
Chapter 10
Short-Range Spin Fluctuation in the Zn–Mg–Tb
Quasicrystal and Its Relation to the Boson Peak

I. Kanazawa, M. Saito, and T. Sasaki

Abstract We introduce the mechanism of localized collective fluctuation of short-
range ordered spin in a dodecahedral spin cluster in Zn–Mg–Tb icosahedral qua-
sicrystals. In addition, we shall discuss the relation to the boson peak in topological
glasses.

10.1 Introduction

Since the discovery of quasicrystals, much research has been directed at their unique
structure and physical properties, especially quasiperiodicity [1, 2]. Ordering and
excitations of quasiperiodically arranged magnetic moments (spins) remain funda-
mental open problems, despite the intensive efforts continuously made since the
discovery of quasicrystals. The Zn–Mg–R (R = rare-earth) icosahedral quasicrys-
tals [3] are the most extensively studied magnetic quasicrystals because of the fol-
lowing experimental advantages. These quasicrystals have well-localized, mostly
isotropic and sizable 4f magnetic moments. Their atomic structure is relatively well
known. Sato et al. [4] have investigated the low-temperature spin dynamics in the
face-centered-icosahedral Zn–Mg–Tb quasicrystal around its spin-glass-like freez-
ing temperature by inelastic neutron scattering. They observed the broad inelastic
peak, which can be interpreted as localized collective fluctuations of short-range-
ordered spins in a dodecahedral spin cluster. Furthermore, they gave a very im-
portant suggestion. That is, they indicated a possible close relation between the
broad inelastic spin-excitation peak and the so-called boson peak in topological
glasses [5, 6]. The boson peak is a broad inelastic excitation peak universally ob-
served in vibrational spectra of topological glasses at a Q-independent excitation
energy of a few meV. Its intensity shows a Q-dependence similar to the static struc-
ture factor, whereas its temperature dependence is given by the Bose temperature
factor. The boson peak is given by the Bose temperature factor. The boson peak
is believed to be related to collective atomic vibrations in a small structural unit.
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Fig. 10.1 Dodecahedral spin
cluster model. A typical
ground-state spin
configuration is shown by the
thick solid lines. The
nearest-neighbor (J1) and
next nearest-neighbor (J2)

interactions are also indicated
by arrows

These characteristics are surprisingly similar to those of the observed inelastic spin-
excitation peak, and thus, at least phenomenologically, we may regard the inelastic
peak as a spin analogue of the boson peak.

One of the present authors (I.K.) [7–11] has introduced a generalized view of
the physical origin of the boson peak in the gauge-invariant formula. Especially the
localized modes (massive gauge modes), which correspond to the boson peak, are
required naturally through the Higgs mechanism. In this study, we shall propose
the mechanism of localized collective fluctuations of short-range-ordered spin in a
dodecahedral spin cluster (Fig. 10.1) and discuss the relation to the boson peak in
topological glasses, by using the theoretical formula [8–11].

10.2 Localized Collective Spin-Fluctuation and the Boson Peak

It has been proposed that the parameter φa(t, r, u) (a = 1–4), whose t , r , and u

are the time axis, the spatial axes and the perpendicular axes, in the quasicrystal is
specified by the rotation, which is related to the gauge fields SO(4) of Aa

μ [11, 12],
where a = 1–4 and μ = 1,2,3 correspond to the physical space axes, and μ =
4,5,6 correspond to the perpendicular space axes. To represent the dodecahedral
cluster, we set the symmetry breaking 〈0|φa |0〉 = 〈0,0,0, ν〉 of the Bose parameter
field φa in the Lagrange density as follows:
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After the symmetry breaking 〈0|φa |0〉 = 〈0,0,0, ν〉, we can obtain the effective
Lagrange density as follows:
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Fig. 10.2 Hedgehog-like
fluctuation (cluster), which is
similar to the
three-dimensional sphere S3,
with the approximate radius
of the inverse of mass, m1,
introduced by the Higgs
mechanism
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where Sj is the spin of Tb and m1 = ν ·g4, m2 = 2(2)
1
2 λ · ν. The effective Lagrange

density describes three massive gauge fields. A1
μ, A2

μ and A3
μ are created through

the Anderson–Higgs mechanism by introducing the dodecahedral cluster, the fields
A1

μ, A2
μ, and A3

μ are then localized around the dodecahedral cluster within the length
of ∼1/|m1| = (ν.g4)

−1 ≡ Rc.Rc approximately corresponds to the radius of the
dodecahedral cluster.

From the first term in Eq. (10.2), it is shown that the massive gauge fields A1
μ,

A2
μ, and A3

μ induce localized collective fluctuation of spins in a dodecahedral spin
cluster, taking into account the short-range spin fluctuation mechanism by massive
gauge fields [15].

Now we shall consider the relation to the so-called boson peak in topological
glasses. It is preferable that we think of the anomalous density fluctuations in three-
dimensional liquids (glasses) as the hedgehog-like clusters, taking account of the
curvature, as shown intuitively in Fig. 10.2.

We adopt the parameter ρ(r,u) ≡ ρa(a = 1,2,3,4), which is similar to that in
the Sachdev and Nelson model [12]. The SO(4) quadruplet fields Aa

μ are sponta-
neously broken through the fluid host around the hedgehog-like fluctuation (cluster)
[13, 14]. When the hedgehog-like cluster (soliton) is created, we set the symmetry
breaking of the quadruplet fields, 0|ρ|0〉, equal to 〈0,0,0, ν4〉.

Now we approximately introduce the Lagrange density as follows:
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Then we set the symmetry breaking as follows:

ρa → (0,0,0, ν4) + (
ρ1, ρ2, ρ3, ρ4).

Thus we can introduce the effective Lagrange density
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Here m1 is ν4 · g and m2 is 2
√

2λ · ν4.
The effective Lagrange density, Leff, represents three massive vector fields A1

μ,
A2

μ, and A3
μ, and the masses are created through the Higgs mechanism by introduc-

ing the hedgehog-like clusters (solitons), the gauge fields A1
μ,A2

μ, and A3
μ are only

present around clusters. The inverse, 1/|m|, of the mass of A1
μ, A2

μ, and A3
μ reveals

approximately the radius of the clusters.
Since the gauge field A4

μ is massless, it is thought that the gauge field A4
μ me-

diates the long-range interaction between two excited clusters (the hedgehog-like
solitons).

In glasses and amorphous materials, the broad maximum of Raman spectra and
neutron scattering is due to excess vibrational density of states. It is the so-called bo-
son peak because its intensity changes with T in accordance with the Bose–Einstein
factor. It is thought that the vibrational states responsible for the boson peak con-
tribute also to the thermal conductivity plateau because the energy range spanned
by the plateau covers that of the boson peak spectra, indicating that acoustic excita-
tions must cease to propagate when their wavelength λ reaches the nm range. That
is, acoustic modes may become strongly localized modes, satisfying the Ioffe–Regel
condition. By a computer simulation of a soft sphere glass, it is found that there are
(quasi)localized modes with effective masses ranging from 10 atomic masses up-
wards, which are related to the boson peak. In the present theoretical formulation,
the effective Lagrangian represents three massive vector fields A1

μ, A2
μ, and A3

μ

which are localized within a radius, 1/|m|, around the hedgehog-like clusters [13].
Thus, it is suggested that the localized gauge fields A1

μ, A2
μ, and A3

μ around the
hedgehog-like clusters (solitions) are related to the (quasi)localized modes of the
boson peak. Expanding the present formula, we can introduce a more generalized
view of the origin of the boson peak. We adopt the generalized parameter,

ρ(r,u) ≡ ρa (a = 1,2,3,4,5, . . . ,N).
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When the locally favored cluster is created, we set the symmetry breaking of
0|ρb|0 = 0, in which b represents components within the components from a = m

to N . As a result, m − 1 massive gauge modes (the localized modes) are introduced
around the locally favored cluster through the Higgs mechanism.

It should be noticed that the massive gauge fields A1
μ, A2

μ, and A3
μ in Eq. (10.2)

are certainly similar to the ones in Eq. (10.4). Thus, the massive gauge fields A1
μ,

A2
μ, and A3

μ, which correspond to the boson peak, induce localized collective fluc-
tuations of spins in a dodecahedral spin cluster. This suggests that we may regard
the inelastic peak as a spin analogy of the boson peak.

10.3 Conclusion

We have proposed the mechanism of localized collective spin-fluctuation in a do-
decahedral spin cluster. Massive gauge fields, which correspond to the boson peak,
induce localized collective spin-fluctuation in a dodecahedral spin clusters.
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