
Chapter 15
Hume–Rothery Stabilization Mechanism
in Low-Temperature Phase Zn6Sc Approximant
and e/a Determination of Sc and Y in M–Sc
and M–Y (M = Zn, Cd and Al) Alloy Systems

U. Mizutani, M. Inukai, H. Sato, and E.S. Zijlstra

Abstract We have performed FLAPW electronic structure calculations with sub-
sequent FLAPW-Fourier analysis for the low temperature phase Zn6Sc containing
336 atoms per unit cell with space group B2/b. The square of the Fermi diameter
(2kF )2, electrons per atom ratio e/a and critical reciprocal lattice vector |G|2s were
determined. The origin of its pseudogap at the Fermi level was interpreted as arising
from interference of electrons with (2kF )2 = 79.0 ± 0.2 with sets of lattice planes
with |G|2 ranging over 72 to 96. The work was extended to intermetallic compounds
existing in M–Sc and M–Y (M = Zn, Cd and Al) binary alloy systems. The effective
e/a values for Sc and Y were deduced to be 3.0 and 3.1, respectively.

15.1 Introduction

Guided by the empirical Hume–Rothery electron concentration rule, Tsai and his
coworkers discovered a series of thermally stable Al–Cu–TM (TM = Fe, Ru and
Os) and Al–Pd–TM (TM = Mn, Re) icosahedral quasicrystals in the early 1990s
[1, 2]. Here negative valences proposed by Raynor [3] for transition metal (TM)
elements were used. Tsai et al. [4] reported in 2000 that a stable binary icosahe-
dral quasicrystal can be formed at the composition Cd5.7Yb and belongs to a new
class of packing 66-atom icosahedral clusters. They also revealed that the compound
Cd6Yb lying next to the quasicrystal above in the phase diagram corresponds to its
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1/1–1/1–1/1 approximant with space group Im3̄. More recently, Ishimasa and his
associates [5] have succeeded in synthesizing the Zn–Mg–Sc quasicrystal guided
by the work of Andrusyak et al. [6]. Later, Ishimasa et al. [7] studied the struc-
tures in more details in both quasicrystals and their 1/1–1/1–1/1 approximants in
Zn–Mg–Sc, Cu–Ga–Mg–Sc and Zn–Mg–Ti alloys and revealed the presence of
a few Zn atoms in the first shell in the 1/1–1/1–1/1 approximants and claimed
them to be isostructural to the family of Cd6M (M = Yb and Ca) 1/1–1/1–1/1
approximants. They also discussed the formation range for the Tsai-type icosa-
hedral quasicrystals in terms of electrons per atom ratio e/a by taking a compo-
sition average of (e/a) values of constituent elements: (e/a)Cu = (e/a)Ag = 1.0,
(e/a)Mg = (e/a)Ca = (e/a)Zn = (e/a)Cd = (e/a)Yb = 2.0, (e/a)Sc = (e/a)Y = 3.0
and (e/a)Ti = 4.0. As a result, they are commonly stabilized at e/a ranging over
2.00 to 2.15. It is worthwhile noting, at this stage, that tri-valence for Sc and Y in
Group 3 and quadri-valence for Ti and Zr in Group 4 in the periodic table were
originally proposed by Pauling [8].

There is a clear difference in the approach between Pauling and Raynor: Paul-
ing treated the valence band of the TM element itself to define its metallic valence,
while Raynor considered the effective e/a of the TM element embedded in the host
metal Al. Obviously, a substantial difference in the electron concentration param-
eter emerged between them. In the past, experimentalists have employed either of
these two models upon discussing the e/a-dependent alloy phase stability or the
Hume–Rothery electron concentration rule, though both models were constructed
without any rigorous justification based on first-principles electronic structure cal-
culations. To overcome this difficulty, Mizutani and coworkers [9–11] employed
first-principles FLAPW (Full potential Linearized Augmented Plane Wave) elec-
tronic structure calculations and established a powerful technique to extract Fs–Bz
(Fermi surface–Brillouin zone) interactions involved and to determine the e/a value
for elements and intermetallic compounds, regardless of whether or not the TM el-
ement is involved. They have made full use of its formalism, in which the wave
functions outside the muffin-tin (MT) spheres are expanded into plane waves over
allowed reciprocal lattice vectors G.

The Zn6Sc compound is known to be the 1/1–1/1–1/1 approximant to its qua-
sicrystal and the structure of its low temperature phase has been recently determined
by Ishimasa et al. [12]. The geometrically disordered atom cluster in the first shell
undergoes an orientational ordering and the structure was described as a perfectly
ordered phase containing a total of 336 atoms per a monoclinic unit cell with space
group C2/c. In the present work, we have performed the WIEN2k-FLAPW band
calculations with subsequent FLAPW-Fourier analysis for Zn6Sc with equivalent
space group B2/b. The calculations above were extended to existing intermetallic
compounds in M–Sc and M–Y (M = Al, Zn and Cd) alloy systems to determine
theoretically the e/a values of the TM elements Sc and Y.
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15.2 Electronic Structure Calculations

FLAPW band calculations have been performed by employing the commercially
available WIEN2k-FLAPW program package [13] with INTEL version Linux per-
sonal computers. Our in-house Fortran90 Program has been devised to carry out
the FLAPW-Fourier analysis by using “case.output1” file generated by running
WIEN2k [9–11].

The FLAPW-Fourier spectrum was first constructed to plot the energy depen-
dence of plane wave components specified by the square of reciprocal lattice vector
|G|2 in units of (2π/a)2 at selected symmetry points of the Brillouin zone. This al-
lows us to extract electronic states dominating at the Fermi level. The reciprocal lat-
tice vectors thus extracted are called critical. As a next step, we construct the energy
dispersion relation for the LAPW state {2|ki + G|}2

Ej
having the largest Fourier co-

efficient for a given energy Ej and wave vector ki produced by partitioning the Bril-
louin zone into Nk meshes. This is done in an energy interval Ej < E < Ej +�E

for all ki values in the Brillouin zone with subsequent averaging of {2|ki + G|}2
E

over the Brillouin zone. It provides the energy dispersion relation reflecting the
LAPW states having the largest Fourier coefficient. We specifically call this the
Hume–Rothery plot since it allows us to determine the square of the effective Fermi
diameter (2kF )2 and the e/a values for each intermetallic compound studied [9–11].

The WIEN2k was run by using the cut-off parameter RMTKmax = 6.0, which
determines the number of basis functions or size of the matrices, and Nk = 400 for
Zn6Sc.

15.3 Results and Discussions

The energy dispersion relations and the total DOS for Zn6Sc are shown in Fig. 15.1.
A deep DOS pseudogap is formed at the Fermi level. The Zn- and Sc-partial DOSs in
Zn6Sc are shown in Figs. 15.2(a) and (b), respectively. Orbital hybridization effects
mainly due to Zn-sp and Sc-d states are apparently responsible for opening a pseu-
dogap across the Fermi level. We can alternatively discuss the origin of a pseudogap
at the Fermi level in terms of Fs–Bz interactions by analyzing both FLAPW-Fourier
and the Hume–Rothery plot.

Figure 15.3 shows the FLAPW-Fourier spectrum at symmetry point Γ for se-
lected |G|2s for Zn6Sc. One can immediately find that LAPW waves of |G|2 = 76
and 80 are most densely distributed across the Fermi level. The electronic states
thus extracted are called critical. By studying the FLAPW-Fourier spectra at sym-
metry points M and X as well, we conclude that electronic states at the Fermi level
are dominated over |G|2s from 72 to 96 and that |G|2 = 76 and 80 are the most
critical. Figure 15.4(a) shows the energy dependence of 〈∑k+G |Ck+G|2max〉E , or
briefly 〈|C|2max〉E , which represents the square of the maximum Fourier coefficient
extracted from wave function outside the MT spheres on a given energy surface
E(k) = E. The summation is carried out over equivalent zone planes. Its value at



112 U. Mizutani et al.

Fig. 15.1 (a) Dispersion relations and (b) total density of states (DOS) for low temperature phase
Zn6Sc. VEC indicates the integrated DOS or the number of electrons accommodated in the valence
band

Fig. 15.2 (a) Zn-s, Zn-p, Zn-d and Zn-f and (b) Sc-s, Sc-p, Sc-d and Sc-f partial DOS of Zn6Sc

the Fermi level, 〈|C|2max〉EF
, may be used as a measure to judge the itinerancy of

electrons at the Fermi level. An electron at the Fermi level is regarded as being itin-
erant if 〈|C|2max〉EF

> 0.1 [14]. The value for Zn6Sc turns out to be 0.067, indicating
that electrons at the Fermi level are localized.

The Hume–Rothery plot and its non-dimensional standard deviation F(E) [14]
for Zn6Sc are shown in Fig. 15.4(b). The data points fall on a straight line, provided
that the free electron model holds well. A triangle shaped anomaly at about −8 eV
reflects the highly localized Zn-3d band. One can also see that anomalies due to Sc-d
states occur across the Fermi level but are well suppressed. A straight line can be
drawn through the Fermi level, as indicated in Fig. 15.4(b). The square of the Fermi
diameter, (2kF )2 in units of {2π/(abc)1/3}2, is deduced to be 79.0 ± 0.2. It is clear
that the matching condition (2kF )2 = |G|2, which plays a key role in the formation
of a pseudogap at the Fermi level, is well satisfied, since (2kF )2 thus obtained agrees
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Fig. 15.3 FLAPW-Fourier
spectrum at symmetry point
G with |G|2s ranging over 68
to 96 for Zn6Sc. The total
DOS is superimposed

Fig. 15.4 (a) Energy dependence of 〈|C|2max〉 and (b) Hume–Rothery plot for Zn6Sc. The ordinate
in (b) is expressed in units of that in the orthorhombic structure by ignoring a slight deviation of
an angle g from 90◦ in the monoclinic structure [12]. F(E) represents non-dimensional standard
deviation [14]

well with the critical |G|2s = 76 and 80 mentioned above. This explains the origin
of the pseudogap at the Fermi level in terms of Fs–Bz interactions involved.

The effective e/a value can be immediately calculated by inserting (2kF )2 ob-
tained above into e/a = [π{(2kF )2}3/2]/3N , where N is the number of atoms per
unit cell. It turns out to be 2.18, in a good agreement with a composition average of
2.14 under the condition that (e/a)Zn = 2.0 and (e/a)Sc = 3.0. We showed that the
matching condition for Cd6Ca approximant containing 168 atoms per cubic cell is
satisfied with (2kF )2 = |G|2 = 50 [15]. An insertion of e/a = 2.18 and N = 168 in
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Fig. 15.5 (a) Sc and (b) Y concentration dependence of (e/a)total for intermetallic compounds in
the M–Sc and M–Y (M = Al, Zn and Cd) alloy systems, respectively

place of N = 336 back to the equation above results in (2kF )2 = 50. Hence, we can
say that both Zn6Sc forming a superlattice with N = 336 and Cd6Ca approximant
are isoelectronic and obey the Hume–Rothery stabilization mechanism.

It is of great importance to study the universality for the assignment of (e/a) =
3.0 for Sc and Y in Group 3. The FLAPW-Fourier analysis and the Hume–Rothery
plot were made for existing intermetallic compounds [16] and pure elements in the
M–Sc (M = Al and Zn) and M–Y (M = Al, Zn and Cd) alloy systems. We respec-
tively show in Figs. 15.5(a) and (b) the TM concentration dependences of e/a values
deduced from the Hume–Rothery plot for all intermetallic compounds mentioned
above. The data points for M–Sc (M = Al and Zn) fall on straight lines connect-
ing (e/a)Al = 3.0, (e/a)Zn = 2.0 and (e/a)Sc = 3.0. Similarly, the data for M–Y
(M = Al, Zn and Cd) fall on a straight line connecting (e/a)Al = 3.0, (e/a)Cd = 2.0
and (e/a)Y = 3.1. We conclude that e/a = 3.0 and 3.1, respectively, are assigned to
TM elements Sc and Y in Group 3 in the periodic table, regardless of their concen-
trations in M–TM (M = Al, Zn, Cd) alloy systems and that Zn6Sc with a giant cell
does obey this simple rule.
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