’s mathematics learning (Ginsburg and Ertle 2008;
van Oers 2010). An integrated pedagogical approach to teaching mathematics in
a play-based classroom includes both child- and teacher-initiated learning experi-
ences (Siraj-Blatchford 2009). Teacher-initiated practices include activities to intro-
duce new content and vocabulary (Clements 2004). The ideas that are introduced
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during these more structured activities are often taken up during play (Klibanoff
et al. 2006). Teacher-initiated practices also include planning for the incorporation
of mathematics practice during daily routines and transitions (Ginsburg 2006; NRC
2009; Perry and Dockett 2011).

Whereas teacher-initiated activities offer space for introduction to new ideas,
play has been shown to provide space to explore and develop these skills (Parks
and Chang 2012). Preparing the classroom space to encourage exploration and de-
velopment of skills requires careful planning in the selection and introduction of
materials (Clements 2004; NRC 2009; Saracho and Spodek 2008). This purpose-
ful attention to materials and the arrangement of the classroom encourages initia-
tive and engagement (Copple and Bredekamp 2009). Although not necessarily a
component of imaginary play (and for some, falls outside the definition of play),
materials such as puzzles and games provide a natural connection to mathematics.
Research suggests that children’s spatial development is highly dependent on their
spatial experiences with materials such as puzzles (NRC 2009). Linear board games
have been shown to support number development and counting skills (Siegler 2009;
Siegler and Ramani 2008). In addition to the games, puzzles, and blocks that are
explicitly designed to support mathematics learning, a wide range of materials that
may provoke engagement with mathematics should be available in all interest areas
throughout the classroom (see Bennett and Weidner 2012). Thoughtful inclusion of
materials that encourage mathematical play in various interest areas is important.
When children manipulate materials they “construct many different kinds of math-
ematical relationships” (Moomaw 2011, p. 9).

Building on Children’s Understanding, Interests and Cultural Practices
Planning and preparing for mathematics instruction should be based on an under-
standing of children’s mathematical understanding (Carpenter et al. 1989; National
Council of Teachers of Mathematics [NCTM] 2000; NRC 2009). Children have
intuitive ideas about mathematics and connecting new knowledge to those ideas
and existing knowledge is a corner stone of teaching for understanding (Baroody
2004; Carpenter and Lehrer 1999; Hiebert and Carpenter 1992). To further support
sense making, mathematics should be connected to children’s interests and everyday
activities (Clements 2004; Hedges 2011; NCTM 2000). Finally, teachers need to at-
tend to the practices and understandings that children bring from their out-of-school
experiences that may vary widely from teachers’ own experiences (González et al.
2001; Tudge and Doucet 2004; Wager 2012). This is easier said than done, as under-
standing the diverse learning opportunities children experience in their homes and
communities requires a significant time commitment. However, without knowing
about and connecting to out-of-school practices, children will start to develop the
notion that there are two systems for mathematics—one for school and one outside
(Masingila 2002).

Responding in the Moment The mathematical experiences that children en-
counter and engage in through play should be supported not only by their teachers’
design of the environment but also, the ways in which teachers extend children’s
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encounters with mathematics (Clements 2004; Lee and Ginsburg 2009). Thus, the
mathematics that emerges naturally through play should be recognized and rein-
forced (mathematized) by the teacher. Children have “explicit interest in mathemat-
ical ideas” (Ginsburg and Ertle 2008, p. 53). In a mathematically rich classroom,
children demonstrate and develop their own natural inclination to engage in a wide
range of mathematical activities such as counting, patterning, and developing spatial
relationships (Geist 2001; Saxe et al. 1987; Seo and Ginsburg 2004). When these ac-
tivities are observed, teachers should be prepared to reinforce the learning (Clements
2004; Ginsburg and Ertle 2008; Perry and Dockett 2008a, 2008b). “Teachers most
important role [ ] should be finding frequent opportunities to help children reflect
on and extend the mathematics that arises in their everyday activities, conversation,
and play” (Clements 2004, p. 59).

In this chapter I examine the case of one teacher to provide an example of the
ways children learn mathematics in a purposefully designed play-based classroom.
The case study supports literature that suggests children have multiple opportunities
to learn powerful mathematics when the teacher purposefully plans and responds to
learning (Perry and Dockett 2011; van Oers 2010). It is significant in that it offers
an approach to mathematics learning that is both developmentally and academically
responsive and offers a possible place of convergence between views that separate
child-initiated play and teacher-initiated learning (Pramling Samuelsson and As-
plund Carlsson 2008). In the approach described here, the teacher included brief
opportunities for intentional mathematics teaching, purposefully seeded the envi-
ronment with mathematical tools, and observed and responded to the mathematics
that emerged naturally through play. Play, for the purposes of this study, included
those activities children engaged in when given choice. At times this was imagina-
tive play that often took place in the dramatic play and block areas but also through-
out the room. Other times this included playing with games or puzzles. These were
considered play in this case because the children chose to play with them and often
created their own rules for how to play.

Although the ‘combination’ of teacher- and child-initiated activities evidenced
in this case can be found in many preK classrooms, it is the proportion of time
devoted to each that identifies this classroom as play-based. I suggest that this case
provides an interpretation of recent recommendations for focused mathematics time
that maintains the integrity of play-based classrooms and provides opportunities for
children to engage in rich mathematics.

Play-Based Public PreK

A local district in the Midwestern United States recently began a public four-year-
old kindergarten program (4K). The half-day play-based program is available to
all four-year-olds in the district. This chapter describes the opportunities for math-
ematics learning in one of these 4K classrooms. Marie’s class was in an elemen-
tary school predominately serving a white, middle and working class community.



Practices that Support Mathematics Learning in a Play-Based Classroom 167

Approximately 36 % of the students in the school were provided with subsidized
meals; Marie’s classroom reflected this population. There were 15 children in her
afternoon class; the maximum number permitted for 4K in the district. Marie was
participating in her second year of a professional development program, sponsored
by the local University, the district, and the National Science Foundation, to sup-
port 4K teachers in adopting culturally and developmentally responsive practices
for counting and number.

Marie’s teaching experience included over 25 years in preK-5 classrooms (20
in kindergarten) and two years as an elementary school librarian. Marie sought out
the opportunity to teach in 4K because she disagreed with the changes in the way
kindergarten was taught in the district as a result of increased emphasis on standards.
She believed in developmentally appropriate practices and viewed mathematics in
4K as woven through play. For example, in describing how she provided children the
opportunity to use manipulatives she said, “put it on the table and let them explore,
ask questions and then make sure they know where they can find it [the manipula-
tives] later” (interview, Sept. 2010). Marie also drew on her experience as a librarian
and owned many books explicitly related to counting.

This is an instrumental case study of Marie’s classroom to provide insight into
play-based mathematics classrooms rather than to understand Marie’s teaching in
particular (Stake 2005). Marie was selected as a case study because of her many
years teaching kindergarten. Most of the 4K teachers in the district had experience
in K-2 and I was interested in understanding how teachers with experience teaching
in more academic environments adapted their practice to a play-based curriculum.
I observed in Marie’s afternoon classroom two times each month for a total of ap-
proximately 50 hours of observation. The intent of the observations was to capture,
as much as possible, the interactions between teacher and children but with a par-
ticular focus on children’s engagement with mathematics; thus, I often followed
children as they engaged in mathematics in play when Marie may have been in an-
other part of the room. To maximize observations of the mathematics that occurred
in play, each observation lasted the duration of the class period or three hours. Fol-
lowing each observation, I wrote full field notes using photographs and video I had
taken to supplement the details. As part of my role as observer, I also developed
“a membership identity” in the classroom (Angrosino 2008, p. 167). I regularly in-
teracted with the children during play yet balanced this with times in which, “I was
writing” and they knew not to disturb me.

During the process of writing field notes and observing in the classroom, I iden-
tified the three spaces in which children learned and engaged with mathematics:
(a) instructional time; (b) engagement with mathematical games, manipulatives, or
other mathematical objects; and (c) free play.1 The teaching practices that aligned
with these spaces were: (a) teacher-initiated explicit instruction of mathematics;

1I distinguish engagement with mathematical games, manipulatives, or other mathematical objects
because these have been intentional placed in the classroom by the teacher. I do, however, consider
this ‘play’ as children may choose to engage with them or not.
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Broad code Sub code Description:

Intended Daily Routine Mathematics practices incorporated into a
teacher’s daily routine, typically held on the
rug as a start to the day.

Transition Mathematics initiated by the teacher during
transition times, often a tool for classroom
management and usually involving number.

Explicit Activity Intentionally planned whole group or small
group instruction on a mathematics topic.

‘Aha’ Moments Unexpected time when mathematics emerges
from an activity that was planned but not
intended to be mathematical.

Seeded Games Children playing with commercial or teacher
created games that incorporate mathematics.

Manipulatives Child interactions with counters, geoboards,
and other mathematical tools that teachers
introduce and strategically place in various
interest areas in the classroom.

Interest areas Spaces in the classroom in which the teacher
has designed opportunities to engage with
mathematics.

Child-initiated Spontaneous Seemingly out of the blue engagement with
mathematics.

Linked to Activity When children connect their play to a
previously introduced mathematical activity.

Fig. 1 Mathematics in play-based preK

(b) seeding various interest areas with materials to encourage mathematical think-
ing; and (c) observing and responding to (mathematizing) children’s mathematics
that occurred in play. I analyzed the data systematically using these three spaces
as my initial codes. After an initial round of coding, it became apparent that there
were sub-codes within each code that further refined or defined the learning space.
Figure 1 outlines the codes and definitions.

Learning Mathematics in Marie’s Play-Based Classroom

Marie’s child-centered classroom provided a balance of teacher- and child-initiated
practices in which engagement in mathematics was often evident in play. By pro-
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viding a combination of explicit practices in mathematics with a rich mathematical
environment, Marie fostered children’s learning of and interest in mathematics.

Intentional Mathematics Practices

Intentional practices are those that teachers purposefully plan. They include every-
day routines, transitions, explicitly planned mathematics activities, and responses
to situations that emerge in planned ‘non-mathematical’ activities. These activities
are intentionally designed to introduce new math content and/or provide children
with the opportunity to engage with mathematics. Though not particularly unique to
this classroom, Marie’s pedagogical approach provided evidence of how intentional
practices supported an environment and established norms for mathematics to get
taken up during ‘unintentional’ times.

Daily Routine Every day after lunch, the children gathered on the large circle
rug as Marie guided them through the daily routine. The daily routine provided the
children with frequent practice of those elements of the numbers core identified as
appropriate in preK: cardinality, the number word list, one-to-one correspondence,
written number symbols, and subitizing (NRC 2009). There were two ongoing activ-
ities in Marie’s classroom routine: calendar and number of the day. Over the course
of the year, Marie made several adaptations to this routine—adding to the level of
difficulty as children progressed and responding to children’s modifications.

A common practice in US kindergarten and pre-school classrooms is the Daily
Calendar. Despite research that suggests a calendar is not an appropriate tool for
teaching mathematics to preschoolers because they are not developmentally ready
to understand time (Beneke et al. 2008), many teachers continue to use the calendar.
They, and others argue that the use of calendar for the sole purpose of practicing
counting and patterning is appropriate (Ethridge and King 2005). Marie is one of
these teachers—for her, calendar time is not about dates but about rote counting
and one-to-one correspondence. At the beginning of the routine, a ‘helper of the
day’ is selected to lead the rest of the children in counting the days of the month as
she/he points to a calendar with a wand or pointer. In September (the first month of
class), Marie led the counting—particularly as the month progressed and numbers
got higher. During this choral counting, not all children participated but all appeared
engaged. Some called out the numbers with loud voices, others whispered, others
mouthed the words, while some stayed silent but nodded their heads for each num-
ber as the class called it out. Starting in October, Marie did not count at all unless the
‘helper’ needed support. By the end of the year, many of the children could count
up to 31 and all the children participated in the oral counting.

Number of the day was introduced in early October, when Marie showed the
children the different numbers on each side of a 6 inch cube. In mid-November a
second die was added and in January, many of the children started counting on from
the larger number. At the beginning of May a third die was incorporated. After the
helper rolled the die (dice) and led the children in counting the number of dots,
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she/he went to the board and moved the same number of magnets into a circle. In
early December, Marie started leaving the magnets in the circle from the morning
class and the children in the afternoon class had to decide how many to add or take
away to get the number of the day. This activity provided children the opportunity
to engage in change unknown problems (Carpenter et al. 1989). Next, the helper
went to a large counting frame and moved the appropriate number of beads as the
class counted. In early January, Marie noticed that the children were no longer just
sliding beads on the top rung but instead making patterns. The alternating rung-
by-rung patterns were similar to those observed by Seo and Ginsburg (2004) who
found that play often involved patterns. Marie acknowledged the children’s patterns
and encouraged others to try by asking the class each day, “what patterns do you
think [the helper of the day] will use?” This question provided other children, not
just the helper to think about how they could present the number of the day in a
pattern on the counting frame. Finally, the helper chose an action or rolled a die
with actions on each face (jumping, blinking, snapping, etc.). All the children stood
up and jumped, blinked, or snapped as they counted out the number on the die/dice.

Chen et al. (2008) suggest that ‘helper of the day’ may not be developmentally
appropriate when the ‘helper’ does not have any choice. There were some elements
of the routine in Marie’s room that provided student choice but others did not. An-
other concern raised in research on ‘helper of the day’ is the ‘helper’ is the only one
who learns. This may be true in some classrooms, but in Marie’s room the helper
was the leader who engaged the other children to count with him/her. It is also ar-
gued that routines take too much time and without checking my watch, I worried
about this during observations. Yet, the routine just described generally took less
than five minutes, something Marie tested one day when she discussed the sand
timers that were in the classroom:

Marie says that today we are going to do a science experiment [she had told me that the
children were recently very interested in the large sand timers that the district had provided].
For the science experiment Marie shows the top of green timer, which is one minute; the
yellow timer, which is three; the blue, which is five; and the orange, which is ten. Marie
asks, “which do you think is faster, can you kids figure it out?. . .

Randy picks helper of the day, Kara. Kara uses pointer to count to nine. The kids aren’t
looking at the timers but Marie points out that, “the green one finished first so calendar took
us one minute to finish” [she writes 1 on the board]. Next, Kara rolls the dice to complete
the number of the day routine [counting the dots on the die, moving the gumballs in or
out of the machine, sliding the balls over on the ‘abacus’, and having everyone jump up
and down]. As soon as they finish, Marie points out that the yellow timer has finished. “So
how long does it take to do calendar and number of day?” Some children respond, “three
minutes”. [she writes 3 on the board] (Field notes, Dec. 9, 2011)

Transitions The children in Marie’s afternoon class were frequently exposed to
math during transitions. This happened most often when waiting in the hall outside
the restrooms. At the beginning of the year Marie would ask children to “show me 4”
and they would hold up 4 fingers. By the end of the year, she would pose questions
such as “we have 9 students standing in the hall, how many are in the bathroom?”
Other examples of Marie’s use of transitions for some quick mathematics practice
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included times when children were making their way to the rug from lunch or free
play. During these occasions, she would say ‘show me 5’ to support the idea of five
fingers on one hand; or point to some triangles she had drawn on the board and ask
children what shape they were; or have children put a tally mark on a graph.

Explicitly Planned Mathematics Activities In half of the class periods observed,
Marie had an explicitly planned mathematics activity beyond the daily routine.
These activities included brainstorming and planning for dramatic play; several lit-
erature connections; and introductions to a variety of mathematical ideas. Each of
the activities introduced in whole group setting was later made available for children
to choose during free play.

The dramatic play area took on many designs over the year. In October Marie
shifted from the ‘Pizza Parlor’ to the ‘Spooky Café’ because the children started
talking about Halloween. While in whole group, she invited children to brainstorm
prices for menu items. Marie encouraged children to think about dollar values that
‘made sense’ for a menu thereby connecting the play opportunities in the dramatic
play area to real life. Each time the dramatic play area changed, Marie introduced
the children to the new theme (often based on their interests) and brainstormed ideas
to support it.

After recess one day, Marie introduced the children to the concept of similarity
and difference using hula-hoops and large attribute blocks. She started by putting a
red circle in one hula-hoop and a green circle in the other. The children took turns
sorting by color. Next Marie said,

I am going to make it a little bit trickier and see if you guys can figure out. One hula-hoop
had a red circle and one had a yellow square. All the kids put circles in one and squares in
the other, Althea was only one that didn’t know what to put in. Marie then asks if anybody
could think of another way we could do it? Randy says “triangles”. And they fill in one by
one. Marie then puts small shapes in one side and large shapes in the other and immediately
Jay says, “small and big”. Randy then points out a different way of thinking about it and
did thin and thick shapes. Marie says, “these are different ways but both are right. If have a
thin one in front of you put it in here (pointing to one of the hula hoops). The children fill
in both hula-hoops. (Field notes)

After exploring similarity and difference with the whole class, Marie had smaller
attribute blocks available with the math manipulatives but also left the large blocks
and hula-hoops out on the rug so children could engage with them during free play.
Many of the children sorted the small and large attribute blocks during play.

Marie also brought out math manipulatives such as geoboards and dice during
free play (I consider this an explicit practice as Marie, rather than the children, got
out the manipulative). After she introduced the geoboards and rubber bands to a
small group of children, and worked with them to make and name different shapes,
other children who saw the geoboards took them out on their own during later class
periods. Similar to the ways that children learn from listening in on others solving
problems, the children in Marie’s class learned from observing others and integrated
those ideas in their play (Mills et al. 2012).
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Unplanned Response to an Activity As in any classroom, Marie encountered
unplanned teachable moments. There were occasions when she saw an opportunity
to engage children with mathematics embedded in another activity she planned. In
late March Marie read the children’s book Yikes! (Florczak 2003). Her intention in
selecting the book was to discuss the various emotions the main character expressed
as he came across different animals in the jungle. She showed each page as the
children described the emotion and Marie described the animal (the country and
environment it lived in, how big it was, and what it ate). When she got to the Bengal
tiger she told the children it could grow to be 10 feet long. Although it was not
something she planned, she recognized that four-year-olds might not understand
how long 10 feet are. She quickly found rulers and the following was observed:

Marie: “one ruler is one foot, so how many of these do we need for ten feet?” There are
many guesses starting at 2 and counting up and Randy says, “ten”. Marie stops the story to
show the kids how long 10 feet is, she’s worried she doesn’t have 10 rulers; she finds 6 right
away and has the children start at one end of the rug and lay the rulers down.

Marie can’t find any more rulers so she gets the yardstick and explains that it is three feet or
three rulers. She puts the yardstick down next to three rulers so they can see. Next she says
that she thinks the rug is 10 feet so we can see how long the tiger is.

The next page is the Crocodile and he can be twenty feet. Marie says, “We are going to
figure out how long the Crocodile could be. If we know the rug is ten feet and we need to
get to twenty, how many to twenty?”
Keith: “two”

Marie says we’ll measure at the end of the story. She finishes the story and asks again how
many rulers we need to get from 10 to 20. The children aren’t coming up with an answer
but Marie points out that 20 is our number of the day. She gathers up the rulers that are on
the floor and hands them out to children. “We know the rug was ten”, so she has kids lay
down rulers one at a time doesn’t have enough so replaces three rulers with yardstick [note:
this is a bit confusing which she acknowledges wishing for more rulers]. Keeps counting
them up to twenty. Marie has Jay stand at one end of the rug and Althea at the end of the
rulers to see how long the croc is. The kids are awed. (Field notes, March 20, 2012)

This example showed how Marie’s actions in the moment enabled the children to
engage in both counting and measurement and made a mathematics connection to
real life. She later told me that had she planned this ahead of time, she would have
had enough rulers on hand. The yardstick was complicated for most children but
stretched those such as Randy.

Other examples of mathematics that emerged from an activity often came from
books in which mathematics was not the basis of or integral to the story; rather the
mathematics emerged through natural connections (Shih and Giorgis 2004). These
were situations in which Marie did not plan ahead for mathematics instruction but
recognized the need in the moment and responded.

Seeding the Environment

Children in Marie’s classroom had at least one hour of free play every day in ad-
dition to 30 minutes outside on the playground. In preparing the various interest
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areas in the classroom, Marie explicitly provided materials to support mathematics
learning. All interest areas in the class were purposefully seeded with materials or
activities to engage with mathematics. In addition to the block area (a space where
several children regularly played) Marie had math games in the game shelves, a va-
riety of manipulatives placed at the sensory table or in the game shelves, and often
incorporated math learning opportunities in the other interest areas in the classroom.

Games The game shelves in Marie’s room were filled with a variety of puzzles
and board games to support learning in literacy and mathematics. The puzzles de-
signed to promote literacy also provided support for spatial awareness—for exam-
ple, a 2-piece picture puzzle with pictures of words that start with the same letter
not only had children think about the initial letter sound but also the shape of pieces
and how they fit together. Chutes and Ladders™ and other board games supported
children’s counting and problem solving skills. Marie also had a variety of teacher
made games, particularly linear number board games.

Although designed to encourage counting, I observed how one student exhibited
multiple problem-solving skills when playing a linear number board game.

Kara and Kevin get out one of the number race games that Marie has made. Kevin has
moved up the board until he is one away. I ask how many he needs to win and he says 1.
He spins and stops the spinner with his finger at 1. They continue playing more games but
Kevin keeps winning.

Kara says: “you always beat me, let’s play something else”.
Kevin tells her: “you have to go again”.
Kara: “let’s do something else.”
Kevin: “It has to be a pattern (patter-n) with the winning pieces.”
He organizes the game pieces that have finished into a purple, orange, purple pattern. Kara
seems satisfied with the change and they continue playing again to do pattern game. Kevin
spins it lands on line between two and six and he shoves it to six and wins again. As they
keep going, Kevin needs to get a two, so he again stops the spinner with his finger. Kara
quits, and Kevin continues to play by himself.

I ask Kevin if he’d like me to join him and he is beating me every time even without cheating
very much. Then I realize his spinner goes up to six, mine (and Kara’s) only goes to three.

Researcher: “Do you notice any differences in the spinners?”
Kevin, with a wry smile: “mine has 4, 5, 6 and yours has two 3, 2, 1”
Researcher: “who do you think will win?”
Kevin smiling more: “me!”

This vignette provided three examples of mathematical engagement that occurred
during the game. First, Kevin recognized the number he needed to get in order to
win and nudged or stopped the spinner to get it. During this exchange, I observed but
did not react to Kevin’s cheating. As Anderson and Gold (2006) point out, children’s
cheating in a game can be interpreted in multiple ways. Here, I was interested in how
Kevin was cheating in order to get the desired number. In order to know he needed
2 on the spinner, he had to count ahead on the game board. Second, Kevin adapted
the game in a way to keep Kara engaged. He shifted to goal of the game to making
patterns. During the pattern making, Kevin supported Kara’s understanding of what
color counter would come next. Third, in purposefully selecting the spinner with 1–6
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and making sure his opponent had the spinner with 2 sets of 1–3, he was exhibiting
early understandings of probability. Marie’s initial intent when she placed the two
different spinners in the game shelf was to differentiate. Although Marie was in
another area of the room and did not witness the incident, I shared with her my field
notes from that day and she commented that she wished she could have been there
to ask Kevin why the 1–6 spinner let him win more often.

Manipulatives There were a wide variety of manipulatives in the room including
multiple containers of counters (bears, farm animals, wild animals, people), links,
numeral magnets, geoboards, balance scales, pegboards, and other district provided
items. Marie also brought in collections of things that she placed in different interest
areas of the room. One day, Marie put out a box containing a variety of multi-sided
dice. The children took out the dice and rolled them in the then-empty sensory table
to see who got the highest number. The game evolved into a spinning contest using
the 10-sided dice but the children still called out the number that landed ‘up’ after
a long spin. Later in the year, Joel got out the same box of dice and selected one
die with dots and one with numerals. We played a game trying to get the same
number of dots as the numeral rolled. In February the sensory table was filled with
water and the children used various measuring tools. This is a good example of the
way Marie had described her perspective on using manipulatives—she provided the
introduction, then allowed the children to choose.

Dramatic Play Whenever commerce occurred in the dramatic play area, Marie
provided materials to encourage mathematical thinking. For example, the ‘Italian
Restaurant’, ‘Spooky Café’, and ‘Grocery Store’ all involved the use of money
(made from scraps of paper) and a cash register. A child operating the cash register
would decide how much to charge for each purchase and make change; on those
occasions when Marie was close by and noticed the activity, she would ask children
to explain their thinking. Further children regularly counted as they prepared meals,
for example, how many ‘bats’ were needed to prepare bat stew. These meals were
served to adults in the room during which time Marie asked not only ‘how many’
questions (e.g. how many cookies are on the plate) but asked who had more or less,
how many more or less a plate might have, and noticed and asked about any patterns
created.

Observing Free Play for Child-Initiated Mathematics

Sometimes counting seemed to come out of nowhere, at other times; child-initiated
mathematics was linked to the daily routine or to an activity that had been introduced
earlier.

Spontaneous Noah was sitting at the lunch table one day and started counting out
loud. It appeared that he was pointing at something so Marie asked what it was he
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was counting. There was an alphabet border over the chalkboard and he told her
he was counting the letters. Marie said, “Let’s see, are you counting the big and
the little letters, you can count a lot that way” (fieldnotes, October 11, 2011). The
idea of counting the alphabet letters went viral and other children at the table started
pointing at the letters and counting. Interestingly, this was early in the year and few
of the children could count up to 10 and only one could count to 20. None-the-less,
they were eager to try. Other incidents of spontaneous counting occurred regularly in
Marie’s classroom. Spontaneous counting generally occurred in one of two ways—
as children (or adults) were distributing items or when there were collections of
items. Children counted puzzle pieces as they pulled them from the box or stirring
sticks as they were handed out for an art project.

Linked to Activity Introduced Another way in which child-centered mathemat-
ics occurred was when the children built on an idea introduced earlier in the day. For
example, in January, the children worked on art projects in which they made pigs
out of different shapes (circles, triangles, and rectangles). After the projects were
completed and it was time for free play, Noah went to the art table and started draw-
ing pigs using the same shapes. After the incident mentioned earlier during which
Marie pulled out yardsticks to measure 20 feet (the length of a Nile crocodile), Will
sought out the yardsticks during free play to measure various items around the room.

There were occasions when the children extended ideas they learned during the
daily routine, particularly when using the counting frame.

There was a new idea with the counting frame as the children had started moving the count-
ing beads over in different patterns. Jay shifted 4 beads on the top row and 4 on the bottom.
Marie wondered, “How did he move the beads to get 8?”
The children cried out, “4 and 4.”
Marie, “yes, but how did he move them? He made a pattern, first top row then bottom.”
(Field notes, January 17, 2012)

In this example, Jay extended the regular routine providing an opportunity to de-
compose eight as well as think about patterns. Marie responded to his spontaneous
patterning, and as discussed previously, continued to encourage other children to
make patterns on the counting frame. In another instance, Joel went over to the
counting frame prior to daily routine starting and moved five beads on each rung so
that each rung has five beads on each side. He then announced, “They are the same”.
I asked what he meant and he said there was the same number on each side. Joel
had taken up an idea introduced by Jay and ‘played’ with it.

Opportunities to Learn with an Integrated Pedagogical
Approach

In examining Marie’s classroom through my refined view of Wood’s (2010) “in-
tegrated pedagogical approach”, I found that Marie (a) planned and prepared for
mathematics; (b) built on children’s understanding, interests, and, to a lesser extent,
cultural practices; and (c) recognized and responded to mathematics that emerged
in play.
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Planning and Preparing for Mathematics Learning Marie explicitly planned
mathematics instruction to introduce children to new topics and concepts such as
shapes and similarity/difference or materials such as geoboards and attribute blocks.
This practice occurred two to three days a week and generally lasted between five
and ten minutes. The only day I evidenced a longer ‘lesson’ was during the dis-
cussion of attribute blocks and hula-hoops that lasted 20 minutes. Marie had not
planned to extend the lesson that long but some of the children kept things going.
This activity provided children with the opportunity to examine shapes to identify
the similarities and differences.

The mathematical ideas that Marie introduced were often taken up by chil-
dren during free play, what I described in the findings as child-initiated mathemat-
ics linked to an activity. This finding is consistent with what others have found
(Klibanoff et al. 2006) and affirms the importance of making new ideas accessi-
ble in free play. Marie’s careful seeding of the environment provided children with
the opportunity to bump into mathematics during imaginary play and engage with
mathematics in game play and puzzles. Measuring tools in the sand table and water
table, cash registers in dramatic play, items for sorting in the discovery area were
all taken up by children as they interacted with mathematics (Bennett and Weid-
ner 2012). The teacher-made linear board games, such as the one Kevin and Kara
played, have been shown to support number development (Siegler 2009; Siegler and
Ramani 2008) and, in this case, problem solving and patterning.

Building on Children’s Understanding, Interests and Cultural Practices As
in any classroom, Marie’s children had a wide range of skills and understandings.
She built on their understanding by providing activities with multiple entry points
and materials that could be used in a variety of ways (Carpenter et al. 1989; NRC
2009). Marie moderated her involvement in the daily routine as children developed
their counting and problem solving skills. She also added to the level of difficulty as
she saw children master certain skills. For example, over the course of the year, she
went from one die to three and supported children by permitting them to count all
or count on depending on the children’s understanding. Thus Marie was building on
what her children knew—a corner stone of teaching mathematics with understand-
ing (Carpenter and Lehrer 1999) and a key recommendation of the NRC (2009),
the NCTM/National Association for the Education of Young Children joint position
statement (2002), and the Berkeley Pathways report (2012). There were multiple
occasions when Marie built on children’s interests and connected activities to real
world experiences (Clements 2004; NCTM 2000). After noticing children’s frequent
use of the sand timers, she incorporated the timers into the daily routine. Children’s
interests drove ideas for dramatic play, and Marie included them in decisions on
topics such as menus choices and prices. In terms of drawing on children’s cultural
practices and out-of-school experiences, the only place I observed this connected to
mathematics was when Marie incorporated children’s home language in counting.

Responding in the Moment I observed several occasions when Marie responded
to child-initiated mathematics thereby extending children’s understanding or mak-
ing explicit connections to their ideas and mathematics (Clements 2004; Ginsburg
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and Ertle 2008; Lee and Ginsburg 2009; Perry and Dockett 2008a, 2008b). Marie
responded to the mathematics children took up during daily routine and free play.
When the children started making patterns with the counting beads during daily
routine, Marie mathematized this for both the child making the pattern and other
children when she asked what patterns they noticed. During free play, Marie often
observed and extended children’s thinking through questioning. There were multi-
ple occasions when I observed her asking children about the number of items in the
‘meals’ they served, how much something cost, what patterns they saw, and who had
more or less. The day Noah burst out counting, a frequent occurrence with young
children (Saxe et al. 1987), Marie talked about it with him and other children as they
joined in.

In addition to mathematizing child-initiated mathematics, Marie was responsive
to opportunities to engage in mathematics that emerged unexpectedly. This was par-
ticularly true when she read to children or during transitions. The book Yikes! set the
stage for an exploration of measurement and engagement with measurement tools.
Marie was conscious of opportunities during transitions to count and compare.

What Did the Children Learn?

With 15 children in a classroom it is easy for some of them to avoid counting during
daily routine (this did in fact occur upon occasion). For some children the numbers
are too easy or too difficult, some are not confident in their knowledge or language
skills, others are just shy. But, over the course of the year, all the children came to
participate verbally in the daily routine. Further, all of the children demonstrated an
increase in numeracy and problem solving skills. Marie’s daily routine and count-
ing during transitions established a norm that there are many different things to
count—numerals, dots, balls, jumps, blinks, magnets, letters, etc.—and that one can
count any time. This practice established a community that fostered positive dispo-
sitions towards mathematics, an important aspect of young children’s mathematical
development (Anthony and Walshaw 2009). The mathematics in Marie’s classroom
extended well beyond early numeracy to include geometry, spatial thinking, pattern-
ing, and measurement. Some children regularly gravitated to the block area where
they constructed elaborate buildings. Others frequently pulled out the geoboards to
create different shapes, and others used the variety of manipulatives and tools. Chil-
dren’s engagement with materials to recognize and identify the properties of shapes
supported their intuitive knowledge and development of spatial awareness (Sarama
and Clements 2008). Marie encouraged children to share their description of pat-
terns they created during routines and free play, a skill which has been shown to
contribute to the development of pre-algebraic reasoning (Papic and Mulligan 2005;
Papic et al. 2011). Although I hesitate to rely on a standardized measure because
I do not believe it accurately portrays children’s full potential; all of the children
in Marie’s classroom passed the kindergarten screener used in the district (the one
exception was a child with a severe cognitive disability).
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Concluding Thoughts

Counter to the research suggesting that preK teachers rarely mathematize children’s
activities, Marie recognized children’s mathematical understanding and either ex-
tended, modified or supported them in daily routine. She was aware of the devel-
opmental needs of four-year-olds who might compliantly sit on the floor for 20
minutes for whole group time but she knew that was developmentally inappropriate
for that age. Marie considered the linguistic resources that her multi-lingual chil-
dren brought by having them share their expertise counting in Spanish or Chinese,
but did not push them to do so if the children were not comfortable.

Anthony and Walshaw (2009) called for “policy makers and mathematics edu-
cators need to be increasingly informed by research that bridges the early years di-
vide” in order to identify pedagogical practices that offer rich mathematical learning
opportunities in play-based classrooms (p. 117). Although not necessarily general-
izable, I suggest that Marie’s case offers an example of this bridge by employing
three elements: (1) brief intentional mathematics instruction that, over the course
of the year, covers mathematics topics appropriate for early childhood and responds
to children’s understanding and interests; (2) carefully seeded interest areas that
encourage multiple opportunities to engage with mathematics tools, manipulatives,
vocabulary, and ideas; and (3) observing, recognizing, and responding to mathemat-
ics that emerges through play.

As a participant in professional development explicitly focused on developmen-
tally and culturally responsive mathematics, Marie was particularly attentive to the
opportunities for mathematics learning in her 4K classroom. This case offers the
early childhood mathematics education community an example of the possibilities
for learning in play given particular pedagogical practices. As such, mathematics ed-
ucators are tasked with the responsibility of providing both practicing teachers and
teacher candidates with the professional learning opportunities that support prac-
tices such as this. To do so, teachers need: a solid grasp of mathematical knowledge
for teaching preK (Baroody 2004; Ginsburg and Ertle 2008; NRC 2009); to un-
derstand how to build on children’s mathematical understandings (Carpenter et al.
1989); to know where each child is developmentally (Copple and Bredekamp 2009);
and understand the multiple resources children from home.

Current policy documents suggest teachers spend an increasing amount of time
on focused mathematics instruction (Schoenfeld and Stipeck 2012; NRC 2009). If
‘focused’ time is interpreted as predominately teacher-initiated mathematics instruc-
tion, time for play and the mathematics (and other) learning that occurs there will
be reduced. However, if we use Marie’s purposeful approach as an example of fo-
cused mathematics, children will have multiple opportunities to engage with and
learn meaningful mathematics in a play-based environment.
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Communicating About Number: Fostering
Young Children’s Mathematical Orientation
in the World

Bert van Oers

It is the meaning that is important, not the sign. We may change the sign, but retain the
meaning. Vygotskij (1983), Sobranie sočinenij, T. 5, p. 74.

Towards Autonomous Citizenship and Mathematical Proficiency

One of the prominent features of western cultural history is the increasing ‘mecha-
nisation’ in the ways we tend to conceive of our reality. Both the physical and the
social world is increasingly seen as a rule-governed system that is driven by mech-
anisms, procedures, rules and tool-based actions and operations, which bring unity
and predictability in the workings of the system. In his magnificent description of the
history of science the Dutch mathematician Dijksterhuis (1961) has demonstrated
that this cultural evolution is strongly related to the development and increasing use
of mathematics in all parts of science (and life in general for that matter).

Mathematics nowadays indeed has become a core element in people’s cultural
functioning and everybody is supposed to be able to accomplish and understand the
basic procedures of mathematical thinking (addition, subtraction, multiplication, di-
vision). OECD (2012) referred to this capacity as ‘mathematical literacy’, which
was defined as ‘the capacity to identify, understand and engage in mathematics,
and to make well-founded judgements about the role that mathematics plays in an
individual’s current and future private life, occupational life, social life with peers
and relatives, and life as a constructive, concerned and reflective citizen’ (OECD
2012, glossary, p. 29). Mathematical literacy is more than just being able to per-
form mathematical operations without errors, but also contains reflective discourse
about mathematics as a cultural activity. All manifestations of mathematical liter-
acy somehow are based on the use of symbolic means and semiotic devices, and on
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learning to employ them like a mathematician. As Pimm (1987) pointed out, basic
mathematical proficiency implies ‘learning to speak like a mathematician’. Mathe-
matical language includes all types of semiotic devices to be used for dealing with
mathematical meanings (oral and written language, symbols, gestures and graphic
constructions; see also Cobb et al. 2000; and the notion of ‘representational reper-
toire’ in Lehrer and Schauble 2008, p. 10).

With ‘mathematical literacy’ increasingly becoming a cultural exigency for au-
tonomous citizens, most governments around the world nowadays demand that their
state’s educational provisions bring their citizens to a basic mathematical under-
standing and proficiency. Such mathematical literacy is generally supposed to be an
indispensible competence for autonomous citizenship, for getting jobs and contin-
ued studies, or more general: for contributing to the maintenance and innovation of
society.

Promoting Mathematical Literacy from an Early Age

Over the past decades, educational systems over the world have seriously picked up
this challenge of promoting mathematical literacy in all children. In the approaches
for the achievement of this goal, we can identify three trends: a focus on opera-
tional proficiency, an advancement of the start of formal mathematical thinking to
the younger ages, and an attempt to make mathematics more meaningful for (young)
children by embedding their problem solving in number tasks in everyday contexts
that make sense to them. Recent discussions, however, have expressed reservations
on the expectations regarding these trends. Research has demonstrated that opera-
tional proficiency does not automatically foster understanding in the older pupils in
primary school (see for example Bruin-Muurling 2010 with regard to understand-
ing of fractions), nor does it stimulate the development of problem solving abilities
(Kolovou 2011). The latter researchers have demonstrated that meaningful, context-
based realistic mathematics education (Gravemeijer 1994) hasn’t always been able
to solve these problems to a satisfying degree in everyday classrooms.

As to the wide-spread introduction of number-focused tasks and assignments in
early education (counting, dealing with written symbols, learning number facts etc.)
research has also shown that there is reason to be careful. Teaching young children
to manipulate formal symbols correctly was found to make little sense to pupils
(see among others Bryant 1997; Munn 1998) and not conducive to a feeling of
ownership of the number concept in many young pupils (Ekeblad 1996). Children
evidently demonstrate behaviour (like counting) that looks mathematical from the
outside (as it is fairly in conformity with adult mathematical operations). These
children, however, are often unable to apply this ‘knowledge’ in new situations, or
answer questions about it, e.g. concerning the cardinal or ordinal aspects of number
(see for example Bryant 1997; Hughes et al. 2000). Such a formal introduction of
young children into the domain of mathematical thinking might even cause serious
problems in some children’s mathematical thinking development (Hughes 1991).
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How, then, to achieve this cultural objective of helping children to appropriate
mathematical literacy that can support them in their present and future autonomous
participation in a wide range of cultural practices? The aim of the chapter is to
build an argument that supports the claim of the importance of young children’s
ability to communicate about number as a core aspect of the development of math-
ematical literacy. The chapter first concentrates on the role of language in general
for the development of mathematical thinking, and more specifically on the role of
communication for the orientation in the world from a mathematical point of view.
Young children’s need for such communication arises from their involvement in cul-
tural practices. As shown by the examples discussed later in this chapter, teachers
can regulate the development of such a need by confronting children with demands
from the situation that require translation of experiences into mathematical language
and objects. However, rather than focusing directly on the accomplishment of math-
ematical actions or the application of mathematical rules in those situations, it is
claimed here that more priority should be given to (collaborative) orientation in a
situation from a mathematical point of view, and develop children’s mathematical
understanding by assisting them in learning how to communicate with others in
situations that have to do with number, quantity, space and relations. The chapter fi-
nally argues that young children’s development of communication on mathematical
aspects of reality can be distinguished in two different processes: the improvement
of the communicative tools appropriate for communication in the mathematical do-
main, and reflection on the properties of number.

For an understanding of the relevance of communication in the mathematical
domain, it is necessary to explain first in more general terms the relationship be-
tween language and mathematical thinking. This topic will be addressed in the next
section.

The Role of Language in Mathematical Thinking Development

Many researchers have already emphasised the importance of language for the de-
velopment of mathematical thinking (e.g. Pimm 1987, 1995), and have been able to
demonstrate empirically that relationships do exist between mathematical thinking
and narrative competence from an early age (see Burton 2003; Krumheuer 1997).
As Mix et al. (2005) have persuasively pointed out, most current models of number
development fail to capture the complex interaction between verbal and nonverbal
processes. They argue for a conception of early number development as a fluid and
multi-faceted process in which verbal and non-verbal processes are tightly inter-
woven. In their view, number development in young children should be based on
interactions in which children are “exposed to number language and develop some
mastery of it without completely understanding it”. The authors emphasise that such
partial understandings are to be considered as “useful, indeed crucial, contributions
to children’s learning” (Mix et al. 2005, p. 324). From their review of empirical
evidence on the relevant dimensions in number development they conclude that the
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following five conditions seem to be essential for progress in the process of number
development: (1) it is contextualised; (2) it is piecemeal; (3) it is socially scaffolded;
(4) it differs across individuals; and (5) it uses domain general processes (i.e. is
partly based on non-mathematical cognitive processes) (Mix et al. 2005, p. 326).
In many cases numerical development is rooted in non-numerical experiences with
area or contour length (Mix et al. 2002). The outcomes of these studies support
assumptions about the fundamental role of language and communication in number
development. It is, however, important to emphasise here that this does not imply the
primacy of language over numeracy! The relevance of the argument of Mix and her
colleagues is that numerical development co-develops with the progress in language
development.

From a Vygotskian point of view we may say that the child from the first day
of his life is involved in and benefits from a cognitively distributed cultural world
that is imbued with mathematics and mathematical language. As long as the child
himself is not able to deal effectively with quantity and number, people from his
environment can take care of this and scaffold the child’s development step by step
and sensitively into the mathematical world view. By ‘imitative participation’ (see
van Oers 2012c) the child will gradually learn the gist of mathematical thinking
and appropriate the relevant concepts and operations through communications with
more knowledgeable others.

In our own research, we studied the relationship between mathematical skill
(arithmetic) and narrative competence (see van Houten 2011) in 89 primary school
children between 6 and 9 years old, controlling for vocabulary ability.1 It turned out
in a regression analysis of the data that both vocabulary ability and narrative compe-
tence had significant predictive value for mathematical skill. We found a correlation
between narrative competence and vocabulary (0.46), and hence we should take
into account that there is a risk of collinearity of the variables that may make the re-
gression analysis unreliable. However, a check for this condition demonstrated that
the reliability of our regression analysis was not seriously endangered by collinear-
ity (Tolerance: 0.79; VIF: 1.27). Further analysis of our data showed that narrative
competence was a far better predictor than vocabulary. When we calculated partial
correlation between narrative competence and mathematical ability (controlling for
vocabulary), the correlation still remained significant, and (according to the regres-
sion analysis) vocabulary didn’t add a significant proportion to the explanation of
the dependent variable (mathematical skill). The other way around, the partial cor-
relation between vocabulary and mathematical skill, controlling for narrative com-
petence, became non-significant and narrative competence contributed significantly
to the explanation of the dependent variable (mathematical skill) in the regression
analysis (study reported by van Houten 2011).

1All measurements were made with reliable and valid tests. Mathematical skill and Vocabulary
were measured with instruments published by the Dutch national test institute (CITO). Narrative
competence was measured by an instrument that was produced and validated in several studies in
our own department.



Communicating About Number 187

We concluded from this study, that an important factor in mathematical thinking
development is the ability to use language in a coherent way (as in narrative compe-
tence), relating a starting point (e.g. question) via a coherent reasoning process (nar-
rating) to a conclusion (plot). I take this as a basis for the assumption that mathemat-
ical thinking and its development is related to the ability of making ‘mathematical
texts’ (‘mathematical stories’, Forman and Ansell 2005), and to the ability to com-
municate coherently about number, space, relations to oneself (as in thinking), or
to others (as in mathematical discourse). The found correlations between narrative
competence and mathematical thinking, as well as the theoretical assumptions about
communication and mathematical thinking (see for example Sfard 2008) call for fur-
ther study of young children’s ways of communicating about quantity and number.

The studies discussed above suggest that the textual aspect of language, that is,
the facility to build organised systems of utterances (propositions), is related to the
development of mathematical thinking. We must keep in mind here that mathemat-
ical texts are not confined to verbal language in the ordinary sense, but include all
kinds of semiotic tools (symbols, gestures, formula, schematic models, diagrams,
graphs etc.). However, confirming the relationship between organised language use
(‘texts’) and mathematics is not enough for the understanding of this relationship.
In the following I will point out that the function of language as a semiotic tool for
orientation in the mathematical aspects of reality is essential for the development of
mathematical thinking.

Orientation, Mathematising, and Communication

Orientation is a psychological process that tries to find appropriate fit between (hu-
man) actions and the requirements of a situation. The decision to act for instance on
the basis of mathematical knowledge is probably most successful when a previous
orientation process has suggested that this intended action is relevant, considering
the demands of the situation.

Every human action is part of a situated activity. Actions always require an ori-
entation process of examining the situation and the psychological conditions (e.g.
one’s personal goals) in order to be appropriate to the situation at hand. By such ex-
plorations an actor can find out how to act, or decide how to approach the situation.
This can be a preliminary reflection or a process of continuous monitoring, but one
way or the other actions always need exploratory processes to control the fit to the
situation at hand. This process of probing situations in order to find out the nature
of the situation, its affordances and rules, and in order to know what to do or what
to say is called ‘orientation’ in an Activity Theory perspective (see for example van
Oers 1996a). This process is often instantaneous (when we immediately see what to
do and how), but in many situations it also needs a more expanded reflective activity.
According to Gal’perin (1976; see also van Oers 2006) ‘orientation’ is the essence
of human consciousness.
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When, for instance, we find ourselves in a bakery, we are supposed to order
something like bread (rather than a beer), wait for our turn to pay rather than imme-
diately taking a loaf of bread, slicing it and eating it on the spot (like one could do
at home). People wouldn’t be able to conduct proper behaviour, if they weren’t able
to identify the nature of the situation, its affordances and demands, and decide what
is proper to do and to say there. Likewise, when confronted with a problem, actors
always have to find out how to approach the problem, mathematically or otherwise.
More experienced people immediately see how a situation is to be dealt with (this
is characteristic for ‘disciplined perception’—see Stevens and Hall 1998). In social
interactions young children can benefit from this ‘disciplined perception’ of others.
By being involved in shared orientation activities and being guided by appropriate
communications on mathematical issues, they can learn to recognise which situa-
tions should be addressed in a mathematical way and how.

Orientation can have different forms depending on the situation and the level of
the actor’s development or intentions. When we have bought two loaves of bread
of € 1.10 each, most adults know immediately what they have to pay at the check-
out. No need to figure out extensively that a mathematical approach is needed, and
to decide which operations should be executed. Orientation is immediate and often
so quickly processed that we don’t realise that it ever took place. A different situa-
tion can be experienced when we have to decide whether to buy a packet of butter
(250 gram) for € 0.75 or another one (300 gram) for € 0.85. In such situations
more orientation with the help of mathematical knowledge and abilities is needed
in order to find out what to buy. Seeing that a mathematical approach is needed is
mostly not the main problem here, but finding out how to decide which one is the
best buy. Even when people decide that the mathematics is too complicated (or too
much work) for mental calculation, and prefer to use other arguments to make the
decision (see Lave 1988) some mathematical orientation is still unavoidable.

Orientation in a situation to find out what to do from a mathematical point of view
often implies a process of translating some characteristics of the given situation into
mathematical terms. Freudenthal (1973) referred to this process as ‘mathematising’
and describes this as the human activity of organising a field (be it conceptual or
material) into a structure that is accessible for mathematical refinement (Freuden-
thal 1973, p. 133). Organising a field of mathematical objects like numbers into the
category of even or odd numbers, or natural and rational numbers are examples of
mathematising at a conceptual level, but the recognition of the growth of a plant in
early childhood classrooms as a measurement problem is an act of mathematising
too. Mathematising is the activity of producing structured objects that allow fur-
ther elaborations in mathematical terms through problem solving and (collective)
reasoning/argumentation. Mathematising is the basis of mathematical thinking that
underlies both operational-procedural thinking and mathematical problem-solving.
Helping (young) children to appropriate strategies of mathematising is a core ele-
ment of the stimulation of their mathematical literacy.

Mathematising is closely related to language as a tool for orientation and com-
munication. People need a proper language for communicating about quantities,
spatial positions or relations from a mathematical point of view. Especially they
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need an appropriate level of narrative competence when they ask help from others,
or when they are involved in a collective process of (mathematical) orientation in a
problem situation. The language for communication can take different forms. With
regard to mathematical reasoning and the construction of a mathematical space for
focused communication, a number of researchers have pointed at the relevance of
gestures (gesticulations) as a means for communication in a mathematical discourse
or teaching process (see among others Bjuland et al. 2008; Yoon et al. 2011). Similar
suggestions have recently been forwarded with regard to picture books as a commu-
nicative means for the stimulation of young children’s mathematical thinking (see
for example Elia et al. 2010). There is also a body of research that indicates the
value of graphic representations for communication and orientation in the mathe-
matical aspects of reality (see for example Lehrer and Schauble 2008; Lehrer and
Pritchard 2002; Nemirovsky and Monk 2000; van Oers 1994, 2012a; van Oers and
Poland 2007).

Inventing or looking for useful symbolic means to communicate about number,
number operations or space, are common practice in many play activities of young
children. Traditional decisions to impose formal symbolic language (numeral sym-
bols) on children for their communication about number and numerosity is not only
detrimental for many children’s mathematical thinking development (see Hughes
1991), it also fails to appreciate children’s abilities to use different languages (pic-
tures, oral language, metaphors, gestures etc.) for effective communication of their
experiences with reality. Basically it denies one of the most powerful qualities of
mathematics itself, which exploits the values of rewriting expressions and mapping
from one symbolic system into another (as Descartes elegantly has shown when he
mapped geometry into algebraic functions, leading to the nowadays still powerful
branch of mathematical thinking called Cartesian (or analytic) geometry). Vygotskij
(1983) aptly expressed this versatility of languages when he wrote: ‘It is the meaning
that is important, not the sign; we may change the sign and retain the meaning” (see
the motto of this chapter). Coding and recoding meanings in different expressions
(‘representational redescription’ as Karmiloff-Smith has once called it) is a basic dy-
namic aspect in mathematical thinking and its development (Karmiloff-Smith 1995).
Therefore, in the guidance of young children into proficient mathematical thinking,
the experience with this flexible recoding is to be considered one of the basic ed-
ucational objectives in this area. Children’s ability to be involved in this process is
strongly dependent on their communicative ability with regard to the mathematical
aspects of reality. The development of this ability is the topic of the next section.

Learning to Communicate from a Mathematical Point of View

As explained elsewhere (van Oers 2012c), learning to adopt a specific point of view,
and acting or speaking consistently from that point of view is characteristic for the
development of abstract thinking. Therefore, the widespread opinion that mathe-
matics is abstract, is correct, as it represents a historically developed ability to look
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consistently at (physical or cultural) reality from one point of view (embodied as
the legacy of the mathematical community), neglecting all other points of view that
might be taken.

For the introduction of children into this abstract way of looking at (and talking
about) the world, we have to get children involved as participants in activities that
are being organised from this point of view. Evidently, there can be a variety of
reasons for adopting a mathematical point of view: in traditional schools the math-
ematical point of view is adopted since this practice requires it (O’Connor 1998).
Doing arithmetic in the classroom is imposed in such cases by the traditional de-
mands of the situation (e.g. the textbook). A mathematical point of view can also be
triggered in children through interactional processes, when someone else (e.g. the
teacher) asks questions like ‘how much?”, “Which one is more?”. Finally, through
their interactions with more knowledgeable peers or adults, (young) children also
learn to recognise situational cues as referents to mathematical language or actions,
or as demands for orientation through mathematising. Either of these starting points
of mathematical activity may lead to mathematising and the accomplishment of the
mathematical operations that finalise the process by offering an acceptable solution
to a problem.

One of the first processes of mathematising in young children has to do with
challenges of how to refer to quantity or spatial relations or positions. The child’s
proficiency to take part in collective processes of mathematising (or engaging in an
activity of individually accomplishing this process) is dependent on his ability to
use available language for communicating his ideas about numerosity aspects of the
world. For some time the child can use these words correctly (e.g. when he explains
how old he is, how old his sister is and explain who of the two is the youngest).
Likewise he can also state that we need four glasses of lemonade when his (four)
friends are coming to visit him. And check it! In these cases children can use these
everyday words correctly to communicate with others efficiently (though not always
perfectly) from this numerosity point of view. He is communicating with numbers in
his everyday conversations, similar to his skill to use of the word ‘table’ to refer to
a specific piece of furniture. This is an essential first step towards the development
of meaningful mathematical thinking. It is important to keep in mind, however, that
young children’s communication with number words is by itself not necessarily a
sign of mathematical thinking.

Through interactions with more knowledgeable others, this language develop-
ment in young children goes hand in hand with a process of “mathematicalisation”
of everyday language, which is closely related to interactions with more knowledge-
able others (see van Oers 2002). Step by step the counting words that children have
picked up in everyday conversations, get a partially mathematical meaning, when
the child starts to realise that a name of a numeral (on his house, on the bus, on
the birthday hat of his little sister etc.) may refer to different things: sometimes it
is only a name (like on the bus), but sometimes it refers to numerosity, but at other
moments it refers to order (like in the supermarket: who was first, who is next?).
Although still quite incomplete in the beginning (as Piaget has already shown), the
differentiation in the use of numerals shows emergent reflections on the meaning
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of numerals and indicates the commencement of a new mathematical content in the
child’s everyday words.

Genuine mathematical thinking is, however, more than communicating with
numbers. Mathematical thinking essentially requires reflection on (the relationships
among) mathematical objects, i.e. relate different mathematical objects (like num-
bers), explain operations with number, evaluate the use of mathematical notions, in
short: it calls for the ability to communicate with oneself or other people about math-
ematical objects and their interrelationships. With regard to number, we can say that
learning to communicate from a mathematical point of view requires a transition
from communication with number (for achieving an everyday goal of referencing)
to communication about number for justifying a communicative claim about the
quantitative or spatial dimensions of reality.

Although the details of this developmental trajectory are far from clear as yet,
systematic observations of young children have produced at least three important
moments and processes that seem conducive to the gradual evolution of mathemati-
cal thinking in young children. I will illustrate and discuss some pieces of evidence
for these moments in the following section.

Fostering Children’s Development Towards Communicating
About Number

Ample observations since the work of Piaget (1952) have demonstrated that young
children themselves often spontaneously invent ways to communicate their ideas
and intentions regarding to numerosity (see Carruthers and Worthington 2006; Gel-
man and Gallistel 1978). Such spontaneous processes in children are premature
processes of mathematising. In our own research over the past decades we could
establish that triggering mathematising in young children, encouraging them to in-
vent tools for communication, and questioning them about numbers are accessible
and engaging activities for young children when they make sense in the context of
their play. Fostering such processes constitutes a basis for later mathematising and
communication about number.

Stimulating Early Mathematising

From a very young age children spontaneously invent ways to deal with the quan-
titative or spatial aspects of their environments, and communicate about these as-
pects with the symbolic expressions they have invented. The magnificent work of
Carruthers and Worthington is pioneering and seminal here (see for example Car-
ruthers and Worthington 2006). Through a huge wealth of observations they have
revealed young children’s potential of mark making and have produced evidence for
the concurring evolution of children’s meanings in matters of quantity, relation and
number. Their situated interpretations of the children’s marks and related narratives
show that even at an early age children’s mark making expresses the child’s logic in
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dealing with quantity and number. The children organise their private experiences
in symbolic ways that open ways for refinement. In other words, these children are
really involved in mathematising (as defined above), even though their means of
communication are not always conventional or drawn from the ‘official’ mathemat-
ical register. These children are definitely communicating their take on reality from
a mathematical point of view.

Although Carruthers and Worthington have offered several rich examples of chil-
dren using their own (self-invented) marks, or children using more conventional
number symbols, or both, we need to explore these processes in greater detail to
find out how children merge their own understandings with the disciplinary rule-
based mathematising. For expanding our understanding of the process, we have to
scrutinise the communication processes and their evolution in detail. We need more
understanding of the ways how young children use the conventional mathematical
symbols as codes for the expression of their personal notions of number and spatial
relations, and how these evolve into mathematical concepts accepted by the wider
mathematical community.

There are several pedagogical ways to get children involved in communication
about numbers. One of them is asking questions that encourage children to reflect on
their use, utterances or manipulation with numbers, or ask for arguments that explain
their ideas. That is why such questions for children like “Are you sure?” can be very
productive for the stimulation of mathematical thinking, even with young children
(see for example van Oers 1996b). Figuring out answers to these questions in the
context of children’s play contributes to the sense of these questions as it enhances
children’s ability to participate more successfully in the play with other children.

In the next section some of the evidence will be presented for two phenomena in
the development of communication about number, which seem crucial in the process
of mathematical thinking development. The observational data were gathered and
recorded in early years classrooms in a play-based curriculum in the Netherlands.

Improving Tools for Precise Reference in Communication

In their engagement in play, children often wish to find solutions for communicative
problems they encounter, for example, when playing supermarket. When the teacher
encourages children to solve play-related problems, children can often suggest pos-
sible solutions, try them out, share and discuss them. In other words, they start to
communicate in order to generate and examine possible solutions.

An illustrative example comes from our own classroom observations, showing
how an object (in this case a drawing) can be transformed into an object that opens
and refines possibilities for mathematical actions. As a matter of fact, children are
often challenged in their play to reflect on the adequacy of the symbols they use for
the communication of their ideas about quantities.

One morning an early years teacher (grade 2; 5-year-old children) had told a
story about a king who wanted a new castle. After the story the teacher talked with
the children about castles. In this conversation the teacher showed the children pic-
tures and tried to find out what the children knew about castles. She introduced a
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Fig. 1 Construction plan of a
castle

Fig. 2 Drawing of a castle by
one of the 5 year old children

drawing of a ground-plan of the king’s castle (see Fig. 1) and verified in a prepara-
tory whole-class conversation whether all children correctly understood and could
read the drawing. Many children had visited castles during their vacations with their
families. Finally, the teacher invited a number of children (in dyads) to build a castle
with different construction materials on the basis of the teacher’s construction plan.

Following this construction plan, two boys (5 years old) had made a big castle
together using blocks from the construction corner. Other children in their classroom
showed interest and came looking at it. During their building activity, however, the
boys noticed that they had not enough round blocks for the exact replication of the
towers from the teacher’s design. So they couldn’t exactly copy the teacher’s design
and had to change their building to cope with the numbers of blocks available.

When the boys were finished, the teacher asked questions about their castle and
invited the boys to make a drawing of it. That would be helpful for the communi-
cation and handy in case other children ever would want to build a castle like that.
Note that the teacher actually invites the boys with this request to communicate as
clearly as possible with future others about their castle. The boys found it a good
idea and started drawing. One of the boys produced a drawing of their castle as
represented in Fig. 2 (see also van Oers 2008 for further semiotic analysis).

Initially, it was a drawing with four walls with towers in the corners, very much
similar to the construction plan the teacher had provided (with the walls, and the
towers as small circles at the corners), but with new aspects added (e.g. some little



194 B. van Oers

Fig. 3 A 5 year old’s attempt
at writing ‘four’

houses in the inner court yard). However, in the course of the drawing the child’s rep-
resentation gradually evolved into a drawing that also included aspects of a frontal
view (the battlements of the castle represented as stripes on the top line, and a few
windows, the striped objects). Obviously, the drawing is a mixture between a frontal
view and a view from above. It is still remotely related to the teacher’s construction
plan, but not a copy of it. It was the boy’s own solution for the representation of the
castle he had built with his peer.

Different analyses can be made of the boy’s attempt to make a representation of
the castle. For the present argument, however, I will only use this case as an illustra-
tion of the boy’s struggle for perfection in the communication of the mathematical
aspect of his drawing with the help of symbols. In the conversation between the
boys, their attention was drawn to the construction of the walls and towers, and the
boy who made this drawing (Fig. 2), wanted to indicate how many blocks should be
put on top of each other, like in the teacher’s model. He starts with the tower at the
right (bottom) and copies the symbol from the teachers model (see Fig. 3).

He is, however, obviously not satisfied with it and shifts to an analogous inscrip-
tion (based on the number of little circles equal to the number of bricks). By itself it
is remarkable that the boy does not continue copying the symbols of the teacher to
the best of his abilities, or doesn’t draw the required number of bricks (as quadran-
gles). Instead, he invents new symbolic means (circles representing the quantities)
for the communication of the required numbers of bricks. The boy continues with
this drawing of quantities in the other towers (four circles for four blocks etc.) and
in the polygons representing the walls. He draws four circles in the front left poly-
gon (the big one), but immediately noticed that he drew one circle too much and
he crosses out one of them (see black area in left corner below). By so doing, he
shows that he is really performing a reflective mathematical act of making one-to-
one correspondences: he thinks about the two quantities and their relationship, but
especially about the adequacy of his symbols for correctly representing part of the
situation.

The boy in this example obviously is looking for ways to communicate his
knowledge of the quantitative aspects of reality (his castle) to others. As the con-
ventional symbols were obviously too difficult for him to write, he invents new
analogous means which open a way for him to refine his communication about re-
ality. Without these means it would have been impossible for him to enter the world
of meaningful mathematising, that is to say, accomplish a way of mathematising
that makes sense for him and others. In this activity the boy was highly engaged in
the communicative activity (he was eager to show the viewers the numbers of his
drawing), he evidently followed a number of rules (e.g. a rule of correspondence
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between the number of blocks and the structure of his representation), and made
use of his freedom by changing to new communicative means. This example of
mathematical communication grew meaningfully out of the children’s play. Invent-
ing appropriate symbols to refer as precisely as possible to this number aspect of
reality, is a necessary step towards communicating about numbers and an important
step in the development of mathematical thinking, as it helps children to understand
the function of the conventional mathematical symbols in due time too.

Reflection on the Properties of Numbers

When children master the conventional symbols for number as a way of reflectively
referring to quantities (like in the previous example), it is important to reflect with
them on their meanings and interrelationships, especially when we want them to
discover new properties of numbers. Making representations (like the number line
or other types of diagrams) can be usefully introduced to support communications
about number (see van Oers 2012a). The following is an illustration of how a teacher
introduces the notion of ‘odd’ and ‘even’ as a property of numbers. As a start she
got children involved in a play of the post office and the mail man, making use of
the fact that in the Netherlands the numbers of the houses are even at one side of the
street and odd at the other. For preparing the mail man’s round, children categorise
the letters for the left side and for the right side of the street separately.

This is the situation:

Teacher with three 5/6 year old children (two girls; one boy), sitting at a table.
A big number line is displayed on the wall of the classroom, lining up the num-

bers on differently coloured cards: the numbers 10 and 20 on a yellow card, the
other numbers either green (odd) or red (even). They had been talking about a post
office play and about the work of the mailman.

There is a mailbox in the classroom that the children had made in the weeks
before. There is also a chest with two columns of drawers, where the children can
keep their own stuff like their drawings and other work. In the previous days the
children have numbered all drawers of this chest with number symbols so that they
can function as personal letter boxes as well.

The boy in this small group is asked to empty the mailbox of the classroom. He
brings all the letters from the mailbox to the table where the teacher and the two girls
are seated. The following conversation between the teacher and the three children
ensued:

Conversation:2

Teacher: “How can we sort these envelopes? Do you know how to do that?” [to one
of the girls].

2Thanks to Niko Fijma who communicated this event to me on a video clip.
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Girl 1: “you have to put things together”
Teacher: “How can we do this with the envelopes?”
Girl 1: “you look at all the addresses and suddenly you see two of them that are

the same, and you can put them together”.
Teacher: “OK, so if the mailman sees ‘Hoorn’ [the name of the hometown of the

children], then he puts everything with ‘Hoorn’ together in one group?”
Girl 1: “No, he looks at the addresses and puts the same addresses together”
Teacher: “All right”. [The teacher suggests that the pupils sort the envelopes and

emphasises that the children work together. The children discover, how-
ever, that all of their envelopes are addressed to children in group 3a. So
there is only one group.] “What shall we do now?”

Girl 2: “We can put the numbers on the envelopes in different groups, as with the
drawers”

Teacher: “Yeah! Yesterday we have numbered all the drawers of the chest. We had
a red row of numbers, and a green one. Do you remember what the differ-
ence was?”

Girl 1: “they go in steps of two. . . I was number 1 and then you go to the right
and I thought that Alex would be the next, but he wasn’t. He was in the
other row, below me”

Teacher: “Yes, Alex was in the row below yours, wasn’t he? Each row made steps
of two with the numbers. What was the difference between the two rows?”

. . . . . .

Girl 1: “we had a row with the numbers 1–3–5–7–, and one row with 2–4–6–8–”
Teacher: “OK, but what was the difference between the two rows? Who can re-

member how we called the different numbers?”
Girl 1: “Odd numbers. . .”
Teacher: “Odd and. . .”
Girl 1: “and even”
Teacher: “do also you remember which of the number lines was even and which

one odd?”

[Pupils look at the number line on the wall.]

Girl 1: “Red is odd”
Teacher: “Red is odd? Take a good look at the number line again”. “We said yes-

terday that 2–4–6 were even. . . and which colour is that?”

[Children take a look at the number line on the wall.]

Children: “Red, yes red is even and green is odd, then”

[The teacher shows a red card with the word “even” and a green card with “odd”.]

Teacher: “That may be handy when we are going to sort the envelopes. And to
which group belong the yellow numbers? Do you know that, Collin?” [the
boy].

Boy: “eh. . . Those are the numbers. . . eh. . .” [long pause]
Teacher: “Do they belong to the red group or to the green group? What do you

think? Take a look again at the number line”
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Boy: “To. . . the. . . green one”
Teacher: “To the green one? Why do you think so?”

[inaudible]

Teacher: “What do you think?” [to the girls]
Girls 2: “they belong to the red group”
Teacher: “You think these are even numbers? Why do you think so?”
Girls 2: [inaudible] “. . . it is between two greens”
Teacher: “Yes he is placed between to greens, isn’t it?”
Boy: “Do we have to put the even ones here on the table” [point with his right

hand to the table], “and the red ones here” [points with his left hand to
another point on the table]

Teacher: “Yes good idea” [The teacher puts the red and green card on the table, as
suggested by the boy]. “So here we can put all even numbers and here all
odds. OK, let’s do it. How are you going to do it?”

[Children distribute the envelopes; and with the help of the number line on the wall
they can allocate all envelops in the even or odd group.]

Teacher: “Now we have to check the two piles; and put the envelopes in a correct
order.”

[The envelope numbered “2” is already on the table.]

Teacher: “What comes after two?”
Boy: [looks at the pile of envelopes and says] “6” [which is on top of the pile]
Teacher: “We should make steps of two, remember?”
Boy: “4”
Teacher: “If each of you takes some of the envelopes to look for the numbers. . . .”

Children put the even and the odd group in the correct order. They know the even
numbers by heart. To identify the odd numbers in line they sometimes mention the
first one aloud, say the next in the ordinary number line softly for themselves and
name the next one (spoken aloud) as the following odd number. The yellow numbers
(10 and 20) are correctly allocated to the even group.

The children check the piles of envelopes by predicting the number of the next
envelope that the teacher shows one by one. Finally the boy distributes all envelopes
to the personal letter boxes of all children in their group.

In this project the teacher with the children are not using the numbers just as a
communicative means to refer to quantities, but have constructed numbers as objects
that can be talked about, reflected and refined with new properties (odd and even).
The teacher’s goal was obviously not to try achieve a formal definition of even or
odd, but to support children’s collaborative reflection on the properties of numbers.
By talking about the numbers with the help of the number line, they discovered that
the (order of the) numbers can be differentiated into two classes. Interestingly, in this
stage the children have learned new words to refer to subtypes of numbers and relate
these to the number line. They also noticed that these two types of number alternate
in the number line. It would take a further activity of communicating about odd and
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even numbers to discover their distinctive properties. As we can see, a beginning
understanding of ‘odd’ and ‘even’ is emerging when the children notice that odd and
even are always ‘neighbours’. With this property they find out that the differently
coloured numbers (10 and 20) should be even “as they are in between two odds”.

Conclusion

For the moment this chapter did not want to go beyond valid casuistic evidence
for the claim that mathematical communication (with number representations, and
about number properties), can be accomplished with young children, under the guid-
ance of a teacher. Both processes in mathematical communication open ways for
communicative refinement of mathematical symbols and ideas, and as such they
represent early steps in the development of mathematising and children’s mathe-
matical orientation in the world.

This chapter explored some of the processes in young children’s development
of mathematising that may foster children’s mathematical orientation in the world.
From the perspective of Cultural-Historical Activity Theory, this development is
theoretically interpreted as a process of guided appropriation of mathematical tools
for orientation in the world, especially for coping appropriately with its numerical,
quantitative and spatial aspects. The conception of mathematical thinking develop-
ment as a basically narrative and communicative process, draws attention to ques-
tions about the early stages in children’s communication regarding the mathematical
aspects of reality. More specifically this leads to questions about how children build
the tools for referring to these mathematical aspects, and how communication with
these symbolic tools can be used for helping children to communicate about num-
bers and discover their properties.

According to the Cultural-Historical Activity Theory, play activities are the ap-
propriate contexts for young children’s communication and their learning (see for
example van Oers 2012b). Given the rule-governed nature of activities, participation
in (playful) activities provides a basis for paying attention to mathematical (number-
related) rules as well (van Oers 2012a). The degrees of freedom inherent in play
activities, allows young children to invent their own (unconventional) ways of con-
struction rules and means for reference to the numeral aspects of their play activity.

The research into children’s mathematical communications described in this
chapter, was conducted in a play-based curriculum that has shown to be produc-
tive in triggering young children’s communication about number, especially when
more knowledgeable others are involved for the guidance of the children in the per-
spective of mathematical thinking development (Fijma 2012). In this chapter, two
classroom settings for young children in a play-based curriculum have been pre-
sented to demonstrate how Activity Theory works out in practice, and how these
settings can be used as data sources for studying how young children improve their
communication regarding numerical aspects of their reality. From a research point
of view, the whole enterprise can be seen as a theory-driven construction of data for
getting a deeper understanding of children’s communication about number.
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The qualitative data-analysis (summarised above) supported the claim that com-
municating about mathematical aspects of reality can engage young children in
mathematising and mathematical narratives from an early age. The studies showed
that early mathematising may entail both reflectively constructing codes for refer-
ring as precisely as possible to number and quantity, and constructing numbers as
objects to talk about for the discovery of their properties and for the refinement of
the children’s ideas and representations of number and quantity. Hence, in addition
to communicating with number, our observations have demonstrated that 5-year old
children can get meaningfully involved in activities of communicating about num-
ber.

However, for the enhancement of mathematical literacy more is needed than ini-
tiation in mathematics as a cultural domain and strengthening children’s way of
communicatively orienting in the world from a numerical point of view. Other de-
velopments must be promoted in the future (see also van Oers 2001). A topic for
further concern is the problem of attitude. Learning to communicate about number
will probably contribute only modestly to the enhancement of mathematical liter-
acy, if no attitude for mathematising and discussing number problems is developed.
Further study of the relationships between communicating about number, attitude
and the play-based curriculum is required.

Within its focus on mathematical communication in young children, the conclu-
sions drawn above might be promising, but should not obscure the fact that this is
still only a limited outcome, when we aim at the development of mathematical liter-
acy in the broad sense. At least four issues can be mentioned here that articulate the
limitations of the research described above and that at the same time hint at topics
for future research and approaches:

(1) The first pertains to the development of higher levels of communication for
the improvement of mathematical thinking, i.e. communication about how to
communicate validly and productively in the mathematical domain. Reflections
about rules for communication about mathematical objects (such as ‘be con-
sistent’, or ‘define your concepts unambiguously’) is an essential dimension
of mathematical thinking. In the mathematical community such reflections are
often also carried out in communication with mathematical peers (see for exam-
ple Cobb et al. 1993). Until now, our studies did not directly address this issue,
but deeper studies in this area are definitely needed, both with young and older
pupils.

(2) Our studies focused predominantly on communication with/about number. Of
course this is only one of the developments that may be conducive to children’s
mathematical literacy. Space is an equally interesting and important mathemat-
ical object that is accessible for young children, and that can be constructed
and explored on the basis of symbolic representations. Both the invention of
effective language codes to refer to space characteristics, and communication
about space concepts may be an applicable distinction here as well. In addition
to communication about number, space can also be a good stepping stone for
the commencement of serious mathematising with young children (see Lehrer
and Pritchard 2002).
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(3) The research discussed above is based on observational studies that provide a
valid basis for new ideas about young children’s mathematical communication
and introduction into mathematical literacy. Further qualitative research, how-
ever, is needed to deepen our understanding of the nature of children’s mathe-
matising as a way of orientation in a situation. Moreover, more in-depth analysis
is necessary to reveal the structure of the communicatively constructed mathe-
matical narratives (its topics and organised predicates—see van Oers 2006, for
further elaboration of this approach), and to relate them to conceptual under-
standing. Moreover, further large scale quasi-experimental research is needed
to test the relationships and to strengthen the evidence base. Some of this re-
search has already been carried out (see van Oers 2010; Poland et al. 2009) but
needs to be continued.

(4) The role of the teacher is not articulated clearly in the research presented here.
Nevertheless, the teacher’s role and her/his abilities to communicate properly
with children for the broad enhancement of children’s mathematical literacy,
is essential. More research into the teachers’ proficiency in mathematical com-
munication and in bridging the demands of the mathematical community and
the pupils’ personal constructions, is needed here for a deeper insight in pupils’
developing possibilities to communicate with/about number. A related issue re-
gards the content and aims of the curriculum: how can teachers combine chil-
dren’s communication about number with the ‘official’ curriculum requirements
that teachers also have to achieve? As Fijma (2012) has demonstrated, it is
important in a play-based curriculum that the teacher has the curriculum re-
quirements for mathematical learning always in mind, when collaborating in
children’s projects. With these contents in mind she should decide in advance
which of these should be explored and practiced with children in the context of
their playful activities. Our classroom experiences show that a mathematically
proficient teacher can often quite easily identify the mathematical dimensions
in children’s play and turn these meaningfully into objects for further study and
refinement which make sense for the children and their engagement in play.
When this results in improved mastery or understanding, this contributes to the
children’s ability to participate in the sociocultural practice that they are imi-
tating (like in the example of the post office and the mail man above). A basic
pedagogical prerequisite here is that the teacher really believes in children’s po-
tential to mathematise with their own notions of quantity, space, relation etc.,
and to communicate about them with others. Communicating about number (or
any other mathematical object) is not to be seen as an incidental special activity
to be practiced now and then, but should be consistently embedded across the
curriculum, in order to foster pupils’ mathematical orientation in the world to a
maximal extent.
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Vygotskij, L. S. (1983). Sobranie sočinenij, Tom 5. [Collected works, Vol. 5]. Moscow: Peda-
gogika.

http://dx.doi.org/10.1007/s10649-009-9225-x
http://dx.doi.org/10.1159/00033929


A Framework for Examining Technologies
and Early Mathematics Learning

Kristy Goodwin and Kate Highfield

Background

Over the past decades there has been increased impetus to use technology in early
childhood learning settings (Clements and Sarama 2002; Edwards 2005; Haugland
1997, Plowman and Stephen 2003, 2005; Yelland 2010). In addition, there is a
wealth of new technologies and interactive multimedia and technology resources
available for mathematics teaching and learning. However, research is yet to ar-
ticulate and substantiate their use and impact on student learning (Highfield and
Goodwin 2008).

In mathematics learning visual representations are essential for communicating
ideas and concepts (Goldin and Kaput 1996) and new technologies offer new af-
fordances for representation (Highfield and Mulligan 2007; Moyer et al. 2005).
Advances in interactive multimedia and manipulable technologies provide learn-
ers with the opportunity to view and manipulate dynamic media and share external
representations with ease. In mathematics, studies have established that computers
provide “unique opportunities for learning” (Clements 2002, p. 174) and provide
“greater scope to facilitate numeracy skills in young children.” (Kilderry and Yel-
land 2005, p. 113).

Over the last decade there has been an exponential growth in the educational
multimedia market, with a plethora of interactive technologies available for mathe-
matics learning and teaching such as interactive whiteboards, educational software,
iPads and robotics. However, as outlined above, the ubiquitous application of inter-
active representations in mathematics has not been well supported by a corpus of
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research to substantiate their effectiveness, particularly in early mathematics learn-
ing. There has been an assumed sense of superiority of interactive technologies,
without a corresponding corpus of evidence supporting their cognitive value (Scaife
and Rogers 1996).

In considering screen-based resources (interactive multimedia), it is unknown as
to whether different pedagogical designs evoke qualitative differences in the kinds of
representations students internalise. Little is known as to what students extrapolate
from various dynamic, interactive on-screen representations. With some multime-
dia, learners often have to coordinate multiple and diverse representations, placing
various demands on their cognitive infrastructure. This does not necessarily lead to
better learning and may actually hinder students’ learning outcomes. Screen em-
bellishments and animations may also impose unnecessary additional cognitive de-
mands on the learner. With other multimedia forms, the onus is on the students to
develop their own multimedia representations, which requires a significant cogni-
tive investment on each learner’s behalf. Students may not engage with the repre-
sentations in ways conducive to learning but instead, they may engage in superficial
processing (Rogers and Scaife 1998).

Further, the impact of different multimedia designs on learning remains largely
un-researched and this problem is further pronounced with young learners, where
there is even less research. A systematic examination of the potential affordances
and impact of the available mathematical multimedia on young students’ learning
is required to identify various multimedia attributes for mathematics learning. It
is widely accepted that humans have a limited working memory (Baddeley 1986),
thus instructional representations must be designed with the goal of reducing ex-
traneous cognitive load. Multimedia design principles must be commensurate with
how learners perceive and interpret the information presented to them on-screen.

The past decade has seen an increasing body of research on the application of
screen-based technologies for mathematics teaching and learning (Clements and
Sarama 2009; Heid 2005; Plowman and Stephen 2005; Zevenbergen and Lerman
2008). However, a significant proportion of that research examines screen-based
tools (Highfield and Goodwin 2008) and the same depth of research is not present
in mathematics learning with techno-toys. This means that in addition to the con-
cerns outlined with interactive multimedia there are an increasing range of alternate
technologies, such as simple robotics and techno-toys that provide alternate expe-
riences with technologies. These additional tools may provide unique opportunities
for mathematics learning, or indeed may add to the complexity of the technological
and pedagogical landscape for young mathematics learners.

One specific example of an alternate technology is simple robotics. To date the
research available on the role of programmable toys in mathematical development
is restricted and often focuses on older children, with limited studies investigating
their role in young children’s mathematical learning (Janka 2008; O’Meara 2011;
Stoeckelmayr et al. 2011). Additionally, it appears that this limited research has not
been disseminated in such a way as to impact upon the professional practice of early
childhood educators (Clements and Sarama 2004; Edwards 2005; Waters 2004).
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It is clear that further research is needed to investigate the impact of technology
in mathematics learning, with a focus on a broad range of technologies including
screen-based interactive multimedia and manipulable toys such as simple robotics.

Studies on Early Mathematics Learning with Technology This section pro-
vides an overview of four studies conducted by the two authors (Highfield and
Goodwin) as part of early research (Highfield and Mulligan 2007), their PhD the-
ses (Goodwin 2009; Highfield 2012) and current research project (Goodwin and
Highfield 2012). Each of these studies examined key technologies appropriate for
early mathematics learning. Goodwin (2009) and Highfield (2012) both focus on
the use of children’s representation as evidence of mathematics learning. This sec-
tion presents a brief overview of these studies, with exemplars from these projects
provided.

Goodwin’s (2009) study investigated young students’ (aged five to eight years)
use of a variety of interactive multimedia to develop their concepts of fractions.
A classification scheme and taxonomy of interactive multimedia was established.
Three classes of multimedia were grouped according to the ways in which the stu-
dents interact with the representations: (i) instructive multimedia; (ii) manipulable
multimedia; and (iii) constructive multimedia. With a specific focus on the impact
and affordances of the three different types of multimedia on young students’ con-
cept image of fractions, the study also focused on how learners at the extremes of
mathematical achievement used and responded to the multimedia.

Goodwin’s (2009) design-based research study amalgamated a constructivist
teaching experiment and a case study approach. The study was comprised of two
iterations, involving a total of 86 students from three Kindergarten (the first year
of formal schooling) classes and a Year One (the second year of formal schooling)
class. Both iterations examined the influence of an intervention employing the three
different types of interactive multimedia previously listed. Iteration One involved
one Kindergarten and one Year One class who participated in a four-week inter-
vention and constituted a pilot study for the next iteration. Iteration Two involved
two Kindergarten classes: an intervention class and a comparison class, in which a
12-week intervention was implemented. Data sources included students’ drawings
collected before, during and after the intervention, a multimedia fraction assessment
administered before and after the intervention, digital screen and audio recordings
of students’ computer work and video-stimulated recall interviews to ascertain stu-
dents’ recall of the multimedia content. Case study data from four students in each
intervention class (two low-achieving and two high-achieving students) included
digital screen recordings and video-stimulated recall interviews. A mixed method
approach (Creswell and Clark 2007) to analysis was adopted, incorporating both
qualitative and quantitative approaches. Innovative data analysis and reporting tech-
niques were utilised to provide rich and authentic data to support the themes related
to the impact and affordances of the interactive multimedia. Data analysis involved
coding screen recordings and interview data using Studiocde software. Triangulat-
ing case study data from the analysis of post-lesson drawings, screen recordings and
video-stimulated recall interviews provided a more complete description of phe-
nomena and promoted greater reliability.
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Results from Goodwin’s (2009) study indicated substantial improvements in the
intervention students’ drawings and multimedia fraction assessments. All students
in Iteration One showed improvements in terms of their concept image of a fraction,
as projected at the post-intervention assessment point. In Iteration Two, the interven-
tion students showed more advanced and sophisticated concept images of fractions
than the non-intervention sample at three assessment points (pre-, during- and post-
intervention). In both iterations the students’ concept image of fractions developed
between the pre- and post-intervention assessment points, becoming more sophis-
ticated in terms of the level of structure, mathematical concepts and use of symbol
notation. Intervention children, who used interactive technologies, could success-
fully depict multiple representations and showed evidence of advanced mathemati-
cal ideas such as non-unit fractions and equivalent fractions and counter examples
after the intervention. Many intervention students’ concept images also included al-
ternative, ‘non-schooled’ depictions of fractions and increased use of formal symbol
notation ah the post-intervention assessment point.

Goodwin’s (2009) analysis of the intervention data documented differences be-
tween the three types of interactive multimedia in terms of the concept images pro-
jected. Analysis of post-lesson drawings suggested that the students demonstrated
the most developed and advanced representations after using manipulable multime-
dia. There was a higher incidence of students’ recalling idiosyncratic, superfluous
and non-mathematical details and displaying ‘crowded’ images after using instruc-
tive multimedia and fewer, less developed representations generated when using
constructive multimedia.

Throughout this work, case study data corroborated findings from the interven-
tion data that suggested that manipulable multimedia had the greatest impact on
students’ concept image. Each classification of multimedia offered distinct affor-
dances in terms of the frequency of the representations the students observed or
created, the ease of experimentation with the representation and the levels of stu-
dent engagement. The importance of the provision of instant feedback and evidence
of multimedia design principles were also reflected in the case study data.

A standardised mathematics assessment, I Can Do Maths (Doig and de Lemos
2000), was administered to before the intervention to identify ‘high-’ and low-
achievers’. This enabled the researcher to determine if high- and low-achievers used
and responded to interactive multimedia in different ways. Differences were also
noted between how the low- and high-achievers used the multimedia and recalled
what had been presented. The low-achievers had a greater tendency to focus on the
superfluous and surface details embedded in the multimedia resulting in superficial
processing of the multimedia. In contrast, the high-achievers were adept at selecting
the salient information from the multimedia to construct effective mental models.

The second study, by Highfield (2012) examined a manipulable form of technol-
ogy: simple robotic toys (Bee-bots and Pro-bots). This work was pertinent, given
the ubiquity of young children’s engagement in technology and consistent research
focus on screen-based tools. These programmable toys offer tangible interactions
and provide opportunity for young learners to engage in a range of mathematical
concepts and processes as they input, execute and reflect upon programs. This study
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focused on young children’s engagement, representation and dynamic manipulation
of tools as they engaged with these toys in play and teacher directed tasks.

Highfield’s (2012) study followed 31 children, aged three to seven years as they
engaged in a twelve-week program in their classroom environment. Children from
two contexts participated, a prior-to-school setting and a nearby primary school,
with three groups of children: Three-year olds, Four-year-olds and a Year One class.
Each group of children completed five phases of the study, including pre- and post-
interviews, a training session at the Macquarie ICT Innovations Centre, and a se-
quence of teaching and learning episodes.

This work also drew on design-study methodology (Gravemeijer and van Eerde
2009) and adopted multiple layers of analysis, with children’s mathematics learn-
ing examined through video data of classroom engagement and play and through
drawn representations. Video data were analysed to explore children’s use of ges-
ture, action, dialogue and representations of programming. A multi-faceted theoret-
ical approach exemplified the interconnection between the development of semiotic
systems, incorporating speech, gesture, embodied action and representation of dy-
namic concepts.

Highfield’s research highlighted the affordances of simple programmable toys in
mathematics learning and problem solving. Data indicated that children explored a
range of mathematical concepts and processes including number, unit iteration, es-
timation, angle and geometry concepts. Further, children engaged in meta-cognitive
processes integrating planning, prediction, observation, reflection and revision as
components of problem-solving. Children’s strategy use in these tasks, such as act-
ing out with the toy and using symbols and gesture, provided insight into emergent
mathematical thinking.

A third study examined screen-based resources with a specific focus on vir-
tual manipulatives, such as those available through the National Library of Virtual
Manipulatives (accessible through http://nlvm.usu.edu/). Highfield and Mulligan’s
work (2007) examined how web-based tools provide a unique representational op-
portunity, creating a dynamic, virtual representation of a concrete material. This
small-scale study explored virtual manipulatives and open-ended drawing software
as tools in mathematical patterning with pre-school children.

This research was conducted as a constructivist teaching experiment, (Hunting
et al. 1996) with three dyads of preschool children, aged between four and five years.
Integrating elements of design study, this approach allowed for teaching episodes
to be constructed and scaffolded systematically, with revisions occurring based on
children’s progress and engagement with pattern-eliciting tasks. Each dyad was as-
signed to one of three learning modalities using: concrete materials (such as blocks,
counters, animal pictures, stamps, paint, pencils); a combination of concrete materi-
als, dynamic interactive software (Kidpix) and virtual manipulatives (virtual Pattern
Blocks); or, dynamic interactive software (Kidpix) and virtual manipulatives (Pat-
tern Blocks). Once allocated a modality, children completed six, 40-minute teaching
and learning episodes, conducted by the researcher over a 4-week period. Children
engaged in pattern-eliciting tasks such as making wrapping paper, with tasks and
resources matched so that comparison between traditional modalities and techno-
logical tools was possible.

http://nlvm.usu.edu/
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Within this project Highfield and Mulligan (2007) demonstrated young children’s
ability to develop skills in simple patterning over the four-week period, with no sig-
nificant differences evident when comparing children’s patterning skills while using
traditional materials or technological tools. Data did however indicate that children
were motivated to engage with the dynamic interactive software and virtual manipu-
latives when patterning. Extended engagement with technology meant that children
using technology were more likely to experiment with representations, creating an
increased number of patterns and transformations when compared with children
using concrete materials. In addition, the technological tools enabled increased rep-
resentational detail and accuracy.

The final study presented within this chapter was conducted by both authors,
Goodwin and Highfield (2012). This work examined Apps for learning, and was
pertinent given the increasing popularity of touch devices such as iPods and iPads.
At present there is a preponderance of Apps for these devices that are designed for
young children and are marketed as ‘educational’. Currently, there appears to be no
review process involved in classifying Apps as ‘educational’ and as a result many
Apps are strategically placed by developers in the lucrative ‘Education’ section of
the iTunes App Store by developers. However, despite the plethora of Apps currently
available for young children, research has failed to keep pace with the growth in this
technology, with limited systematic analysis of educational Apps and those designed
specifically for young children. This research project outlined a content analysis of
the paid Apps that are currently available in the ‘Education’ section of the iTunes
App Store. The findings of this study provided key information for both parents,
teachers and App developers in the selection, use and design of Apps.

Within this study Goodwin and Highfield (2012) conducted an analysis of the
“Top Ten” paid Apps located in the ‘Education’ section of the iTunes App store
at four different points in time (six-monthly intervals) from April 2010 to Octo-
ber 2011. Data were obtained for three countries: United States of America, United
Kingdom and Australia and Apps (n = 360) were coded using the following charac-
teristics: age, subject area and classification of pedagogic design. In 2012 (Highfield
and Goodwin under review) these data were revised to include two additional col-
lection points, increasing the analysis to be over six intervals (April 2010 to October
2012).

In findings that were similar to Shuler’s work (2012), Goodwin and Highfield’s
(2012) analysis, revised for this chapter, found that 29 % of the top ten Apps were
designed for toddlers, 24 % for elementary children 13 % for secondary educa-
tion. This study aggregates data for all three countries and shows a large propor-
tion (34 %) were classified as ‘Multi-age’ with the App classified as suitable for a
wide age range of students such as preschool and elementary children. Classifica-
tion by content presented demonstrated the areas of Literacy (21 %) and Science
(19 %) as the most common subject areas represented in Apps analysed, with Apps
addressing multiple curriculum areas (such as numeracy and literacy) representing
18 % of the content. While many Apps embed mathematical processes, such as
scoring and problem solving in game play, Apps that focus on this key area appear
under-represented in the ‘Education’ section, with only 15 % focusing specifically
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Fig. 1 An analysis of the “education” section of the App store, classifying Apps by pedagogic
design (April 2010 to October 2012)

on mathematical content. Creative Arts are also limited in the ‘Education’ classifi-
cation with only 6 % of Apps classified as focusing on this curriculum area.

Data analysis classifying Apps by pedagogic design affords pertinent data, high-
lighting a predominance of “instructive” Apps, with 85 % of ‘Educational’ Apps
classified as Instructive, or as combining Instructive and Manipulable design peda-
gogies. Of particular note is the limited presence of Constructive Apps in the ‘Ed-
ucation’ classification. Here only 4 % of Apps were classified as Constructive or
Constructive/Manipulable. Figure 1 provides a visual overview of analysis of popu-
lar ‘education’ Apps by pedagogic design.

Additional analysis indicates that these Apps are available in other sections of
the App Store such as ‘Apps for Kids’ or ‘Entertainment’, rather than classified as
‘Education’. This classification is intriguing and perhaps implies a diminished un-
derstanding of the educational potential of open-ended learning and representational
tools.

Re-framing Current Research Using Analysis by Pedagogic Design

While each of these studies present could be seen to outline disparate examples of
current research each can be re-framed as having unique affordances for mathe-
matics learning when re-conceptualized in light of their pedagogic design. The fol-
lowing section outlines current classifications of educational technologies and then
outlines Goodwin’s (2009) classification of educational technologies.

Numerous authors (Clements and Nastasi 1992; Handal and Herrington 2003;
Hosein et al. 2008; Hoyles and Noss 2003; Sarama 2003) have presented taxonomies
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that classify various types of educational software. However, there appears little con-
sensus as to the most appropriate classification scheme. This is further compounded
by the fact that many of the classification schemes and taxonomies become irrele-
vant as the technologies they were describing developed, become more complex or
were superseded by technological developments.

Previous classification schemes have not taken into account how different tools
encode and display mathematical ideas in different representational forms. Thus,
most of the existing taxonomies and classification schemes have focused on the
functionality of the software in terms of what the learner can do with it (Kurz
et al. 2005). Students interact with different multimedia representations in distinc-
tive ways to make sense of and integrate the representations into their cognitive
infrastructure (Sedig 2004). In fact, there are no known frameworks that systemat-
ically analyse the way in which multimedia representations are designed and how
their design impacts on students’ understanding of the representations.

Whilst multimedia tools have shown the potential to improve mathematics learn-
ing (Atkinson 2005; Sedig et al. 2003; Clements et al. 2008), there does not exist
any systematic way of classifying how learners engage with mathematical, multime-
dia representations. Scaife and Rogers (1996) highlight the paucity of research on
the cognitive value of representations, especially those contained within multimedia
applications. Given that different types of multimedia exist, as the previous classi-
fication schemes have identified (Handal and Herrington 2003; Kurz et al. 2005), a
prescriptive taxonomy would help to identify how learners interact with and respond
to different multimedia. Scaife and Rogers (1996) call for a systematic approach to
evaluate the merits of different types of on-screen representations, with an explicit
focus on how students cognitively interact with them. This would assist multimedia
designers develop appropriate interaction techniques and design characteristics in
future products. It would also enable teachers to design appropriate learning activi-
ties to complement learning experiences with multimedia.

A Classification of Interactive, Mathematics Multimedia for Young
Learners

The classification scheme presented in this chapter specifically describes, classi-
fies and seeks to evaluate mathematical multimedia, with the particular focus of
analysing the instructional design considerations in relation to the way the repre-
sentations are presented to the learner. The genesis of this scheme was to over-
come limitations of previous taxonomies, by describing the unique affordances of
different interactive multimedia. Whilst this evaluative framework was established
to analyse the available multimedia specifically designed for young learners, the
framework could be equally applied to multimedia designed for older learners and,
possibly, disciplines other than mathematics.

Three broad classifications of interactive multimedia are proposed, as exempli-
fied by Fig. 2: instructive, manipulable and constructive multimedia. This scheme
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Fig. 2 A continuum of the
pedagogic design of
interactive technologies

extends the theoretical perspectives in the field of learning with interactive multime-
dia, by presenting a framework that can be applied to a range of digital technologies
and interactive media. The classification scheme is based on the design features of
the interactive multimedia, with a particular focus on the learner’s locus of con-
trol over the representations presented on screen. The classification scheme also
considers the type and level of cognitive demand and interactions afforded by the
multimedia. The lines of demarcation between each of the classifications presented
in Fig. 2 are not fixed. The classification scheme does not suggest that one design
approach is superior to another as each particular representational mode has unique
utilitarian functions that may be suitable at different stages of the learning cycle.
Exemplars, arising from the aforementioned studies, are presented for each of these
classifications and are detailed in the following sections.

1. Instructive Technologies At the top of the continuum in Fig. 2, are applica-
tions that are classified as instructive. These applications are based on a behaviourist
theory of learning that assumes that knowledge can be directly transmitted to the
learner. Such applications rely on reward, repetition, regular review and feedback
loops and contingent increments of difficulty to teach various skills (Atkins 1993).
Representations of concepts are essentially imposed on the learner. These tools pro-
mote procedural learning and are based on the philosophical assumption that knowl-
edge can be presented symbolically and learned in a linear fashion. The learners per-
ceive messages encoded in the medium and sometimes interact with the technology
(Jonassen 1994). A fundamental tenant of this type of software is that an “expert”,
the designer constructs the screen representations that are presented to the student.
Software applications adhering to this classification, base their learning experiences
on a stimulus-response-reinforcement model. Students are required to master and
replicate knowledge through closed, pre-programmed learning tasks, usually using
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the stimulus-response format: the software is designed to compare student input
with a pre-determined answer.

Drill-and-practice CD-ROMs are a prime example of instructive multimedia.
These CD-ROMs elicit homogeneous responses from users via imposed tasks. The
market for such educational CD-ROMs expanded rapidly in the 1990s and has re-
cently stagnated because of the ease through which materials can be now dissemi-
nated on the Internet (Buckingham 2007). However, educational CD-ROMs are still
a popular choice amongst educators and parents, particularly with younger learners
where there is a prevalence of age-related CD-ROMs designed to meet curriculum
standards. Described as “shovelware” (Buckingham 2007, p. 129), educational drill-
and-practice CD-ROMs have been criticised for their attempts to “jazz up the cur-
riculum with a superficial gloss of kid-friendly digital culture” (Buckingham 2007,
p. 136). Interactivity is often superficial, limited to animated objects that can be ac-
tivated by the learner clicking on an icon or reactive interactivity that results from
the learner entering a correct pre-determined response.

In relation to the cognitive investment required by the learner, instructive mul-
timedia generally demand the least amount of the learner’s cognitive energy of the
three classifications. Typically, the students assume a passive role when using in-
structive multimedia as they do not have to expend much mental effort to process
the information conveyed on-screen. Interactivity is often restricted to surface level
interactivity (Aldrich et al. 1998; Evans 2007; Inkpen 2001; Sedig and Liang 2008;
Triona and Klahr 2003) such as clicking or dragging a correct response.

Exemplar of Instructive Technology One example used within Goodwin’s
(2009) study of instructive technology is Galaxy Kids. Maths: CD-ROM (Published
by Sunshine Multimedia 2005). Differences were noted between how the low- and
high-achievers used the various multimedia and recalled what had been presented.
When using instructive technologies the low-achievers had a greater tendency to
focus on the superfluous and surface details embedded in the multimedia, resulting
in superficial processing of the multimedia. The inclusion of idiosyncratic details,
such as actions and attributes of the on-screen character, referred to as an ‘animated
pedagogical agent’ (APA) in children’s representations were most frequent after us-
ing instructive technologies. In contrast, the high-achievers were adept at selecting
the salient information from the multimedia to construct effective mental models of
fractions, in this instance.

As exemplified by Figs. 3 and 4, the same student responded differently to var-
ious interactive multimedia. After the instructive technology “Hydroslide” (Galaxy
Kids Maths CD-ROM), the student’s post-lesson drawing (Fig. 3), included non-
mathematical attributes such as the water slide and the APAs called “Digits”. How-
ever, the same student’s post-lesson drawing lacked evidence of an awareness of
equal partitioning, despite this being the instructional focus of “Hydroslide”. In con-
trast, the same student, at a later point in the intervention, completed the drawing
shown in Fig. 4. This drawing was completed after the student had used the ma-
nipulable technology “Fraction Fiddle: Tool”. Figure 4 reflects an understanding
of equal-partitioning, formal symbol notation and a basic depiction of equivalent
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Fig. 3 A student’s
post-lesson drawing of
“Hydroslide” (instructive
multimedia)

Fig. 4 A student’s
post-lesson drawing of
“Fraction Fiddle: Tool” DLO
(manipulable multimedia)

fractions. It is important to acknowledge that the two multimedia tasks described
above, were focusing on two different concepts, which prevents any direct compar-
isons from being made. However, it appears that the manipulable technology, which
was devoid of superfluous and irrelevant embellishments may have supported the
learners’ conceptual understanding. In contrast, the instructive technology, with its
highly contextualised representations and the inclusion of animations, sound effects
and characters, was less successful in supporting the development of fraction con-
cepts.

The authors posited that the animations and characters contained within the in-
structive technology, may have detracted the learners’ attention away from the em-
bedded mathematical concepts within the CD-ROM. The learners, particularly the
low-achieving students were hindered in their recall of mathematical features as
their cognitive resources were directed towards processing non-essential informa-
tion. These findings support the previous work of Mayer and Moreno (2002) and
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Mayer (2001) who have also shown that the redundant use of embellishments com-
promises students’ working memory and adversely impacts on their cognitive load.

Screen recordings from Goodwin’s (2009) study also exemplified how young
learners sought instant feedback provided by the APA in the instructive technology.
Many of the students’ verbalisations recorded whilst using the CD-ROM indicated
that the students were noting the frequency of correct responses as demonstrated by
the APA dancing or providing a ‘thumbs-up’ gesture. One student stated, “That’s
so cool. I got Number Cruncher [APA] to the net level. He’s free. He can escape
the dungeon.” This particular child was focused on achieving the result of enabling
the APA to complete the assigned task, but there was no discussion about the em-
bedded mathematical content, which involved placing half the number of rocks into
a container to catapult the APA to another level within the dungeon. In the video-
stimulated recall interview this child was unable to explain what they had learned in
the previous lesson, other than to recall how they had helped Number Cruncher.

Although this chapter only provides one example additional data in Goodwin’s
thesis (2009) enables the inference that the exclusive use of instructive technologies
may not afford optimal mathematical learning for young students. Young learners
need to identify the salient ideas and key mathematical concepts contained within
instructive technologies through rich discourse with their peers and teachers after
using these types of resources. It is imperative that teachers do not falsely assume
that young children have mastered the mathematical content embedded in the in-
structive technology especially if there are other distracting elements.

2. Manipulable Technologies The second classification of software and interac-
tive technology is termed manipulable technologies (Fig. 2). This type of manipula-
ble technology allows for guided student discovery and experimentation, but within
a pre-determined representational context. The symbolic and iconic images are of-
ten presented to the student, but these can be instantiated and altered on the screen
by user input. Whilst the representations are pre-imposed on the student by an “ex-
pert”, students have an opportunity to manipulate the representations and test new
configurations and ideas. The availability of manipulative variables allows learners
to interact with and gain meaning from the interactive tools. In this sense, the com-
puter acts as a “hypothesis testing learning environment” (Kong and Kwong 2003,
p. 138). The student must interpret and purposefully interact with the screen repre-
sentations. These programs are more sensitive to students’ partially formed mathe-
matical responses and may allow for the development of alternative representations
as they mediate the cognitive capabilities of the learner (Hoyles and Noss 2003).

The cognitive effort elicited by manipulable technologies is greater than ap-
plications classified as instructive multimedia, but possibly less than those tools
within the constructive multimedia category. Manipulable multimedia may reduce
the amount of cognitive effort required to generate a representation while allowing
the learner to direct their cognitive energy and conscious attention towards under-
standing and internalising the mathematical representations on screen.
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Fig. 5 Teacher using
Pro-bots to measure the track
in twin road task

Exemplar of Manipulable Technology Simple robotics present an example of
manipulable technologies. Used throughout Highfield’s (2012) work these tools of-
fer a limited range of programming possibilities. In programming the robot the child
must understand the available movements, the programming interface and then must
enter a program. Children then often observe and reflect on the program, revising
their attempts in a cyclic process. Here the manipulable tools are seen as promot-
ing opportunity for reflection and revision of thoughts. Multiple semiotic systems
used in processing and then representing movement provide insight into children’s
understanding.

In this example the children (aged four years) worked to program simple robotic
toys (Pro-bots) around square roads. Pro-bots use a simple user interface described
in Highfield (2010) to enter and execute programs of movement. The task outlined
in this example was one of many (outlined in Highfield 2010). Here to move the
Pro-bot around the square path the children were required to input four steps on
each side, then a turn, repeating this to complete the square. As a class the children
watched as their teacher measured the road using the Pro-bots as a unit of measure,
as can be seen in Fig. 5. Following this the children worked in pairs to solve the
problem and successfully move the toy around the path.

The children also used chalk to indicate step length, drawing symbols on the
pathway. One child began by using chalk to mark many steps (Fig. 6). After dis-
cussing how many steps he needed and re-programming the toy the child revised his
problem-solving strategy (Fig. 7).

The boy used a symbol system to plan his pathway with the robot. His initial
use of tally marks was modified to use arrows that are adapted from (or resemble in
some way) the arrows seen on the Pro-bot itself. This task presented an opportunity
for the children to estimate, measure and program the Pro-bot to move around a
square track using the pre-set steps on the toy. This presented an opportunity for
the children to demonstrate more planning and problem-solving. By planning their
actions the children engaged with geometric concepts, such as the attributes of a
square, including four sides of equal length and corners at a 90° angle. Further, the
children engaged with these concepts concurrently with dynamic concepts, such as
the robot rotating 90°, and each side requiring four steps.
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Fig. 6 The child’s initial
representation of many steps
for the road task

Fig. 7 The child’s second
representation using arrows to
indicate steps for the road
task

3. Constructive Technologies At the other extreme of the continuum (Fig. 2) is
constructive multimedia. As the name suggests, such software is based on contem-
porary adoptions of constructivist approaches of teaching and learning and provides
learners with the opportunity to generate their own mathematical representations.
These types of software are based on the assumption that technology can be used as
“cognitive learning tools” which can be employed to facilitate learning and support
the thinking processes of learners (Jonassen 1994, p. 62). Hence, the technology
functions as an expressive tool. In the current classification scheme, the term ‘con-
structive multimedia’ refers to technologies that allow learners to create multimedia
artefacts. Hence, the learner constructs the representations using multimedia tools.
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This type of technology provides opportunities for students’ intuitive understand-
ings to be made explicit. The learner uses the available digital tools inherent in
the software to construct mathematical representations. Hence, these tools engage
learners in meaningful learning activities that support critical and reflective thinking
about concepts. These tools assist in providing insights into students’ conceptions
and provide unique opportunities for mathematical modelling and expression (Noss
and Hoyles 1996). The software, in this instance, amplifies the students’ learning,
making explicit their mental models and levels of conceptual understanding. Modi-
fiable graphics enable students to easily create their own multimedia representations
not possible with inert media (Clements 1999). Further, many of these tools allow
representation and, as young learners can save and re-visit these tools, may also
promote reflection on learning.

Constructive multimedia programs demand a significant cognitive investment on
the learner’s behalf, as the onus is on them to generate the representation. As a result
there is a low level of cognitive offloading, as the technology assumes some of the
cognitive load for the learner. Effectively using these tools to convey conceptual un-
derstandings requires more sophisticated cognitive skills and a significant cognitive
investment on the learners’ behalf than more instructive multimedia. It is possible
that learners may expend too much mental effort manipulating and selecting the
digital authoring tools and thus, may detract from their learning.

Exemplars of Constructive Technology Constructive Technology Exemplar—
2Simple software. In Goodwin’s (2009) and Highfield’s (2007) study the partic-
ipants also engaged with constructive technologies. One example of this (arising
from Goodwin 2009) was 2Create a Story (2 Simple Software 2006) used to create
a multimedia fraction story. When using this tool, the onus was on the learner to
construct the representation, as there were no representational models provided, as
there were with the instructive and manipulable technologies.

The constructive technologies provided two key affordances for young learners:
(i) they could externalise their thinking; and (ii) they could compensate for their
developing fine motor and literacy skills. Using 2Create a Story (2 Simple Software
2006), the Kindergarten students were able to create a digital artifact with their own
representations, symbol notation, and verbally explain their drawing. The computer
mouse, in conjunction with the on-screen drawing tools, enabled the young learn-
ers to easily create a digital artifact that was indicative of their understanding of
fractions. They were able to experiment and manipulate representations (they were
unable to do this with the instructive technology used but were easily able to do this
with manipulable technology). This ensured that their conceptual understanding of
fractions was not constrained by their fine motor and/or literacy development.

The open-ended design of the constructive technology allowed for students to
depict ‘counter examples’ of fractions, as shown in Fig. 8. Counter examples are
described as representations that challenge conceptual understanding (conflict), to
show why some conjectures and representations are false (Liz et al. 2006). In
this study, counter examples were considered to be students’ intentional depic-
tion of an incorrect representation of a fraction, with an accompanying icon or
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Fig. 8 A screen capture of a
student’s depiction of a
counter example, using
“2Create a Story”
(constructive multimedia)

comment to signal that the representation was incorrect. Counter examples were
also considered to indicate understandings of advanced fraction concepts. Figure 8
is an example of a counter example. The student formed the notion that half of
an object needed to be two equal-sized pieces and had applied this idea to par-
titioning a rocket ship. There was no other multimedia activity, used through-
out the research study, where a rocket ship was used to depict a half. Hence,
the constructive technology allowed the child to demonstrate this sophisticated
understanding of fractions, in a way not possible with other types of technol-
ogy.

Similar findings were seen in Highfield and Mulligan’s (2007) research, where
constructive technologies enable ease of representation, representation of sophisti-
cated concepts and prolonged engagement. Here these open-ended tools facilitated
increased engagement in mathematical thinking and opportunity for more advanced
representation.

Discussion and Conclusions

Whilst there is growth in the availability of technological infrastructure and interac-
tive multimedia for early mathematics learning, there is a dearth of research explor-
ing their effectiveness. Existing literature has called for further research to examine
the impact of new technologies on young students’ mathematics learning (Clements
and Sarama 2002, 2004; Highfield and Goodwin 2008). The studies reported in
this chapter have supported and extended current research by revealing that interac-
tive multimedia has a substantial impact on young students’ development of basic
mathematical concepts. In addition, these studies provide evidence that different
multimedia offer unique affordances for learners, in terms of their unique design
attributes.

The studies presented in this chapter also challenge the widespread belief that
young students are incapable of dealing with complex mathematical concepts.
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Rather, the findings support previous research that young students are capable of
dealing with powerful mathematical ideas (Ginsburg et al. 1999; Perry and Dockett
2008). These studies highlight the representational opportunities that technologies
provide. Further, they highlight the dynamic presentation of information and the
dynamic manipulation of materials as providing access to advanced mathematical
concepts.

The cumulative data from these studies highlight the potential benefits of interac-
tive technologies in early mathematics learning. New representational opportunities,
afforded by interactive multimedia and digital technologies allow young students to
explore and manipulate mathematical ideas in ways not previously conceived with
more traditional teaching approaches and concrete materials. In turn, young children
are able to explore more complex and advanced concepts than those proposed by tra-
ditional curricula. Goodwin’s (2009) comparative analysis outlined substantial ben-
efits of manipulable and constructive interactive technologies in early fraction learn-
ing. Students’ representations after using constructive and manipulable interactive
technologies in Goodwin’s (2009) work showed more advanced and sophisticated
concept images of fractions when compared to a traditional curriculum. Further, the
use of these interactive tools enabled students to depict multiple representations and
reflect and revisit work (Goodwin 2009; Highfield and Mulligan 2007). Within each
of these examples children’s active cognitive engagement enabled them to explore
sophisticated mathematical content. Here technologies enabled mathematics learn-
ing beyond what is frequently encountered in traditional curriculum. In addition,
Highfield (2012) demonstrated the potential affordances associated with simple pro-
grammable toys for problem solving, spatial and geometric concepts. These robotic
toys provide a further example of manipulable technologies as a non-screen based
tool.

Whilst dynamic, on-screen representations provide unique opportunities for
young learners in terms of developing mathematical concepts, further research needs
to explore how the pedagogic design of interactive technologies impacts on their po-
tential to support young children’s learning. As Goodwin’s (2009) study exempli-
fied, the inclusion of superfluous details such as animations and extraneous sound
effects, as are typically included in instructive multimedia, place demands on the
students’ cognitive load. Students’ attentional resources are often diverted to pro-
cessing the redundant information included in screen embellishments and not on
the embedded mathematical content. This limitation was more evident with low-
achieving students, than high-achieving students, as they have a tendency to focus
on the superfluous inclusions, hampering their understanding of the mathematical
content. Hence, a closer examination of the pedagogic design of multimedia needs
to consider its impact on young students’ cognitive load.

Examinations of technologies for early mathematics learning, when presented
within this framework, highlight the need for a range of pedagogic designs. Further
critical analysis of learning afforded by the differing technological designs is needed
to inform teacher pedagogic decisions. This has particular implications for teaching
practice, where teachers must consider the pedagogic aim of their lesson sequence,
prior to selecting technological based resources to support these goals. For example
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instructive technologies may provide opportunity to develop fluency in mathemat-
ical computation (e.g. factors to ten). Using these technologies the child could be
presented with different combinations of numbers and be asked to provide a correct
answer, with the real-time feedback enabling children to practice skills. Alternately,
constructive technologies may enable learners to represent multiple alternate path-
ways of learning such as documenting strategies for addition rather than practicing
pre-set tasks. Here, the teacher’s purposeful choice of technology would need to be
carefully aligned with their pedagogic goal.

Goodwin and Highfield’s (2012) work outlines the dominance of instructive de-
sign for young children in new technologies, such as iPad Apps. Here again, judi-
cious and purposeful selection of tools for specific mathematics learning is needed.
These findings question the assumption that technology and interactive multimedia
are always beneficial for learning (Goodwin and Highfield 2012).

Significant implications for future research arise from these studies, with further
work investigating each of these pedagogic designs needed to effectively examine
their potential affordances for young mathematics learners. Given that this age group
is laying essential foundations for future mathematics learning it is imperative that
the research agenda focuses on optimal technology use the early years. Further, dis-
semination of this research to teachers is needed, with additional research examining
teacher pedagogic decisions also needed.

The studies reported in this chapter have assumed that students’ language (used
in interviews) and drawn representations are evidence of their learning. However, fu-
ture studies utilising new data collection technologies such as digital brain imaging
would be advantageous in examining the cognitive processes of students using inter-
active technologies. In addition, given the significant growth in touch technologies,
such as iPads, further research is required to confirm whether the findings outlined
in these studies are replicated with these new devices.

Implications for Teaching and Learning

The technological landscape is changing rapidly and new devices, applications and
software are constantly evolving. As such, teachers need ongoing access to profes-
sional learning. Initial teacher qualifications alone are not sufficient for this techno-
logical society and need to be complemented by further opportunities for learning.
Professional learning sessions need to have a dual focus: (i) they need to develop
teachers’ familiarity with various technologies (technological knowledge) and (ii)
they must also focus on how to embed these technologies in sound pedagogical
frameworks (pedagogical knowledge).

A consistent finding from both the Goodwin (2009) and Highfield (2012) studies
relates to how young students find it difficult to interpret and process extraneous
information contained within multimedia representations. Therefore, teachers must
implement explicit strategies to ensure that young students develop the ability to
locate the salient aspects within multimedia representations and avoid focusing on
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non-essential aspects. Structured follow-up questions and/or activities may assist the
students, particularly the low-achievers, focus their attention on the mathematical
aspects contained within the representation.

Using a design study approach, the Goodwin (2009) and Highfield (2012) stud-
ies also revealed how the design of the lessons in the interventions was an effective
format when using technologies with young children. Common teaching practice
often focuses on isolated and stand-alone use of technology, with a brief introduc-
tory session focusing on the technical and procedural aspects of the technological
tool, followed by individual, pair-work, or small-group use of the multimedia. There
is an emphasis on task completion, with little opportunity to discuss the students’
learning. However, in these studies, discussion sessions were an essential compo-
nent of the lesson sequence as it enabled the students to share their discoveries and
showcase their work and seek peer assistance for difficulties. Teachers should en-
sure that a plenary, sharing component always follows individual or group use of
multimedia.

The findings of the current study have exemplified differences in the way high-
and low-achieving students use and respond to different multimedia and interac-
tive technologies. It is paramount that teachers consider the students’ prior knowl-
edge when using any technology to align pedagogical approaches with students’
needs. Hence, the impact and affordances are different for students at the extremes
of achievement. This is not to suggest that instructive multimedia should not be
used with low-achieving students. Instead, it is imperative that teachers ensure that
after using instructive and constructive multimedia that plenary sessions are con-
ducted to focus students’ attention on the mathematical aspects of the multimedia.
Alternatively, teachers can assign tasks for learners to complete during or after us-
ing interactive multimedia, to ensure that students focus on the intended learning in
the multimedia. This is sound pedagogic practice that would benefit both high- and
low-achieving students.

Implications for Further Research

There is a dearth of research that explores how young children use and respond
to various technologies. Given that there has been an exponential growth in this
sector, in terms of the availability of these resources for young learners, there is a
dire need for more research to be concentrated in this area. The studies presented in
this chapter provide evidence to indicate that young children’s early mathematical
learning can be enhanced through the use of various technologies, but they have also
suggested that the design of the technology can have an adverse effect on learners.
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The Role of Picture Books in Young Children’s
Mathematics Learning

Marja Van den Heuvel-Panhuizen and Iliada Elia

Picture Books as a Didactical Tool

Many mathematics curricula recommend that early mathematics education should
endorse a broad range of mathematics covering the “big math ideas” in areas such
as number and operations, geometry (shape and space), measurement, and patterns,
including problem solving and reasoning within these mathematical areas (Board of
Studies NSW 2006; Clements and Sarama 2009; Clements et al. 2004; Hunting et al.
2012; NAEYC and NCTM 2002; NCTM 2000; Sarama and Clements 2009; Seo
and Ginsburg 2004; Van den Heuvel-Panhuizen 2008; Van den Heuvel-Panhuizen
and Buys 2008). Teaching mathematical concepts and processes can be success-
fully done as early as kindergarten or even in the prekindergarten years (Ginsburg
and Amit 2008). Of course, there is a difference in the methods of teaching young
children and older children. A major reason for this dissimilarity is that preschool or
kindergarten is for many children between the ages of three and six, the first place to
attend an institutional educational setting. This means that the early childhood pe-
riod involves the transition from informal learning in the family setting to the formal
learning in school. Therefore, in the early years of education it is essential for the
learning of mathematics to be connected to their everyday experiences. Moreover,
like it is the case for students at any age, the learning of mathematics should make
sense to them. A didactical tool which has the potential to provide children with
an appealing context is children’s literature; it makes the problems, situations and
questions that children encounter in the story meaningful to them (Columba et al.
2005; Moyer 2000; Whitin and Wilde 1992).
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On the basis of the Vygotskian and action-psychological approach to learning
(Van Oers 1996), the personal and cultural development of a person is enhanced
only when learning is meaningful. On the one hand, meaningfulness of the learning
process in mathematics refers to the process of acquiring mathematics as an activity
involving meanings that are historically developed and approved. On the other hand,
the learning of mathematics as a meaningful activity encompasses the process of
incorporating personal sense to the actions, techniques and outcomes included in
mathematics (Van Oers 1996). Both kinds of meaning in the learning of mathematics
could be encompassed by reading children picture books, that is, books consisting of
text and pictures, in which pictures have a fundamental role in full communication
and understanding (Nikolajeva and Scott 2000).

Learning mathematics takes place when children are given the opportunity to
reconstruct mathematical objects in a meaningful way. To accomplish this, chil-
dren need to be assisted by representatives of the community (Van Oers 1996), or—
as Vygotsky would have called them—‘more knowledgeable others’ (McLaughlin
et al. 2005), such as parents and teachers. However, this idea of more knowledgeable
others can also be extended by giving picture books the role of ‘more knowledge-
able material’ (Van den Heuvel-Panhuizen and Van den Boogaard 2008) because
the books can guide the learner toward higher levels of proficiency. Picture books
can be regarded as a community agent conveying culturally developed mathematical
meanings. Furthermore, Lovitt and Clarke (1992) pointed out that picture books can
offer cognitive hooks to explore mathematical concepts and skills. That is, through
their interaction with picture books, children may be enabled to encounter problem-
atic situations, ask their own questions, search for answers, consider different points
of view, exchange views with others and incorporate their own findings to existing
knowledge. In other words, the use of picture books in mathematics teaching gives
children the opportunity to construct their learning (using similar processes as those
of scientists), by attaching personal meaning to the mathematical objects involved
in the books and thereby gain a mathematical understanding.

Reading picture books can have a dual function in the mathematics teaching and
learning process. Firstly, it can be an informal and spontaneous activity that chil-
dren engage in, especially when they are ‘reading’ a book by themselves during
free play. Secondly, it can be a goal-directed activity, organized and directed by the
teacher. Given the meaningfulness of reading picture books in the learning process,
the use of picture books in either way in mathematics teaching enables the teacher
to open the scope to mathematical concepts which are not belonging to the tradition-
ally approved curriculum for young learners such as reading a graph (see Fig. 1),
understanding a cross-section, and measuring a long hair tail laid down in a spiral
form (see for further elaborations of these examples, Van den Heuvel-Panhuizen
et al. 2009). Moreover, reading picture books can be an activity that motivates chil-
dren to participate and in which they are able to participate based on their available
competencies.

The connection between reading picture books and early childhood education
has a long history. It dates from 1652 when Comenius published his picture book
Orbis Pictus for assisting children to make impressions in the mind (Schickedanz
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Fig. 1 Page 3 of the picture
book The surprise [De
verrassing] (Van Ommen
2003)

1995) through the visual images included in the book. In line with Comenius’s ideas,
the importance of pictures in books for learning has also been supported by recent
studies which have shown that picture books’ pictures are the focal points of math-
ematical interaction while reading picture books to young children (Anderson et al.
2005).

By means of their visual images in combination with the text, picture books can
contribute to initial stages of interpreting and using representations and in this way
support the development of mathematical understanding. According to Van Oers
(1996, p. 109), “the improvement of mathematics education by innovations in the
early school years must be based on a general introduction to semiotic activity that
can be accomplished by giving these children (from 4 to 7 years of age) assistance
and opportunities for practice with the activity of forming, exchanging, and negoti-
ating all kinds of meaning within everyday practices”.

In the next sections we will elaborate on how picture books can enhance mathe-
matical learning in the kindergarten years. The findings reported are mainly derived
from a research program carried out in the PICO-ma project (PIcture books and
COncept development MAthematics) in the Netherlands.

Learning-Supportive Characteristics of Picture Books

There is evidence that different books vary in the amounts and kinds of mathematics-
related utterances they evoke in children (Anderson et al. 2005). This means that
some picture books might have more power than others to provide children an en-
vironment in which they can learn mathematics. To gain more knowledge about the
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Fig. 2 Framework of learning-supportive characteristics of picture books for learning mathemat-
ics; from Van den Heuvel-Panhuizen and Elia (2012, p. 34)

characteristics picture books can have to contribute to the initiation and further de-
velopment of mathematical understanding in young children we made an inventory
of the learning-supportive characteristics of picture books (a full description of this
study can be found in Van den Heuvel-Panhuizen and Elia 2012) resulting in the
framework shown in Fig. 2.
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The framework has two main parts. Part I incorporates the mathematics that is
addressed in a picture book and Part II focuses on the way in which this mathematics
is brought up in the book.

Part I is based on the fact that a picture book needs to include some mathemat-
ical content so as to offer children a setting in which they can learn mathematics.
Mathematical content is approached here in a broad sense. In addition to the usual
topics, such as numbers-and-counting, measurement, and geometry, we also con-
sider mathematical processes and dispositions, and mathematics-related themes as
mathematical content. The themes include phenomena and situations children know
from daily life, in which mathematics play a role, such as growth, patterns, fairness,
and cause and effect.

Part II describes how the mathematics is presented in a picture book. We found
that a distinction can be made between the way of presentation and the quality
of presentation. The way of presentation indicates whether the mathematics is ad-
dressed explicitly or implicitly, and whether the mathematics is incorporated in a
story or presented in an isolated way, which in itself does not say whether it is
learning-supportive or not. Mathematics addressed implicitly (e.g. a nice mathe-
matical pattern on the fabric of a character’s clothing) can be equally inspiring as
mathematics that forms the heart of the story (e.g. the main character is measuring
something). In contrast to the way of presentation, the quality of presentation has
a more direct relation to whether or not the picture book contributes to the math-
ematical development of children. The quality of presentation includes relevance,
degree of connection, scope, and participation opportunities. Relevance refers to
whether mathematics in children’s literature is worthy of being learned, is presented
in meaningful contexts and is correct. The next component of quality of presenta-
tion concerns the degree to which connections are realized between mathematical
concepts and the interests of children, the real world, other mathematical concepts,
and other subject areas. The scope of the mathematical content encompasses making
understanding possible at different levels, offering multiple layers of meaning and
anticipating future concept development. Finally, participation opportunities entail
offering children opportunities for being involved cognitively, emotionally, or phys-
ically by means of asking questions, giving explanations, and causing surprise.

Children’s Spontaneous Mathematics-Related Utterances

According to McLaughlin et al. (2005), cognitive engagement, that is, the inter-
action between student and instructional content during a learning situation, is an
essential condition for learning. Similarly, we can assume that picture books also
need to engage children cognitively in order to support their learning of mathemat-
ics. To get insight in the cognitive engagement and particularly the mathematical
thinking that is evoked when young children are read a picture book we carried out
two studies in which we investigated the students’ utterances that emerged during
book reading sessions (Elia et al. 2010; Van den Heuvel-Panhuizen and Van den
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Fig. 3 Page 3 of the picture book Vijfde zijn [Being Fifth] (Jandl and Junge 2000)

Boogaard 2008). We regarded these overt reactions as a reflection of the children’s
cognitive engagement with the content of the picture book. In fact, the utterances
(see examples of verbatim utterances displayed in italic format in Table 1) gave
us access to the children’s mental processing which could be mathematics related
(domain-specific utterances) or not (general utterances).

The focus in these studies was on the picture books themselves and not necessar-
ily on how utterances were prompted by a reader. Of course, it is not easy to isolate
the influence of the characteristics of the book itself from the influence caused by the
characteristics of the reading of the book on the children’s cognitive engagement. To
avoid interference of these two influences we gave the readers explicit guidelines for
how to read a book. They just had to verbalize the plain text displayed in the book
without any further prompting or questioning. In essence, these studies intended to
explore the child’s thinking that takes place, when he or she hears the story and sees
the pictures.

In the study by Van den Heuvel-Panhuizen and Van den Boogaard (2008) four 5-
year-old children were each individually read a specific book by one of the authors
without any questioning and probing. The children who participated in the study
were in the second year of kindergarten (K2). Thus, they had no formal instruction in
mathematics or reading and they could not read independently. The children’s scores
on a mathematics test and an oral language test were at about average compared with
their classmates’ scores.

The book under investigation, Vijfde zijn [Being Fifth] (Jandl and Junge 2000),
is a trade book of high literary quality—indicated by the number of awards won by
the book (see Van den Heuvel-Panhuizen and Van den Boogaard 2008). Moreover,
judging from what the reviews of the book said, it can be concluded that the book
was not written with the intent to teach children mathematical concepts. The story
is about a doctor’s waiting room in which five broken toys are waiting for their turn.
The toys go into the room behind the door one by one (see Fig. 3). When each toy
comes out of this room it is repaired and the next toy goes in. The fifth (and last)
one to go in the room is the wooden puppet with the broken nose. Only then is it
revealed that the brightly lit room is a doctor’s office.
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In the reading session, the general rule was to give the children many opportu-
nities to react. Therefore, the children were invited in advance to say what happens
in the pictures every time the reader turned a page. Of course not all cases led to
utterances. Some pages elicited more utterances than others. To keep the influence
of the reader as constant as possible across the reading sessions, we set up reading
guidelines that excluded spontaneous assistance by the reader. In addition, a read-
ing scenario was developed that explained how each page should be presented. The
reading sessions were carried out by the same reader strictly according to the guide-
lines and the reading scenario. The book was only read once to each child.

A detailed coding scheme was developed (see details about it in Van den Heuvel-
Panhuizen and Van den Boogaard 2008) to understand and classify children’s ut-
terances that might reflect cognitive engagement. In general, the smallest possible
meaningful grammatical part of a response was considered as the unit of analysis.
These parts mostly contain a finite verb or a verb phrase, but sometimes they only
contain a subject or an object, or even merely a sigh or an exclamation.

In total, the four children produced 432 utterances spread over a total of 22 pages,
front cover, back cover and end papers included. An overview of the types of utter-
ances, each illustrated by an example, is given in Table 1.

All four children showed cognitive engagement when they were read the pic-
ture book. About half of the utterances were mathematics-related and all four chil-
dren of the study were found to contribute to this result. Across the children the
mathematics-related utterances were about equally distributed over the pages of the
book, indicating that the book as a whole has the potential to evoke mathematical
thinking.

The children’s mathematics-related utterances were distinguished into two differ-
ent types with respect to their content: the spatial orientation-related utterances and
the number-related utterances. The spatial orientation-related utterances (31 % of all
utterances) exceeded the number-related utterances (14 %). Of this latter type, most
utterances referred to resultative counting, “how many there are”. A closer look at
all the utterances that reflect resultative counting revealed that in a number of cases
the children were structuring numbers, including composing and decomposing. For
example, when describing a picture in which the five toys are sitting in the waiting
room, a child said “two are looking at the ceiling, and three are watching televi-
sion”. Within the spatial orientation-related utterances, the children spontaneously
took the waiting room perspective instead of the doctor’s office perspective that is
taken by the author of the book. As a result, there was a discrepancy between the
children’s utterances and the text. Interestingly, three of the children changed their
waiting room perspective one or more times into the doctor’s office perspective.

In conclusion, the book Vijfde zijn provided the children with a meaningful con-
text in which they could actively construct mathematical knowledge about number
and spatial orientation. However, while in this study, the role of the reader was
minimized, the interaction with knowledgeable others which is considered a cru-
cial element of the learning process was put in a different perspective. Instead of
having verbal interaction with an adult, which is mostly associated with that other,
this study made a reasonable case for extending the concept of the knowledgeable
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Table 1 Categories of utterances and examples

General qualification of utterances
01. Description static: And the door is opena

02. Description static comparison: Again hundred chairs!
03. Description dynamic stationary: He looked at the lamp
04. Description dynamic stationary comparison: And this one looked there again
05. Description dynamic relocation: Now the frog goes in
06. Description dynamic relocation comparison: He comes back again
07. Posing question: Why does he have a sticking plaster?
08. Assumption story line: Four will be leaving
09. Assumption other: Maybe they are waiting
10. Explanation own utterance: (After saying that puppet cries:) . . . because he is alone
11. Explanation other: (After text “Hello doctor”:) That is the waiting . . . the waiting . . . at the
doctor’s . . .

12. Giving opinion: Nice book!
13. Commenting text: (After text “Door open. One out”:) Out is go outside
14. Commenting picture: (Pointing to “noses” in doctor’s office:) . . . this doesn’t actually belong
at the doctor’s
15. Repeating text: (After text “One in”:) One in
16. Correction: (After saying that “this one will come”:) . . . no, this one will go out
17. Self reflection own utterance: (After said something:) . . . that is what I think
18. Self reflection other: (While trying to describe how the bear is looking:) I cannot see it very
well
19. Contemplation: (When wondering whether the duck has a little string or a little stick:) Hm. . .

20. External reference other story: It looks like Pinocchio, . . .

21. External reference other: My little sister is outside now
22. Unclear utterance

Domain-specific qualification of utterances—number-related
N1. Resultative counting: Three people are sitting here (13)b

N2. Using all/everyone: . . . because everyone is gone (10)
N3. Using none/nobody: Maybe, when this one is gone . . . then nobody is there (08)
N4. Using some: And some are sitting . . . (01)
N5. Using ordinal numbers: Fifth? (07)

Domain-specific qualification of utterances—spatial orientation-related
S1. WRPc (Ladybird is coming into waiting room:) . . . and a ladybird is coming (05)
S2. WRP+adjunct: (Pointing to penguin and doctor’s office:) And then this one wants to go
there (13)
S3. DOPd (After text “Door open. One out”, while pointing to ladybird:) This one is out (13)
S4. DOP+adjunct: (After text “Door open. One out”, while pointing to doctor’s office:) At that,
one out (13)
S5. Describing direction: And the lamp is almost upwards (01)

aThe verbatim utterances are in italic format
bThe number between parentheses refers to the general utterance involved. Note that a general
utterance can be number-related as well as spatial orientation-related
cWRP = Waiting room perspective
dDOP = Doctor’s office perspective
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other by including knowledgeable material, which a picture book can be. In other
words, this study’s findings suggest that just by telling and illustrating an appeal-
ing story, picture book authors unintentionally offer children a rich environment
for mathematical thinking. This important conclusion motivated us to continue our
explorations of the power of pictures in picture books for evoking kindergartners’
mathematics-related thinking.

The Role of the Pictures in a Picture Book

Pictures are an indispensible component of picture books. They have a major role in
telling the story by serving different functions. Thus, to gain a deeper understanding
of how picture books can support the learning of mathematics we decided to set
up a study (Elia et al. 2010) to investigate the role of the pictures included in a
mathematics-related picture book on young children’s spontaneous mathematical
cognitive activity when they are read such a picture book.

According to Theodoulou et al. (2004) and Elia et al. (2007) pictures may serve
different functions in arithmetic problem solving: decorative, representational, or-
ganizational and informational. Decorative pictures just accompany the problem
without providing information that is relevant to the mathematical content of the
problem. Representational pictures depict a part or the entire mathematical content
of the problem. They are not essential though for the understanding or the solution
of the problem. These pictures can facilitate the understanding of the meaning of the
problem and its solution, but in fact, because they are not essential for understand-
ing the problem, they can be ignored. Organizational pictures give directions for
organizing the problem’s mathematical information for making drawings or written
work that may support finding a solution. Like the representational pictures, they
are not necessary for the solution of the problem. Informational pictures provide
information that is essential for the solution of the problem. That is, they represent
visually the mathematical content of the problem often with groups of elements that
may frame the counting process.

Pictures in picture books usually depict what is described in the text, serving a
representational function, but may even go beyond this role by adding further de-
tails. Through the interplay of text and image, which have different content, mean-
ing can be generated (Sipe 1998). Therefore, pictures in picture books may also
have an informational function. In picture books that contain mathematical con-
tent, pictures can include also components which may support the understanding of
this mathematical content. Generally pictorial mathematics-related components can
have a representational or an informational function. Mathematics-related compo-
nents, which have a representational function show, for example, the collection of a
number of objects which is described in the text, whereas mathematics-related com-
ponents, which have an informational function, depict numerical information which
is not included in the text.

For the study (Elia et al. 2010) in which we explored the role of the pictures, we
used the book Six brave little monkeys in the jungle (O’Leary 2005). In contrast to
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Fig. 4 Page 5 of Six brave little monkeys in the jungle (O’Leary 2005): Text left: 4 little monkeys
are running on the grass and are flying the kite. Text right: Hrutz! Hrutz! But what is that sound
through the leaves?

Vijfde zijn [Being fifth] discussed in the previous section and read to four children in
the Netherlands, the picture book about the six monkeys is written for the purpose
of teaching mathematics. At the back cover of the book it is stated that it can be used
in the teaching of counting backwards. Four 5-year-old children from Cyprus were
read the book individually without any probing. The story is about six monkeys
that live in the jungle. In every page there is a hidden jungle animal that scares the
playful monkeys and consequently a monkey disappears. In the end, the monkey
that is left comes up with an idea so as to get back at the scary animals.

All of the pictures of the book have both story-related and mathematics-related
components with either a representational or an informational function. Sometimes
the story-related and the mathematics-related components have both the same func-
tion and sometimes their function differs. For example, the two types of components
of the picture in page 5 (including the left side as well as the right side) have both a
representational function. The story-related components illustrate a part of the text,
namely, that the monkeys are running on the grass and are flying the kite (see Fig. 4).
The mathematics-related components represent visually the numerical information
that is described in the text with a group of four monkeys.

The story-related and the mathematics-related components of pictures can also
have both an informational function. The story-related components of these pic-
tures offer supplementary information to the content of the story-related text. For
example, in page 2 (see Fig. 5), the story-related components of the picture reveal
the cause of the decrease of the monkeys—an attack by a wild animal such as a
leopard—which is not given in the text “Watch out! The jungle is dangerous!” The
mathematics-related components of the picture in page 2 provide information about
the monkey that goes away (see the tail of the monkey that is running away on the
bottom left part of page 2) and the number of the monkeys that are still there (see
right side of page 2).
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Fig. 5 Page 2 of Six brave little monkeys in the jungle (O’Leary 2005): Text left: Grrr!!! Text right:
Watch out! The jungle is dangerous!

The analysis of the children’s utterances showed that the book as a whole had
the potential for cognitively engaging children. All four children demonstrated cog-
nitive engagement which resulted in general utterances as well as in mathematics-
related utterances. Despite the fact that the book was written for the purpose of
teaching mathematics and explicitly displayed mathematics through numbers and
number symbols, we found mathematics-related utterances accounted for only 27 %
of the total number of utterances. This suggests that picture books, which have been
written for didactical purposes may not evoke mathematics-related thinking as ef-
fectively as might be assumed.

Children’s domain-specific mathematics-related utterances, in this study (Elia
et al. 2010), fell into three categories: number-related, spatial-topological and
measurement-related. The spatial-topological utterances, which included specifying
position, topological relations, recognition of shapes or figures and using the terms
“here” and “there”, were the most frequently found. The measurement-related ut-
terances, which involved references to the size of objects and time, could be most
rarely identified in children’s reactions.

Most of the number-related utterances had to do with determining the number
of a collection of objects (how many there are). The main ways children used to
achieve this were subitizing and counting, which are fundamental and powerful
skills in the development of children’s understanding of numbers (Baroody 1987;
Clements and Sarama 2009). Counting backwards, however, which was the explicit
focus of the picture book, was not detected in children’s reactions. Only one child
noticed that the number of monkeys altered every time, but without making ex-
plicit that every time a monkey left, the number decreased by one. Furthermore,
children tended to compare the collections across pages by recognizing that the col-
lection of the current page is different from or smaller than the collection of the
previous page. This indicates that the picture book itself motivated the children to
use counting in a meaningful way and make inferences based on their counting,
that is, to compare collections of objects appearing in the pictures. Establishing the
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numerosity of a collection by subitizing, was another important process that the
children explicitly used. In our study, the pictures of the book stimulated children
to recognize that groups are composed of smaller groups (i.e., 4 is 2 and 2). This
contributes to the development of knowledge of number relationships which pro-
vide an early basis for addition and subtraction (Fuson 1992). Children’s number
related utterances included also the recognition of numerical symbols and the use of
words referring to a quantity of objects such as some, many, all and none/nobody. In
sum, the picture book used in this study elicited various ideas that are basic and im-
portant in the development of the understanding of number (Clements and Sarama
2009).

The pictures with a representational function were found to evoke mathemati-
cal thinking to a greater extent than the pictures with an informational function.
Mathematics-related components with a representational function evoked a greater
amount of utterances in all three categories: number-related, spatial-topological, and
measurement-related. The components with a representational function provide an-
other ‘description’ that is additional to the text, whereas in the case of the compo-
nents with an informational function, the mathematical information can be acquired
only from the picture, as the content of the text does not give the whole informa-
tion. This result suggests that combining text and pictures of a similar content has a
greater power to mathematically engage children than combining text and pictures
of different content. According to a number of researchers (Mayer 2001; Schnotz
2005) pictures and text of coherent or semantically related content facilitate mental
model construction, whereas learning only from a diagram (or a picture) is quite
difficult, particularly for novices (Kalyuga et al. 2000).

After finishing the study we were left with the question whether the children
would have generated more utterances if they were prompted to do so. For exam-
ple, probing by the reader may further support children’s mathematical thinking in
the pictures in which the components have an informational function in relation to
the mathematical content of the text. In order to get more insight on how to read
mathematics-related picture books to young children so that children’s engagement
with mathematics is enhanced, a further study was set up as described in the next
section.

How Picture Books Can be Read to Elicit Children’s Thinking

Additionally to picture books reading in which children listen to an adult in a passive
way, picture books can also be read in a dialogic way in which children are active
participants when they are read a picture book. This latter style of book reading is
developed by Whitehurst and his colleagues (Arnold et al. 1994; Whitehurst et al.
1988) for parental book reading and reading in day care centers. This dialogic book
reading implies that “the adult is encouraged to ask open-ended questions and to
avoid yes/no or pointing questions. For example, the adult might say, ‘What is Eey-
ore doing?’ or ‘You tell me about this page’ instead of ‘Is Eeyore lying down?’ ”
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(Whitehurst et al. 1994, p. 680). Although studies have provided evidence for the
efficacy of dialogic reading for expressive language development in preschool chil-
dren (Hargrave and Sénéchal 2000) and vocabulary development of children up to
the end of grade 2 (Whitehurst et al. 1999), we chose to adapt this dialogic book
reading approach by asking the teachers, involved in our project, not to ask too many
questions. The reasons for this were the following. On the one hand, we wanted to
use in a certain degree—similarly as in the two previous studies—the own power
of the picture books to elicit mathematical thinking in children. To let the books
do the work, we requested the teachers to maintain a reserved attitude and not to
take each aspect of the story as a starting point for an extended class discussion,
since lengthy or frequent intermissions could break the flow of being in the story
and consequently diminish the story’s own power to contribute to the mathematical
development of the children. On the other hand, we tried to enhance the cognitive
involvement of the children by asking the teachers to act as a role model of cog-
nitive engagement or as a person who provokes discussion with the children. We
suggested the teachers to react to the story and pictures in the picture books by
asking oneself questions, playing dumb, and showing inquiring expressions. In the
next section we give a short classroom vignette of each way of reacting to illus-
trate the children’s mathematical thinking that is elicited by this teacher behavior.
The observations are from one teacher in an inner-city school in a large city in the
Netherlands. Most children at this school have an at-risk background. The teacher
read the picture books to a small group of six of her children who are in K2 (5- to
6-year-olds).

Asking Oneself a Question

The picture book that is read is called 22 Wezen [22 Orphans] (Veldkamp and Hop-
man 1999). It is about twenty-two parentless children who live in an orphanage.
On pages 5 and 6 (see Fig. 6) the stern lady principal takes the children to bed. In
the dormitory, eight double-decker beds are visible. The lady principal’s huge body
blocks the view on the other beds.

Classroom Vignette

1 Teacher: [The teacher reads the text in the picture book and continues.] Yes, and
she’s so afraid of an accident that she sends them all to bed. But I wonder,
are there enough beds for everyone?

2
3
4 All children: [All children react.] Yes. . . I think so. . . No. . .

5 [Children start immediately counting and pointing at the beds.]
6 Teacher: Wait, if we all count at once, you’ll be confused. Could you start again?
7 Wait, we’ll all take our turns to count, right?
8 N: I can’t see anything.
9 Teacher: Then you need to sit right, [Name of N]. [Name of S], what do you think,

is there enough room?10
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Fig. 6 Pages 5 and 6 of 22 Wezen [22 Orphans] (Veldkamp and Hopman 1999). Text page 5: “That
is enough!” the lady principal shouted. She collected the orphans and put them to bed. “But we are
not at all tired,” the orphans said. Text page 6: “it doesn’t matter,” the lady principal said. At least
no accidents happen this way. An elephant can stand rough handling, but a child is not an elephant”

11 S: No.
12 Teacher: You don’t think so. What were you doing just then? What were you going

to count?13
14 S: The beds.
15 Teacher: You were going to count the beds. Well, go ahead.
16 S: [Counts the bed one by one mumbling and at the same time points out in

the air the beds in the book] 16!17
18 Teacher: 16. But how do you get that man. . . I only see. . . 1, 2, 3, 4, 5, 6, 7, 8 beds.
19 S: Because it, because they are double. . .
20 Teacher: Oh, they’re double-decker beds.
21 Y: [Starts counting and points with her spread-out index finger and middle

finger at the beds in the book] 2, 4, 6, 8, 10, 12 [points at the beds, behind
the lady principal]. There have to be some here.

22
23
24 Teacher: There have to be, yes!
25 Y: 12, 14, 16, [points at where she thinks the beds are, child 6 also points

them out] 17. . . [with some help from the teacher] 18, 20, 22!26
27 Teacher: Yes, that’s it! You did that very well. [Name of S] was counting like this

[teacher points with her index finger at the beds in the book], but you can
also count in steps of two, right?

28
29

This classroom vignette makes clear that the question the teacher asked herself
(lines 2–3) elicited the children to start to count (line 5 and further). The way the
children took over the question suggests that this question became also a question
for the children themselves. Moreover, the structure of the double-decker beds stim-
ulated children to count in two’s (line 21).
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Fig. 7 Pages 3 and 4 of the book De prinses met de lange haren [The princess with the long
hair] (Van Haeringen 1999). Text page 3: The princess grows. And her hair grows even faster. The
lackeys are worried. Is the hair not becoming too heavy for the princess?

Playing Dumb

Another possible way to make the children cognitively active is feigning ignorance.
An example of such ‘playing dumb’ behavior of the teacher was evident in the pre-
vious classroom vignette (see line 18). After child S counted 16 beds, the teacher
reacted with surprise, and counted 8 beds, as if she did not see that each bed con-
tained two mattresses.

A second example of ‘playing dumb’ to elicit children’s mathematical thinking
became apparent in the next classroom vignette. The reading session is with the
picture book De prinses met de lange haren [The princess with the long hair] (Van
Haeringen 1999) (see Fig. 7).

Classroom Vignette

30 Teacher: [The teacher reads the complete text.] In the book it says: her hair grows
even faster than the princess. How can one tell?31

32 V: Because her hair is super long now.
33 Teacher: And the princess?
34 V: Small.
35 Teacher: She is not that tall, hey?
36 J: She was a baby, right? Now her hair is grown and then she had got long

hair.37
38 Teacher: She has got long hair, yes.
39 V: Five men got to hold it.
40 [V raises four fingers.]



242 M. Van den Heuvel-Panhuizen and I. Elia

41 Teacher: [The teacher asks the children to speak one by one for they all speak at the
same time. Then she continues.]42

43 The princess has grown just such a bit, right?
44 [The teacher points to the princess from top to toe.]
45 K: Up till here.
46 [K points to a part of the hair that has the same length as the princess.]
47 B: She is this big.
48 [B walks to the book and measures the height of the princess with the

fingertip of her index fingers.]49
50 One, two, three, four, five, six, seven.
51 Teacher: Seven what?
52 All children: Seven meters!
53 Teacher: Seven meters?
54 So you have fingers of one meter?
55 B: No!
56 K: [K measures seven times his fingertip on the hair of the princess and says.]
57 Up till here.
58 Teacher: So she has grown seven fingers, that is how tall she is.
59 [In the meantime J tries to measures the whole length of the hair with her

fingertip.]60
61 Teacher: You have very thin fingers.
62 Shall I go and see with my fingers how tall she is?
63 [The teacher measures the princess with her index fingers.]
64 All children: One, two, three, four, five.
65 Teacher: With me she is just five fingers tall.
66 V: Because you have thick fingers.
67 Teacher: Yes, my fingers are much thicker.
68 J: Look at my little finger.
69 [J measures the princess with the tip of her little finger.]
70 One, two. . .

The picture book and the classroom discussion about the princess with the long
hair seemed to offer opportunities to deal with the concept of measurement with
very young children differently than mathematics textbooks generally suggest. The
picture book does not reflect a smooth building-up of the different aspects of mea-
suring; starting with easy situations and gradually including more complex situa-
tions. Instead, in the context of reading this picture book, children are engaged in
measuring something that is bent, possibly before they have done so with measur-
ing straight lines. Moreover, they can be engaged in dealing with growth at different
speeds (that of the hair compared to that of the girl) before the children have, we
assume, a good understanding of the growth of objects on their own.

Moreover, when discussing the length of the hair, the children had different ways
of representing the length, such as the amount of time it takes to follow the hair with
your finger or to walk the length in the gym where the book reading took place, and
the number of fingertips needed to measure the hair.

Further, the feigned ignorance of the teacher (see line 65) revealed that the chil-
dren understood the relationship between the unit size and the number of iterations
quite well, while other researchers have observed that this key measurement princi-
ple is undeveloped in many children. For example, Grant and Kline (2003, p. 52) de-
scribed a first-grade class where a difference in the unit of measurement (children’s
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Fig. 8 Pages 3 and 4 of the book Feodoor heeft zeven zussen [Feodoor has seven sisters] (Huiberts
and Posthuma 2006) Text page 3: At night before he goes to sleep, he doesn’t get just one kiss.
No, his seven sisters give him, altogether twenty-one kisses. Fourteen arms around him, and he
is wrapped up well from head to foot. Then, he is read six stories and one poem. Finally, seven
fingers reach for the light-switch

feet lengths) led to a dispute over the actual measure of a distance; “a significant
number of students thought that smaller feet would lead to a smaller measure”. This
is an interesting contrast to the children in our study, who realized that the teacher’s
thick fingers would lead to a smaller number of ‘counts’. It is rather likely that the
teacher’s playing dumb behavior (“With me she is just five fingers tall”), triggered
the children’s idea of fairness in measurement, i.e., they felt the necessity to have a
similar unit.

Just Showing an Inquiring Expression

The next book is Feodoor heeft zeven zussen [Feodoor has seven sisters] (Huiberts
and Posthuma 2006) (see Fig. 8).

Classroom Vignette

71 Teacher: [The teacher reads the text till “altogether twenty-one kisses”. Then, the
teacher stops and shows an inquiring expression by raising her eyebrows.]72

73 All children: [All children react together; look at each other; reactions are mumbled.]
74 Teacher: Twenty-one kisses!
75 E: [Starts counting while tapping her cheek] Three, four, five.
76 Y: On two sides.
77 All children: [All children react to what Y says; only the word ‘two’ can be made out.]
78 M: [Says something inaudible to the teacher.]
79 Y: . . .plus thirteen?
80 Teacher: No, he received twenty-one kisses, and you just said [she looks at Y] he

gets a kiss on each side from every sister, right [teacher points at the first
sister in the picture in the book] because you were already starting to
count. You said two. . .

81
82
83
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84 All children: [The teacher points at the second sister] Four.
85 All children: [The teacher points at the third sister] Six.
86 All children: [The teacher points at the fourth sister] Eight.
87 All children: [The teacher points at the fifth sister] Ten.
88 All children: [The teacher points at the sixth sister] Twelve.
89 All children: [The teacher points at the seventh sister; children hesitate]
90 Y: [Starts, doesn’t finish the word] Thir. . .
91 Teacher: F. . .

92 All children: Fourteen.
93 Teacher: Fourteen, but then it’s not right. They say twenty-one kisses.
94 E: Okay, then it’s here, here and here [points at her own face to show where

the kisses are placed; one on the left cheek, one on the right cheek, and one
on the forehead.]

95
96
97 Teacher: Oh! Yes, maybe he is doing that. A kiss here [teacher points out the kisses

on her own face]. . . they kiss him here, here and one on his forehead. How
many for each sister?

98
99

100 E: [Inaudible.]
101 Teacher: Well, let’s see if that is correct. [Teacher taps her finger on the first sister

for each number] One, two, three.102
103 All children [Start counting along out loud.]
104 Teacher: [Taps her finger on the first sister] Four, five, six.
105 All children: [Count along out loud, while the teacher taps her finger on the sister

concerned] Seven, eight, nine.106
107 E: [Counts along with the teacher with her fingers] Ten, eleven, twelve, . . .

thirteen, fourteen, fifteen, . . . sixteen, seventeen, eighteen.108
109 Teacher and children: Nineteen, twenty, twenty-one.
110 Teacher: Hey, that’s right.
111 E: That’s here, here and here [points out the places on her face].
112 Teacher: [Looks around the table] He got twenty-one kisses, from his seven sisters.
113 N: . . . Kisses.
114 Teacher: Yes, kisses [points out the places on her face].
115 E: Thought well about it. . . here and here?
116 Teacher: Yes, from each sister he gets. . .
117 All children: Three.
118 Teacher: Three kisses.

This classroom vignette again illustrates that asking questions is not the
only means teachers have available to get the children actively involved in the
mathematics-related events included in picture books. The teacher’s wondering
about the twenty-one kisses (see lines 71–72) raised also questions in the mind of the
children and prompted them to react (see line 73) and check the number. After first
starting with one kiss on each cheek, which resulted in 14 kisses, child E came with
the solution to have a kiss on both cheeks and one on the forehead (see lines 94–96).
This is a perfect solution for not getting confused. In all it is very remarkable that
these kindergartners who never have been taught multiplication tables—not to men-
tion the multiplication table of seven—could handle these large numbers. The story
of the seven sisters provides a viable context for the number fourteen and twenty-
one, from which the children may benefit in their further learning of mathematics.
Whether or in what ways reading picture books to young children contributes to
their mathematical performance is the topic of the next section.
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Effectiveness of Picture Book Reading on Kindergartners’
Performance in Mathematics

In our research program, an experimental study (pre-test–post-test control group
design) was set up in order to find out whether an intervention involving picture
book reading could contribute to the development of kindergartners’ mathemati-
cal understanding (Van den Heuvel-Panhuizen et al. 2013). Another major focus of
the particular study was to investigate the relationship between the intervention ef-
fect and characteristics of kindergartners, including kindergarten year, age, gender,
home language, socioeconomic status (SES), urbanization level of the location of
the school the children attended, mathematics and language ability.

Set up of the Experiment

In total 384 children participated in our study: 199 children from nine classes in
the experimental group and 185 from nine classes in a comparable control group.
The experimental group consisted of 106 boys and 93 girls, 84 of whom were in
kindergarten year 1 (K1) and 115 in kindergarten year 2 (K2). The average age at
the time of the pretest was 5 years and 3 months. The control group consisted of 95
boys and 90 girls, of whom 66 were in K1 and 119 in K2. The average age at the
time of the pretest was 5 years and 4 months.

During three months, the children of the experimental group were read a collec-
tion of picture books in which mathematical topics (i.e. number, measurement, or
geometry) are unintentionally addressed by the authors of the books. Within these
mathematical domains we focused respectively on numbers and number relations,
growth, and perspective. Altogether, eight books were used within each domain. The
total of 24 picture books were selected on the basis of the learning-supportive char-
acteristics (see section “Learning-Supportive Characteristics of Picture Books”) in-
cluded in the framework that was developed as a result of a literature review and an
expert consultation (Van den Heuvel-Panhuizen and Elia 2012).

Reading guidelines were developed with a focus on each book’s own power to
promote the children’s mathematical thinking. Teacher behavior like (1) asking one-
self a question out loud about the mathematics, (2) playing dumb, and (3) just show-
ing an inquiring expression was suggested in the reading keys, the written guidelines
that were developed for this study. In advance of the intervention, the teachers in the
experimental group received training on the picture book program, which entailed
researchers explaining to them the set-up of the reading sessions and how to use
the reading keys by showing them illustrative video-recordings of the pilot sessions.
During the three-month intervention, the teachers in the experimental group read
two picture books in class per week. After the book reading sessions, the books
were at the children’s disposal during free play. In the experimental classes, the
intervention book reading program replaced the regular book reading. The control
group classes only did their regular book reading which could incidentally include
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Fig. 9 PICO test item on
perspective. Test instruction
read to the children: “There is
Mouse. How would Mouse
look if you looked down on
him like a bird? Underline the
way Mouse looks from
above”

some books that were also used in the experimental group. However, the logs of the
teachers did not show us that this was the case. Both the experimental group and the
control group followed their regular mathematics program. The latter group was not
informed about the real purpose of the study, but were told that the test data were
collected to describe the children’s development in mathematics.

A project test called the PICO test was developed and used to assess children’s
mathematics performance before and after the intervention. The PICO test items
consist of multiple-choice questions on arithmetic (number and number relations),
measurement (length with emphasis on growth), and geometry (perspective). Fig-
ure 9 shows an example of a test item on perspective.

Results

To investigate the intervention effect on the mathematical understanding of the sam-
ple as a whole we performed a regression analysis where the gain score (PICO
posttest score minus PICO pretest score) was used as the dependent variable and
the intervention as the independent variable (Model 1). In order to find estimates
of the intervention effect with the least bias, another regression analysis was ap-
plied, in which the various variables representing children’s characteristics (kinder-
garten year, age, gender, home language, SES, urbanization level of school location,
mathematics ability, and language ability) were included (Model 2). Both models
revealed a significant intervention effect (Model 1: B = .91, p = .01; Model 2:
B = .77, p = .03) with the explained variance increasing from R2 = .02 in Model 1
to R2 = .04 in Model 2. The effect sizes, as defined by Cohen (1988), were calcu-
lated for each model in order to investigate the size of the general intervention effect.
We found small effect sizes. For Model 1 the effect size was d = .16 (meaning that
the difference between the pretest and the posttest was .16 times the standard de-
viation of the pretest scores) and for Model 2 the effect size was d = .13. For the
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gain score in the control group we found an effect size of d = .59, which means that
the influence of the intervention amounted to be 27 % (.16/.59 = .27) larger than
this effect size in the control group. In Model 2, the Cohen’s d was .13, indicating
an increase in effect size of 22 %. This finding supports the assumption that picture
book reading can yield significant learning outcomes in early years mathematics.

To investigate the influence of the intervention on the gain scores in the different
subgroups, we carried out regression analyses in each of the subgroups which were
based on the covariates. In some of the subgroups we found a significant intervention
effect. This was the case in the K2 subgroup, the subgroup with the older children,
the subgroup with Dutch as home language, the subgroup with the higher SES, the
subgroup of children who attended a school in a small town, the subgroup with the
lowest mathematics ability and the subgroup with the lowest language ability and
the subgroup with the highest language ability. In the subgroup of girls we found
a significant and relatively strong intervention effect (B = 1.37, p = .01, d = .24),
whereas for the boys there was not a significant intervention effect (B = .49, p =
.16, d = .08).

After carrying out regression analyses in each of the subgroups separately, we ex-
amined whether the found intervention effects differed between the subgroups. This
analysis turned out that there were no differential intervention effects. This applied
also to the effects found in the two gender subgroups (B = .88, p = .12). Yet, this
differential intervention effect for gender was not of a negligible size. Moreover,
the effect size found for girls (d = .24) was three times as large as that for boys
(d = .08).

In sum, a major conclusion of the above study about the effectiveness of pic-
ture book reading is that reading picture books can support children’s mathematical
understanding and therefore, according to us, should have a significant place in the
kindergarten curriculum. Such a picture book reading program seems to be effective
for a wide range of children in a whole-class setting, including children of different
ages, socio-economic backgrounds, language and mathematical abilities. The par-
ticularly positive results of reading picture books for the mathematical development
of girls is another advantage that may help girls have a better start in mathematics
when they enter first grade (Carr and Davis 2001; Penner and Paret 2008).

Final Remarks

When Robert Hunting and Lyn English recently gave an interview on the Australian
RadioNational,1 the interviewer started with the following question: “We are en-
couraged to read to children as early as possible but how can we encourage the early
learning of mathematics?” Our answer would be: Do the same for mathematics, read
them picture books. At least, among other things, this is one way to encourage the

1The interview was broadcasted by the Australian RadioNational on the 12th of March 2012; http://
www.abc.net.au/radionational/programs/lifematters/young-children-and-mathematics/3895004.

http://www.abc.net.au/radionational/programs/lifematters/young-children-and-mathematics/3895004
http://www.abc.net.au/radionational/programs/lifematters/young-children-and-mathematics/3895004
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early learning of mathematics. As we have discussed in this chapter, there are sev-
eral approaches of using picture books for this aim. One approach is just reading the
books to the children without the reader giving prompts. In this approach it is the
own power of the picture books that elicits mathematical thinking in children. Our
study has shown that just reading the books can make the children cognitively active
and can lead to mathematics-related utterances. Another approach is a focused way
of dialogic reading, which means a way of reading in which the power of the picture
books and cognitive involvement of the children is enhanced by having the reader as
a role model of cognitive engagement or as a person who provokes discussion with
the children that brings them to mathematical reasoning as well.

A further approach is adding mathematical activities to the picture book reading.
In this last option the book reading is followed by story-related (mathematical) ac-
tivities in class. This approach has not yet been investigated by us, but examples of
it can be found in studies by Jennings et al. (1992), Hong (1996), Young-Loveridge
(2004), and Casey et al. (2008).

Apart from these three goal-directed ways of picture book reading in which an
adult reads the book, children can also ‘read’ picture books by themselves during
free play. We wonder whether this would also give them support in developing math-
ematical understanding. Further explorations are necessary in this self-contained
learning.

Another issue that needs further research is the role of the teacher and what is
necessary to fulfill this role. First of all, we think that teachers should recognize
picture books as a didactical tool in mathematics education for young children. Sec-
ondly, they should be able to see the mathematics in picture books of high literary
quality even if these books have not been written for teaching mathematical con-
cepts. Thirdly, if the two foregoing points are reached, we think that teachers will
have possibilities to contribute to children’s mathematical thinking in a way that
might be attractive for the children as well as for the teachers themselves. However,
as said before, more research is needed at these points.
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Improving Numeracy Outcomes for Young
Australian Indigenous Children

Marina M. Papic

Introduction

This chapter provides research-based evidence on successful approaches to improv-
ing learning opportunities, particularly in early numeracy, for young Australian In-
digenous children. A series of studies (Papic and Mulligan 2007; Papic et al. 2011)
focused on developing children’s early algebraic and mathematical reasoning skills
and teachers’ pedagogical and mathematical content knowledge (Hill et al. 2008)
through on going, supportive professional development will be presented. Two ini-
tial studies informed the development of the Patterns and Early Algebra (PEAP)
Professional Development (PD) Program, an Australian Research Council Linkages
project1 2011–2013. PEAP PD advances young children’s patterning, early alge-
braic and mathematical thinking skills, working towards the broader goal of closing
the gap in numeracy achievement for Indigenous children in rural and regional early
childhood settings.

National statistics highlight the unacceptable levels of disadvantage faced by In-
digenous Australians in living standards, life-expectancy, education, health and em-
ployment (Australian Government 2009). Australian Indigenous children aged 0–
14 years make up 39 % of the Australian Indigenous population. According to the
National Report on Schooling in Australia (Ministerial Council on Education, Em-
ployment, Training and Youth Affairs, MCEETYA 2008), literacy and numeracy
results for Indigenous students are consistently below the national average, espe-
cially in remote areas; only forty-seven percent of Indigenous Australian children
in year 7 are achieving results at the benchmark for numeracy (p. 29). In the early
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childhood years Indigenous children are less likely to participate in preschool pro-
grams than non-Indigenous children and they have higher rates of absenteeism in
primary school (Frigo et al. 2004). Poor educational outcomes of Indigenous chil-
dren in later years of schooling are indicative of inadequate educational progress in
the early years of schooling (Adams 1998, p. 8).

For the first time in our history, the Australian Government has set specific tar-
gets to address Indigenous disadvantage (Australian Government 2009). Suitable
educational opportunities not just in literacy and numeracy but also in developing
skills and attitudes for lifelong learning play a critical role in achieving these tar-
gets, particularly in the early years. Children’s learning experiences in the early
years play a crucial role in setting foundations for lifelong learning (Clements and
Sarama 2007). The development and evaluation of appropriate programs to promote
literacy and numeracy for Indigenous children must be aligned with initiatives to
support professionals within their communities (Perso 2009). Raising professional
and community expectations of young Indigenous learners and access to effective
professional development programs and resources are critical to achieving this goal
(Meaney et al. 2008).

Despite the government agenda to address Indigenous disadvantage and close
the gap in numeracy achievements, there is a paucity of focused and longitudinal re-
search into the educational outcomes for Indigenous students. Perry and Dockett’s
(2004) review calls for studies of successful approaches to the mathematics educa-
tion of young Indigenous students and Mellor and Corrigan (2004) argue for more
qualitative and case study research along with more rigorous evaluation of indica-
tors by quantified research. “Changes to practice in the field of Indigenous education
are required because we really do not know enough about improving Indigenous
students’ learning outcomes”. We also don’t know enough about the best way to
support Indigenous professionals and build their pedagogical content knowledge.
Furthermore, there is lack of research on numeracy assessment tools to assess the
learning outcomes of young Indigenous students and even less evidence of effective
numeracy programs for Indigenous children. Current research focuses on building
new initiatives/programs that develop mathematical reasoning, skills in justification
and argumentation, and abilities to identify similarity and difference and express
generality which are critical to later mathematical achievement.

This chapter is structured as follows. An overview of the importance of the early
years’ mathematical development is presented with an emphasis on teaching and
learning for Indigenous children. The research on patterning and early algebraic
thinking supports the focus of patterning in early numeracy programs such as PEAP
(Papic 2009). Key findings from the two studies that informed the development of
the current PEAP project are presented. A case study of one of the early childhood
centres involved in the current longitudinal study is then highlighted. A focus on
the development of children’s patterning and early algebraic thinking skills is in-
cluded here along with exemplars of the development of teachers’ pedagogical and
mathematical content knowledge.
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Mathematics in the Early Years

Internationally, educational policy and practice is being increasingly directed to-
wards improving early childhood education with new programs designed to promote
mathematics learning e.g. Building Blocks Project (Clements and Sarama 2007),
Curious Minds (van Nes and de Lange 2007) and the Pattern and Structure Project
(Mulligan and Mitchelmore 2009; Mulligan et al. 2006). It has been found that high
quality, developmentally appropriate early childhood programs can produce both
short- and long-term positive effects on children’s cognitive and social development
(Barnett et al. 2007). In mathematics education, recent research indicates that early
intervention can prevent later learning difficulties (Clements and Sarama 2007; Doig
et al. 2003; VanDerHeyden et al. 2006). “Without active intervention it seems likely
that children with little mathematical knowledge at the beginning of formal school-
ing will remain low achievers throughout their primary years and probably beyond”
(Aubrey et al. 2006, p. 44). The quality, scope and depth of both the teaching and
assessment of early mathematics are now regarded as critical to future success in
the subject (Stevenson and Stigler 1992; Young-Loveridge et al. 1998).

Research on mathematics learning has often been restricted to an analysis of
children’s developmental levels of single concepts such as counting, but has not pro-
vided insight into common underlying processes that develop mathematical think-
ing, reasoning and early generalization. “Given opportunities to engage in mathe-
matical experiences that promote emergent generalization, children are capable of
abstracting complex patterns before they start formal schooling. The crucial compo-
nents are exposure to a variety of patterns in differing modes and orientations, and
scaffolding by an adult to justify and transfer these patterns to other media” (Papic
et al. 2011, p. 263). The challenge is for early childhood educators to integrate “pat-
terning and structural relationships in mathematics so that a more holistic outcome
may be achieved much earlier than previously expected” (Papic et al. 2011, p. 264).

Early Mathematics Teaching and Learning for Indigenous
Children

Several Australian research projects have focused on improving mathematics learn-
ing opportunities for Indigenous children and supporting Indigenous early child-
hood professionals (Adams 1998; Meaney et al. 2008; Warren et al. 2008). Recent
research focused on improving mathematics learning in Indigenous communities
identifies the importance of learning through hands-on experiences that best sup-
ports young Indigenous students to engage with mathematical ideas (e.g. Cooper
et al. 2006). Recent policy documents on early years’ education highlight the need
for educators to maintain high expectations of the capabilities of children (Aus-
tralian Government Department of Education, Employment and Workplace Rela-
tions, DEEWR 2009). Raising teacher and community expectations of young In-
digenous children will contribute to improving early numeracy. The current study
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builds on recent research focused on pedagogy that supports Indigenous students’
learning and enhances students’ engagement with mathematical learning opportuni-
ties (Warren and de Vries 2010, p. 4).

Initiatives in the preschool and early years of formal schooling such as a current
program for Indigenous children in Queensland (Warren et al. 2008) and the Count
Me In Too Indigenous program (NSW Department of Education and Training 2001)
exemplify systematic attempts to provide effective mathematics programs suitable
for Indigenous contexts.

The importance of community consultation has been highlighted in developing
culturally-appropriate teaching and learning experiences, resources and professional
support in mathematics (Howard and Perry 2007). The Maths in Indigenous Con-
texts Project, conducted in both rural and urban settings, applied community con-
sultation guidelines to increase teachers’ understanding of the needs and cultures in
which Aboriginal students live. There were substantial benefits for both the teachers
and the community. Similarly the current four year Make It Count Project (Aus-
tralian Association of Mathematics Teachers 2010) aims to identify practices that
will focus on the school as a unit of change with contribution from the entire school
and wider community (Perso 2009).

In a recent Australian Government project Mathematical Thinking of Preschool
Children in Rural and Regional Australia: Research and Practice, 19 Indigenous
early childhood professionals described their understandings and beliefs about
young children’s learning, including mathematics which they saw as inextricably
linked to Indigenous peoples’ place in their community (Papic et al. 2010). The
larger study (Hunting et al. 2008) revealed that 64 preschool practitioners were able
to identify and provide convincing examples of both incidental and planned math-
ematical activities across a breadth of content strands, including number and op-
erations, measurement, geometry, data collection, and fundamental classifying and
ordering activities (Hunting et al. 2008). However, they were less aware of the math-
ematical processes such as problem solving, explaining and interpreting, inherent in
many of the activities preschool children typically engage in on a daily basis. The
development of such processes is critical to a deep understanding of mathematics
in subsequent years of formal schooling (Papic et al. 2011) and is often dependent
on a teacher’s knowledge of both subject matter and pedagogical content specific to
teaching mathematics.

An understanding of how concepts and ideas relate provides a foundation for
pedagogical content knowledge that enables teachers to make ideas accessible to
others (Sullivan et al. 2009). “The ability of preschool practitioners to plan devel-
opmentally appropriate experiences that foster the advancement of mathematical
concepts and processes of young children is dependent on a complex combination
of both mathematical subject matter and pedagogical content knowledge” (Bobis
et al. 2010). However, to enhance the quality of mathematical teaching in the early
years, professional development initiatives must build not only the pedagogical con-
tent knowledge of teachers but also address the beliefs, attitudes and dispositions
teachers bring to the classroom (Ball et al. 2008).
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Mathematical Patterning and Early Algebraic Thinking

“Algebra can be viewed as a symbolical language that enables us to express rela-
tionships and generalizations, usually involving numbers, and use them in order to
solve problems without the extensive numerical computations that might otherwise
be necessary (e.g., when using trial and error)”, (Papic et al. 2011, p. 239). The
central idea here is that of a generalization, that is, a relationship that holds over
an entire class of values and not only in isolated instances (Dörfler 1991). “From
this perspective, finding and using generalizations may be considered as algebraic
thinking” (Papic et al. 2011, p. 239). The roots of algebraic thinking therefore lie
in detecting sameness and difference, in making distinctions, in classifying and la-
belling, or simply in algorithm seeking (Mason 1996).

Mason and his colleagues (Mason et al. 2007, 2005, 2009), have argued for a
focus on generalization in the early years. Mason holds the view “that students come
to school with natural powers of generalization and abilities to express generality,
and that the development of algebraic reasoning is, in large part, a matter of tapping
into those naturally occurring capacities for didactic purposes” (Lins and Kaput
2004, p. 54).

A pattern is a type of generalization, in that it involves a relationship that is “ev-
erywhere the same”. It is perhaps on this basis that some researchers have claimed
that early algebraic thinking develops from the ability to see and represent patterns
in early childhood (Mason et al. 2005). Others have claimed that the integration
of patterning in early mathematics learning is critical to the abstraction of mathe-
matical ideas and relationships, and the development of mathematical reasoning in
young children (English 2004; Mulligan and Mitchelmore 2009; Papic et al. 2011).
The integration of patterning in early mathematics learning can promote the de-
velopment of mathematical modelling and heuristic strategies in problem-solving
contexts. In working with young Aboriginal children it is useful to consider the pat-
terns and symbols children may frequently be exposed to: patterns in traditional and
contemporary art works (iconic dots and concentric circles), cave paintings and rock
art; patterns and symbols that express Dreamtime stories; and weather patterns.

At a fundamental level, “patterning is an essential skill in early mathematics
learning, particularly in the development of spatial awareness, sequencing and or-
dering, comparison and classification. This includes the ability to identify and de-
scribe attributes of objects and similarities and differences between them” (Papic
2007, p. 8). Patterning is critical to the development of key mathematical concepts
and processes such as counting and multiplicative thinking. Recent research with
young children has shown that the early development of pattern and structure pos-
itively influences, mathematical achievement overall and provides a stronger foun-
dation for algebraic thinking (Papic et al. 2011).

Patterns and Early Algebra Studies

Two main studies informed the development of the Patterns and Early Algebra
(PEAP) Professional Development (PD) Program.
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Initial Study

The initial study focused on the development of patterning strategies in 53 chil-
dren from two preschools (Papic and Mulligan 2007). One preschool implemented
a 6-month intervention focussing on Repeating and Spatial patterns. Three early
childhood educators participated in two three hour initial training sessions and were
then provided with ongoing weekly support where the researcher visited the centre
one day a week and held an additional weekly meeting with staff. The weekly visits
provided valuable opportunities for team teaching and modelling of teaching strate-
gies, questioning skills and recording of observations of children’s patterning de-
velopment. The additional meeting provided a platform for staff and the researcher
to evaluate the week, share successes and any challenges and plan for the following
week’s experiences. The second preschool implemented their regular preschool pro-
gram with no additional professional development or support from the researcher.

An interview-based Early Mathematical Patterning Assessment (EMPA) (Papic
et al. 2011) was developed and administered pre- and post-intervention, and again
following the first year of formal schooling. The intervention group outperformed
the comparison group across a wide range of patterning tasks at the post and follow-
up assessments. Intervention children demonstrated greater understanding of pat-
terns as repeated units and spatial relationships. In contrast, most of the comparison
group treated repeating patterns as alternating items and rarely recognised simple
geometrical patterns. Intervention children were able to justify various patterns and
transfer patterns to different media. The Intervention had drawn children’s attention
to structure. The early childhood educators “repeatedly encouraged children to look
for structural similarities and differences between the given pattern and their copy
of it” (Papic et al. 2011, p. 261). One year after the Intervention, the Intervention
children continued to outperform the non-Intervention children on patterning tasks
including growing triangular and square number patterns which neither group had
been exposed to during the Intervention or the first year of formal schooling. The
Intervention children also outperformed the non-Intervention children on a stan-
dard numeracy assessment, Schedule of Early Number Assessment SENA 1 (NSW
Department of Education and Training 2001) at the end of the first year of formal
schooling.

The Intervention included individual or small group sessions with each child
once a week. An instruction framework based on patterning tasks guided the ses-
sions (Papic et al. 2011). Children copied and drew patterns, identified the unit
of repeat and the number of repetitions, were encouraged to describe similarities
and differences between patterns and explain their strategies and thinking. Children
were also encouraged to identify the unit of repeat in various repeating patterns and
generalize this to create other patterns using various materials, still containing the
same pattern structure (e.g. ABC, ABBA, ABCD). Teachers were also supported to
“Patternise” their regular preschool program where they incorporated rich pattern-
ing experiences within their daily planning and implementation. A component of
the Intervention was to document children’s mathematical thinking and pattering in
free play.



Improving Numeracy Outcomes for Young Australian Indigenous Children 259

A critical factor of the Intervention was developing early childhood educators’
pedagogical and content knowledge. This enabled them to incorporate patterns,
problem solving and mathematical language and concepts into their teaching. The
educators felt that they had gained new ideas on how to include patterning experi-
ences into the daily curriculum:

We now have a heightened awareness of the importance of patterning and spatial struc-
ture tasks in the early childhood setting and their importance in providing foundations for
mathematical development. We are more aware of children initiating complicated pattern
making in free play and by documenting these experiences provide appropriate experiences
for children to explore patterns further at their own level. (Teacher C1)

Follow up Study

The Intervention and the approach to professional development from the initial
study were refined based on the feedback from early childhood educators. This
included a simpler and shorter interview-based Early Mathematical Patterning As-
sessment (EMPA), revision and inclusion of an additional level on the Instructional
Frameworks, the inclusion of examples of documentation in the teacher Professional
Development Package and a shorter implementation time. The PEAP PD Program
(Papic 2009) was designed to be used in the follow up study throughout the training
period and implementation of the program.

In the follow up study,2 two long day care centres which operate a preschool
program were randomly selected from a list of centres that contacted the researcher
over a 24 month period requesting more information on the initial study. A num-
ber of these centres were Aboriginal Children’s services therefore one Aboriginal
service and one mainstream service was randomly selected. Across the two cen-
tres a total of 64 children and nine early childhood educators were involved in the
study. One training day was conducted at each of the centres and three support vis-
its throughout the 10 week program implementation. The professional development
focused on building early childhood educators’ understandings of mathematical and
pedagogical content knowledge including an understanding of different types of
patterns, early algebraic thinking and approaches to developing children’s mathe-
matical thinking including problem solving tasks, seeing similarity and difference,
questioning, communicating, justifying, reasoning and generalizing. This was done
through analysis of video footage, team teaching, modelling teaching strategies,
analysis of teachers’ planning, observations and documentation of children, shar-
ing of teachers’ reflective journals and focus group discussions in week 5 and week
10 of program implementation. Focus groups identified the importance of building
teacher’s pedagogical and content knowledge:

We wouldn’t have been able to achieve this through our normal routine and our normal
program. As capable as we know children are and we are we wouldn’t have thought children

2Funded by Macquarie University.
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Fig. 1 Game: Estimate 6!

are able to do what they did . . . We weren’t thinking like that about mathematics let alone
getting the children to think like that. (Teacher B1)

My mathematical knowledge has really grown. I thought I was working on patterns with
children but now I know they weren’t really patterns. (Teacher B2)

I wasn’t really good at maths but I feel this has helped me . . . and it has built my self-
confidence. (Teacher B3)

The program has helped us with the language . . . how to get the children to explain their
thinking . . . Before we started this program I would have thought that counting up to high
numbers would have been really important to go to school, like counting to 100 wow!
But I would never have thought of all the other maths skills . . . subitising, classifying,
ordinal numbers, and developing mathematical thinking is really important, asking children
to explain their thinking, look at what’s the same, what’s different, looking for patterns . . .

(Teacher B2)

Educators also identify the importance of the assessment tool, the learning frame-
work and using culturally appropriate materials (see Fig. 1).

At first I felt bad about putting children on a level based on my judgement of assessing
them on a couple of tasks . . . because we don’t normally assess children that way but then
what I appreciated then out of that process was that we had a really close look at where
children were and then using the Frameworks we get to see this amazing development and
this amazing journey that they have gone on . . . it was a great way to see where they were
and where they were going and it helped us direct them as well . . . Without that assessment
tool we would not have looked at the children’s skills and thinking that closely . . . The
program itself has given us the strategies to really assess the children at their right level and
then engage them in mathematical thinking and learning then to develop them further . . .

given us the skills to develop them further in this way that is culturally empowering, that
is why kids like [child’s name] are pumped because they can identify with it and feel real
proud . . . in that number line game she beams when she plays that game because she has a
connection with it (see Fig. 1). (Teacher B1)

The teachers were confident in extending children’s learning and taking advan-
tage of opportunities to develop children’s mathematical thinking and skills in justi-
fying their thinking and strategies: “we are now better equipped to extend the learn-
ing because we now have the skills . . . we are able to capitalise on opportunities”
(Teacher B1). The excerpt below exemplifies how Teacher B1 extended a patterning
experience with a child who created a cyclic pattern of camels.
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Fig. 2 Adding a unit of
repeat to a complex repeating
cyclic pattern

Teacher: What’s the pattern that you made?
Child T11: Big purple, little purple, little yellow, big green. It’s three times.

The teacher creates another repeat and asks the child, “If I want my camels to
join up in the circle with your camels but I still want to keep the pattern repeating
where will I join in?” The child recognises that there is an error in the size of the
green camel the teacher has created and explains to her that she needs to swap it
with a large green camel. The child then confidently adds the unit of repeat to the
rest of his pattern of camels (see Fig. 2). The teacher continues to extend the child’s
learning by asking the child where the pattern begins. The child identifies the large
purple camel. The teacher then asks the child if the pattern could begin somewhere
else. The child points to a large green camel.

Teacher: Okay, what’s the pattern then?
Child T11: Big green, big purple, little purple, little yellow. The child points to each

big green camel saying one time, two times, three, times, four times to show the
number of repetitions. The child clearly has an understanding of units of repeat
as he does not say the whole unit of repeat just the first item in each repetition.

The teacher then asked the child to identify another starting point and other pos-
sible units of repeat. The teacher and the child explored the two different directions
the pattern could go, clockwise and anticlockwise and the different unit of repeats
this would create.

Teacher: How come you can start the pattern from anywhere?
Child: Because it’s a circle.

The teacher continued to extend the experience by creating problem solving sit-
uations for the child to solve. The teacher asked the child to close his eyes and said
she would take one camel away from the circle. The teacher removed the yellow
camel and rejoined the circle then asked the child to open his eyes and identify the
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Fig. 3 Complex repeating
patterns (AABC repetition)

missing camel. The child looked careful at the circle and then replied “I think I
have to count everyone to see which one is missing”. The child goes on to count the
green camels only, “one green, two green, three green, four green”, then the purple
camels “one big purple, two big purple, three big purple, four big purple”, the child
suddenly has a big smile on his face and says, “I know which one’s missing, it’s one
of the yellow”. The teacher asked him how he knew. The child responded “because
there’s only three”. The child then placed the yellow camel in the correct spot back
in the circle.

These examples show how the development of the teacher’s pedagogical and
content knowledge gave her the skills to extend the child’s mathematical thinking
through problem solving and questioning. It is imperative that teachers ‘listen to’
their children not ‘listen for’ an anticipated response. In having a genuine interest in
what children do, teachers can extend children’s learning through appropriate and
contextual dialogue rather than getting them to say and do ‘what is expected’.

Teachers also developed their own skills in assisting children to abstract the unit
of repeat from various repeating patterns and generalize the pattern structure. The
following excerpt shows dialogue between the teacher and a child working with
complex repeating patterns. The child created a repeating pattern (AABC—blue,
blue, white, brown repetition) and the teacher created another block tower using
different colours but containing the same pattern structure (AABC—red, red, black,
orange). The teacher asked the child to look at the two towers (Fig. 3).

Teacher: What is the same between this tower and that tower?
Child: This one has blue, blue and this one has red, red.
Teacher: What’s the same about that?
Child: Because they both have two same blocks.
Teacher: What else is the same?
Child: Cause it’s repeated two times in both.

The teacher asked the child to identify what else was the same between the two
towers. The child then identified the different colours in the third and fourth position
of the unit of repeat and with the teacher’s assistance was able to verbalise this.

Teacher: Two the same and . . .

Child: One different and another different one.
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Fig. 4 Hopscotch pattern
created with an AABC
repetition

The teacher went on to ask the child to create another tower that has the same
pattern “but it doesn’t have to have the same colours”. The child went on to create
another AABC pattern: red, red, blue, brown repeated twice (Fig. 3).

Teacher: So what was the pattern?
Child: Red, red, blue, brown, one time, red, red, blue, brown, two times.
Teacher: So, we made a pattern using two blocks that are the same colour.
Child: The child cut in and said and two blocks of different colours.
Teacher: Do you think you can do it again? This time don’t use red.
Child: Okay, green, green . . . then yellow, black. Green, green, yellow, black (see

Fig. 3).
Teacher: So we have four towers. What is the pattern in all these towers? So in

every tower we used . . .

Child: The same colour twice then a different colour twice.
Teacher: So, in each pattern we used four blocks but we only used . . .

Child: Three.
Teacher: Three what?
Child: Three colours.

The teacher then asked the child to break up the towers to show the units of repeat
and asked the child again what was the same about each tower pattern? The teacher
prompted the child to identify that the structure was the same and that each unit of
repeat was repeated two times. The teacher then used one of the units of repeat to
encourage the child to make a hopscotch pattern (see Fig. 4) and assisted the child
to use the mathematical language of vertical and horizontal when explaining his
pattern.

Teacher: Which way are you putting that?
Child: Vertical. And the next one is horizontal.

When the child completed the pattern the teacher asked the child “What is the
pattern?”

Child: Vertical, horizontal, vertical, horizontal, vertical, horizontal.
Teacher: What does it look like from my end?
Child: Horizontal, vertical, horizontal, vertical, horizontal, vertical.
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In these examples the child was able to express relationships between the towers
by looking at similarities and differences in the repeating patterns and with teacher
scaffolding went on to make simple generalizations about the unit of repeat. Gen-
eralizations at this level can be referred to as pre-algebraic thinking (Papic et al.
2011).

Current Study: Improving Numeracy Outcomes for Young
Australian Indigenous Children Through the PEAP PD Program

A three-year longitudinal study (2011–2013) is currently being conducted in rural
and regional communities across NSW. The project consists of a design study inte-
grating a quasi-experimental approach and adopts a social-constructivist approach to
learning. The PEAP PD Program is being implemented in 13 Aboriginal Childcare
Services or Preschools where approximately 85 % of staff and children are Indige-
nous and two privately operated services with a high percentage of enrolments from
Aboriginal families (50–60 %). Seven services participated in 2011–2012 and the
remaining eight will participate in 2012–2013. Approximately 60 early childhood
educators and 240 4–5 year old children are involved in the study.

The PEAP program is implemented in collaboration with Indigenous and non-
Indigenous early childhood educators working within the services. Through on-
going professional development and support from staff from Gowrie3 Indigenous
Professional Support Unit (IPSU) educators build pedagogical content knowledge
and understanding of mathematical content. Children will be tracked into Kinder-
garten (NSW first year of formal schooling) and their mathematical development
will be assessed using the standardised Kindergarten assessment Best Start Numer-
acy (NSW Department of Education and Training 2009). Additional information
will be gained from the children’s Kindergarten teachers through semi-structured
interviews to identify the teachers’ perceptions of the children in terms of mathemat-
ical knowledge and confidence in the classroom to engage, question, communicate
and justify their thinking during mathematical experiences.

The study builds on the previous studies outlined in this chapter and the work
of Warren and colleagues that “draws from and adapts relevant mainstream re-
search about young students’ numeracy learning and endeavours to situate these
findings in local settings where Indigenous cultural practices are recognised and
respected” (Warren et al. 2009, p. 46). However, the proposed project adopts a
community-based approach to learning by utilising existing positive relationships
developed between researchers and professionals within the selected early child-
hood centres.

3ARC Linkage industry partner.
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Fig. 5 Six critical components of the Patterns and Early Algebra Professional Development Pro-
gram

The study aims to:

1. Advance pedagogical content knowledge and mathematical subject knowledge
of early childhood educators working in Aboriginal Children’s Services that are
closely tied to the local Indigenous communities.

2. Support teachers to implement an early numeracy program that explicitly aims
to develop mathematical thinking and reasoning.

Feedback from Teachers involved in the previous studies identified six key fac-
tors (see Fig. 5) as critical components of the PEAP PD Program:

1. Development of pedagogical and mathematical content knowledge of educators
2. On-going, context based professional development
3. Assessment tool to map children’s mathematical capabilities
4. Instructional Frameworks to guide teaching and learning
5. Hands on, culturally appropriate approaches to early numeracy
6. Documentation of children’s mathematical explorations and thinking
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Development of Pedagogical and Mathematical Content Knowledge of
Educators

Each of the services received three days initial training. This comprised building un-
derstanding of mathematical and pedagogical content knowledge, including an un-
derstanding of different types of patterns, early algebraic thinking and approaches to
developing children’s mathematical thinking e.g. problem solving tasks, seeing sim-
ilarity and difference, questioning, communicating, justifying, reasoning and gen-
eralizing. Staff worked through a training package (Papic 2009) and engaged in
practical patterning and early algebra experiences. Implementation of the interview
based assessment tool, Early Mathematical Patterning Assessment (EMPA), famil-
iarity with the Frameworks of Assessment and Learning and approaches to docu-
mentation were key components of the training sessions. Early childhood educators
were also introduced to NING™ (Glam Media Technologies), an online platform
that allows participants of the study to create their own social network. The PEAP
social networking website allows early childhood educators to communicate both
with researchers and network with other early childhood services implementing the
PEAP program. NING™ also provides early childhood educators with a platform
to clarify concerns, ask questions, share experiences and view additional resources
supplied by researchers at all times of the day.

On-Going, Context Based Professional Development

Building on the three days of training, educators at each centre receive nine ad-
ditional visits. One member of the research team, this includes staff from Gowrie
IPSU, make a whole day visit. Each visit focuses on a particular area of develop-
ment. This includes:

(a) supporting teachers to plan activities and opportunities that incorporate or pro-
mote rich patterning experiences and that build on children’s interests and ex-
plorations,

(b) modelling numeracy teaching experiences,
(c) working with staff to document children engaged in numeracy through their free

play using the National Early Years Learning Framework (DEEWR 2009),
(d) documenting children’s mathematical thinking and language,
(e) working with staff as they implement the structured patterning activities with in-

dividual children focusing on developing children’s mathematical thinking and
reasoning skills through conversation with children, questioning and extending
children’s learning, and

(f) integrating technology into teaching and learning, providing opportunities for
children to explore patterning and other mathematical concepts and processes.

An additional two days of support is provided to all services the year after im-
plementation, focusing on an area of development identified by the early childhood
educators in each centre. This support is different for each service and designed in
partnership with the staff.



Improving Numeracy Outcomes for Young Australian Indigenous Children 267

Assessment Tool to Map Children’s Mathematical Capabilities

An interview based assessment tool Early Mathematical Patterning Assessment
(EMPA), was revised from earlier studies (Papic et al. 2011). EMPA (see Table 1)
assessed children’s pattern recognition and problem solving strategies. EMPA was
administered by the teachers to children on a one-to-one basis at the start of the
implementation of the program. Each assessment took approximately 15 minutes to
administer. A variety of tasks assessed children’s facility with repeating and spatial
patterns and included copying, drawing and continuing patterns and identifying the
number of dots or objects in various spatial arrangements. Children’s responses were
initially coded for accuracy then their various strategies for each task were identi-
fied (see Table 2). These strategies were then classified into four increasing levels
of sophistication (see Table 3), “focusing on the structure of the representation and
the use of a unit of repeat” (Papic et al. 2011, p. 247).

An Instructional Framework to Guide Teaching and Learning

Instructional Frameworks incorporating pattern-eliciting tasks guided individual
teaching over the 12 week period (see Tables 4 and 5). The Frameworks pro-
vided critical opportunities for developing early algebraic and mathematical think-
ing through sequential problem-solving patterning activities. Tasks focus on repeat-
ing (Table 4) and spatial (Table 5) patterns. Development levels reflect Mulligan and
colleagues’ analysis on levels of pattern and structure with first-graders (Mulligan
et al. 2004).

Through the pattern-eliciting tasks children were encouraged to identify similar-
ity and differences within patterns and between patterns, abstract the unit of repeat
and the number of repetitions, create same patterns structures (e.g. ABC) using dif-
ferent materials (e.g. blocks, shapes), justify their thinking, and view patterns from
different orientations. Children’s performance on the EMPA was used to identify
their level on each of the Frameworks.

Hands on, Culturally Appropriate Approaches to Early Numeracy

The importance of hands-on experiences has been highlighted in recent research
literature as a critical approach to engaging young Indigenous children with mathe-
matical ideas (Cooper et al. 2006). All components of the current program incorpo-
rated hands on experiences that are culturally appropriate. These included using cul-
tural appropriate materials, games that integrated Aboriginal designs and artwork,
Indigenous stories and cooking experiences and cultural events.
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Table 1 Early Mathematical Patterning Assessment (EMPA)

Tower patterns

TP1 Children are shown a tower
pattern of 6 blocks:

(Blocks are joined to make a
vertical tower)

1. Copy with
blocks

1. Look at my tower. Make a tower
pattern exactly like mine, with the
same colour and the same number of
blocks, in the same position as mine.

2. Record with
colour pencils

2. Draw the tower pattern using the
colour pencils. Make your drawing
look exactly like my tower, same
colour and number of blocks in the
same positions as mine.

3. Continue
pattern

3. Look at my tower pattern. What do
you think the next blocks on my tower
would be if I continued the pattern?
Put them on for me.

TP2 Children are shown a tower
pattern of 6 blocks:

(Blocks are joined to make a
vertical tower)

1. Identify
screened
element

1. Look at my tower pattern. I’ve got
cardboard hiding two of the blocks
(3rd and 4th block is screened from
children’s view). What is the colour
of the hidden blocks?

2. Record with
colour pencils

2. Draw this tower showing all the
blocks including the hidden blocks
(2 blocks remain screened during this
task).

TP3 Children are shown a tower
pattern of 6 blocks:

(Blocks are joined to make a
vertical tower)

1. Identify
screened block

1. Look at my tower pattern. I’ve
hidden one of the blocks (5th block is
screened from children’s view). What
colour is the hidden block?

TP4 Children are shown a tower
pattern of 6 blocks:

(Blocks are joined to make a
vertical tower)

1. Copy tower
from memory

1. Look at my tower. (Now screen
whole tower). Make a tower pattern
exactly like mine, with the same
colour and the same number of
blocks, in the same positions as mine.
(Remove tower made by child)

2. Draw tower
from memory

2. Have another look at my tower
(now screen whole tower) draw the
tower pattern using the colour
pencils. Make your drawing look
exactly the same as my tower.
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Table 1 (Continued)

Spatial patterns

S1 3 counters, then 5, then
1, then 4, then 2 are
placed in front of the
children

1. Count to determine
how many

1. How many counters are there?
(3)
(Repeat for 5, 1, 4 and 2)

S2 This activity is done only
if the child can count
some objects and
determine ‘how
many’—see pre-activity
S1.
Children are shown
various patterns for a
brief period then asked
to identify how many in
the pattern
(see below for patterns
presented)

1. Identify regular
dot patterns
2. Identify grid dot
patterns
3. Identify stair case
block patterns
(concrete)
4. Identify random
collections (irregular
dot patterns)

1. I’m going to show you this
card/these blocks very
quickly. (Say silently 1000,
2000)
How many dots/blocks were
there?

Table 2 Early Mathematical Patterning Assessment (EMPA) recording sheet

TP1 1. Copy with blocks 1. Yes/No ____________________
� colour � number � pattern

2. Record with colour pencils 2. Yes/No ____________________
� colour � number � pattern

3. Continue pattern 3. Yes/No ____________________
� colour � number � pattern

TP2 1. Identify screened element 1. Yes/No ____________________
� colour � number � pattern

2. Record with colour pencils 2. Yes/No ____________________
� colour � number � pattern

TP3 1. Identify screened block 1. Yes/No ____________________

TP4 1. Copy tower from memory 1. Yes/No ____________________
� colour � number � pattern

2. Draw tower from memory 2. Yes/No ____________________
� colour � number � pattern

S1 1. Counting to determine how many 3 5 1 4 2

S2 1. Identify regular dot patterns 3 5 4 6

2. Identify grid dot patterns 5 3 4

3. Identify vertical stair case block patterns 5 3

4. Identifying random collections 5 4 6 3
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Table 3 Early Mathematical Patterning Assessment: Classification of children’s strategies

Performance on Tower pattern assessment tasks Level Stage

Children had great difficulty completing Tower pattern tasks: gave
no response or, solution strategies for drawn tower representations
were either scribbles or markings where no units were evident.

1 Pre-structural (PR)

Solution strategies for tower representations were not represented
in a row or column or, if they were presented in a row or column
incorrect number and colour of blocks were evident. Solution
strategies frequently inconsistent and do not show repetition of
pattern elements.

2 Emergent (E)

Solution strategies for tower representations were presented in a
row or column with at least one property (colour, number or unit
of repeat) in most of their representation.

3 Structural (S)

Solution strategies for tower representations were predominantly
accurate. Patterns were represented in a row or column with the
correct properties: colour, number and pattern element.

4 Advanced
structural 1 (AS1)

Performance on Spatial pattern assessment tasks Level Stage

Cannot count to six by ones. 1 Pre-emergent (PE)

Recognises regular dot patterns for very small numbers such as 2
or 3, however, used unitary counting for larger numbers.

2 Emergent (E)

Instantly recognised regular dice patterns 1–6 and irregular dot
patterns for small numbers such as 2 and 3, however, used unitary
counting of the irregular dot pattern for larger numbers.

3 Perceptual (P)

Instantly recognise regular dice patterns and irregular dot patterns
1–6.

4 Conceptual (C)

Documentation of Children’s Mathematical Explorations and Thinking

Documenting children’s learning is a critical component of the assessment of chil-
dren’s learning where educators “collect rich and meaningful information that de-
picts children’s learning in context, describes their progress and identifies their
strengths, skills and understanding” (DEEWR 2009, p. 17). Documenting children’s
mathematical learning also involves the recording of children’s problem solving
strategies, mathematical thinking, explanations, generalizations and use of mathe-
matical language. This not only showcases children’s current understandings and
knowledge but provides a powerful tool for educators to plan appropriate follow
up learning experiences and opportunities. The professional development provided
to early childhood educators during the weekly support visits focused on build-
ing teachers’ skills and knowledge in documenting children’s mathematical explo-
rations and learning in free play and intentional teaching situations. Educators were
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Table 4 Repeating pattern Instructional Framework to guide teaching and learning

Level 1—Pre-structural
1. Copying 2-block tower with blocks
2. Copying 2 block tower

(a) Constructing with coloured tiles
(b) Drawing with Textas

3. Designing own 2-block tower
4. Drawing 2-block tower from memory

Level 2—Emergent
5. Copying 4-block ABAB tower (2 colours × 2)
6. Drawing 4-block ABAB tower (2 colours × 2) by copying using textas
7. Designing own 4-block ABAB tower (2 colours × 2)
8. Drawing 4-block ABAB tower (2 colours × 2) from memory
9. Continuing tower pattern to make 6-block tower (2 colours × 3)

Level 3—Structural
10. Copying 6-block tower ABABAB (2 colours × 3)
11. Drawing 6-block tower ABABAB (2 colours × 3) by copying using textas
12. Designing own 6-block tower ABABAB (2 colours × 3)
13. Drawing 6-block tower ABABAB (2 colours × 3) from memory
14. Continuing tower pattern to make 8-block tower (2 colours × 4)
15. Finding the missing block or error e.g. RBRBBR RBRB_B

Level 4—Advanced structural 1
16. Copying block towers with 3 colour repetitions (ABC) × 2 × 3 and × 4
17. Drawing by copying block towers with 3 colour repetitions (ABC) × 2 × 3 and × 4 using
textas
18. Designing own block towers with 3 colour repetitions (ABC) × 2 × 3 and × 4
19. Drawing from memory block towers with 3 colour repetitions (ABC) × 2 × 3 and × 4 using
textas
20. Continuing tower pattern e.g. RBGRBG_ _ _ YBOYBOYBO_ _ _
21. Finding the missing block or error e.g. RBGRBGRBR RBGRBG_BG
22. Continuing various complex single variable patterns e.g. ABBABBABB_ _ _,
ABBCABBCABBC_ _ _ _
23. Copying various complex single variable repetitions from memory
24. Designing various complex single variable repetitions
25. Drawing various complex single variable repetitions from memory using textas

Level 5—Advanced structural 2
26. Designing own multi-variable repetitions
27–30. Recognising, continuing and creating repeating border patterns

27. Identify the various unit of repeat in border patterns
28. Continuing a given border pattern
29. Creating a border pattern around a picture
30. identifying the missing item in the border pattern

31. Recognising, copying and drawing hopscotch patterns from different orientations.
32. Creating hopscotch patterns
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Table 5 Spatial pattern Instructional Framework to guide teaching and learning

Level 1—Pre-emergent Level 2—Emergent Level 3—Perceptual Level 4—Conceptual

Rote counts forwards
and backwards 1–6

Subitises regular dot
patterns:

Subitises irregular dot
patterns:

Subitises dot patterns
1–10:

Counts up to 6 items 1, 2, 3 1, 2, 3 1, 2, 3, 10

Identifies numerals: 1, 2,
3, 4, 5, 6

4, 5, 6 4, 5, 6 4, 5, 6
7, 8, 9

supported to use mathematical language and terminology in their documentation,
analyse this information and then plan rich follow up mathematical activities and
environments.

Initial Findings: A Case Study

This section provides a snapshot of one centre’s implementation of the PEAP PD
program in 2011. An Aboriginal Children’s Service west of Sydney participated in
the training and 12 week implementation of the PEAP Program. Three staff mem-
bers worked in the 3–5 year old room; one University trained, one Diploma trained
and one with a Certificate Three. Fifteen children, commencing formal schooling
the following year, participated for the entire duration of the program.

Children were assessed using the EMPA. Figure 6 shows the tower pattern tasks
each child completed over the 12 week period. All children had at least the ten
recommended sessions except for Rosie, Tania and Tatian who had 7, 8 and 9 re-
spectively. All 15 children showed improvement with 87 % (n = 13) of children
working at Level 3 or above at the completion of the program. At Level 3 (Tasks
10–15) children worked with 6 block towers with AB repetitions. Teachers encour-
aged children to look for similarities and differences between the towers, to identify
the unit of repeat and the number of times the pattern element is repeated, to explain
their solution strategies for remembering the tower from memory. Teachers asked
children to compare their drawings with their constructions to determine whether
they focused on the same elements of colour, number and order and asked children
to explain their pattern.

At Level 4 (Tasks 16–25) children were also asked to abstract the unit of re-
peat and generalize the pattern using other materials. Children were encouraged to
explain why the patterns were the same e.g. Ivan: “It’s like this one, four colours,
three times”. Children were also encouraged to make different units of repeat with
the same items. Figure 7 shows the pattern Tania made with two blues and a red
that she spun using the ‘splash’ dice. The teacher encouraged Tania to use the same
colours but make different units of repeat. Figure 8 shows the additional two pat-
terns Tania created. Tania went on to make the same patterns using counters and she
concluded that no more patterns could be made with two blues and one red.
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Fig. 6 Tower pattern tasks completed by children

Fig. 7 Pattern made with two
blues and one red

Fig. 8 Additional units of
repeat made with two blues
and one red

Three of the children (20 %) were working through Level 5 Tasks (26–32) at the
completion of the program. At Level 5 children were working with complex patterns
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Fig. 9 Hopscotch pattern
presented to children

Fig. 10 Drawing hopscotch
from two different
perspectives

using a variety of materials. Patterns were presented in different orientations such
as cyclic patterns (see Fig. 2) and hopscotch patterns (see Fig. 9). Figure 9 shows a
hopscotch pattern Ivan was presented with. The teddy represents the starting point
of the hopscotch. Ivan drew the hopscotch from the teddy’s perspective (Fig. 10, left
drawing) and then visualised and drew what the hopscotch would look like from the
opposite direction (Fig. 10 right drawing).

Ivan could also create his own complex hopscotch pattern (Fig. 11). Ivan went
on to explain his pattern: “See this is a pattern of ‘I’ for Isaac, three green across,
three blue up and three yellow across . . . two times”.

Children also participated in six spatial pattern sessions. Tasks focused on regu-
lar and irregular dot patterns. Children worked through a series of activities at their
level, determined by the EMPA, until they showed competency at that level (see Ta-
ble 4). Activities that explore spatial patterns are critical in developing pattern and
structure in mathematical representation. They develop skills in visualising numbers
and number combinations and develop essential skills for mental computation (ad-
dition, subtraction and multiplication). Tasks included games that were culturally
appropriate. For example children played “Bush Tucker” (Fig. 12). Children roll the
dice to ‘catch’ the corresponding number of witchetty grubs for their ‘bush tucker
bag’. This task enables the children to practice skills in subitising, counting, addi-
tion and subtraction. Children also played “Echidna spikes” (Fig. 13). Each child
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Fig. 11 Ivan’s hopscotch
pattern

Fig. 12 Game: Bush Tucker!

Fig. 13 Game: Echidna
Spikes!

received an echidna playing board and took turns rolling a die, collecting a corre-
sponding number of sticks (all the same colour) and placing them on the spikes of
the echidna. On the next roll children repeated the process however, this time chose
a different colour (adapted from NSW Department of Education and Training 2001).
When all the spikes on the echidna were covered children were encouraged to share
their combination of ten with their friends.
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Fig. 14 Dot puzzles

Teacher W2: What does your echidna look like?
Alec: It has three blue spikes, three green spikes, and four purple spikes. That’s 1,

2, 3, 4, 5, 6, 7, 8, 9, 10 spikes!

Children also played with various puzzles, containing regular and irregular dot pat-
terns (e.g. Fig. 14).

Nine children (60 %) commenced on Level 1 on the Spatial Pattern Instructional
Framework (Table 5). Four children (27 %) commenced on Level 2 and two chil-
dren (13 %) commenced on Level 3. At the end of the six sessions, six children
(40 %) were still working on developing skills in subitising regular dot patterns 1–6
(Level 2), five children (33 %) were exploring irregular dot patterns 1–6 (Level 3)
and the remaining 4 children (27 %) were working through activities that included
spatial patterns 1–10 (Level 4).

At the focus group sessions all three early childhood educators acknowledge they
had grown in their mathematical content and pedagogical knowledge:

Teacher W1: My mathematical knowledge has grown dramatically.
Teacher W2: I think we’ve all achieved something and it’s not just the children, it’s

the staff as well.
Teacher W3: I think the confidence in the children as well as their ability to learn

without realising what they’re doing and the confidence in ourselves as well. I’m
more willing now to stop and let them try without intervening and asking them
more questions about what they’re doing whereas before I’d just jump in and help
them whereas I don’t anymore.

The teachers understanding of the importance of patterns and its connection with
other mathematical concepts and ideas was developing over the 12 week implemen-
tation period.

Teacher W1: Now that these kids can pattern they can do any maths. . . . I can
clearly see now that this is what’s needed. Because from this they are learning
colours they are learning shapes they are learning “more”, they are learning sub-
traction they are learning “lots of” and “groups” and it’s got every mathematical
concept they will ever need! (Week 6 of implementation)

The staff identified that some of the parents noticed the development in their
children:
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In block corner today Tania and Jane were building with the ‘Kids Connects’, and they both
realised that they can make bay blades, when the other children seen this they all wanted to make
some so Liam, Ivan and Broden all came to make some. Jane and Tania asked Aunty J if they
could keep their together so that they could play with them again tomorrow. Tania also decided
that while in this area today she was going to build a pyramid.

She started by placing 11 small blocks in a straight line on top of the block cupboard. To the
top of this she added 10 small blocks, evenly spaced between each of blocks on the bottom row.
She continued to follow this pattern decreasing the number of blocks by one for each row that
she added. The last row that she added to the pyramid had two blocks in it, she then walked
over to Aunty K and said “Look what I made.” Liam heard what Tania had said and looked at
her pyramid. He then said to Tania “You need one more block on top.” To which Tania replied
“I can’t find one.” Liam then helped Tania to find another block for the top of the pyramid.
Once the block was added Liam stated “That’s better”. Tania then worked with Liam to decorate
the pyramid with people and different small blocks. EYLF LO 4: Children are confident and
involved learners. Tania is able to create and use representation to organise and communicate
mathematical ideas and concepts.

Fig. 15 Teacher’s documentation of mathematical exploration in free play

Teacher W1: Just little comments they’ll say, oh they’ve been doing heaps of count-
ing at home and I’ll get the file—so that’s why they’ve been doing that. So it’s
sort of clicking with them because they’re going home and they’re saying things
and they’re counting. Broden’s mum said he’s been going home and lining things
up and patterning things and telling her how to do things . . . He said he’s been
doing times tables and she’s asked him how do you know that and he said because
Aunty J’s been showing me. And she thought we were doing actual times tables
and I showed her his portfolio and I said no we’re doing it with the blocks and
patterns.

The teachers’ development showed in their planning where they were more con-
fident to document the mathematical explorations and learning of the children. They
were using mathematical language in their documentation and linking it appropri-
ately to the Early Years Learning Framework (see Fig. 15).

The early childhood educators communicated that the children’s problem solving
skills had developed. “They have learnt the art of problem solving” (Teacher W3).
Educators were more conscious of the resources they were putting out throughout
the day, considering whether they would provide opportunities for mathematical ex-
ploration, development and problem solving. The educators were also a lot more
aware of the mathematics in children’s play, drawings and paintings. The teach-
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ers also highlighted that the children’s confidence had grown and they were using
mathematical language and having more conversations.

Teacher W2: The way they talk is better and the conversation they have with you
whilst doing the work is just like wow, where did that come from . . . they under-
stand it!

Teacher W3: They are a lot more confident! Not just doing that [the program] but,
out in the room as a whole.

Discussion and Concluding Points

The current study, Patterns and Early Algebra (PEAP), Professional Development
(PD) Program, has advanced the pedagogical content knowledge and mathematical
subject knowledge of early childhood educators working in the 15 Early Childhood
Services and Preschools. Through on-going, context based, and supportive profes-
sional development early childhood educators involved in the three year project im-
plemented an early numeracy program that explicitly aimed to develop children’s
mathematical thinking and reasoning.

The three studies outlined in this chapter provide empirical evidence that young
children can develop sophisticated pattern concepts and skills and that children prior
to formal schooling can abstract, generalize and explain patterns and pattern struc-
tures. They can view patterns from different orientations and use various materials
to create complex linear, cyclic and 3D patterns. Teachers recorded the develop-
ment in children’s mathematical language and thinking. They documented episodes
of children problem solving, reasoning and generalizing their thinking. These skills
are critical for long term mathematical growth and development (Papic et al. 2009,
2011) however, they can only be effectively achieved if teachers are given appropri-
ate support to plan and implement rich mathematical tasks and environments.

If we are to improve numeracy outcomes for young Indigenous children it is im-
perative that programs are “culturally empowering” (Teacher B1) both for the chil-
dren and the staff. The impact of such a program on children’s numeracy skills and
mathematical confidence and competence will be explored when children’s Kinder-
garten Best Start (NSW Department of Education and Training 2009) results are
collected and analysed along with interview data collected from the Kindergarten
teachers who are teaching the children the year after the PEAP Program implemen-
tation. While the PEAP PD project has not been completed, it has empowered the
early childhood professionals involved in the first two years of the project: “I have
been teaching for over twenty years . . . this [PEAP] has reopened my eyes to teach-
ing. It has given me that love back of teaching” (Teacher W1).
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Enhancing Teacher Professional Development
for Early Years Mathematics Teachers Working
in Disadvantaged Contexts

Elizabeth Warren and Janine Quine

Introduction

The imperative to build strong foundations for mathematical understanding in early
childhood settings catering for students from disadvantaged backgrounds is widely
acknowledged. It is now well recognised that young children enter early childhood
settings with substantive intuitive knowledge about mathematics and this can serve
as a base for developing formal mathematical thinking (Carpenter et al. 2003). In
addition, young children are capable of engaging with challenging mathematical
concepts (e.g., Balfanz et al. 2003). There is also strong evidence that an under-
standing of mathematics at an early age impacts on later mathematical achievement
(Aubrey et al. 2006). These strong foundations are particularly crucial for students
from disadvantaged backgrounds. While we recognise that many outside school
factors contribute to disadvantaged students being unsuccessful, quality learning
is known to be strongly associated with quality teaching (Hattie 2009; Smart et al.
2008). This chapter shares the results of the first year of our longitudinal study situ-
ated in the first three years of schooling in some of the most disadvantaged contexts
in Queensland, the geographically second largest state of Australia. Its particular
focus is drawing implications for professional development for all teachers working
in disadvantaged contexts.

Background

Students who are most at risk are often from disadvantaged backgrounds. In a large
study with 20,000 students across a range of age groups Denton and West (2002)
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found that by the end of the first year of schooling, a very significant gap in the un-
derstanding of mathematical concepts existed between students from high income
families and low income families, with the latter gaining little in the first year of
school. They also reported that students who possess little mathematical knowledge
at the commencement of formal schooling remain low achievers throughout the el-
ementary years and beyond. Given that students from low income families usually
come to formal schooling with the same basic readiness to learn as compared with
the more advantaged students (Denton and West 2002), the quality of education that
occurs in the first years of schooling is crucial to bridging the gap between the two
groups.

Disadvantaged Contexts

Disadvantaged students predominantly come from neighbourhoods that exhibit fi-
nancial disadvantage. In addition to socioeconomic disadvantage, the poorest neigh-
bourhoods tend to have higher rates of social isolation, unemployment, racial iso-
lation, and financial dependence (Sampson 2000). These types of neighbourhoods
are a worldwide phenomena, existing in urban, rural and remote contexts. Minority
groups such as African Americans, Latinos, Indigenous, and Pacifica groups tend to
be particularly vulnerable to neighbourhood disadvantage as they are more likely to
cluster in financially disadvantaged areas (Catsambis and Beveridge 2001; Massey
and Denton 1993).

Schools in disadvantaged neighbourhoods share a variety of common traits. First,
these schools tend to be situated at the lowest levels on a variety of performance
measures (e.g., National and International tests of literacy and numeracy perfor-
mance, and attendance, retention and future employment). Second, these schools
have high staff turnover. They experience difficulties in attracting and retaining high
quality teachers, and the teachers that they do attract tend to be inexperienced and
lack a commitment to teaching in these contexts (Heslop 2011; Mills and Gale 2010;
Roberts 2005; Sharplin 2008). Third, these schools commonly possess is poor man-
agement and poor professional practice (Lupton 2004). This is exacerbated by the
large staff turnover, including classroom teachers and personnel in management po-
sitions such as the principal and staff responsible for curriculum development and
implementation (Lyons et al. 2006).

Thus, maximising the mathematical achievement of students living in these con-
texts is not simply about addressing financial disadvantage. While financial dis-
advantage as the prime predictor of student success and school readiness is well
documented (Smart et al. 2008), what students bring to the table (Hattie 2003, p. 1)
in conjunction with what teachers know, do and care about (Hattie 2003, p. 2) are
the main two dimensions that make a difference. Hattie (2003), in a synthesis of
over 500,000 studies from 1992–1999 claims that 50 % of gains in student achieve-
ment were related to students’ prior understanding of mathematical concepts and
their attitude towards learning mathematics. Thirty percent was related to teach-
ers’ characteristics. These included the types of knowledge teachers possess, their
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understanding of the curriculum and its interrelatedness, and their ability to take
ownership of their lessons by changing, combining and adding to them according to
students’ needs and goals.

Teaching Mathematics in These Contexts

Teachers in disadvantaged contexts, who are often inexperienced in both teaching
and working in these contexts, encounter many extraneous difficulties that impact
on their teaching. Studies have shown that very few feel prepared academically,
culturally or professionally by their pre-service education to effectively teach dis-
advantaged students (Lyons et al. 2006; MCEECDYA 2011; Mills and Gale 2003;
White and Reid 2008). Due to high staff turnover, there is often a paucity of ex-
perienced teachers to act as mentors. With fewer experienced teachers to mentor
beginning teachers, the professional journeys of those starting out can be fraught
with obstacles. This is further aggravated in rural and remote schools where they are
also geographically and socially isolated. While geographical and social isolation is
a very difficult dimension for young urban trained teachers, professional isolation
from a pedagogical perspective presents a number of significant problems in terms
of effectively engaging and teaching students in mathematics (Cresswell and Under-
wood 2003; Lyons et al. 2006; Munns et al. 2008). Due to these deficiencies, many
teachers are unable to create highly effective instructional programs (Kent 2004;
Lyons et al. 2006). Ensuing behavioural problems and poor learning outcomes of
their students are often seen as being beyond the teacher’s control (Jones 2009).
A common pedagogical response can be highly structured classrooms, repetitive
learning, reliance on simple achievable worksheets, less time given to teaching, and
lowered expectations (Hewitson 2007; Munns et al. 2008).

Providing support for the development of high quality teachers (expert teach-
ers) is the most important agenda schools can adopt to raise student achievement
(Hattie 2009; Smith and Gillespie 2007; Timperley 2008; Villegas-Reimers 2003;
Webster-Wright 2009). Characteristics of expert teachers are not necessarily related
to experience or to their own subject matter knowledge. In a study involving 90
elementary school teachers in the UK, Askew (2008) conjectured that the strength
of support provided by ‘experts’ within the school environment positively impacts
on student achievement. The dimensions of this support were the involvement of
‘experts’ with strong mathematical backgrounds, and in depth knowledge about the
psychology of learning and the pedagogy of elementary mathematics. Expert teach-
ers are more focused on solving the learning problems exhibited by individual stu-
dents in their classroom, and can anticipate, plan and improvise as required by the
situation. Their primary attention is on student learning in terms of the affective do-
main and the quality of their achievement (Hattie 2003). They know what to teach,
and how to structure and organise this in the context of their particular students and
circumstances. Research on teacher professional learning (PL) and professional de-
velopment (PD) consistently demonstrates the powerful influence PD can have in
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assisting teachers to become experts (Hattie 2003). Thus, the professional develop-
ment support that occurs in disadvantaged contexts is a key to student improvement.

The particular research questions addressed in this chapter are:

1. What elements of professional development enhance early years teaching in
schools situated in disadvantaged contexts?

2. How do these elements impact on teaching and learning in these contexts?
3. How does geographical location influence their effectiveness?

Representation Oral language and Engagement in Mathematics (RoleM) is a
four-year longitudinal study that follows a large sample of students living in dis-
advantaged contexts as they progress through the first four years of school. The
conceptualization of the professional development model used in the study is in-
formed by literature pertaining to (a) effective professional development practice,
(b) theories of learning, and (c) efficacious resources that support at risk students’
learning. This chapter focuses on the results of the first year of the study.

Research Informing Professional Development Practice

Five overarching principles drawn from the literature on effective professional de-
velopment (what is given to the teacher in professional development sessions) and
professional learning (what the teacher learns as the result of the professional de-
velopment) underpinned the conceptualization of the model used in RoleM. Briefly,
these professional development requirements need to:

1. Be more than one off events;
2. Emphasise teacher knowledge that is known to improve student learning;
3. Be situated in the context of the participant’s classroom;
4. Be clearly linked to desirable and achievable student outcomes; and
5. Provide resources (both physical and in terms of support) that assist teachers’

professional learning and teaching.

While professional development has often been viewed as a panacea to all teach-
ing and learning problems that occur in the classroom (Clement and Vandenberghe
2000; Webster-Wright 2009), evidence strongly suggests professional learning is
continuing to have a greater impact on effecting teacher change (Gardner 1996).
Continuing professional development (CPD) experiences that facilitate teacher un-
derstanding of the impact changing pedagogical practices have on student responses
and learning, result in improved student outcomes and greater teacher responsibility
(Timperley 2008). Teacher change is even more evident when CPD includes a focus
on classroom practicalities (Porter et al. 2000).

Second, PD emphasising general teachers’ knowledge and teaching competen-
cies known to improve student learning, requires teachers to reconsider their current
practices. Curriculum updates, new pedagogical and content knowledge, and theo-
ries of student learning and teaching are potential catalysts for change (Garet et al.
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2001). In contradiction to a number of studies relating to teachers’ subject matter
knowledge, teachers perceive that their instructional practices do change when they
have greater knowledge of the subject they are teaching (Garet et al. 2001). In addi-
tion, providing information and activities that are directly linked to ‘valued student
outcomes’, is critical for the overall success of CPD (Porter et al. 2000; Timper-
ley 2008). The results of research demonstrate that unless this occurs, teachers are
unlikely to make a difference to their practices or to student learning (Black and
William 1998; Timperley 2008).

Third, professional development is more meaningful to teachers when it is situ-
ated within the context of their workplace (Gravani 2007; Murrell 2001; Webster-
Wright 2009). The notion of PL is that it is active, social and related to practice
(Webster-Wright 2009). Teachers only become active learners when they become
active investigators of their own teaching (Shulman 2004). Continual professional
learning (CPL) begins as teachers interact with the knowledge they have acquired
through CPD and its implementation in the classroom (Gravani 2007; Jarvis and
Parker 2005; Murrell 2001). Learning continues as teachers engage in a cyclical pro-
cess of continual observation and reflection on what is occurring within the teach-
ing and learning environment, and applying and testing their ideas in practice (Kolb
1984; Webster-Wright 2009); the depth and authenticity of the learning is always
defined by the teacher.

Fourth, the most significant changes in teacher beliefs and attitudes occur when
teachers have multiple opportunities to absorb new information, put it into practice
and observe improved student learning outcomes (Guskey 1988; Timperley 2008).
Thus, for authentic teacher change to occur teachers need to experience successful
classroom implementation of new ideas presented at PD and take time to reflect
on student learning. Collaboration with PD facilitators is an essential dimension
for facilitating this as these ‘experts’ provide the necessary scaffolding and support
teachers require to implement new pedagogical and content knowledge (Darling-
Hammond 1997). Regular on-site visits, by the PD facilitators, allow the teacher as
learner to observe instructional strategies modelled in the classroom by the facili-
tator and to then practice these with extensive support and feedback (Elmore 1996;
Joyce and Showers 1995).

Finally, resourcing has an impact on teachers’ capacity to effectively teach math-
ematics, that is, teaching evidenced by improved student learning. Often classroom
contexts consisting of marginalised students from low socio-economic, different
cultural backgrounds or isolated regions are under resourced (Clements 2004; Cress-
well and Underwood 2003; Lyons et al. 2006). Teachers in these contexts lack ac-
cess to foundational mathematical experiences, such as, high quality mathematic
resources and high quality mentor teachers (Lyons et al. 2006). However, research
demonstrates that while teachers want and need practical resources these must be
linked to specific curricular objectives (Rogers et al. 2006). Once again this am-
plifies the importance of teachers seeing everything they do in terms of being con-
nected to ‘valued student outcomes’ (Timperley 2008).

There are a number of measurable outcomes utilised to determine how effec-
tive the professional development has been. These outcomes fall into three broad
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categories. The first pertains to the teachers’ affective domain (Guskey 2003).
This is hinged on the premise that if teachers enjoy the professional development
session they are more likely to implement the ideas and activities in their class-
rooms (Salpeter 2003). The second is associated with measurable gains in students’
achievement (Kent 2004). This is underpinned by the notion that the implementation
of the ideas presented at the professional development will result in greater learning
outcomes for students. Hence, for professional development to be considered effec-
tive, positive changes in students’ outcomes should occur. Finally, effective profes-
sional development is seen as resulting in changed teacher behaviour, especially in
terms of their classroom practice. This is related to the finding that teachers’ class-
room practices and students’ background have a similar effect on student learning
outcomes (Wenglinsky 2002). All of these have implications for how professional
development is delivered and how this delivery is measured.

Theories of Learning Informing Professional Development
Practice

In the Vygotskian socio-cultural perspective, learning is a contextualised and holis-
tic experience. Thus professional learning happens over a long time and is dependent
on the interaction that occurs between the learner, the context, and what is learned
(Gravani 2007; Jarvis and Parker 2005; Murrell 2001). Integral to continued profes-
sional learning is the notion of the Zone of Proximal Development (ZPD) (Vygotsky
1978). ZPD is defined as an individual’s potential capacity for development through
the assistance of a more knowing person (Vygotsky 1978). The significance of ZPD
is that it determines the lower and upper bounds of the zone within which PD in-
struction and teacher learning should be directed. In the lower bounds, formal PD
sessions provide important information that teachers need to know about mathemat-
ical content, changes in the curriculum, innovative teaching strategies, and using re-
sources effectively. However, instruction is only efficacious when it goes beyond the
notion of simply assisting a person to acquire a particular set of skills or knowledge.
Such instruction enables learners to extend themselves through active engagement,
exploration and investigation of teaching and learning concepts and activities. In the
upper bounds of the ZPD, the ‘more knowing person’, or ‘expert’, provides support
for teachers through mentoring and scaffolding as these teachers are guided towards
competent and accomplished practices (Brockbank and McGill 2006). A purported
result of such a model is that the learner is better placed to independently imple-
ment innovative pedagogical practices across all curriculum areas after the ‘expert’
has withdrawn.

The nature and quality of teacher’s reflection influence the depth and scope of
learning as much as that of the learner’s capability (Phillips 2008; Wells 1999).
Thus extensive reflection when combined with action, transforms experience into
learning (Schon 1983). Teacher reflection serves both an instrumental and a critical
function (van Manen 1977). The former encourages teachers to reflect on teaching
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and learning problems that arise in their classrooms, and formulate practical plans
that may solve the problem. Reflection as a critical function provides cognitive and
affective insights that can challenge assumptions teachers hold about such things
as: the nature of teaching and themselves as teacher, and their students’ ability as
learners in mathematics (van Manen 1977). As Dewey stated, genuine thinking only
occurs ‘when there is a tendency to doubt’ (as cited in Garrison 2006, p. 3). With on-
going support, teachers and ‘experts’ become co-constructors of knowledge moving
within and beyond each others’ ZPD.

Research Informing the Development of Resources

The underlying premise that drove the development of the resources provided by
RoleM reflected the principles of equitable teaching and student learning. With re-
gard to equitable teaching, briefly, these require ensuring that the resources are:
conceptually orientated, open-ended to cater for the differential that exists in stu-
dent’s ability, of high cognitive demand, and are culturally appropriate (Boaler and
Staples 2008; Freedman et al. 2005). In addition, resource design was considered
a high priority aimed at: attending to how students work, encouraging students to
work together, and promoting students effort rather than achievement. As many of
the students in this study are Australian Indigenous students the literature pertaining
to supporting Australian Indigenous student learning also informed the development
of the resources. The resultant framework recognised that these students as learners
are (a) imaginable, (b) contextual, (c) kinesthetic, (d) cooperative, and (e) person
orientated (Nichol and Robinson 2000; Nichol 2008). In addition these students
learn through teachers modelling ideas. The resources also encapsulated:

– Learning pathways—Providing a gradual progression along a learning path, with
the teacher first modelling what is required, followed by small group work and
finally working on an individual basis

– Integrated experiences—Involving listening, reading, writing, recording, and
speaking about concepts to enhance transference of skills

– Focused teaching—Encouraging direct or explicit teaching in conjunction with
modelling and giving clear explanations of experiences and setting high expecta-
tions

– Multi-representational—Using and linking a wide variety of mathematical repre-
sentations, including number lines, charts, concrete and symbolic

– Language building—Encouraging students to move between home language,
mathematical language, and Standard Australian English (SAE) as they commu-
nicate their mathematical learning, and

– Making connections—Making connections within mathematics and with the
home and the community.

(Frigo and Simpson 2001; Warren et al. 2009).
These resources were provided to teachers in the form of curriculum documents,

learning activities (in both written and digital format), concrete resources (e.g.,
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counters, number ladders, grids), digital resources (e.g., activity sheets, blackline
masters) and assessment items (in both written and digital format).

The RoleM Professional Development Model

The model utilised in the RoleM professional development is a socio-constructivist
professional development model based on the theories of Vygotsky (1978). It was
constructed on the principle that learning is cyclical, consisting of four distinct com-
ponents; Knowing Person; Collaborative Planning; Collaborative Implementation;
and Collaborative Sharing. The RoleM (PD) model was built on the Transforma-
tive Teaching Early Years Mathematics Model (TTEYM) created to assist Year 1
teachers to develop and implement Patterns and Algebra activities in their class-
room (Warren 2009). It involved teachers in self-reflection as they trial approaches
and resources in their classrooms to improve the quality of their teaching practice.
It was based on the view that teachers have the ability to improve their practice
by trialing ‘proven’ effective learning experiences, and through continuous cycles
of on-the-job reflections and discussions with experts from the field (Castle and
Aichele 1994). Figure 1 presents the key components of the RoleM professional
development model together with the key focus of each.

As indicated in the model, a cycle of reflect, plan, implement, and share/evaluate
was used by teachers during the project. Table 1 presents a summary of the phases
together with the activity that occurred at each phase.

Methods

While claims can be made about teacher change from teacher self reported inter-
views or classroom observations, one of the measurable dimensions of effective
professional development is the impact it has had on student learning (Kent 2004;
Timperley 2008). Hence, in this chapter we include data relating to the learning out-
comes of the students that these teachers taught mathematics to using the RoleM
materials.

Sample

The 15 schools that participated in RoleM are from three distinct contexts,
metropolitan/provincial, remote, and very remote. These three categories reflect
their geographical location. The metropolitan/provincial schools are within close
proximity to either the capital city or a city with a population of over 25,000. Re-
mote schools are in geographical locations considered to be spatially distant from
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Fig. 1 The RoleM professional development model

metropolitan and provincial centres. Very remote schools are in a geographical lo-
cation that is spatially very distant from provincial and metropolitan areas (Jones
2004). Queensland, the state in which all 15 schools are located, is the second largest
state in Australia and has the third largest population.

The commonality that binds these schools is that students enrolled are often from
disadvantaged backgrounds, with the very remote schools having the most disadvan-
taged students. The majority of participating schools also have large populations of
Indigenous Australian students. In the instance of the metropolitan context, the bal-
ance consists of students from other ethnic backgrounds, including Vietnam, and the
Pacific Islands. All the teachers were non-Indigenous, and many had minimal teach-
ing experience (up to 3 years), or were new graduates. Schools in these contexts
experience difficulties attracting staff, and often staff stay for short periods. These
positions are not well sought after by the teaching profession, with positions in re-
mote and very remote locations being a last choice for many (Heslop 2011). Table 2
presents the schools with the number of students (Indigenous and non-Indigenous)
and teachers from each geographical location that participated in the research.
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Table 1 Summary of phases that occurred throughout first year of RoleM

Phase Activity Timeframe

Dialoguing with
experts—professional
development day

Discussing student mathematical learning and
research based effective pedagogy; modelling
the use of resources to support improved
student outcomes; and sharing effective
learning experiences

Three times
throughout the year

Collaborative
planning

Interviews: Teachers reflecting on
professional development day in terms of
their pedagogy, mathematical understandings
and student learning, and making decisions
based on the needs of their students within
their particular contexts

Three weeks after
every professional
development day

Classroom
implementation

On-site visits: Teachers and visiting experts
together implementing effective learning
experiences in their classroom

Week 3–10 of each
term

Collaborative sharing Teachers sharing with visiting experts, and
each other, examples of student learning,
adaptations of existing learning experiences,
and new learning experiences that they had
developed for their particular contexts

Ongoing
throughout the year

Table 2 Number of schools, teachers and students at each school location

School
location

No. of
schools

No. of
teachers

Number of students

Indigenous Non-Indigenous

Metropolitan/
provincial

6 13 72 171

Remote 4 8 62 43

Very remote 5 10 96 4

Total 15 31 230 218

All students were in either Preparatory (Prep) or Year 1, the first two years of for-
mal schooling in Queensland. Their age range was from 4 year 6 months to 5 years
6 months. Thus the sample comprised 448 students and their 31 teachers.

For the vast majority of participating students, including the Australian Indige-
nous students, Standard Australian English is not their first language. In Queensland,
unlike other states in Australia there is a paucity of people speaking an Aborigi-
nal language. Indigenous students in Queensland tend to speak Aboriginal English.
Aboriginal English (AE) is a dialectical form of English. The form and structure
of this language exhibit many of the speech patterns of standard English in addi-
tion to words originating from Aboriginal languages (Eades 1995; Williams 1988).
For the other participating students’ their first language aligned with their ethnic
background.
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Instrument Development and Data Collection

Teachers

Semi-structured interviews: A semi-structured interview is often described as
‘a conversation with a purpose’ (Smith et al. 2010, p. 57). It provides an interac-
tive space that permits participants to use their own words to tell their own story. It
also allows for the collection of large quantities of rich data over a period of time.
Smith et al. (2010) make the point that the focus of participants’ conversation in the
initial interview is guided by questions determined by the researchers. However, it
is from the initial interview that participants’ concerns become evident. As such,
future interviews can further investigate those concerns.

Three semi-structured interviews occurred throughout the first year of RoleM.
Four themes around change were embedded in each teacher interview: mathematical
knowledge and understandings; perception of student learning and abilities, peda-
gogical practices, and the use of mathematical oral language. Every teacher was
required to reflect on and articulate what changes had occurred, how they occurred
or if changes had occurred at all. Before each interview, researchers discussed the
types of interview questions that would be appropriate to determine a fuller under-
standing of each theme.

Three interviews were conducted throughout the year. These interviews occurred
three weeks after the on-site visits by researchers. Interview questions were emailed
to participants prior to the interview allowing them the opportunity to prepare their
responses. Interviews were of 30 minutes duration and conducted by telephone at a
convenient time for participants. All interviews were audio-recorded for later tran-
scription.

Students

Two diagnostic tests were developed to assess students’ understanding of key math-
ematical concepts as they entered the Prep year. The first test focused on ascertaining
students’ understanding of the many words used in mathematics. The language of
mathematics is complex and many of the words used do not reflect the meaning as-
sociated with them in Standard Australian English. For example, more and less are
commonly used in everyday contexts to compare two groups. But in mathematics
these words are also used to describe an increase or decrease in a group.

The words chosen for this diagnostic test were based on the results of our past
research conducted over a two-year period (Warren and deVries 2009). Originally
words were selected from the mathematics dimension of the Boehm Test, a stan-
dardised oral language test (Boehm 1971). Over a two-year period, adjustments
were made according to the ease or difficulty students experienced with the selected
words, and the new word lists introduced to the current mathematics syllabus. The
end result was a bank of 30 questions consisting of words that students (both In-
digenous and non-Indigenous) experience difficulty in understanding (and words
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Fig. 2 Selection of two items from the language test

that underpin communication within mathematical contexts). Figure 2 presents a
selection of words from this test together with the instruction that was read out
aloud.

An analysis of existing validated diagnostic tests for example, Diagnostic Math-
ematics Tasks (DMT) (Schleiger and Gough 2001) and I Can Do Maths (Doig and
de Lemos 2000), informed the type and style of question asked. A mapping of the
concepts utilised in published tests indicated that there were gaps in these tests’
mathematical content and that there was a reliance on students being able to give
written responses. Thus, the decision was made to develop our own mathematics
test. The structure of the diagnostic mathematics test reflected the structure of previ-
ous Australian national and state tests (the National Assessment Program—Literacy
and Numeracy (NAPLAN) and Queensland’s Year 3, 5 and 7 tests). The structure
also incorporated findings from our past experience in testing young students’ un-
derstanding of mathematical concepts (Warren and deVries 2009). In our previous
research we used a one on one interview to ascertain Indigenous and non-Indigenous
students’ understanding of mathematics. This style of testing proved to be problem-
atic. It was time consuming and was reliant on the ‘skills’ of the interviewer. How
the interviewer asked the questions and the gestures and facial cues used as they
interacted with the students influenced the results. To deal with the issues of time
and reliability we moved to a whole class testing format that mirrored that used
in NAPLAN. Over a three-year period we have refined the test so that it is easy to
administer and involves minimal writing. Figure 3 presents three items from the test.

To ensure consistency in data collection, members of the RoleM team adminis-
tered all pre and post tests. The reliability of the data was strengthened by all mem-
bers of the team participating in a workshop on how to deliver the test. In addition,
each test was accompanied by explicit written instructions.

Data Analysis

Teachers

The data were analysed using a grounded methodological approach. All interviews
were transcribed and the text analysed in an attempt to identify the teachers’ self
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Fig. 3 Three items from the mathematics test

reported beliefs and practices. This process uses an Open-coding approach to break
down the data into distinct units of meaning. From the interview data key words
and phrases emerged. A fundamental feature of grounded theory is the application
of the constant comparative method. This involves comparing like with like, to look
for emerging patterns and themes. This process facilitates the identification of con-
cepts and incorporates a progression from merely describing what is happening in
the data to explaining the relationship between and across incidents. In this study,
the constant comparative method involved examining various subsets of responses
from teachers. Finally, a more holistic approach was adopted. This requires a more
sophisticated coding technique that is commonly referred to as axial coding and in-
volves the process of abstraction onto a theoretical level (Glaser and Strauss 1967).
Axial coding is the appreciation of concepts in terms of their dynamic interrelation-
ships, and should form the basis for the construction of the theory.

Researchers conducted independent member checks. Each researcher read each
transcript, identified and sorted the emergent themes into sub-themes and compared
the data across interviews. Consensus was reached concerning the nature of each
theme and sub-theme, which was accompanied by supporting evidence from the
transcripts. Where disagreement existed, researchers returned to the raw data gath-
ering excerpts to support particular stances until there was consensus. Data fell into
three broad themes: the RoleM (PD) model, teacher knowledge and understandings,
and student learning. However, as the year progressed the sub-themes changed. Each
participating teacher did not mention all the sub-themes in their interview. To give
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insights into how important of each sub-theme was to the cohort of participants, a
tally was kept of the number of teachers who mentioned each sub-theme in their
interview. The more frequently the theme was mentioned across the cohort of par-
ticipants they more important it was deemed to be.

Students

All the responses for the pre and post-tests (language and mathematics) were coded
and were initially entered into a spreadsheet. This spreadsheet was then analysed to
ensure that the data was accurate. Finally the data were transferred to a statistical
package for further analysis.

Results

Teachers

The data are presented under the three main themes identified from the analysis,
namely the RoleM (PD) model, teacher knowledge and understandings, and student
learning. Under each theme a number of subthemes emerged across the year. Ta-
bles 3, 4 and 5 present the subthemes for each theme. In addition an example from
a teacher’s transcript for each subtheme is included together with the percentage
frequency of teachers who referred to each of these subthemes across the first year
of RoleM.

By November, 83 % acknowledged how valuable the RoleM model was in pro-
viding more effective ways to enhance their teaching and their students’ learning,
with the same percentage stating that this had resulted in a change to their peda-
gogical practices. Many had also begun to transfer the knowledge they were gaining
from their Professional learning to other curriculum areas. Fundamental to these
changes were the materials themselves. Making mathematics learning more engag-
ing and fun through structured play-based learning had been instrumental to this
change.

Three of the sub-themes referred to the use and importance of mathematics lan-
guage. There was a noted move in the conversation over the data collection period.
Initially teachers were focused on their lack of confidence and the students’ lack
of confidence in using mathematical language. As the year progressed they became
increasingly more conscious of and confident in using the mathematical language as
they discussed mathematical concepts with their students. Teachers’ attention also
turned to their increase in mathematical and pedagogical knowledge as a result of
their participation in the first year of RoleM.

Changes in pedagogical practices and their consistent use of oral language were
recognised by teachers as having a corresponding positive impact on students’ en-
gagement and learning. By the end of the year, 93 % of teachers stated that their
students were excited to participate in maths lessons, more confident to ‘have-a-go’
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Table 3 RoleM (PD) model with the five subthemes and frequency of agreement to each

Sub-theme Example from
transcript

Percentage frequency of agreement

Interview 1 Interview 2 Interview 3

(n = 31) (n = 31) (n = 29)

Resources useful and
engaging

I enjoyed being able to
do the activities. . . to
hear the language we
would use

90 % – –

On-site visits enhanced
teachers’ confidence and
knowledge

Yes it clarified some stuff
for me. Was good to get
the feedback

78 % 71 % –

PD provided direction
and confidence to teach
mathematics

Gave me direction. It is
all there you can’t go
wrong

66 % 71 % –

PD provided effective
ways of teaching and
learning

It has made my teaching
of mathematics easier
and am covering
everything

– – 83 %

Transferring effective
pedagogy learnt through
RoleM to other
curriculum areas

There is so much more I
can now do. So many
more ways to do things

– – 39 %

and were increasingly using maths in everyday situations. This is a considerable
jump from the second interview where 66 % commented positively on student en-
gagement and 58 % on student confidence. Teachers were increasingly seeing their
own pedagogical practices as instrumental in improving student learning outcomes,
rather than focusing on their students’ lack of proficiency in SAE as the barrier. As
a result, 83 % of teachers have stated that they now had higher expectations of their
students’ abilities.

The next section summarises the results for the participating students.

Students

The sample comprised 448 students from the first two years of school (Preparatory
and Year 1) with an average age of 5.76 years. Table 6 presents the number of non-
Indigenous and Indigenous students in each year level.

As indicated in Table 1, the majority of the Indigenous students were attend-
ing the remote or very remote schools, while the majority of non-Indigenous stu-
dents attended the metropolitan/provincial schools. The Preparatory year is a non-
compulsory year that has recently been introduced into the Australian Curriculum.
A formal curriculum is presently being developed and introduced to this level of
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Table 4 Teaching and learning with the five subthemes and frequency of agreement to each

Sub-theme Example from
transcript

Percentage frequency of agreement

Interview 1 Interview 2 Interview 3

(n = 31) (n = 31) (n = 29)

Not confident in using
maths language

I don’t feel very
confident using it. . .

48 % – –

Becoming more aware
of the importance of
maths language

Learning to know what
language is important

48 % – –

More conscious of how
and when to use maths
language

Use a lot more
mathematical language
now. It’s more explicit
and more different terms

– 65 % 79 %

Maths knowledge and
confidence has increased

It has changed it and it
has improved. There is
so much more I can now
do, so many ways to do
things

– 58 % 83 %

Teaching of mathematics
continues to improve

It’s more hands on and
given me an alternative
to worksheets

– – 83 %

Table 5 Student learning with the three subthemes and frequency of agreement to each

Sub-theme Example from
transcript

Percentage frequency of agreement

Interview 1 Interview 2 Interview 3

(n = 31) (n = 31) (n = 29)

Language barrier
impacts on student
learning

If they don’t have SAE they
can’t participate because
that’s the language that I
teach in

81 % – –

High level of student
engagement

They don’t really notice that
they are doing maths, they
are enjoying it

– 66 % –

Students were more
confident with maths
and using maths
language

They seem more relaxed with
it. . . I am seeing the same
language being used in
different ways in their free
play. This is the area they
enjoy most

– 58 % 93 %

Expectations of
students’
capabilities continue
to improve

I have much higher
expectations because they
are achieving so well

– – 83 %
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Table 6 Number of non-Indigenous and Indigenous students in each year level

Year level Students Total

Indigenous Non-Indigenous

Prep 124 143 267

Year 1 106 75 181

Totals (448) 230 218 448

Table 7 Maths paired t -test results for the three geographical locations

Group Pre-test mean Post-test mean t-score p value

Metropolitan/provincial
(n = 243)

8.74 15.98 28.81 .000**

Remote (n = 105) 9.96 14.30 9.82 .000**

Very remote (n = 100) 7.32 12.83 13.65 .000**

Note: **Statistically significant p < .005

Table 8 Language paired t -test results for each geographical location

Location Pre-test mean Post-test mean t-score p value

Metropolitan/provincial
(n = 243)

15.48 21.54 17.28 .000**

Remote (n = 105) 17.52 22.03 8.91 .000**

Very remote (n = 100) 12.42 17.49 9.95 .000**

Note: **Statistically significant p < .005

schooling. Thus the participating Preparatory and Year 1 students had had limited
contact with mathematical activities prior to the commencement of RoleM. Hence,
for the purpose of this paper the Preparatory and Year 1 cohort of students have been
combined at each location.

To ascertain the impact that the intervention had on students’ learning, paired t

tests were performed, comparing students’ pre and post scores for the mathemat-
ics test and the language test. In order to examine the impact the RoleM PD had
in differing geographical contexts, the results are presented according to each ge-
ographical location. Tables 7 and 8 summarise the results of the paired t tests for
mathematics and language respectively.

The results of Tables 7 and 8 indicate that there was a statistically significant
increase in students’ scores for the mathematics and language tests in all three geo-
graphical locations.
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Discussion and Conclusions

Principles of Professional Development Practice

All five overarching principles identified in the literature on professional develop-
ment proved important, however, as the year progressed the level of importance that
teachers gave to each changed. At the commencement of the year, teachers’ initial
feedback indicated that the provision of the resources with their clear directions of
what they needed to do was a crucial element for successfully implementing teach-
ing and learning episodes in mathematics. By including these resources the follow-
ing issues were simultaneously addressed: (a) under-resourced classrooms, a feature
that is common in many disadvantaged schools (Clements 2004; Cresswell and Un-
derwood 2003); (b) ill-prepared teachers who work in these contexts (Lyons et al.
2006); and, (c) under-confidence that many early childhood teachers exhibit when
teaching mathematics (Aubrey et al. 2006). In addition the principle of situating the
PD in the context of the participants’ classroom was also critical. Much of the dis-
cussion that occurred during this first visit focused on solving the learning problems
identified by the classroom teachers prior to the visit and ensuring that students were
engaged in the learning, both of which are dimensions of ‘expert’ teaching (Askew
2008; Hattie 2003).

While the emphasis on teacher knowledge was integral to all aspects of the
RoleM PD model, how this impacted over the year of the project suggests that
changing teachers’ understanding of mathematics is complex. Their professional
learning journey began with a strong emphasis on gaining confidence to teach math-
ematics (Interview 1). It seemed that until they had gained some confidence they
were unable to reconceptualize their pedagogical practices or their mathematical
content knowledge. Without this increase in confidence, the potentiality of new ped-
agogical and content knowledge and theories of students’ learning and teachings as
a catalyst for change is lost (Garet et al. 2001). It was not until Interview 3 that the
focus of the feedback moved to sharing their increased understanding of effective
pedagogy for teaching mathematics and transferring this to other subject areas. In
Interview 3 they also shared their improvements in mathematical knowledge, espe-
cially with regard to maths language. We would also suggest that it is imperative to
provide simple engaging activities linked to ‘valued student outcomes’ (Timperley
2008) for teachers to trial during the PD.

The language of mathematics was an ongoing concern for all teachers throughout
the year. Given that Standard English was not their students’ preferred language of
communication, this is understandable. As the year progressed teachers’ confidence
in using mathematical language increased and became more explicit. We conjecture
that an initial focus on language used in the classroom may be a way of engaging
early years teachers in these contexts for meaningful change. But as emphasised in
the RoleM learning activities provided, an exploration of language needs to be in
conjunction with the use of a range of mathematical representations embedded in
mathematical activities. The advantages of this initial focus on language are that
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(a) teachers perceive it as a clear barrier to student learning (Interview 1), (b) im-
proved student outcomes are clearly evident (Black and William 1998), (c) an in-
creased awareness of mathematical language is linked to a greater knowledge about
the mathematics they are teaching (Garet et al. 2001), and (d) for early years teachers
who are under confident in teaching mathematics but are confident in teaching liter-
acy, this is somewhat familiar territory (Gresham 2007). As evidenced by the teach-
ers’ responses in Interview 3 it was only after their students exhibited confidence
in using mathematical language that teachers began to share that their achievement
expectations for students had increased (Interview 3).

The Effectiveness of the RoleM PD

The RoleM PD has proven to be highly effective on all three measurable dimen-
sions of effectiveness: teachers’ affective domain (Guskey 2003); gains in student
achievement (Kent 2004); and, changed teacher behaviour (Wenglinsky 2002).

The results of our research indicate that teachers’ affective domain is important
to teacher change. However, it is not simply about teachers’ enjoyment at the profes-
sional development session (Salpeter 2003). The premise that enjoyment results in
implementation of the ideas presented in the PD session is too simplistic and flawed;
enjoyment is not enough. Our results suggest that an increase in teacher confidence
in disadvantaged contexts is crucial to success. Many of these teachers are begin-
ning teachers who often feel unprepared academically, culturally and professionally
to teach in these contexts (Lyons et al. 2006; Mills and Gale 2003). In addition there
is often a paucity of experienced teachers to act as their mentors. We suggest that a
measure of PD effectiveness includes a teacher confidence dimension, especially a
dimension that measures known aspects of expert teaching, namely, confidence in
their ability to anticipate, plan and improvise as required, confidence in their math-
ematical background, and confidence in their understanding of how these students
in these contexts best learn (Askew 2008).

The quantitative data presented in this paper clearly show a significant improve-
ment in student achievement in the first year of RoleM. This improvement occurred
in all three geographical locations. In Queensland the early years of education have
been problematic, especially with regard to numeracy outcomes. In a large study in-
vestigating learning experiences and teaching practices prior to Year 1, Thorpe et al.
(2004) found that over the year of their study many students made negative progress
in their understanding of basic numeracy concepts. Their sample included students
from both advantaged and disadvantaged contexts, and from all geographical loca-
tions. Thus, the improvement these students exhibited in the first year of RoleM
further evidence that teachers can make a difference to student learning outcomes
(Hattie 2003).

Finally, teachers exhibited measurable change, especially in terms of their class-
room practice and their perceptions of their students. By the end of the year they
were moving to a more ‘hands on’ visual approach to teaching mathematics; an ap-
proach that is more conducive to learning for many students in these contexts
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(Nichol 2008). Also, they were now setting higher educational outcomes for their
students. The learning outcomes for their students were no longer perceived as be-
yond their control (Jones 2009). There was no longer a reliance on simple achievable
worksheets or a lowering of their expectations for their students (Hewitson 2007;
Munns et al. 2008).

Implications and Recommendations

Based on the data and our own reflections, we argue that professional development
occurs in three cycles: Beginning, Middle and Final. Each builds on the previous
cycle and as we move through the cycles there is a change of emphasis on particular
aspects of teaching and learning mathematics.

Beginning Cycle Focus: Building Teachers’ Confidence

Many teachers in disadvantaged contexts are often unable to confidently provide ef-
fective mathematical learning opportunities that enhance student learning. Building
teacher confidence is thus the initial focus of Professional Development. This occurs
through teachers:

1. Developing knowledge of the language of mathematics and its use orally. This
helps teachers to bridge the gap between SAE, AE and the language of math-
ematics. Emphasising teachers’ use of oral language in conjunction with rich
mathematical representations ensures that both teachers and students develop a
shared mathematical register. This is essential for students to actively engage
with, comprehend, and communicate in mathematics.

2. Developing an understanding of how to effectively use proven mathematical
learning experiences. Many teachers use resources without ever fully cognitively
engaging students in mathematics. Trialing proved experiences in the classroom
context assists teachers to feel more confident in teaching mathematics.

3. Being given support in their classrooms with on-site visits by expert teachers.
These visits need to be responsive to teachers’ specific requests. Teachers’ con-
fidence builds when they can see that their students’ are engaged in learning
mathematics and experiencing success.

Middle Cycle Focus: Building Students’ Confidence

As teachers become more confident in teaching mathematics, and are effectively
utilising proven resources to support student learning, the emphasis is directed to-
wards developing student confidence. This occurs through teachers:
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1. Gaining more general mathematics pedagogical knowledge. An important di-
mension of building students’ confidence is learning how to confidently use dif-
fering ways of teaching mathematics. This assists teachers to cater for a range
of learning styles within these mathematics classrooms, and helps them to gain a
deeper understanding of how students learn.

2. Gaining a deeper understanding of how to differentiate learning. Providing all
students with a feeling of success helps them to gain confidence in their own
ability to do mathematics. Being able to differentiate learning activities begins
to address the wide range of students’ abilities that exists in many disadvantaged
communities and allows all students to experience success.

Final Cycle Focus: Increasing Expectations for Their Students

As teachers gain an understanding of the capability of their students as learners, the
emphasis is directed to setting higher learning expectations for their students. This
occurs through teachers:

1. Gaining a deeper understanding of mathematical content knowledge. In order to
set higher expectations for their students teachers need to have a deeper knowl-
edge of mathematical concepts, conceptual frameworks, and learning trajecto-
ries. This assists teachers to understand the hierarchical nature of mathematics,
how understanding builds on prior understanding, and provides ways to use this
knowledge to target student’s learning.

2. Gaining a deeper understanding of mathematical pedagogical knowledge. The
ability to anticipate, plan and improvise is at the heart of teaching mathematics
effectively. Having the ability to be flexible in how mathematics can be taught
includes understanding the different ways that mathematical concepts can be rep-
resented and how these representations are connected. It also includes knowledge
about what makes a subject cognitively easy or difficult for student learning, as
well as knowledge of misconceptions and pre-conceptions students may hold
about mathematical concepts.

Although many teachers who work in disadvantaged contexts lack the academic,
cultural and professional knowledge, confidence and experience to maximise stu-
dent learning, providing a well designed professional development model can play
a significant role in effecting teacher change. Professional development opportu-
nities that are ongoing, contextualised, emphasise teacher content and pedagogical
knowledge, are clearly linked to achievable student outcomes and provide effective
resources are more likely to enhance professional learning. Building teacher con-
fidence in their ability to positively influence student learning and engagement in
mathematics is the first step to improving student learning outcomes and raising
expectations. If early years students from disadvantaged contexts are to experience
future achievement in mathematics, then it is essential that they are taught by quality
teachers who can build strong mathematical foundations for them.
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Mathematical Modeling at the Intersection
of Elementary Mathematics, Art, and
Engineering Education

Heidi A. Diefes-Dux, Lindsay Whittenberg, and Roxanne McKee

Interdisciplinary Art Education

Art and Mathematics

Leveraging art education to support the learning of mathematics, and other subjects,
is not new (e.g., reading: Bookbinder 1975; science: Kohl and Potter 1993). Take a
walk down any elementary hallway and one will find child created tessellations, a
la Escher, on display. Certainly, rich mathematical structures, such as tessellations,
platonic solids and polyhedra, the golden ratio, and symmetry and patterns, can be
explored through a study of physical settings and artworks, as demonstrated in a
course entitled Mathematics in Art and Architecture offered at the National Univer-
sity of Singapore (Aslaksen n.d.).

The study of and participation in art is seen as something that children enjoy;
therefore, it can provide motivation for learning mathematics. Forseth (1980) found
in a study of fourth graders that “the use of the art activities seems to help create a
more favorable predisposition toward learning mathematics without any impairment
to achievement in math” (p. 21). The work of Edens and Potter (2007) suggests that
the “art room may be a context for developing students’ spatial understanding, an
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ability associated with artistic as well as mathematical ability” (p. 294). To take ad-
vantage of complementary learning opportunities, Bickley-Green (1995) proposed
steps to integrating art and mathematics curricula, starting with the identification of
congruent content based on literature in mathematics and art.

Art and Engineering

The obvious link between art education and engineering education lies with cre-
ative thinking. At the university level, this space was explored through the develop-
ment of an interdisciplinary project for environmental engineering students and art
students related to sustainability and food within the local community (Costantino
et al. 2010). Shuster (2008) talks more broadly about the value of liberal and fine
arts education for preparing engineers as it “brings us into more direct confrontation
with the creative process, with ambiguous concepts and data, and with more diverse
avenues of perception” (p. 98).

Another link between art education and engineering education is the methods and
mediums artists use to create their expressions. In the K-12 setting, this connection
was brought to bear at the prototyping stage of design in a grade 6–12 informal cur-
riculum related to animatronic toy design and manufacture (Mativo and Sirinterlikci
2004; Sirinterlikci and Mativo 2005). Here the art emphasis was on sketching and
sculpting and the use of art materials and manual techniques (Mativo and Sirinter-
likci 2004).

Engineering has also been seen as way to contribute to art. For example, Roman
(2010) created an exercise in which students design a sculpting material using both
common everyday materials and more advanced materials. The first part of this exer-
cise involves an activity almost akin to reverse engineering—students must explore
existing art to learn about materials used in sculpting.

So the intersection between art education and engineering education can be both
a give and take. From art, young children can learn creative thinking and methods for
expressing their ideas. From engineering, young children can learn the engineering
design process. Here we consider the potential for art education learning objectives
to help young children learn about engineering while promoting the understanding
of mathematical concepts.

Model-Eliciting Activities

A Model-Eliciting Activity is an authentic, client-driven, open-ended mathematical
modeling problem. A MEA adheres to six design principles (Lesh et al. 1993, 2000);
these have been modified for engineering education purposes (Diefes-Dux et al.
2008).

• Model Construction: The activity requires students to create a mathematical
model that addresses the needs of a given client.
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• Reality: The activity is set in a realistic engineering situation that requires the use
of a mathematical model to solve the problem.

• Generalizability: The activity requires that the model students create be sharable,
re-usable, and modifiable. This means that the model must be useful to someone
other than the creator of the model.

• Self-Evaluation: The criterion for “goodness of response” is embedded in the
activity so that students are put in a position to self-evaluate their work.

• Model Documentation: The activity requires that the model be documented in
some fashion.

• Effective Prototype: The solving of the MEA provides a memorable experience
students can draw on when they encounter other structurally similar situations.

In finding a solution to a MEA, students must mathematize a real world situation,
document their work, and strive for generalizability (i.e. a solution that is share-able
with others, reusable in similar situations, and modifiable for analogous situations).
The problem itself must provide a means for students to test their solution. The
elements, processes and relationships (Lesh and Clarke 2000) used in the students’
resulting models provide insight into students’ thinking—understanding of concepts
and achievement of learning objectives. Among the challenges to using MEAs in
elementary settings are young children’s lack of sufficient language development to
communicate their models in writing and their limited exposure to and development
of step-wise procedures.

Activity Development and Implementation

The Sticker MEA was used as an introduction to MEAs in a week-long teacher
professional development workshop. In this MEA, students develop a procedure
(model) for the client company Wacky Stickers n’Stuff. The procedure (model) must
maximize the number of stickers of given shape and dimensions that can be cut from
a specified size sheet of stock paper. During implementation, the shape (e.g. squares
and triangles) and dimensions of the sticker and the size of the stock paper change.
After each change, students test their procedures (models) to see if they still work;
that is, they test for reusability and modifiability. Then, they revise their models.
Students also exchange their models, allowing peers to apply them to a test case
shape and stock paper and provide feedback; this is a test for share-ability.

This activity reminded two participating elementary art teachers from differ-
ent buildings in the same district of another activity seen in another profes-
sional development workshop—a Draw-A-Monster Activity (e.g. Monster Ex-
change http://www.monsterexchange.org/). A combination of the MEA and the
Draw-A-Monster Activity was seen as a means of addressing a third grade art
education learning objective while engaging students in engineering thinking and
processes. Specifically, the art learning objective was related to differentiating geo-
metric and organic (free-from) shapes. This classroom learning object falls within
the Texas Essential Knowledge and Skills (TEKS) focused on “(1) Perception” in

http://www.monsterexchange.org/
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which “the student develops and organizes ideas from the environment” and “The
student is expected to . . . (B) identify art elements such as color, texture, form,
line, space, . . .” (TEKS 117.11. Art Grade 3 http://ritter.tea.state.tx.us/rules/tac/
chapter117/ch117a.pdf).

The resulting Draw-A-Monster activity is described below. It took more than
5 weeks to implement as students attended art class only once a week and there were
coordination considerations with other activities and between the two art teachers.

Day 1 began by telling the children that they have 3 minutes to draw a monster.
After they finished, the art teacher asked the children, “Who thinks that they could
describe their monster to me so well that I could draw the exact same monster with-
out ever looking at your paper?” An eager volunteer came up to the front of the
room for a demonstration. The child was instructed to face the class and describe
their monster to the teacher using their words, starting at the head and work their
way down the monster’s body. As the child described the monster, the teacher drew
her interpretation of the description on the document camera so that the whole class
could be engaged in the process. The volunteer was not allowed to see what the
teacher was drawing. The student used phrases like “draw a pig nose”, or “draw
monster teeth”. After the description was complete, the teacher allowed the volun-
teer to look at the projection to see if the teacher-made drawing matched the original
drawing. At this point, everyone had a good laugh! A discussion about the difficulty
of this assignment then followed. The question, “What could have made this eas-
ier?” was asked. The objective was to help the children realize that by limiting the
number of colors and using only geometric shapes in their drawings, their monster
becomes much easier to describe.

On Day 2, after reviewing the previous day’s findings, the children were told to
draw a monster that they would be able to describe in words to another classmate.
The children were constrained to using only 5 colors and encouraged to only use
geometric shapes. The difference between geometric and organic shapes was again
explained. The children were given 5 minutes to draw their monster (Original draw-
ing). As soon as they are done, they wrote directions for someone else to use to draw
their monster. The children were given the remainder of the period (∼ 30 minutes)
to complete their directions. Those unable to finish, took their assignment back to
their homeroom to complete and bring back next time.

The children’s models are in the descriptions of their geometric figures. The pur-
pose of a given model is to enable others to recreate a figure. So, the geometric
figures are the objects, the relations are statements about orientation and location,
and the operations or rules are the descriptions of the properties of the figures to be
drawn.

On Day 3, the children traded their directions with someone else in class. They
were given 20 minutes to draw the monster (Peer Review 1 drawing). At this point,
they were asked to make corrections in marker on each other’s written papers. They
corrected anything from grammar to punctuation. They also identified areas in the
directions that “don’t make sense” by circling the confusing text. When they finished
drawing each other’s monsters to the best of their abilities, they return the directions
with the corrections to the owner along with their peer-review monster drawing. The

http://ritter.tea.state.tx.us/rules/tac/chapter117/ch117a.pdf
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children then looked over their papers to see what corrections needed to be made
to their final drafts. The rest of period was spent writing a second draft. Again,
those unable to finish, took their assignment back to their homeroom to complete
and bring back next time. Once all final drafts were complete, the two art teachers
exchanged their class work.

Day 4 started with each student receiving directions for how to draw a mon-
ster, written by another third grader at a different campus. The children were given
20 minutes to draw the monster to the best of their ability (Peer Review 2 drawing).
If they ran into problems along the way, they were told to do the best that they could
since the person that wrote the directions was not there to answer their questions.
They again used a marker to circle parts of the directions that were unclear.

Finally, on Day 5, the children received their own drawings and directions from
the other school along with the peer review drawings done by the other children. The
children reviewed their papers to find out if their writing was successful—the more
the original drawing and peer-review drawings match, the better the student did at
describing their monster. The activity concluded with a discussion of the importance
of this project. The children addressed questions like, “What were the difficulties?”,
“What would you do differently now that you have done it once?”, and “What would
they do differently now that they have done it once?”

This Draw-A-Monster activity meets five of the six design principles of an MEA.
The children must, at some level, mathematize their art (model construction). The
use of formal geometric vocabulary and spatial reasoning skills provide a memo-
rable experience to draw upon (effective prototype). There are built-in criteria for the
children to use to test and revise their current ways of thinking (self-assessment)—
the children actually create their own test case data set which is their monster draw-
ing. Through the procedure writing (model documentation), the children create a
share-able and re-usable (generalizable) product. The only missing principle is a
realistic context to drive the need for the drawing and drawing instructions (reality).

Child Thinking Revealed

Four pieces of student work are used here to demonstrate child thinking that informs
the next implementation. These four were selected for the variety, yet representative-
ness of the work produced by the children.

Child A’s work represents a reasonable attempt to (1) use geometric shapes in the
Original drawing (Fig. 1a) and (2) respond to the peer review comment and the Peer
Review 1 drawing (Fig. 1b). Child A wrote:

My Monster clawed. Begin by drawing a red circle head and a red circle oval body also a
2 blue triangle horns. The face is a circle nose and a circle mouth and 2 teeth inside and 2
black eyes also 2 red rectangle arms and 3 purple claws in each arm. 2 red legs and 2 purple
claws. [Child A, Draft 1]

The peer review comment asked for “more” with arrows pointing to the words
about the nose and mouth. Child A revised the instructions:
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My Monster clawed. Begin by drawing a red circle head and a red circle oval body also a 2
blue triangle horns. The face have a blue purplish nose and a black circle mouth and 2 sharp
teeth inside, 2 black eye, and two more finish touch is 2 red rectangle arm and 3 purple
claws in each arm and 2 red legs and 2 purple claws. [Child A, Draft 2]

Child A addresses the request for information about the nose and mouth by pro-
viding a color for each. However, Child A does not seem to attend to errors in the
Peer Review 1 drawing concerning the eyes, nose, and the orientation of the two
teeth. Peer Review 2 drawing (Fig. 1c) shows a different interpretation of claws,
highlighting the problem with using organic shapes in drawing instructions.

Child B drew a more complex monster and did not stick with geometric shapes
(Fig. 2a). This child instructed:

My Monster Fly Ant. On the face, it is shaped like a super hero mask with one eye in the
middle, and spiky hair. He also has 2 circles on the back, on top of the circles are wings.
2 wings. And a wormy red mouth. and a curvey neck, under it’s back is a rectangle with
9 webbed feet. 3 with triangles, one with a triangle, 3 with squares, and one with half
rectangle. [Child B, Draft 1]

The use of organic shapes and the fact that the monster is not similar to a human
in form resulted in the Child B having to write more description of the shapes and
more about the spatial relationships among the shapes than appeared in many other
student works.

Following the initial in-class peer review, Child B saw the Peer Review 1 drawing
(Fig. 2b) and one comment on Draft 1. The comment, marked at the first reference
to “wings”, said “more what shape?” Peer Review 1 drawing had some features that
were remarkably close to the Original, like the head and hair. Child B revised his
instructions to say:

My Monster Fly Ant. My monster is facing the right. 2 circles on the back. and the face is
shaped like a super hero mask. The super hero mask there is one eye in the middle. The neck
is shaped like a cresent. And 4 feet are pointy. and one is squigly. Also one has 3 squares.
One the back, it has wings. Like the tails on batman’s batmobile. with a squirmy mouth.
[Child B, Draft 2]

From Draft 2, it is apparent that Child B attended to both differences between the
Original drawing and the Peer Review 1 drawing and the peer reviewer comment. In
the Peer Review 1 drawing, the monster was facing forward rather than to the left,
had a different neck, and had feet that were all the same. Child B addressed these
issues along with the comment about the shape of the wings. Unfortunately, Child B
lost some detail from Draft 1—the relative position of the shapes and the number of
wings. Peer Review 2 drawing (Fig. 2c) shows the difficulty that this peer reviewer
had with interpreting the Draft 2 instructions.

Child C, like Child A, used geometric shapes to make the Original monster draw-
ing (Fig. 3a).

My Monster Speedy. begin by drawing a big black olvol. draw 2 trianglels at the bottom.
draw a circle at the top of the oval then draw circles for the eyes and then draw an oval
mouth then draw triangles for the teeth. for the hands draw a big triangle on both sides of
the oval. on the head draw a line connetct triangles and put circles in the triangles. Put a big
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Fig. 1a Draw-a-Monster
drawings for Child
A—Original

Fig. 1b Draw-a-Monster
drawings for Child A—Peer
Review 1

Fig. 1c Draw-a-Monster
drawings for Child A—Peer
Review 2

rectangol in the middle of the oval and then draw three starts in the middle of the rectangal.
Then draw a circle in the middle of the eye and the name is speedy. And when you did that
you are done [Child C, Draft 1]
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Fig. 2a Draw-a-Monster
drawings for
Child B—Original

Fig. 2b Draw-a-Monster
drawings for Child B—Peer
Review 1

Fig. 2c Draw-a-Monster
drawings for Child B—Peer
Review 2

Child C lost detail while attended to the struggles of the in-class peer to complete most of
the features of the drawing (Fig. 3b) by writing a step-wise procedure.
My Monster Speedy

1. Begin by drawing a big black ocal then draw 2 triangels at the bottom of the oval.
2. Draw a circle at the top of the oval and draw 2 green eyes in the circle then in the oval

draw triangle teeth after that draw intonas [antennas].
3. Draw a big triangle on the side of the oval to get arms. In the middle of the oval draw a

ractangal that is blue and has stars in it.
4. If it looks good you are done!!! [Child C, Draft 2]

But to an even greater extent than Child B, Child C lost many procedural details.
For instance, Child C introduced antennas—an organic shape—rather than describe
how to draw the antennas with geometric shapes. This loss of detail is noticeable in
the Peer Review 2 drawing (Fig. 3c).
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Fig. 3a Draw-a-Monster
work for Child C—Original

Fig. 3b Draw-a-Monster
work for Child C—Peer
Review 1

Fig. 3c Draw-a-Monster
work for Child C—Peer
Review 2

Finally, Child D had an incomplete in-class peer review (Fig. 4b) which caused
little substantive revision. Child D’s instructions for the original monster drawing
(Fig. 4a) were:

My Monster Craze. Begin by drawing a big blue, square head. Draw green eyes rectangle
mouth orange triangle teeth and red intenas [antennas]. Draw a purple rectangle neck. At
the two points draw a blue triangle body with a pattern of red and purple stripes. Draw two
orange rectangle arms with red triangle claws. draw orange line legs all around orange blob
legs. [Child D, Draft 1]

The second draft read:

My Monster Craze. Start with a blue rectangle head with green eyes a rectangle mouth with
4 orange teeth on the top and bottom. on the top add to red antennas. Put a purple rectangle
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[?] neck. At the two points draw a purple triangle body with a pattern of red and purple
diagonal stripes. Draw orange rectangle arms with red triangle claws. Draw orange line
legs with orange blob feet. [Child D, Draft 2]

More problems with the instructions were revealed by the second round peer re-
viewer (Fig. 4c). Certainly, issues with the size and location of the neck and orien-
tation of the teeth are more noticeable.

This selection of student work reveals that the children continued to include or-
ganic shapes in their drawings after the Day 1 discussion concerning the potential
difficulties of describing them. This informs revision to the activity with regards
to the achievement of the art education learning objective concerning the differen-
tiation of geometric and organic shapes. Students could list all of the shapes they
are using in their drawing before they write their first set of instructions. Then they
could revise their drawing to eliminate any organic shapes that they find. Alterna-
tively, students could rework their monster drawing and their instructions to ease
problems they detect with the continued use of organic shapes.

Opportunities for Greater Learning

While the art teachers expressed satisfaction with children’s achievement of the
art learning objective, they were overwhelmed with the time commitment to the
writing activity. A debriefing of the activity revealed opportunities to (1) connect
to the grade-level classroom for mathematics and language arts instruction and
(2) strengthen the engineering component of the activity. In fact, this activity pro-
vides a wealth of opportunities to not only teach or reinforce the art concept but
bolster learning experiences in mathematics, language arts, and engineering if the
teaching of this activity were spread across the art teacher and the classroom teacher.
Teaching in this way would maximize the learning potential of the activity and allow
teacher expertise to be applied in appropriate places. Teaching in this way would
also shorten the overall duration of the activity but strengthen its use during the
shorter overall implementation period as some components would be taught in the
art room and others in the regular classroom. Further, this would enable the activ-
ity to serve as a precursor to more mathematically complex MEAs as the children
would have had the experience of writing a procedure, participating in peer review,
and revising their solutions and ways of thinking about a problem in context.

Mathematics and Language Arts Connections

There is a great need to advance all students’ abilities to both use mathematics and
write in mathematical terms with fluency when solving problems. Engaging young
children in age-appropriate activities that begin to build these skills prepare them to
solve increasingly complex and open-ended problems.
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Fig. 4a Draw-a-Monster
drawings for
Child D—Original

Fig. 4b Draw-a-Monster
drawings for Child D—Peer
Review 1

Fig. 4c Draw-a-Monster
drawings for Child D—Peer
Review 2

The classroom teacher could take responsibility for the mathematics and lan-
guage arts connections. This activity connects to various Texas Essential Knowledge
and Skills (TEKS) for Mathematics as stated in Chapter 111 (http://ritter.tea.state.tx.

http://ritter.tea.state.tx.us/rules/tac/chapter111/ch111a.html
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Table 1 Texas Essential Knowledge and Skills (TEKS) for Mathematics applicable to the Draw-
a-Monster Activity

Kindergarten

(7) Geometry and spatial reasoning. The student describes the relative positions of objects. The
student is expected to:

(A) describe one object in relation to another using informal language such as over, under, above,
and below; and

(B) place an object in a specified position.

(8) Geometry and spatial reasoning. The student uses attributes to determine how objects are alike
and different. The student is expected to:

(A) describe and identify an object by its attributes using informal language;
(B) compare two objects based on their attributes; and

(9) Geometry and spatial reasoning. The student recognizes attributes of two- and
three-dimensional geometric figures. The student is expected to:

(C) describe, identify, and compare circles, triangles, rectangles, and squares (a special type of
rectangle).

Grade 1

(6) Geometry and spatial reasoning. The student uses attributes to identify two- and
three-dimensional geometric figures. The student compares and contrasts two- and
three-dimensional geometric figures or both. The student is expected to:

(A) describe and identify two-dimensional geometric figures, including circles, triangles, rectan-
gles, and squares (a special type of rectangle);

Grade 3

(8) Geometry and spatial reasoning. The student uses formal geometric vocabulary. The student is
expected to identify, classify, and describe two- and three-dimensional geometric figures by their
attributes. The student compares two-dimensional figures, three-dimensional figures, or both by
their attributes using formal geometry vocabulary.

(9) Geometry and spatial reasoning. The student recognizes congruence and symmetry. The
student is expected to:

(A) identify congruent two-dimensional figures;
(B) create two-dimensional figures with lines of symmetry using concrete models and technology;

and
(C) identify lines of symmetry in two-dimensional geometric figures.

us/rules/tac/chapter111/ch111a.html) of the Texas Administrative Code (TAC)
(Texas Education Agency n.d.). As a grade three activity, this activity reinforces
TEKS for Mathematics from Kindergarten and Grade 1 TEKS and addresses two
Grade 3 TEKS (Table 1). Students are expected to use formal language to de-
scribe geometric shapes (TEKS 3–8) and their relative position (TEKS K-7A) in
their Draw-A-Monster procedures. In this implementation, there was very little

http://ritter.tea.state.tx.us/rules/tac/chapter111/ch111a.html


Mathematical Modeling at the Intersection of Elementary Mathematics, Art 321

Table 2 Texas Essential Knowledge and Skills (TEKS) for English Language Arts and Reading
applicable to the Draw-a-Monster Activity

Grade 3

(17) Writing/Writing Process. Students use elements of the writing process (planning, drafting,
revising, editing, and publishing) to compose text.

(A) plan a first draft by selecting a genre appropriate for conveying the intended meaning to an
audience and generating ideas through a range of strategies (e.g., brainstorming, graphic or-
ganizers, logs, journals);

(B) develop drafts by categorizing ideas and organizing them into paragraphs;
(C) revise drafts for coherence, organization, use of simple and compound sentences, and audi-

ence;
(D) edit drafts for grammar, mechanics, and spelling using a teacher-developed rubric; and
(E) publish written work for a specific audience.

(20) Writing/Expository and Procedural Texts. Students write expository and procedural or
work-related texts to communicate ideas and information to specific audiences for specific
purposes.

(22) Oral and Written Conventions/Conventions. Students understand the function of and use the
conventions of academic language when speaking and writing. Students continue to apply earlier
standards with greater complexity. Students are expected to:

(A) use and understand the function of [. . .] parts of speech in the context of reading, writing, and
speaking

(B) use the complete subject and the complete predicate in a sentence; and
(C) use complete simple and compound sentences with correct subject-verb agreement.

description of the relative position or orientation of shapes or lines. This seemed
to be due to a reliance on the known location and relative position of human body
parts and an assumption that monsters will not be a great departure from the hu-
man form. In fact, many of the monsters drawn by the children were human-like
in form. So, either the teacher would need to emphasize the writing about the rel-
ative position of shapes or the context of the activity would need to be altered to
more naturally address this issue. During peer review, peers place shapes in speci-
fied positions according to the children’s procedures (TEKS K-7B). Following peer
review, the children should actively identify differences between the actual and the
intended shapes and positions in the drawings. The shapes employed (TEKS K-9,
1–6) could be manipulated through the problem constraints. Congruency and sym-
metry of shapes (TEKS 3–9) could be woven into children’s procedure writing or
discussions around how to interpret peer review drawings.

This activity also connects to various TEKS for English Language Arts and Read-
ing as stated in Chapter 110 (http://ritter.tea.state.tx.us/rules/tac/chapter110/ch110a.
html) of the TAC (Texas Education Agency n.d.); connections to Grade 3 TEKS are
shown in Table 2. Certainly, the writing of the students, as exemplified in samples
A through D above, would benefit from classroom teacher attention. The art teach-
ers for this implementation noted that the children were not very motivated to write
well during art class. The writing type for this activity is expository and procedural

http://ritter.tea.state.tx.us/rules/tac/chapter110/ch110a.html
http://ritter.tea.state.tx.us/rules/tac/chapter110/ch110a.html
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(TEKS 20). As is, this activity informally walks students through a writing pro-
cess that includes drafting and revision (TEKS 17A-D). A more formal execution
of the process would help students with issues of organization and writing conven-
tions (TEKS 22). The intended audience (TEKS 17E) in the current activity is peers,
though that could be reconsidered (this is discussed more in regards to embedding
more engineering).

Engineering Connections

Making connections to engineering is about identifying engineering practices em-
bedded in activities and exploiting them for student learning purposes, and identi-
fying ways to re-contextualize activities to provide young children with a window
on the “what and where” of engineering. There are a number of opportunities to
highlight engineering processes already present in the Draw-a-Monster activity:

• Engineers work within constraints. In this activity, the students are limited to
geometric shapes and five colors. These could be manipulated in various ways
for different learning outcomes, such as the use of shapes that are being added to
students’ vocabulary.

• Engineers write procedures that others must be able to implement. Take for exam-
ple design engineers at Vermeer (http://www2.vermeer.com/vermeer/NA/en/N/),
a designer and manufacturer of very large complex construction equipment. They
must write assembly instructions for their manufacturers to assemble the equip-
ment and instructional manuals for users of their equipment. So, an ability to
write clearly is important in engineering.

• Engineers test their product with intended users (Anderson 2012). Since peers are
the faux audience in this activity, they test the procedures (which are the prod-
ucts). Teachers could clarify when the students are acting in the roles of artists
versus engineers versus product users.

• Engineers engage in peer review, giving critical feedback or input on designed
products. IEEE members “seek, accept, and offer honest criticism of technical
work [and] acknowledge and correct errors” (Institute of Electrical and Electron-
ics Engineers 2012)

The giving, receiving, and attending to feedback is critical in engineering as it
leads to improved products and processes; the feedback process should also lead to
increased student learning and improved work products. At the university level, the
giving, receiving, and attending to feedback during open-ended mathematical mod-
eling is difficult for students (Diefes-Dux and Verleger 2009; Carnes et al. 2011;
Fry et al. 2011), possibly due to their lack of preparatory experiences with feed-
back. The peer review process in the Draw-a-Monster activity is an excellent venue
for engaging young children more deeply in this engineering practice, thus prepar-
ing them for future activities in which the gathering of feedback is employed. The
feedback process in the Draw-a-Monster activity could be augmented by formal-
izing elements of the peer review process. First, having two peer reviews of the

http://www2.vermeer.com/vermeer/NA/en/N/
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first draft of the instructions might reveal to young children (1) problems that con-
sistently appear when their procedures are applied and (2) different problems that
appear due to different interpretations of the procedures. Having a second peer re-
viewer might also overcome the problem of having one marginal peer review. Sec-
ond, the receiving of and attending to feedback process could be strengthened. The
children, in this implementation, attended to a mix of peer written and drawn feed-
back, often undermining the differences that could be found in the peer drawings.
In the future students could more formally list the difference they find between their
original drawing and the peer review drawing before editing their instructions. This
would improve the number of things students attempt to remedy in their revision.
It was however seen that during the revision process, there was shifting attention
to details. There were some gains from attending to feedback, but these were often
accompanied by some losses from the original draft. Lesh and Doerr (2003) refer
to this as unstable ways of thinking; “facts and observations that are salient at one
moment may be forgotten a moment later when somewhat different perspectives are
adopted” (p. 26). The loss of detail might be alleviated by having students compare
their first and second drafts.

Further, with revision, the MEA reality principle could be better met by setting
the activity in a more authentic engineering context. For instance, the context could
be established wherein the students’ instructions could be a precursor to having a
computer replicate artwork and they are limited to the shapes that come with a basic
computer drawing package. This would enable both the art and classroom teachers
to talk about one or more types of engineering (e.g. computer science or computer
engineering) and technologies created by engineers (e.g. software and hardware).
Teachers could even begin talk about hybrid education paths that merge art, mathe-
matics, and engineering (e.g. Fischer 2002). Such a context would also enable teach-
ers to connect this activity to their technology standards for using computer tools.

Summary and Conclusions

A Draw-a-Monster activity was combined with design principles for MEAs to
achieve an art learning objective. Young children’s achievement of the learning ob-
jective was highlighted in four child cases. Opportunities to better connect this ac-
tivity with mathematics, language arts, and engineering were discussed. Overall this
activity provides a child-friendly introduction to aspects of open-ended mathemati-
cal modeling problems and could introduce young children to a number of aspects
of the work of engineers. These student experiences should lay the foundation for
working in teams on engineering activities with greater mathematical complexity.
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