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Preface

Aperiodic Crystals collects 37 selected papers from the scientific contributions pre-
sented at the Seventh International Conference on Aperiodic Crystals, Aperiodic
2012, held in Cairns, Australia from the 2nd to the 7th of September, 2012 and
organized under the auspices of the Commission on Aperiodic Crystals of the In-
ternational Union of Crystallography (IUCr). It followed Aperiodic’94 (Les Dia-
blerets, Switzerland), Aperiodic’97 (Alpe d’Huez, France), Aperiodic 2000 (Ni-
jmegen, The Netherlands), Aperiodic 2003 (Belo Horizonte, Brazil), Aperiodic
2006 (Zao, Japan) and Aperiodic 2009 (Liverpool, U.K.). The Aperiodic series of
conferences in turn followed on four earlier conferences held under the title of Mod-
ulated Structures, Polytypes and Quasicrystals (MOSPOQ). The eighth conference
in the Aperiodic series will be held in Prague in 2015.

The program was wonderfully diverse, covering a wide range of topics including:
the mathematics of aperiodic long-range order and the fascinating types of tilings
resulting from it; the synthesis, growth and stability of metallic aperiodic crystals
and related complex metallic alloys; new methods and associated structural char-
acterisation studies of aperiodic crystals; theoretical and experimental studies of
the electronic, magnetic and other physical properties of aperiodic crystals; partial
order, correlated disorder, and structured diffuse scattering; modulated structures,
quasicrystals and approximants; soft-matter quasicrystals, and aperiodic ordering in
bio-molecules and proteins; the dynamics of aperiodic crystals; as well as aperiodic
surfaces, thin films and adsorbates. This impressive diversity in subject matter is
well reflected in the contributions to this volume.

The conference was attended by more than 110 delegates from 23 different coun-
tries, including Dan Shechtman from Israel, Laureate of the 2011 Nobel Prize in
Chemistry. Prof. Shechtman delivered a special celebratory Nobel lecture on the
30th anniversary year of his pioneering electron-diffraction characterization of the
first quasicrystal on April 8, 1982. The introductory tutorial talk by Ted Janssen
highlighted the fact that we also celebrated a half a century of work on aperiodic
crystals, which could be considered as dating back to the pioneering work of Pim
de Wolff on γ -Na2CO3 around 1962 and published in 1964. Presentations at the
conference included 3 invited introductory tutorials, 11 invited talks, 46 contributed
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talks, and 43 poster presentations, all discussing state-of-the-art research in this fas-
cinating field of scientific endeavour. What we know and what we still don’t know
about aperiodic order was carefully examined and hotly debated throughout this
conference.

We would like to thank all the participants for coming the very long way to
Australia as well as for their enthusiastic and considered contributions to, and par-
ticipation in, the conference. Special thanks are due to the International Program
Committee for their work in the organisation of the conference program and to the
members of the Local Organizing Committee for making Aperiodic 2012 the very
successful and highly stimulating meeting it was. We would also like to thank the
wonderful staff from Springer for their help in the production of this volume. Fi-
nally, we gratefully acknowledge financial and other support from our sponsors.
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A. Castro, J. Rodríguez-Carvajal, and S. Doyle

21 Pseudo-Commensurate GdBaCo2O5+δ and Its Phase Transition at
Elevated Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . 157
N. Ishizawa, T. Asaka, T. Kudo, K. Fukuda, N. Abe, and T. Arima

22 Al4(Cr,Fe): A Structure Survey . . . . . . . . . . . . . . . . . . . . . 163
B. Bauer, B. Pedersen, and F. Frey



Contents ix

23 Phase Transitions in Aperiodic Composite Crystals . . . . . . . . . . 171
P. Rabiller, B. Toudic, C. Mariette, L. Guérin, C. Ecolivet, and
M.D. Hollingsworth

24 Pseudo-Symmetry in Tungsten Bronze Type Sr3TiNb4O15 . . . . . . 179
T.A. Whittle, W.R. Brant, and S. Schmid

25 Structural Investigation of the Incommensurate Modulated
Ta2O5·Al2O3 System . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
D.T. Murphy, V. Fung, and S. Schmid

26 First-Principles Study for Phase Diagrams of Cd–Ca and Cd–Y
Tsai-Type Approximants Under Pressure . . . . . . . . . . . . . . . 195
K. Nozawa and Y. Ishii

27 The Choice of Vector Basis for Ammann Tiling in a Context of the
Average Unit Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
R. Strzalka, J. Wolny, and P. Kuczera

28 Real Space Structure Factor and Scaling for Quasicrystals . . . . . . 211
J. Wolny, B. Kozakowski, P. Kuczera, L. Pytlik, and R. Strzalka

29 Direct Observations of Aperiodic Arrangements of Transition-
Metal Atoms in Al–Co–Ni Decagonal Quasicrystals by Cs-Corrected
HAADF-STEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
A. Yasuhara, K. Saito, and K. Hiraga

30 Arrangement of Transition-Metal Atoms in an Approximant
Crystal Related to Al–Cu–Co Decagonal Quasicrystals Studied
by Cs-Corrected HAADF-STEM . . . . . . . . . . . . . . . . . . . . 225
K. Yubuta, A. Yasuhara, and K. Hiraga

31 Structure of ε16 Phase in Al–Pd–Co System Studied by HREM and
X-Ray Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
K. Yubuta, S. Suzuki, R. Simura, and K. Sugiyama

32 Structure of τ 2-Al3Co, a Monoclinic Approximant of the Al–Co
Decagonal Quasicrystal . . . . . . . . . . . . . . . . . . . . . . . . . 237
K. Sugiyama, A. Yasuhara, and K. Hiraga

33 Reverse Monte Carlo Study of Diffuse Scattering from a Frustrated
Protein System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
T.R. Welberry, A.P. Heerdegen, and P.D. Carr

34 Dynamical Flexibility in the Periodic Zn6Sc 1/1-Approximant . . . . 253
H. Euchner, T. Yamada, H. Schober, S. Rols, M. Mihalkovič,
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M. Mihalkovič Institute of Physics, Slovak Academy of Sciences, Bratislava, Slo-
vakia

U. Mizutani Nagoya Industrial Science Research Institute, Nagoya, Japan

M. Moll Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany

D.T. Murphy School of Chemistry, The University of Sydney, Sydney, NSW, Aus-
tralia

K. Nozawa Department of Physics, Chuo University, Tokyo, Japan



xiv Contributors

B. Pedersen Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), TU
München, Garching, Germany

J.M. Perez-Mato Department of Condensed Matter Physics, University of the
Basque Country, Bilbao, Spain
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Chapter 1
A Brief History of Aperiodic Crystals:
1962–2012

T. Janssen

Abstract About 50 years ago, it was shown that there are solid state systems with
perfect order but without lattice periodicity. These systems were called crystalline
phases because of the order and incommensurate because of the lack of periodic-
ity. They formed a challenge for crystallographers and physicists to understand the
structure, the physical properties and the reason for their appearance. Later other
classes of this type were found (occupation modulated crystals, incommensurate
magnetic systems, incommensurate composites), the most important one being that
of quasicrystals. The discovery of the latter class in 1982 caused a huge increase
in interest. The first conferences on this new type of materials were called Mod-
ulated Crystals, later polytypes and quasicrystals were included in the title MO-
SPOQ. Nowadays these conferences continue under the name Aperiodic (Crystals).
The field has become very active worldwide, and our insight into structure and prop-
erties has increased impressively. A brief sketch of the development of the field is
given in this chapter.

1.1 History

On April 21st, 1912, Friedrich, Knipping and Laue [1] followed a proposal by Max
Laue (after 1913 von Laue) and performed an experiment throwing X-rays onto a
crystal of copper sulfate [2]. They found the sharp diffraction spots foreseen by Laue
showing that the crystal has lattice periodicity. Shortly afterwards the Braggs devel-
oped the fundamental techniques of crystallography. For half a century the paradigm
was that ideal crystals are built of identical unit cells. Later the International Union
of Crystallography incorporated this property into the definition of a ‘crystal’. This
idea remained intact for half a century. Then systems with also sharp diffraction
spots but without lattice periodicity were found. The idea to consider these materi-
als also as crystals reached the larger crystallographic community much later, after
Dan Shechtman had discovered quasicrystals on April 8th, 1982. The first aperiodic
crystals, however, were discovered earlier, but this did not attract so much attention.

T. Janssen (B)
University of Nijmegen, Nijmegen, The Netherlands
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2 T. Janssen

It is more difficult to state when exactly the first aperiodic crystal was found. In
1960, a spin wave was found with a period that did not fit the periodicity of the un-
derlying lattice [3], but one did not observe an effect on the positions of the atoms.
In 1963, satellites were seen in NaNO2 [4], next to the main reflections. These were
interpreted as micro-domains, in a very small (1.5 degree centigrade) temperature
interval, around the ferroelectric phase transition and there was no discussion of the
incommensurate character. But in 1964 the first incommensurately modulated struc-
ture was found. So there is some reason to consider 1962 (between 1960 and 1964)
as the beginning of the field.

1.1.1 Incommensurate Modulated Phases and Composites

In 1964, Pim de Wolff and collaborators [5] found satellite peaks in the γ -phase of
anhydrous Na2CO3: next to the main reflections of the monoclinic basic structure
there were peaks at positions ha∗+kb∗+�c∗+m(αa∗+βb∗). First they were found
in powder, later also in a single crystal. The interpretation was a periodic displace-
ment of the atoms, with wave vector q which has irrational indices α and β with
respect to the reciprocal lattice vectors a∗ and b∗ of the basic structure. The conclu-
sion is that the structure is not lattice periodic. Mathematically, it is a quasiperiodic
structure, but to stress the aperiodicity these phases were called incommensurately
modulated phases. Soon other examples of such structures followed, e.g. thiourea
and K2SeO4, to mention two examples which were studied extensively. For such
structures the positions of the atoms can be given as

rnj = n+ rj + uj
(
q.(n+ rj )

)
, (1.1)

where n are the lattice points of the lattice periodic basic structure, rj the position
of the j th atom in the unit cell, u a periodic function with period 1. Later, also
structures with 2 or more modulation vectors q were found. The diffraction spots
are at positions

H= ha∗ + kb∗ + �c∗ +
d∑

s=1

msqs . (1.2)

d is the number of independent modulation wave vectors. Main reflections are the
peaks with ms = 0. Because main reflections are mapped onto main reflections, the
symmetry of the diffraction must be one of the three-dimensional crystallographic
point groups.

A new type of aperiodic crystal was found in 1975. Tetrathiafulvalene (TTF)
pentaiodide has a subsystem consisting of TTF molecules with as second subsys-
tem iodide in channels, the compound having composition TTF7I5−δ [6]. The basic
structure of the TTF system is C-centered monoclinic, that of the iodine system A-
centered monoclinic, but the lattice constants are incommensurate. Therefore, one
needs more than 3 basis vectors to index the diffraction spots with integers: one
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additional vector is needed. A second example is Hg3−δAsF6 [7], consisting of 3
subsystems: the AsF6 host lattice, and two systems of mercury chains, one in the
a-direction, and one in the b-direction. Each subsystem has a basic structure with
3 basis vectors for their reciprocal lattices. Nevertheless, instead of nine, one only
needs four basis vectors for indexing the diffraction peaks with integers. Such struc-
tures with mutually incommensurate subsystems are called incommensurate com-
posites. Since these first examples many other have been found. A particular class is
that of misfit structures, layered structures for which the layers do not have the same
translation symmetry, not even for the basic structure one has to consider, because
generally the layers are modulated by the interaction with the other layers.

The diffraction pattern shows reflections common to several subsystems, reflec-
tions corresponding to main peaks for one of the subsystems and summation reflec-
tions corresponding to modulations of one subsystem caused by the interaction with
other subsystems. The symmetry of the diffraction pattern consists of all orthog-
onal transformations mapping each spot to another of the same intensity. Because
subsystems may be mapped on each other, the crystallographic condition no longer
holds: in principle, the symmetry may contain non-crystallographic elements, i.e.
elements which are impossible for a three-dimensional lattice periodic structure,
such as a five-fold rotation. However, such symmetries have not been observed for
composites.

1.1.2 Aperiodic Tilings and Quasicrystals

Non-crystallographic symmetries play a role in mathematical constructions, aperi-
odic tilings of the plane. The best known example is the Penrose tiling, a tiling of the
plane with copies of two different tiles, without gaps or overlaps. One realization of
a Penrose tiling is by means of rhombs, one with an angle of 36◦ and with an angle
of 72◦. An early overview was given by Martin Gardiner in the January 1977 issue
of Scientific American. Crystallographers played with the idea that there could be
crystals with a comparable structure. Alan Mackay [8] showed experimentally that
the diffraction pattern has ten-fold symmetry. Later this could be proven mathemat-
ically. However, such structures, aperiodic and quasiperiodic, were not known by
then.

Therefore, it was a big surprise when Dan Shechtman found real structures with
sharp diffraction peaks and ten-fold symmetry in the diffraction pattern. He studied
rapidly cooled AlMn particles and observed this phenomenon. Unfortunately, the
referees were not aware of the existence of tilings with these properties, or they did
not believe that this could happen in nature and did not accept the explanations for
the findings. However, other explanations could all be proven to be false. It took
two and a half years before the results could be published [9]. The new material did
not only show ten-fold symmetry in the diffraction, but even the symmetry of an
icosahedron. It became known as a quasicrystal. This discovery can be considered
as the most important event in the history of aperiodic crystals.
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Mackay already had used the term ‘quasi-lattice’ for the diffraction pattern of the
Penrose tiling. For the new material Levine and Steinhardt proposed the term ‘qua-
sicrystal’. It is supposed to mean ‘quasiperiodic crystal’, but the latter term is actu-
ally too broad. First, according to the original mathematical definition, any periodic
function is also quasiperiodic; and second, there are aperiodic and quasiperiodic
structures that are usually not considered to be quasicrystals, like the incommen-
surate phases. Actually, there is not yet a consensus about the term ‘quasicrystal’.
‘Aperiodic crystal’ is the general term for a structure with sharp diffraction peaks
that is quasiperiodic and not lattice periodic.

After the discovery of the quasicrystalline structure in AlMn, new examples were
rapidly found. Next to the icosahedral quasicrystals, there are the decagonal qua-
sicrystals with quasiperiodicity in planes perpendicular to an axis along which the
crystal is periodic. Also new classes of icosahedral quasicrystals were discovered
which turned out to be of better quality and stable (the very small AlMn quasicrys-
tals are unstable). Several families of ternary alloys (AlCuFe, AlMnPd, etc.) and
binary alloys (e.g. YbCd) were developed. The larger size and higher quality were
essential for the study of crystallographic and physical properties.

1.1.3 Incommensurate Magnetic Structures

As mentioned before, aperiodicity in crystals was found as an incommensurate spin
wave in MnAu2. There no influence of the spin wave on the crystal structure was
reported. Such an interaction was found in chromium [10]. Below the Curie temper-
ature, satellites are observed with a modulation wave vector equal to the spin wave
vector. The coupling between spin and lattice causes a modulation, a mechanism
comparable to the coupling between charge density waves and the lattice, leading to
a modulation of the latter. Analogously to the displacive modulation (Eq. (1.1)), the
spin wave at discrete positions may be written as

S(n, j)=
∑

H

Ŝ(H) exp
(
iH.(n+ rj )

)
. (1.3)

Whereas displacive modulations are usually transversal or longitudinal, spin struc-
tures may show complicated spiral structures, especially in systems with rare-earth
elements.

1.2 Superspace Treatment

A quasiperiodic function f (x) is a function that is the restriction of a function g,
periodic in each of its n variables, to a line in the n-dimensional space: f (x) =
g(α1x, . . . , αnx), where the numbers αi are irrational. Notice that for n = 1 the
function is periodic: a periodic function is also quasiperiodic. It may be shown that
the projection of the Fourier transform of f (x) on the line consists of sharp peaks at
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positions q =∑n
i=1miqi . This corresponds to the observation by de Wolff that the

peaks for γ -Na2CO3 can be seen as the projection points of a regular lattice in four
dimensions.

The diffraction spots of a quasiperiodic crystal can be labeled with n indices. If
n = 3 (or the dimension of the crystal which could also be 1 or 2), the crystal has
lattice periodicity and the spots belong to the reciprocal lattice. In general, the spots
are given as points on a Fourier module: linear combinations of n basis vectors a∗i .
The number n is the rank of the Fourier module. If the orthogonal 3-dimensional
transformation R leaves the pattern (inclusive intensities) invariant, one has

Ra∗i =
n∑

j=1

Γij (R)a∗j . (1.4)

Because there are only a finite number of peaks above a certain intensity around the
origin, the matrices Γ (R) form a finite group, and group theory then tells us that
this group on another basis consists of orthogonal matrices. Because the pattern in 3
dimensions is left invariant, the elements R correspond to pairs (RE,RI ) of orthog-
onal transformations, in 3 and (n− 3) dimensions, respectively. The n-dimensional
group then leaves an n-dimensional (reciprocal) lattice invariant, and its direct lat-
tice as well. This is the general idea of constructing a periodic n-dimensional struc-
ture for which the restriction to 3 dimensions gives the physical, aperiodic crystal.
An alternative way is the following. Suppose the aperiodic crystal has a density
ρ(r). Its Fourier component is non-zero only for points of the Fourier module, and
these correspond to points of the n-dimensional reciprocal lattice. Then one can
construct a lattice periodic function in n-dimensions

ρ(r)=
∑

H

ρ̂(H) exp(iH.r)→ ρ(r, rI )=
∑

H

ρ̂(H) exp
(
i(H.r+HI .rI )

)
. (1.5)

In the case of point atoms, the function ρ(rE, rI ) is restricted to (n−3)-dimensional
hypersurfaces, called atomic surfaces. These may extend to infinity or be of finite
volume, when they are disjunct. It is the goal of structure determination to find
position and shape of these atomic surfaces. On them an occupation function may
be defined which determines the probability of finding a certain chemical species
there.

Because the projection of the lattice on internal space is a dense set, the energy
of every 3-plane through a point of this set is the same, and this corresponds to
a global translation along internal space. In many cases, local shifts do not cost
much energy. Statically, this corresponds to phason disorder, dynamically to phason
excitations (either jumps or collective motions). At finite temperature, there will be
phason disorder which shows itself in points outside the atomic surfaces which may
occur with a certain probability. The disorder could contribute to the entropy of the
system, and in turn this might influence the balance between periodic and aperiodic
structures.

Since the function ρ(rE, rI ) is lattice periodic, its symmetry group is an n-
dimensional space group, a superspace group. An element g is a combination of
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a separable orthogonal transformation (RE,RI ), where the two components are or-
thogonal transformations in physical and internal space, respectively, and a pair of
transformations (vE,vI ) of translations in these 2 subspaces. Its action on ρ(rE, rI )
is given by

Tgρ(rE, rI )= ρ
(
R−1
E (rE − vE),R

−1
I (rI − vI )

)
(1.6)

and on its Fourier transform by

Tgρ̂(k)= exp
(
i(kE.vE + kI .vI )

)
ρ̂
(
R−1
E k
)
. (1.7)

This formula gives the systematic extinctions associated with the superspace group:
if Rk= k, then ρ̂(k)= 0, unless the argument of exp is a multiple of 2π .

Let us consider this procedure for the various families.

1.2.1 Incommensurate Modulated Phases and Composites

De Wolff [11] noticed that the positions of the diffraction pattern (Eq. (1.2)) for
d = 1 can be seen as the projection of a reciprocal lattice in 4 dimensions. As 4th
dimension one can consider the phase of the modulation wave (Eq. (1.1)). Then one
gets

rnj (φ)= n+ rj + uj
(
q.(n+ rj )+ φ

)
, (1.8)

which is equivalent to the expression to obtain a quasiperiodic function from a pe-
riodic function in a higher-dimensional space. The symmetry of the pattern (1.8) is
a four-dimensional space group. Such space groups had been used by Janner and
Janssen for the study of space-time symmetries of electrodynamic systems. Then
the phase φ is taken over by the time t . Together the approach could be generalized
to more general modulated phases, and later to general quasiperiodic crystals. This
has been dealt with in the beginning of this section (Eq. (1.5)).

For incommensurate composites each subsystem (ν) has a lattice periodic basic
structure with a reciprocal lattice on a basis aν∗i . A basis for the Fourier module, the
set generated by all diffraction spot positions, is given by a∗i (n = 1, . . . , n)). The
former can be expressed in the latter by aν∗i =

∑
j Z

ν
ija∗j . The basis a∗i can be em-

bedded into an n-dimensional space, and consequently the reciprocal and the direct
lattice of each subsystem is embedded in an n-dimensional space. Each subsystem
is modulated by the interaction with the other subsystems. This means that the main
peaks of one may coincide with satellite peaks of other subsystems. In addition,
there may be other modulations as well, which would increase the dimension of the
superspace, but we shall disregard that possibility here.

1.2.2 Aperiodic Tilings and Quasicrystals

With some effort it is possible to index the diffraction pattern made by Mackay [8].
It has rank four, the symmetry group is the group 5̄m corresponding to a finite group
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of integer matrices, for which one can determine the invariant lattice in 4 dimensions
and the unit cell. The problem is the determination of the atomic surfaces in this unit
cell. It turns out that one has 4 different and disjunct atomic surfaces, all pentagons,
of different size and orientation.

This illustrates the problems for the description of quasicrystals. The trivial part
is the determination of the unit cell (or the asymmetric unit cell). This follows eas-
ily from the positions of the diffraction spots and the symmetry of the pattern. For
decagonal (and octagonal or dodecagonal) quasicrystals the dimension of the su-
perspace is five, for icosahedral quasicrystals six. Like for the Penrose tiling, the
atomic surfaces here are disjunct. So one has to determine the position of these
atomic surfaces and their shape. Moreover, there may be chemical order or disor-
der on the atomic surfaces. In the determination, the knowledge of the superspace
group may help. Moreover, there is a closeness condition. This means the follow-
ing. Two atomic surfaces with nearby positions in physical space do not overlap in
projection on internal space. But if one changes the position of the n-dimensional
crystal in internal space and an intersection point of an atomic surface with physical
space vanishes, a new intersection point on another atomic surface should appear.
This means that the projection of a border of an atomic surface should coincide with
that of another atomic surface. This is the closeness condition which poses limita-
tions on the shape of the atomic surfaces. Another helpful fact can be the existence
of an approximant, a lattice periodic structure with similar chemical composition
and similar local ordering. There are a number of structure models for ternary sys-
tems. Using the knowledge of the structure of an approximant, one has been able to
determine the structure of the binary icosahedral YbCd [12].

1.2.3 Incommensurate Magnetic Structures

The description of incommensurate magnetic structures (Eq. (1.3)) and their effect
on the nuclear structure in superspace follows the same lines. Both the spin waves
and modulation waves may be embedded in superspace. The superspace group of
the nuclear structure consists of all elements leaving it invariant. For the spin system
one may introduce the time reversal operator θ . Then the action of the combination
of a superspace group element g and θ on the spin wave in superspace is

TgθS(rE, rI )=−Det(RE)S
(
g−1(rE, rI )

)
, (1.9)

and for g itself the same expression holds without the minus-sign. The group of
all elements g and gθ which leave S invariant is the magnetic superspace group.
This group and the corresponding structure have been determined for several aperi-
odic magnetic structures such as chromium, rare-earth compounds and multiferroics
[13–15].

1.3 Phase Transitions

As in conventional 3-dimensional crystals, aperiodic crystals may show phase tran-
sitions in the composition–pressure–temperature space. However, the variety is big-
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ger for aperiodic systems. In the first place, one has to distinguish transitions where
the dimension of superspace does not change, and those where there is a difference
in dimension at the phase transition. An example of the former, is a transition to
a superstructure, for example, a change in centering. If the transition is 2nd order,
the order parameter is related to irreducible representations of the high-symmetry
group, and one can apply Landau’s theory of phase transitions.

Phase transitions where the dimension changes, are more typical for aperiodic
crystals. Examples are the transition from an unmodulated to a modulated structure.
These are often of 2nd order and related to a soft mode, a vibration mode becoming
unstable at the transition. The appearing modulated structure may be described us-
ing irreducible representations of the symmetry of the unmodulated phase, at least
near the phase transition. There is a relatively simple connection between such irre-
ducible representations and the superspace group of the modulated phase [16]. Also
modulations of quasicrystals may be described in this way, e.g. the icosahedral mod-
ulation of an icosahedral quasicrystal is a transition from a six- to a 12-dimensional
structure.

For incommensurate composites the phase transition may correspond to a change
in the relationship between the subsystems. Examples of such phase transitions have
been observed in nonadecane-urea [17]. In the phase diagram, one finds structures
with rank 3, 4 and 5.

1.4 Conclusion

In 50 years the field of aperiodic crystals has grown to a rich and important topic.
There is a very large variety of systems, and these are interesting from various points
of view. The number of systems is large, and so is the total amount of such crystals,
because many minerals belong to this class of materials. Although many mathemat-
ical, physical and chemical questions have been answered, there still remain many
fundamental open questions concerning the origin of aperiodic order, the growth of
the order, the reason for the stability, and the character of elementary excitations.
Finally, the question remains in how far this class of materials may lead to new
applications.

Additional information “http://www.janssenweb.net/ted/janssen.htm” and the
book “Aperiodic Crystals” by Ted Janssen, Gervais Chapuis and Marc de Boissieu,
Oxford University Press 2007.
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Chapter 2
Squiral Diffraction

Uwe Grimm and Michael Baake

Abstract The Thue–Morse system is a paradigm of singular continuous diffraction
in one dimension. Here, we consider a planar generalisation, constructed by a bijec-
tive block substitution rule, which is locally equivalent to the squiral inflation rule.
For balanced weights, its diffraction is purely singular continuous. The diffraction
measure is a two-dimensional Riesz product that can be calculated explicitly.

2.1 Introduction

The diffraction of (fully) periodic systems and of aperiodic structures based on cut
and project sets (or model sets) is well understood; see [4, 5] and references therein.
These systems (in the case of model sets under suitable assumptions on the window)
are pure point diffractive, and the diffraction can be calculated explicitly.

The picture changes for structures with continuous diffraction. Not much is
known in general, in particular for the case of singular continuous diffraction, even
though both absolutely and singular continuous diffraction show up in real systems
[13, 14]. The paradigm of singular continuous diffraction is the Thue–Morse chain,
which in its balanced form (constructed via the primitive inflation rule 1 �→ 11̄,
1̄ �→ 1̄1 with weights 1 and 1̄=−1, say) shows purely singular continuous diffrac-
tion. This was shown by Kakutani [10], see also [1], and the result can be extended
to an entire family of generalised Thue–Morse sequences [3].

Here, we describe a two-dimensional system which, in its balanced form, has
purely singular continuous diffraction. For mathematical details, we refer to [6].
Again, it is possible to obtain an explicit formula for the diffraction measure in
terms of a Riesz product [12, Sect. 1.3], with convergence in the vague topology.
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Fig. 2.1 The primitive
inflation rule for the squiral
tiling of the Euclidean plane

Fig. 2.2 Patch of the squiral tiling obtained by two inflation steps from the central seed

Fig. 2.3 Equivalent block
inflation rule for the squiral
tiling of Fig. 2.2

2.2 The Squiral Block Inflation

The squiral tiling (a name that comprises ‘square’ and ‘spiral’) was introduced in [8,
Fig. 10.1.4] as an example of an inflation tiling with prototiles comprising infinitely
many edges. The inflation rule is shown in Fig. 2.1; it is compatible with reflection
symmetry, so that the reflected prototile is inflated accordingly.

A patch of the tiling is shown in Fig. 2.2. Clearly, the tiling consists of a two-
colouring of the square lattice, with each square comprising four squiral tiles of
the same chirality. The two-colouring can be obtained by the simple block inflation
rule shown in Fig. 2.3, which is bijective in the sense of [11]. Again, the rule is
compatible with colour exchange. The corresponding hull has D4 symmetry, and
also contains an element with exact individual D4 symmetry; see [6] for details and
an illustration.

Due to the dihedral symmetry of the inflation tiling, it suffices to consider a tiling
of the positive quadrant. Using the lower left point of the square as the reference
point, the induced block inflation ρ produces a two-cycle of configurations v and
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ρv. They satisfy, for all m,n≥ 0 and 0≤ r, s ≤ 2, the fixed point equations

(ρv)3m+r,3n+s =
{
vm,n, if r ≡ s ≡ 0 mod 2,

vm,n, otherwise.
(2.1)

2.3 Autocorrelation and Diffraction Measure

For a fixed point tiling under ρ2, we mark each (coloured) square by a point at
its lower left corner z ∈ Z2. For the balanced version, each point carries a weight
wz = 1 (for white) or wz = 1̄ = −1 (for grey). Consider the corresponding Dirac
comb

ω=wδZ2 =
∑

z∈Z2

wzδz, (2.2)

which also is a special decoration of the original squiral tiling. Following the ap-
proach pioneered by Hof [9], the natural autocorrelation measure γ of ω is defined
as

γ = ω� ω̃ := lim
N→∞

(ω|CN ) ∗ (ω̃|CN )
(2N + 1)2

, (2.3)

where CN stands for the closed centred square of side length 2N . Here, μ̃ denotes
the measure defined by μ̃(g) = μ(g̃) for g ∈ Cc(R

2), with g̃(x) := g(−x) (and
where the bar denotes complex conjugation). The autocorrelation measure γ is of
the form γ = ηδZ2 with autocorrelation coefficients

η(m,n)= lim
N→∞

1

(2N + 1)2

N∑

k,�=−N
wk,�wk−m,�−n. (2.4)

All limits exists due to the unique ergodicity of the underlying dynamical system
[6], under the action of the group Z

2.
Clearly, one has η(0,0)= 1, while Eq. (2.1) implies the nine recursion relations

η(3m,3n) = η(m,n),
η(3m,3n+ 1) = −2

9
η(m,n)+ 1

3
η(m,n+ 1),

η(3m,3n+ 2) = 1

3
η(m,n)− 2

9
η(m,n+ 1),

η(3m+ 1,3n) = −2

9
η(m,n)+ 1

3
η(m+ 1, n),

η(3m+ 1,3n+ 1) = −2

9

(
η(m+ 1, n)+ η(m,n+ 1)

)+ 1

9
η(m+ 1, n+ 1), (2.5)
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η(3m+ 1,3n+ 2) = −2

9

(
η(m,n)+ η(m+ 1, n+ 1)

)+ 1

9
η(m+ 1, n),

η(3m+ 2,3n) = 1

3
η(m,n)− 2

9
η(m+ 1, n),

η(3m+ 2,3n+ 1) = −2

9

(
η(m,n)+ η(m+ 1, n+ 1)

)+ 1

9
η(m,n+ 1),

η(3m+ 2,3n+ 2) = 1

9
η(m,n)− 2

9

(
η(m+ 1, n)+ η(m,n+ 1)

)
,

which hold for allm,n ∈ Z and determine all coefficients uniquely [6]. The autocor-
relation coefficients show a number of remarkable properties, which are interesting
in their own right, and useful for explicit calculations.

Since the support of ω is the lattice Z
2, the diffraction measure γ̂ is Z2-periodic

[2], and can thus be written as

γ̂ = μ ∗ δZ2 ,

where μ is a positive measure on the fundamental domain T
2 = [0,1)2 of Z2. One

can now analyse γ̂ via the measure μ, which, via the Herglotz–Bochner theorem, is
related to the autocorrelation coefficients by Fourier transform

η(k)=
∫

T2
e2π ikz dμ(z),

where k = (m,n) ∈ Z2 and kz denotes the scalar product. We now sketch how to
determine the spectral type of μ, and how to calculate it.

Defining Σ(N) :=∑N−1
m,n=0 η(m,n)

2, the recursions (2.5) lead to the estimate

Σ(3N)≤ 319

81
Σ(N),

so that Σ(N)/N2 −→ 0 as N →∞. An application of Wiener’s criterion in its
multidimensional version [6, 7] implies that μ, and hence also the diffraction mea-
sure γ̂ , is continuous, which means that it comprises no Bragg peaks at all.

Since η(0,1)= η(1,0)=−1/3, which follows from Eq. (2.5) by a short calcu-
lation, the first recurrence relation implies that η(0,3j ) = η(3j ,0) = −1/3 for all
integer j ≥ 0. Consequently, the coefficients cannot vanish at infinity. Due to the
linearity of the recursion relations, the Riemann–Lebesgue lemma implies [6] that
μ cannot have an absolutely continuous component (relative to Lebesgue measure).
The measure μ, and hence γ̂ as well, must thus be purely singular continuous.

2.4 Riesz Product Representation

Although the determination of the spectral type of γ̂ is based on an abstract ar-
gument, the recursion relations (2.5) hold the key to an explicit, iterative cal-
culation of μ (and hence γ̂ ). One defines the distribution function F(x, y) :=
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Fig. 2.4 The distribution function F (3) of Eq. (2.7) (left) and the corresponding density f (3) of
Eq. (2.8) (right), approximating the diffraction measure γ̂ of the squiral tiling on [0,1]2

μ([0, x] × [0, y]) for rectangles with 0 ≤ x, y < 1, which is then extended to the
positive quadrant as

F(x, y)= γ̂ ([0, x] × [0, y]).
This can finally be extended to R

2 via F(−x, y)= F(x,−y)=−F(x, y) and hence
F(−x,−y) = F(x, y). In particular, one has F(0,0) = 0 as well as F(0, y) =
F(x,0)= 0, and F is continuous on R

2. The latter property is non-trivial, and fol-
lows from the continuity of certain marginals; see [6] and references therein for
details.

One can show that, as a result of Eq. (2.5), F satisfies the functional relation

F(x, y)= 1

9

∫ 3x

0

∫ 3y

0
ϑ

(
x

3
,
y

3

)
dF(x, y), (2.6)

written in Lebesgue–Stieltjes notation, with the trigonometric kernel function

ϑ(x, y)= 1

9

(
1+ 2 cos(2πx)+ 2 cos(2πy)− 4 cos(2πx) cos(2πy)

)2
.

The functional relation (2.6) induces an iterative approximation of F as follows.
Starting from F (0)(x, y)= xy (which corresponds to Lebesgue measure, dF (0) = λ)
and continuing with the iteration

F (N+1)(x, y)= 1

9

∫ 3x

0

∫ 3y

0
ϑ

(
x

3
,
y

3

)
dF (N)(x, y), (2.7)

one obtains a uniformly (but not absolutely) converging sequence of distribu-
tion functions, each of which represents an absolutely continuous measure. With

dF (N)(x, y)= f (N)(x, y)dx dy, where f (N)(x, y)= ∂2

∂x ∂y
F (N)(x, y), one finds the

Riesz product

f (N)(x, y)=
N−1∏

�=0

ϑ
(
3�x,3�y

)
. (2.8)
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These functions of increasing ‘spikiness’ represent a sequence of (absolutely contin-
uous) measures that converge to the singular continuous squiral diffraction measure
in the vague topology. The case N = 3 is illustrated in Fig. 2.4. Local scaling prop-
erties can be derived from Eq. (2.8).

2.5 Summary and Outlook

The example of the squiral tiling demonstrates that the constructive approach of [1,
3, 10] can be extended to more than one dimension. The result is as expected, and
analogous arguments apply to a large class of binary block substitutions that are
bijective in the sense of [11]. This leads to a better understanding of binary systems
with purely singular continuous diffraction.

It is desirable to extend this type of analysis to substitution systems with larger al-
phabets. Although the basic theory is developed in [12], there is a lack of concretely
worked-out examples. Moreover, there are various open questions in this direction,
including the (non-) existence of bijective constant-length substitutions with abso-
lutely continuous spectrum (the celebrated example from [12, Ex. 9.3] was recently
recognised to be inconclusive by Alan Bartlett and Boris Solomyak).
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was supported by the German Research Council (DFG), within the CRC 701.

References

1. Baake M, Grimm U (2008) The singular continuous diffraction measure of the Thue–Morse
chain. J Phys A, Math Theor 41:422001. arXiv:0809.0580

2. Baake M (2002) Diffraction of weighted lattice subsets. Can Math Bull 45:483–498.
arXiv:math.MG/0106111

3. Baake M, Gähler F, Grimm U (2012) Spectral and topological properties of a family of gen-
eralised Thue–Morse sequences. J Math Phys 53:032701. arXiv:1201.1423

4. Baake M, Grimm U (2011) Kinematic diffraction from a mathematical viewpoint. Z Kristal-
logr 226:711–725. arXiv:1105.0095

5. Baake M, Grimm U (2012) Mathematical diffraction of aperiodic structures. Chem Soc Rev
41:6821–6843. arXiv:1205.3633

6. Baake M, Grimm U (2012) Squirals and beyond: substitution tilings with singular continuous
spectrum. Ergod Theory Dyn Syst, to appear. arXiv:1205.1384

7. Baake M, Grimm U (2013) Theory of aperiodic order: a mathematical invitation. Cambridge
University Press, Cambridge, to appear

8. Grünbaum B, Shephard GC (1987) Tilings and patterns. Freeman, New York
9. Hof A (1995) On diffraction by aperiodic structures. Commun Math Phys 169:25–43

10. Kakutani S (1972) Strictly ergodic symbolic dynamical systems. In: LeCam LM, Neyman J,
Scott EL (eds) Proceedings of the 6th Berkeley symposium on mathematical statistics and
probability. University of California Press, Berkeley, pp 319–326

11. Frank NP (2005) Multi-dimensional constant-length substitution sequences. Topol Appl
152:44–69

http://arxiv.org/abs/arXiv:0809.0580
http://arxiv.org/abs/arXiv:math.MG/0106111
http://arxiv.org/abs/arXiv:1201.1423
http://arxiv.org/abs/arXiv:1105.0095
http://arxiv.org/abs/arXiv:1205.3633
http://arxiv.org/abs/arXiv:1205.1384


2 Squiral Diffraction 17

12. Queffélec M (2010) Substitution dynamical systems—spectral analysis, 2nd edn. LNM,
vol 1294 Springer, Berlin

13. Welberry TR, Withers RL (1991) The rôle of phase in diffuse diffraction patterns and its effect
on real-space structure. J Appl Crystallogr 24:18–29

14. Withers RL (2005) Disorder, structured diffuse scattering and the transmission electron mi-
croscope. Z Kristallogr 220:1027–1034



Chapter 3
Random Noble Means Substitutions

Michael Baake and Markus Moll

Abstract The random local mixture of a family of primitive substitution rules with
noble mean inflation multiplier is investigated. This extends the random Fibonacci
example that was introduced by Godrèche and Luck in (J. Stat. Phys. 55:1–28,
1989). We discuss the structure of the corresponding dynamical systems, and de-
termine the entropy, an ergodic invariant measure and diffraction spectra.

3.1 Introduction

Despite many open problems (including the famous Pisot substitution conjecture),
the structure of systems with pure point diffraction is rather well understood [5, 13].
Due to recent progress [1, 2], also the situation for various systems with diffraction
spectra of mixed type has improved, especially from a computational point of view.
In particular, one can explicitly calculate the diffraction measure in closed form for
certain classes of examples. Still, the understanding of spectra in the presence of en-
tropy is only at its beginning; compare [1, 4] and references therein. The purpose of
this contribution is a further step into ‘disordered territory’, here via the analysis of
mixed substitutions that are randomly applied at a local level. This is in contrast to
global mixtures (which leads to S-adic systems), which have no entropy. Local mix-
tures were investigated in [8, 9], where the essential properties of the Fibonacci case
were derived, along with first results on planar systems based on triangle inflation
rules. Here, we extend the random Fibonacci system to the noble means family, and
present the results from the point of view of dynamical systems. The entire family is
still relatively simple because each individual member of a fixed noble mean family
defines the same (deterministic) hull. Various generalisations are possible, but not
discussed here.
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3.2 Construction

Let A= {a, b} be our two letter alphabet. For any fixed integer m≥ 1, we define a
family Hm of substitution rules by

ζm,i :
{
a �→ aibam−i ,
b �→ a,

with 0 ≤ i ≤ m, and refer to each ζm,i as a noble means substitution (NMS).
Each member of Hm is a primitive substitution with Pisot inflation multiplier
λm = 1

2 (m+
√
m2 + 4) and algebraic conjugate λ′m = 1

2 (m−
√
m2 + 4). Each sub-

stitution possesses a reflection symmetric and aperiodic two-sided discrete (or sym-
bolic) hull Xm,i , where the hull, as usual, is defined as the orbit closure of a fixed
point in the local topology. Moreover, all elements of Hm are pairwise conjugate to
each other which implies that, for fixed m, the hulls Xm,i are equal for 0≤ i ≤m.

We now fix a probability vector (p0, . . . , pm), that is pi ≥ 0 and
∑m

j=0 pj = 1.
We define the random substitution rule

ζm :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a �→

⎧
⎪⎪⎨

⎪⎪⎩

ζm,0(a)= bam, with probability p0,

...
...

ζm,m(a)= amb, with probability pm,

b �→ a,

where M :=
(
m 1
1 0

)

is its substitution matrix. We refer to ζm as the random noble means substitution
(RNMS). The application of ζm occurs locally, which means that we decide sepa-
rately on each letter a which of the m+ 1 possible realisations we choose. In par-
ticular, for each k ∈N, ζ km(a) is a random variable. As there is no direct analogue of
a fixed point in the stochastic situation, we have to slightly adjust the notion of the
two-sided discrete hull in this context. Note that aa is a legal word (see below for
more) for all m, and consider

Xm :=
{
w ∈AZ |w is an accumulation point of

(
Sjnζ nm(a|a)

)
n∈N0

}
,

where S denotes the shift. The two-sided discrete hull Xm is defined as the smallest
closed and shift-invariant subset of AZ with Xm ⊂Xm. It is immediate that Xm is a
superset of Xm,i . Note that typical elements of Xm contain the subword bb, which
is absent in Xm,i . The hull Xm is characterised by the property that it contains all

elements of {a, b}Z that contain ζm-legal subwords only (see below for more).

3.3 Topological Entropy

In this section, we assume that all probabilities pi are strictly positive. We call a
finite word w legal with respect to ζm if there is a power k ∈ N such that w is
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a subword of some realisation of ζ km(a). Furthermore, let Dm,� be the set of all
legal words of length � with respect to ζm. We refer to the function C : N→ N,
� �→ |Dm,�| as the complexity function of ζm. It is known that the discrete hull of each
member of Hm has linear complexity, which implies that the topological entropy
vanishes here. In the stochastic setting, the picture changes; see [4] for background.

Let m ∈N be arbitrary but fixed. The sets G0 :=∅, G1 := {b}, G2 := {a} and

Gn :=
m⋃

i=0

m∏

j=0

Gn−1−δij , (3.1)

with δij denoting the Kronecker symbol, are called the generation sets of ζm. The
product in (3.1) is meant to be the set-theoretic product with respect to concate-
nation of words. Moreover, we define G := limn→∞ Gn and refer to Gn as the nth
generation set. The length �n of words in Gn is given by the sequence �0 = 0, �1 = 1,
�2 = 1 and �n+1 = m�n + �n−1, for n ≥ 2. The set Gn consists of all possible ex-
act realisations ζ n−1

m (b). Since not all legal words result from an exact substitution,
which can again be seen from the example bb, it is clear that |Gn|<C(�n) for n≥ 2.

In [8], Godrèche and Luck computed the topological entropy of ζ1 under the
implicit assumption that

lim
n→∞

1

�n
log
(
C(�n)

)= lim
n→∞

1

�n
log
(|Gn|
)
,

which was recently proved by J. Nilsson [12]. This asymptotic identity is crucial
because the exact computation of the complexity function of ζm is still an open
problem. It is easy to compute |Dm,�| for �≤m+ 2 and it is known [10] that

|Dm,�| =
3∑

i=0

(
�

i

)
− 1

6
m(m+ 1)(3�− 2m− 4)

if m+ 3≤ �≤ 2m+ 2, while an extension to arbitrary word lengths seems difficult.
In [8], the entropy per letter for m= 1 is computed to be

h1 = lim
n→∞

log(|Gn|)
�n

=
∞∑

i=2

log(i)

λi+2
1

≈ 0.444399> 0,

whereas a convenient representation for arbitrary m reads

hm = lim
n→∞

log(|Gn|)
�n

= λm − 1

1− λ′m
·
∞∑

i=2

log(m(i − 1)+ 1)

λim
. (3.2)

The result computed by Godrèche and Luck for m = 1 can be recovered by the
observation that (λ1 − 1)/(1− λ′1)= 1/λ2

1 in this case. Some numerical values are
given in Table 3.1. It is not difficult to prove [10] that limm→∞ hm = 0, which can
be verified by estimating the logarithm in (3.2) via the square root and using the fact
that λm/m tends to 1 as m→∞.
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Table 3.1 Numerical values of the topological entropy for RNMS with 1≤m≤ 7

m 1 2 3 4 5 6 7

hm 0.444399 0.408549 0.371399 0.338619 0.310804 0.287298 0.267301

3.4 Frequencies of Subwords

We adopt the method of computing the frequencies of subwords via induced substi-
tutions on words of length � (with � ∈N), which was introduced in [13, Sect. 5.4.1],
and modify it to fit the stochastic setting. To this end, we again assume that all
probabilities pi in the definition of ζm are strictly positive.

If w = w0w1 · · ·w�−1 is a word of length �, we define w[i,j ] to be the subword
wi · · ·wj of w of length j − i + 1. For � ≥ 2, we denote ζm,(�) : Dm,�→ Dm,� as
the induced substitution defined by

ζm,(�) : w(i) �→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(v
(i,1)
[k,k+�−1])0≤k≤|ζm(w(i)0 )|−1

, with probability pi,1,

...
...

(v
(i,ni )

[k,k+�−1])0≤k≤|ζm(w(i)0 )|−1
, with probability pi,ni

,

(3.3)

where w(i) ∈Dm,� and v(i,j) is a realisation of w(i) under ζm with probability pi,j .
This way, we ensure that we are neither under- nor overcounting subwords of a given
length. Similar to the case of ζm, the result is a random variable.

The action of ζm,(�) on words in Dm,� is illustrated in Table 3.2 for m = 1 and
�= 2. Applying the lexicographic order to the words in Dm,� leads to the corre-
sponding substitution matrix Mm,� :=M(ζm,(�)). For any fixed m ∈ N and � = 2,
we get

Mm,2 =

⎛

⎜⎜
⎝

(m− 1)+ p0pm (m− 1)+ p0 1− p0 1
1− p0pm 1− p0 p0 0
1− p0pm 1 0 0
p0pm 0 0 0

⎞

⎟⎟
⎠ .

This matrix has the spectrum σ(Mm,2) = {λm,λ′m,−p0,p0pm}. Furthermore, it is
interesting to observe that the spectrum of the matrices Mm,� for �≥ 3 is the same
as that of Mm,2, except for the addition of zeros. Note that ζm,(1) agrees with ζm
which implies that Mm,1 =M .

The substitution matrix Mm,� is primitive for all m and �, which allows an appli-
cation of Perron–Frobenius theory; see [14] for general background. This implies
that there is a strictly positive right eigenvector φ(�) to the eigenvalue λm. Note that
λm does not depend on any of the pi at all, whereas this is not the case for φ(�).

We define a measure on the discrete hull Xm as follows. For any word v ∈Dm,�
and k ∈ N, let Zk(v) := {w ∈ Xm | w[k,k+�−1] = v} be the cylinder set of v that
starts at position k. Then, the family {Zk(v)}k∈N generates the product topology and
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Table 3.2 The action of ζ1,(2) on ζ1-legal words of length 2

w ∈D1,2 ζ1(w) v(i,j) P w ∈D1,2 ζ1(w) v(i,j) P

aa abab (ab)(ba) p2
1 ab aba (ab)(ba) p1

abba (ab)(bb) p0p1 baa (ba)(aa) p0

baab (ba)(aa) p0p1 ba aab (aa) p1

baba (ba)(ab) p2
0 aba (ab) p0

bb aa (aa) 1

we define the measure μ : Xm→ R≥0 on the cylinder sets as μ(Zk(v)) = φ(�)(v),
where φ(�)(v) is the entry of φ(�) with respect to v. This is a proper (and consistent)
definition of a measure on Xm, which can also be found in [13, Sect. 5.4.2]. By
construction, the measure is shift-invariant.

The following theorem [10] shows that, similar to the deterministic setting [13],
it is possible to interpret the entries of φ(�) as the frequencies of legal subwords with
respect to ζm as follows:

Theorem 3.1 Let Xm ⊂AZ be the hull of the random noble means substitution for
m ∈ N and μ the shift-invariant probability measure on Xm as defined above. For
any f ∈ L1(Xm,μ) and for an arbitrary but fixed s ∈ Z, the identity

lim
N→∞

1

N

N+s−1∑

i=s
f
(
Six
)=
∫

Xm

f dμ

holds for μ-almost every x ∈Xm.

The proof can be accomplished by inspecting the family of random variables
R = {f (Siw)}

i∈N, where f is a patch recognition function that evaluates to 1 if
(Siw)[s,s+�−1] = v for an arbitrary but fixed word v ∈Dm,� and to 0 otherwise. By
observing that, given any i ∈ Z, the sets

Ii :=
{(
Si+k(�+m)w

)
[s,s+�−1] | k ∈N

}

consist of pairwise independent words, we can split up the summation over R ap-
propriately and apply Etemadi’s version of the strong law of large numbers [7, The-
orem 1] to each sum over Ii separately. This, in conjunction with an application of
the Stone–Weierstrass theorem, implies the assertion.

3.5 Diffraction Measure

The symbolic situation is turned into a geometric one as follows. In view of the left
PF eigenvector of M , a and b are turned into intervals of lengths λm and 1, respec-
tively. The left end points are the coordinates we use. The corresponding continuous
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hull Ym is the orbit closure of all accumulation points of the geometric inflation rule
under R. Let Λ⊂ Z[λm] be a coordinatisation of an element of Xm in R. Then, Λ is
a discrete point set that fits into the same cut and project scheme as all elements of
the family Hm. With respect toΛ, the smallest interval that coversΛ′ = {x′ | x ∈Λ}
in internal space is given by [λ′m− 1,1− λ′m]. Then, Λ is relatively dense with cov-
ering radius λm, and a subset of a model set, which implies that Λ is a Meyer set by
[11, Theorem 9.1]. Let ΛR =Λ∩BR and consider the autocorrelation

γ := lim
R→∞

δR ∗ δ̃R
vol(BR)

with δR =
∑

x∈ΛR
δx.

The limit almost surely exists due to the ergodicity of our system. By construction,
γ is a positive definite measure which implies that its Fourier transform exists and
is a positive measure. Regarding the Lebesgue decomposition γ̂ = (γ̂ )pp + (γ̂ )ac +
(γ̂ )sc, it is possible to compute the pure point part to be

(γ̂ )pp =
∑

k∈L�

∣∣η̂a
(−k′)+ η̂b

(−k′)∣∣2δk,

where L� = Z[λm]/
√
m2 + 4 is the Fourier module. In the case of m = 1, the in-

variant measures η̂a , η̂b can be approximated via the recursion relation

(
η̂a(y)

η̂b(y)

)
= |ξ |n ·

n∏

�=1

[
p0

(
e−2π iyξ�−1

1
1 0

)
+ p1

(
1 1

e−2π iyξ� 0

)]
·
(
η̂a(yξ

n)

η̂b(yξ
n)

)
,

(3.4)
with n ∈N and ξ := λ′1. As ξn→ 0 for n→∞, an appropriate choice of the eigen-
vector (η̂a(0), η̂b(0))

T for the equation

(
1 1
1 0

)
·
(
η̂a(0)
η̂b(0)

)
= λ1 ·

(
η̂a(0)
η̂b(0)

)
,

which results from (3.4) for k = 0 and n = 1, fixes the base of the recursion and
provides the desired approximation. Since η̂a(0)+ η̂b(0) must be the density of Λ,
which always is λ1/

√
5, one finds η̂a(0)= 1/

√
5 and η̂b(0)= (λ1 − 1)/

√
5. Let μs

be the measure on Ym induced by μ via suspension; see [6, Chap. 11] for general
background. One consequence, due to a theorem of Strungaru [15] and an applica-
tion of the methods of [3], is that our random dynamical system D := (Ym,R,μs)
is ergodic, but not weakly mixing. In particular, it has strong long-range order.

Due to the stochastic setting with positive entropy, one expects a non-trivial ab-
solutely continuous part. For m = 1, the ergodicity of D almost surely yields a
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diffraction measure which can be represented as γ̂ = (γ̂ )pp + α(k) · λ, where

γ̂
({k})= lim

n→∞
1

L2
n

· ∣∣E(gn(k)
)∣∣2.

Here, E refers to averaging with respect to μs and

α(k) := lim
n→∞

1

Ln
· (E(∣∣gn(k)

∣∣2)− ∣∣E(gn(k)
)∣∣2),

with the random exponential sum gn(k) :=
∑Fn+1

j=1 e−2π ikxj and Ln := λ1Fn+Fn−1,
where Fn is the nth Fibonacci number. Now let

An(k) := E
(
gn(k)

)
and Bn(k) := E

(∣∣gn(k)
∣∣2)− ∣∣E(gn(k)

)∣∣2.

Godrèche and Luck [8] derived a recursion relation for the sequence An(k),

An(k)=
(
p1 + p0e−2π ikLn−2

) ·An−1(k)+
(
p0 + p1e−2π ikLn−1

) ·An−2(k),

where A0(k)= e−2π ik and A1(k)= e−2π ikλ1 . Analogously, one derives a recursion
relation for the sequence Bn(k),

Bn(k)= Bn−1(k)+Bn−2(k)+ 2p0p1 ·Δn(k),

with

Δn(k)=
(
1− cos(2πkLn−1)

) · ∣∣An−2(k)
∣∣2 + (1− cos(2πkLn−2)

) · ∣∣An−1(k)
∣∣2

−Re
[(

1− e2π ikLn−1
) · (1− e−2π ikLn−2

) ·An−1(k) ·An−2(k)
]

and B0(k) = B1(k) = 0. In [8], almost surely by way of a misprint, the authors
applied complex conjugation on An−1(k) instead of An−2(k), which makes a huge
difference, as the sequence Bn(k) does not converge in that case. The recursion for
Bn(k) can be solved and the explicit representation reads

Bn(k)= 2p0p1 ·
n∑

i=2

Fn+1−iΔi(k).

A detailed discussion of the continuous part of γ̂ can be found in [10].
The illustration of an approximation of the diffraction measure γ̂ in case ofm= 1

and p0 = p1 = 1
2 , based on the sequences An(k) and Bn(k), is shown in Fig. 3.1,

which agrees with the average over many realisations for the same length.
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Fig. 3.1 Approximative calculation of the diffraction measure γ̂ for m = 1 and p0 = p1 = 1
2 ,

based on An(k) and Bn(k) with n= 6
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Chapter 4
Magic Numbers in the Discrete Tomography
of Cyclotomic Model Sets

Christian Huck

Abstract We report recent progress in the problem of distinguishing convex subsets
of cyclotomic model setsΛ by (discrete parallel) X-rays in prescribedΛ-directions.
It turns out that for any of these model setsΛ there exists a ‘magic number’mΛ such
that any two convex subsets of Λ can be distinguished by their X-rays in any set of
mΛ prescribedΛ-directions. In particular, for pentagonal, octagonal, decagonal and
dodecagonal model sets, the least possible numbers are in that very order 11, 9, 11
and 13.

4.1 Introduction

Discrete tomography is concerned with the inverse problem of retrieving informa-
tion about some finite set in Euclidean space from (generally noisy) information
about its slices. One important problem is the unique reconstruction of a finite point
set in Euclidean 3-space from its (discrete parallel) X-rays in a small number of
directions, where the X-ray of the finite set in a certain direction is the line sum
function giving the number of points in the set on each line parallel to this direction.

The interest in the discrete tomography of planar Delone sets Λ with long-range
order is motivated by the requirement in materials science for the unique recon-
struction of solid state materials like quasicrystals slice by slice from their images
under quantitative high resolution transmission electron microscopy (HRTEM). In
fact, in [12, 14] a technique is described, which can, for certain crystals, effectively
measure the number of atoms lying on densely occupied columns. Clearly, the afore-
mentioned density condition forces us to consider only Λ-directions, i.e. directions
parallel to lines through two different points of Λ.

In the quasicrystallographic setting, the positions to be determined form a finite
subset of a nonperiodic Delone set with long-range order (more precisely, a model
set [2, 13]). Model sets possess a dimensional hierarchy, i.e. they allow a slicing into
planar model sets. In fact, many of the model sets that describe real quasicrystallo-
graphic structures allow a slicing such that each slice is an n-cyclotomic model set,
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the latter being (planar) Delone sets contained in the additive subgroup of the Eu-
clidean plane generated by the nth roots of unity; cf. [6, 7, 9] and [15] for details. It
therefore suffices to study the discrete tomography of these cyclotomic model sets.
In practice, the cases n = 5,8,12 are of particular interest. In the present text, we
shall mainly focus on the larger class of cyclotomic Delone sets.

Since different finite subsets of an n-cyclotomic model set Λ may have the same
X-rays in several directions, one is naturally interested in conditions to be imposed
on the set of directions together with restrictions on the possible finite subsets of Λ
such that the latter phenomenon cannot occur. Here, we consider the convex subsets
of Λ and summarise recent results in the problem of distinguishing convex subsets
of Λ by X-rays in prescribed Λ-directions. It turns that there are four prescribed
Λ-directions such that any two convex subsets of Λ can be distinguished by the
corresponding X-rays, whereas less than four Λ-directions never suffice for this
purpose. Much more novel is the result obtained in collaboration with M. Spieß
that there is a finite number mΛ such that any two convex subsets of Λ can be
distinguished by their X-rays in any set of mΛ prescribed Λ-directions. Moreover,
the least possible numbers mΛ in the case of the practically most relevant examples
of n-cyclotomic model sets Λ with n = 5, 8 and 12 only depend on n and are in
that very order 11, 9 and 13. This extends a well-known result of R.J. Gardner and
P. Gritzmann [5] on the corresponding problem for the crystallographic cases n =
3,4 of the triangular (resp., square) lattice Λ (with least possible numbermΛ = 7 in
both cases) to cases that are relevant in quasicrystallography.

The intention of this text is to provide an easy to read guide to the results of [10]
with a view towards practical applications. Detailed proofs, related results and an
extensive list of references can be found there. For the algorithmic reconstruction
problem in the quasicrystallographic setting, the reader is referred to [3, 7].

4.2 Cyclotomic Delone Sets

Throughout the text, the Euclidean plane is identified with the complex numbers.
For z ∈ C, z̄ denotes the complex conjugate of z. Further, we denote by KΛ the
smallest subfield of C that contains the rational numbers as well as the union of
Λ−Λ and its image Λ−Λ under complex conjugation. Recall that Λ is called a
Delone set if it is both uniformly discrete and relatively dense. For n ∈N, we always
let ζn = e2πi/n, a primitive nth root of unity in C. Then, the smallest subfield of C
that contains the rational numbers as well as ζn is the nth cyclotomic field denoted
by Q(ζn). The latter is just the Q-span of the nth roots of unity and thus contains
the Z-span Z[ζn] of the nth roots of unity. Recall that a homothety of the complex
plane is given by z �→ λz+ t , where λ ∈R is positive and t ∈C. For the purpose of
this text, the following rather abstract definition provides a convenient framework.

Definition 4.1 Let n≥ 3. A Delone set Λ⊂C is called an n-cyclotomic Delone set
if it satisfies the following properties:
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(n-Cyc) KΛ is contained in Q(ζn).

(Hom) For any finite subset F of KΛ, there is a homothety h of

the complex plane that maps the elements of F to Λ.

Further, Λ is called a cyclotomic Delone set if it is an n-cyclotomic Delone set for a
suitable n≥ 3.

Standard examples of n-cyclotomic Delone sets are the n-cyclotomic model sets,
which were also called cyclotomic model sets with underlying Z-module Z[ζn] in [9,
Sect. 4.5] and are defined via the canonical cut and project scheme that is given
by the Minkowski representation of the Z-module Z[ζn]; see [9, 10] for details.
These sets are certain Delone subsets of the Z-module Z[ζn] and range from peri-
odic examples like the fourfold square lattice (n= 4) or the sixfold triangular lattice
(n = 3) to nonperiodic examples like the vertex set of the tenfold Tübingen trian-
gle tiling (n= 5), the eightfold Ammann–Beenker tiling (n= 8) or the twelvefold
shield tiling (n= 12); see [8, Fig. 1], [9, Fig. 2] and Fig. 1 below for illustrations.
Note that the vertex sets of the famous Penrose tilings of the plane fail to be 5-
cyclotomic model sets but can still be seen to be 5-cyclotomic Delone sets; see [1]
and references therein.

4.3 Determination of Convex Subsets by X-Rays

Let (t1, t2, t3, t4) be an ordered tuple of four distinct elements of R∪ {∞}. Then, its
cross ratio 〈t1, t2, t3, t4〉 is the nonzero real number defined by

〈t1, t2, t3, t4〉 = (t3 − t1)(t4 − t2)
(t3 − t2)(t4 − t1) ,

with the usual conventions if one of the ti equals∞.
The unit circle in C is denoted by S

1 and its elements are also called directions.
For a nonzero complex number z, we denote by sl(z) the slope of z, i.e. sl(z) =
−i(z− z̄)/(z+ z̄) ∈ R ∪ {∞}. Let Λ be a subset of C. A direction u ∈ S1 is called
a Λ-direction if it is parallel to a nonzero element of the difference set Λ − Λ =
{v −w |v,w ∈Λ} of Λ. By construction, the cross ratio of slopes of four pairwise
nonparallel Λ-directions is an element of the field KΛ ∩R. In case of n-cyclotomic
Delone sets Λ, these cross ratios are thus elements of the field Q(ζn)∩R.

Definition 4.2

• Let F be a finite subset of C, let u ∈ S1 be a direction, and let Lu be the set of
lines in the complex plane in direction u. Then the (discrete parallel) X-ray of F
in direction u is the function XuF : Lu→N0 =N∪ {0}, defined by

XuF(�)= card(F ∩ �).
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Fig. 1 The boundary of a
U -polygon in the vertex set Λ
of the twelvefold shield tiling,
where U is the set of twelve
pairwise nonparallel
Λ-directions given by the
edges and diagonals of the
central regular dodecagon.
The vertices of Λ in the
interior of the U -polygon
together with the vertices
indicated by the black and
grey dots, respectively, give
two different convex subsets
of Λ with the same X-rays in
the directions of U

• Let F be a collection of finite subsets of C and let U ⊂ S
1 be a finite set of

directions. We say that the elements of F are determined by the X-rays in the
directions of U if different elements of F cannot have the same X-rays in the
directions of U .

One can easily see that no finite set of pairwise nonparallel Λ-directions suffices
in order to determine the whole class of finite subsets of Λ by the corresponding
X-rays [9]. It is therefore necessary to impose some restriction on the finite subsets
of Λ to be determined. It has proven most fruitful to focus on the convex subsets
of cyclotomic Delone sets. The latter are bounded (and thus finite) subsets C of Λ
satisfying the equation C = conv(C) ∩Λ, where conv(C) denotes the convex hull
of C. One has the following fundamental result which shows that one has to choose
the set U of Λ-directions in such a way that certain convex polygons cannot exist;
cf. [9, Proposition 4.6 and Lemma 4.5]. Here, for a finite set U ⊂ S

1 of directions,
a nondegenerate convex polygon P ⊂C is called a U -polygon if it has the property
that whenever v is a vertex of P and u ∈U , the line in the complex plane in direction
uwhich passes through v also meets another vertex v′ of P . P is called a U -polygon
in Λ, if its vertices lie in Λ. Note that the proof of direction (ii)⇒(i) needs property
(Hom) and see Fig. 1 for an illustration of the other direction (i)⇒(ii).

Theorem 4.1 Let Λ be a cyclotomic Delone set and let U ⊂ S
1 be a set of two or

more pairwise nonparallel Λ-directions. The following statements are equivalent:

(i) The convex subsets of Λ are determined by the X-rays in the directions of U .
(ii) There is no U -polygon in Λ.

In addition, if card(U) < 4, then there is a U -polygon in Λ.

Employing Darboux’s theorem on second midpoint polygons [4] together with
a blend of sophisticated methods from the theory of cyclotomic fields and previous
results obtained by Gardner and Gritzmann [5], one obtains the following deep result
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on U -polygons; cf. [10, Theorem 5.7]. Note that the proof heavily relies on property
(n-Cyc).

Theorem 4.2 Let n ≥ 3 and let Λ be an n-cyclotomic Delone set. Further, let
U ⊂ S

1 be a set of four or more pairwise nonparallel Λ-directions and suppose
the existence of a U -polygon. Then the cross ratio of slopes of any four directions
of U , arranged in order of increasing angle with the positive real axis, is an element
of the finite set Clcm(2n,12)(Q(ζn)∩R) of numbers in the field Q(ζn)∩R that can be
written in the form

(1− ζ k1
lcm(2n,12))(1− ζ k2

lcm(2n,12))

(1− ζ k3
lcm(2n,12))(1− ζ k4

lcm(2n,12))
,

where (k1, k2, k3, k4) is an element of the set

{(k1, k2, k3, k4) ∈N4 |k3 < k1 ≤ k2 < k4 ≤ lcm(2n,12)− 1 and k1 + k2 = k3 + k4}.
Moreover, card(U) is bounded above by a finite number bn ∈ N that only depends
on n. In particular, one can choose b3 = b4 = 6, b5 = 10, b8 = 8 and b12 = 12.

Theorems 4.1 and 4.2 now immediately imply our main result on the determina-
tion of convex subsets of cyclotomic Delone sets; cf. [10, Theorem 5.11].

Theorem 4.3 Let n≥ 3 and let Λ be an n-cyclotomic Delone set.

(a) There are sets of four pairwise nonparallel Λ-directions such that the convex
subsets of Λ are determined by the corresponding X-rays. In addition, less than
four pairwise nonparallel Λ-directions never suffice for this purpose.

(b) There is a finite number mn ∈ N that only depends on n such that the convex
subsets ofΛ are determined by the X-rays in any set ofmn pairwise nonparallel
Λ-directions. In particular, one can choosem3 =m4 = 7,m5 = 11,m8 = 9 and
m12 = 13.

By Theorems 4.1 and 4.2 above, it suffices for Part (a) to take any set of four
pairwise nonparallel Λ-directions such that the cross ratio of their slopes, arranged
in order of increasing angle with the positive real axis, is not an element of the
finite set Clcm(2n,12)(Q(ζn) ∩R); cf. [10, Corollary 4.10] for concrete results in the
practically most important cases n= 5,8,12 of quasicrystallography.

4.4 Concluding Remarks

Our above analysis heavily relies on the assumption of ideal data and is therefore
only a very first step towards a satisfactory tool for materials science. Further, it
would certainly be interesting to abandon the slice by slice approach and work,
for a Delone set Λ in Euclidean 3-space, with Λ-directions in general position in-
stead; compare the approach to 3D reconstruction of atomic arrangements presented
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in [11]. In that case, it might well be that seven is a universal magic number for the
determination of convex subsets by X-rays; cf. [4, Problem 2.1].
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Chapter 5
Some Comments on the Inverse Problem of Pure
Point Diffraction

Venta Terauds and Michael Baake

Abstract In a recent paper arXiv:1111.3617, Lenz and Moody presented a method
for constructing families of real solutions to the inverse problem for a given pure
point diffraction measure. Applying their technique and discussing some possible
extensions, we present, in a non-technical manner, some examples of homometric
structures.

5.1 Introduction

Kinematic diffraction is concerned with the Fourier transform γ̂ of the autocorre-
lation γ of a given structure, the latter described by a measure ω, which is usually
assumed to be translation bounded; see [2] for a recent summary of the state of af-
fairs. Of particular relevance (for crystals and quasicrystals, say) are systems with
pure point (or pure Bragg) diffraction, i.e. those where γ̂ is a pure point measure.

In considering the inverse problem, namely the problem of determining which
structure or structures could have produced a given diffraction, one is naturally led
to the concept of homometry, where structures that give rise to the same diffraction
measure are said to be homometric. Via the autocorrelation measure, homometry is
well-defined for certain classes of measures, and, accordingly, also for objects such
as point sets and tilings (an overview of these concepts is given in [3, Chap. 9.6]).
Various methods have been used (see [1, 3, 7, 8] and references therein) to construct
different objects (mainly Dirac combs) that are homometric. However, a way of
finding all objects with a given diffraction, which we shall refer to as the diffraction
solution class of a given diffraction measure, has long remained elusive.

In [11], Lenz and Moody present a method for abstractly parametrising the real
solution class of a given pure point diffraction measure. Their approach is based on
the Halmos–von Neumann theorem in conjunction with concepts from the theory of

V. Terauds (B) ·M. Baake
Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
e-mail: terauds@math.uni-bielefeld.de

M. Baake
e-mail: mbaake@math.uni-bielefeld.de

S. Schmid et al. (eds.), Aperiodic Crystals, DOI 10.1007/978-94-007-6431-6_5,
© Springer Science+Business Media Dordrecht 2013

35

http://arxiv.org/abs/arXiv:1111.3617
mailto:terauds@math.uni-bielefeld.de
mailto:mbaake@math.uni-bielefeld.de
http://dx.doi.org/10.1007/978-94-007-6431-6_5


36 V. Terauds and M. Baake

(stochastic) point processes. The objects constructed via their method are in many
cases measures, but as we shall see, even for a very simple periodic diffraction, one
may construct objects with that diffraction that generically fail to be measures. Thus
many open questions remain, in particular whether (or in what sense) non-measure
solutions have a reasonable physical interpretation.

The mathematical formalism behind the construction method in [11] is based
on a theory of (generalised) point processes and is quite formidable. In essence, it
justifies the use of the lower path of the Wiener diagram

ω̂

ω γ

γ̂

��

�|·|2�
F

�
F

in the reverse direction, where F denotes Fourier transform and � the volume-
averaged (or Eberlein) convolution (so that γ = ω� ω̃; compare [2, 10]). In partic-
ular, for a diffraction measure of the form γ̂ =∑k∈L |A(k)|2δk , with L a countable
set, one may (formally, but consistently) invert the left as well as the bottom arrow
of the diagram (the latter interpreted as | · |2 being applied to the coefficients or ‘in-
tensities’ I (k)= |A(k)|2 individually) to construct a measure (or at least a tempered
distribution) ω with diffraction γ̂ .

It is well known that for certain measures (for example, the Dirac comb of a
lattice or, more generally, of a crystallographic structure [6, 9, 10]), one may proceed
via the lower route in the forward, and thus also the reverse, direction in this way.
However, the results of Lenz and Moody apply in a much more general situation.

The purpose of this brief contribution is to present, without the point process
formalism of [11], some examples of object classes that display the same diffrac-
tion. Unless stated otherwise, all measures presented below are measures on the real
line R, which means that we illustrate everything with one-dimensional examples.

5.2 A Simple Diffraction Measure with Simple Origins

A diffraction measure, that is, a measure that represents the diffraction of some
(physical) structure, must be real, positive and inversion symmetric. By pure point,
we mean that the measure can be written as γ̂ =∑k∈L I (k)δk , with a countable set
L (which may be finite) and locally summable intensities I (k) > 0. Let us begin
then, with the ‘simplest possible’ pure point diffraction measure.

Example 5.1 Let γ̂ = δ0. Proceeding backwards through the Wiener diagram via
the ‘bottom’ route, we gain ω̂ = A(0)δ0, where, applying the method of [11], we
must have A(0) = 1. Since λ̂ = δ0 and δ̂0 = λ, where λ is Lebesgue measure, we
have ω= λ and the real diffraction solution class of δ0 is {λ,−λ} (as it is clear that
−ω is homometric to ω). Of course, observing that λ � λ̃ = λ gives us the same
thing via the top route in the Wiener diagram.
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It is not hard to deduce a bit more here: For u ∈ S
1, the unit circle, we have

uλ� ũλ= uūλ= λ, and so, via the top route, we see that {uλ | u ∈ S1} is contained
in the (complex) diffraction solution class of δ0. Are there further measures with
diffraction δ0? Well, any measure of the form ω+μ, with μ a finite measure on R,
has the same diffraction as ω, as adding a finite measure to ω does not change the
autocorrelation. This is well-known [3, 9] and a ‘trivial’ degree of freedom; in the
framework of [11], the point process for ω+μ is the same as that for ω.

In this example, we have a good idea of what the complex diffraction solution
class is, and are certain that the real diffraction solution class contains only mea-
sures. In the next section, we shall see that the real diffraction solution class of a
nice, periodic measure like δZ contains both measures and non-measures. In fact, as
will be shown in [12], the only pure point diffraction measures whose real solution
class consists solely of measures are those supported on a finite set of points.

5.3 A Lattice Diffraction Measure with All Kinds of Origins

Let us now consider measures with diffraction γ̂ = δZ =∑k∈Z δk . According to the
Wiener diagram, objects ω with the diffraction δZ must have the (possibly formal)
Fourier transform ω̂=∑k∈ZA(k)δk , with |A(k)| = 1 for all k. In the setting of [11],
we have the further conditions that A(0)= 1 and A(−k)= A(k) for all k, and one
constructs different objects with diffraction δZ simply by choosing different sets of
compliant coefficients {A(k) | k ∈ Z}. An interpretation of ω and ω̂ might need the
theory of tempered distributions and their relations with measures.

Example 5.2 Choosing A(k) = 1 for all k, one gains ω = δZ, as follows from the
Poisson summation formula δ̂Z = δZ; compare [3, 5].

Example 5.3 By splitting the set Z into subsets nZ, nZ+ 1, . . . , nZ+ (n− 1), and
choosing coefficients appropriately, one may construct an n-periodic measure with
diffraction δZ. For example, to construct a 4-periodic measure, let

A(k)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, k ∈ 4Z,

α, k ∈ 4Z+ 1,

e, k ∈ 4Z+ 2,

ᾱ, k ∈ 4Z+ 3,

where e = ±1 and α ∈ S
1. Note that this exhausts all possibilities for compliant

coefficients for this four-way splitting. We have

ω̂±α = (δ0 + αδ1 + ᾱδ−1 ± δ2) ∗ δ4Z.
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Then, writing α = e2π itα and defining χs(t) := e2π ist for t, s ∈R, we obtain

ω±α =
1

4
(χ0 + αχ1 + ᾱχ−1 ± χ2)δ 1

4Z

= 1

4

∑

k∈Z

(
1+ 2 cos

(
2π

(
tα + k

4

))
± cos(πk)

)
δ k

4
,

where we have used the Poisson summation formula and the identity μ̂ ∗ ν = μ̂̂ν.
That is, we have a measure of the form ω±α = (aδ0 + bδ 1

4
+ cδ 1

2
+ dδ 3

4
) ∗ δZ. For

example, choosing α ∈ {0, i,1,−i}, we get ω±α according to the following table.

ω±α e= 1 e=−1

tα = 0 δZ
1
2 (δ0 + δ 1

4
− δ 1

2
+ δ 3

4
) ∗ δZ

tα = 1
4

1
2 (δ0 − δ 1

4
+ δ 1

2
+ δ 3

4
) ∗ δZ δ 3

4
∗ δZ

tα = 1
2 δ 1

2
∗ δZ 1

2 (−δ0 + δ 1
4
+ δ 1

2
+ δ 3

4
) ∗ δZ

tα = 3
4

1
2 (δ0 + δ 1

4
+ δ 1

2
− δ 3

4
) ∗ δZ δ 1

4
∗ δZ

It is easy to verify (along the top route of the Wiener diagram) that these measures
do indeed all have autocorrelation γ = δZ and thus diffraction γ̂ = δZ. All elements
constructed are pure point measures; compare [8] for similar examples.

Example 5.4 We now construct a measure that is not itself pure point, but has
diffraction δZ. Take A(0)= 1 and A(k)=−1 for all k ∈ Z \ {0}. Then we have

ω̂= δ0 −
∑

k∈Z\{0}
δk = 2δ0 − δZ,

and see that ω= 2λ− δZ is a member of the (real) diffraction solution class of δZ.

Recalling that λ� δZ = λ, one can easily verify the above example and construct
similar ones via a little trial and error and the top route of the Wiener diagram. For
example, via a quick calculation with the Eberlein convolution, one can see that the
diffraction of δZ − (1 + i)λ is also δZ, while δZ − λ has diffraction δZ\{0}. Such
a trial and error method, however, would probably not lead to the following more
elaborate system.

Example 5.5 To construct something a little different, we use an aperiodic set sug-
gested by the period doubling sequence, which is limit-periodic; compare [3, 6].
From the set

Λ=
⋃

n≥0

(
2.4nZ+ (4n − 1)

)
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of left endpoints of ‘a’s in this sequence [4], we form the symmetric set

Δ :=Λ∪ (−Λ)= 2Z ∪̇
⋃̇

n≥1

Δn,

where Δn := (2.4nZ + (4n − 1)) ∪ (2.4nZ + (1 − 4n)) for n ≥ 1 and ∪̇ denotes
the disjoint union of sets. Then, we define A(k) = 1 for k ∈Δ and A(k) =−1 for
k /∈Δ. Due to the symmetry of Δ, these coefficients satisfy the conjugacy condition
given above. We get

ω̂=
∑

k∈Δ
δk −

∑

k∈Z\Δ
δk = 2δΔ − δZ,

and thus ω= 2δ̂Δ − δZ. Now, we have

δL = δ2Z +
∑

n≥1

δΔn = δ2Z +
∑

n≥1

δ2·4nZ ∗ (δ4n−1 + δ1−4n),

and hence may use the Poisson summation formula to derive the formal expression

δ̂Δ = 1

2
δZ

2
+
∑

n≥1

χ̄4n−1 + χ̄1−4n

2.4n
δ Z

2.4n

= 1

2
δZ

2
+
∑

n≥1

cos(2π(4n − 1)k)

4n
δ Z

2.4n
.

As δΔ is a translation bounded measure, δ̂Δ is a tempered distribution. It is not,
however, a measure, as it is easy to find compact sets K ⊆ R (for example, take
K = [0, 1

4 ]) such that |δ̂Δ|(K) is infinite. So, we have a tempered distribution, ω,
that is not a measure, but nevertheless has diffraction δZ.

Of course, one can construct many such ‘non-measures’ (in [12], via a theorem
of Cordoba [5], it is shown that the homometry class of δZ contains uncountably
many such objects), but this does not shed much light on the physical relevance of
such constructions. A little more insight may be gained by noting that (in this case at
least) our constructed distribution is the limit (in the weak-∗ topology on the space
S ′(R) of tempered distributions) of a sequence of measures over R.

For ε > 0, define

ρε := 1

2
δZ

2
+
∑

n≥1

cos(2π(4n − 1)k)

(4+ ε)n δ Z

2.4n
.

A short calculation reveals that, for ε > 0, |ρε|(K) is finite for all compact sets
K ⊆R, so that ρε is indeed a measure (it is even translation-bounded). Thus ωε :=
2ρε − δZ is also a measure. Moreover, for all Schwartz functions g ∈ S(R), one
has ωε(g)→ ω(g) as ε→ 0+. This is a standard approach in Fourier analysis to
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enforce convergence of the series, which is sometimes referred to as ‘regularisation’
in physics. Such objects can still be given a reasonable physical meaning.

5.4 Further Remarks

The method of [11] may only be applied to diffraction measures γ̂ that are ‘back-
ward transformable’, meaning that the (inverse) Fourier transform, γ (that is, the
autocorrelation), is again a measure. Further contemplation of the previous exam-
ple, however, makes this condition seem a little too restrictive. Using the scheme,
we constructed the object ω = 2δ̂Δ − δZ, which is not a measure, but is the weak-∗
limit (in S ′(R)) of measures. The object δ̂Δ is also a non-measure weak-∗ limit of
measures, but does not have the good fortune, as ω does, to have a measure-valued
autocorrelation, so it is not covered by the scheme.

Presuming that one may extend the method of [11] to admit this case (or, in other
words, that one may proceed via the lower path in the Wiener diagram to calculate
the diffraction), one has ω = δ̂Δ, with ω̂ = δΔ, and thus diffraction γ̂ = δΔ. The
measure δΔ is positive, inversion symmetric and translation bounded, so has almost
all of the properties that one expects from a diffraction measure.

The natural next step is to understand the classes of objects for which one may
define an autocorrelation (and thus a diffraction). The framework of [11] is applica-
ble in the more general setting of a locally compact Abelian group. However, if one
considers only objects in R

d , these initial examples suggest that consideration of
tempered distributions that are the weak-∗ limits of measures may be a good place
to begin.
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Chapter 6
Well-Rounded Sublattices and Coincidence Site
Lattices

P. Zeiner

Abstract A lattice is called well-rounded, if its lattice vectors of minimal length
span the ambient space. We show that there are interesting connections between the
existence of well-rounded sublattices and coincidence site lattices (CSLs). Further-
more, we count the number of well-rounded sublattices for several planar lattices
and give their asymptotic behaviour.

6.1 Introduction

A lattice in R
d is called well-rounded, if its (non-zero) lattice vectors of minimal

length span R
d . This means that there exist at least 2d lattice vectors of minimal

positive length, and R
d has a basis consisting of lattice vectors of minimal length.

However, such a basis need not be a primitive lattice basis in dimensions d ≥ 4.
Well-rounded lattices are important for several reasons. Many important lattices

occurring in mathematics and physics are well-rounded. For instance, the hexagonal
lattice and the square lattice in R

2 and the cubic lattices in R
3 are well-rounded, as

are the hypercubic lattices and the A4-lattice in R
4, which play an important role

in quasicrystallography. Examples in higher dimensions are the Leech lattice, the
Barnes–Wall lattices, and the Coxeter–Todd lattice; see [6] for background.

Let us briefly mention two problems of mathematical crystallography where
well-rounded lattices occur. They are connected to the question of densest lattice
sphere packings, as all extreme lattices (those lattices corresponding to densest lat-
tice sphere packings) are perfect (i.e. the lattice vectors of minimal length determine
the Gram matrix uniquely) and are thus well-rounded. They also play an important
role in reduction theory, as they are exactly those lattices for which all the successive
minima are equal [9].

Here, we want to deal with two specific questions: Has a given lattice well-
rounded sublattices, and if so, what are the well-rounded sublattices and how many
are there. The first question is answered in Sect. 6.2 for planar lattices and a par-
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tial answer is given for d > 2. The second question is much more difficult in gen-
eral. Thus we restrict the discussion to 2 dimensions, and present some results in
Sect. 6.3.

6.2 Well-Rounded Lattices and CSLs

Here, we want to deal with the question whether a lattice has a well-rounded sublat-
tice. It turns out that this question is related to the theory of coincidence site lattices
(CSLs), so let us review the notion of CSL first. Let Λ be a lattice in R

d and let
R ∈O(d) be an isometry. Then Λ(R)=Λ∩RΛ is called a coincidence site lattice
(CSL) if Λ(R) is a sublattice of full rank in Λ; the corresponding R is called coinci-
dence isometry. The corresponding index of Λ(R) in Λ is called coincidence index
ΣΛ(R), or Σ(R) for short. The set of all coincidence isometries forms a group,
which we call OC(Λ), see [2] for details.

Let us look at the planar case first. Here, any two linearly independent lattice
vectors of minimal (non-zero) length form a basis of Λ. Let γ be the angle between
them. Now a well-rounded lattice is necessarily a rhombic (centred rectangular)
lattice such that π

3 < γ < 2π
3 , γ �= π

2 or a square (corresponding to γ = π
2 ) or a

hexagonal lattice (corresponding to γ = π
3 or γ = 2π

3 ). Thus, its symmetry group
is at least D2 = 2 mm, or in other words, there is at least one reflection symmetry
present. As Λ and all of its sublattices have the same group of coincidence isome-
tries [2], we can infer that a lattice possesses a well-rounded sublattice only if it has
a coincidence reflection. As the converse holds as well, we have (compare [5])

Theorem 6.1 A planar lattice Λ ∈ R2 has a well-rounded sublattice if and only if
it has a coincidence reflection.

An alternative criterion tells us that a planar lattice has a well-rounded sublattice
if and only if it has a rhombic or rectangular sublattice [8]. The existence of well-
rounded sublattices can also be characterised by the entries of the Gram matrices of
Λ, see [8] and [5] for various criteria.

One is tempted to generalise these criteria to d dimensions, by using orthogo-
nal lattices, the d-dimensional analogue of rectangular lattices and orthorhombic
lattices in 3 dimensions. However, this does not work since a lattice may be well-
rounded without having an orthogonal sublattice. As an example, consider a rhom-
bohedral lattice in R

3, which in general does not have an orthorhombic sublattice.
Nevertheless, an orthogonal lattice has well-rounded sublattices, and one even has

Theorem 6.2 Let G be the symmetry group of an orthogonal lattice, i.e. a lattice
that is spanned by an orthogonal basis. Then Λ has a well-rounded sublattice if
G⊆OC(Λ).

This theorem can be proved by induction. The idea is to show that G⊆OC(Λ)
implies the existence of an orthogonal sublattice, which in turn implies the existence
of well-rounded sublattices.
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However, note that the intuitive idea of choosing a “body-centred orthogonal”
lattice fails in dimensions d > 4. For if we construct a lattice as the linear span
of the 2d vectors

∑d
i=1 s

(j)
i bi , where the bi form an orthogonal basis of R

d and

s
(j)
i ∈ {1,−1}, then these vectors do not have minimal lengths as at least one of

the vectors 2bi is shorter. Nevertheless, a modification of this idea works where we
choose a suitable subset of the vectors

∑d
i=1 s

(j)
i bi . In particular, if the basis vectors

bi all have approximately the same length and d is even, we can construct a well-
rounded sublattice as the linear span of

∑d
i=1 s

(j)
i bi , where j runs over all possible

solutions of
∑d

i=1 s
(j) ≡ 0 (mod d).

An immediate consequence of Theorem 6.2 is that every rational lattice has well-
rounded sublattices, as OC(Λ) contains all reflections generated by a lattice vec-
tor [10].

6.3 Well-Rounded Sublattices of Planar Lattices

We now turn to our second question, i.e. we want to find all well-rounded sublat-
tices of a given lattice. We concentrate on some planar lattices here. To begin with,
we want to find all well-rounded sublattices of the square lattice. W.l.o.g. we may
identify it with Z

2 � Z[i]. The idea now is the following. From the previous section,
we know that a planar lattice is well-rounded if and only if it is a rhombic lattice
with π

3 < γ <
2π
3 , a square or a hexagonal lattice. Now a sublattice of a square lat-

tice cannot be hexagonal, so that we can exclude the latter case, i.e. we only have to
find all rhombic and square well-rounded sublattices. The latter are just the similar
sublattices of the square lattice, which are well known [3, 4]. The Dirichlet series
generating function of their counting function reads

Φ�(s)=
∑

n∈N

s�(n)
ns
= ζ(2s)Φpr

�(s)= ζQ(i)(s)= L(s,χ−4)ζ(s) (6.1)

where s�(n) is the number of similar sublattices of the square lattice with index n.
Here, Φpr

�(s) is the generating function of the primitive similar sublattices, ζ(s) is
the Riemann zeta function and ζQ(i)(s) is the Dedekind zeta function of the complex
number field Q(i).

Hence it remains to find all rhombic well-rounded sublattices. Now each rhombic
sublattice has a rectangular sublattice of index 2, and it is well-rounded if and only
if a√

3
≤ b ≤ a√3 holds, where a and b are the lengths of the orthogonal basis

vectors of the corresponding rectangular sublattice. Thus we only need to find all
rectangular sublattices satisfying the condition above. In fact, as all square lattices
are similar, it is sufficient to find all rectangular sublattices whose symmetry axes
are parallel to those of the square lattice, and we finally get [5]

Φwr,even(s)= 2

2s
Φ

pr
�(s)
∑

p∈N

∑

p<q<
√

3p

1

psqs
, (6.2)
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Φwr,odd(s)= 2

1+ 2−s
Φ

pr
�(s)
∑

k∈N

∑

k<�<
√

3k+
√

3−1
2

1

(2k + 1)s(2�+ 1)s
(6.3)

where Φwr,even(s) and Φwr,odd(s) are the generating functions counting the rhombic
well-rounded sublattices of even and odd indices, respectively. Putting everything
together, we arrive at the following result [5]

Theorem 6.3 Let a�(n) be the number of well-rounded sublattices of the square
lattice with index n, and Φ�,wr(s) =

∑∞
n=1 a�(n)n

−s the corresponding Dirich-
let series generating function. It is given by Φ�,wr(s) = Φ�(s) + Φwr,even(s) +
Φwr,odd(s) with the functions from Eqs. (6.1), (6.2) and (6.3).

If s > 1, we have the inequality

D�(s)−Φ�(s) < Φ�,wr(s) < D�(s)+Φ�(s),

with Φ�(s) from Eq. (6.1) and the function

D�(s)= 2+ 2s

1+ 2s
1−√3

1−s

s − 1

L(s,χ−4)

ζ(2s)
ζ(s)ζ(2s − 1).

As a consequence, the summatory function A�(x)=
∑

n≤x a�(n) possesses the
asymptotic growth behaviour

A�(x)= log(3)

2π
x log(x)+O

(
x log(x)

)

as x→∞.

The lower and upper bounds are obtained by approximating the sums in
Eqs. (6.2) and (6.3) by integrals via the Euler summation formula, whereas the
statement about the asymptotic behaviour of A�(x) follows from Delange’s theo-
rem, which relates the asymptotic behaviour of A�(x) with the analytic properties
of Φ�,wr(s), in particular with its pole at s = 1.

In fact, we can get additional information about the asymptotic behaviour of
A�(x) by applying some methods of analytic number theory, including Dirichlet’s
hyperbola method and the above mentioned Euler summation formula (see, e.g. [1]).

Theorem 6.4 Let a�(n) be the number of well-rounded sublattices of the square
lattice with index n. Then, the summatory function A�(x)=

∑
n≤x a�(n) possesses

the asymptotic growth behaviour

A�(x)= log(3)

3

L(1, χ−4)

ζ(2)
x
(
log(x)− 1

)+ c�x +O
(
x3/4 log(x)

)

= log(3)

2π
x log(x)+

(
c� − log(3)

2π

)
x +O

(
x3/4 log(x)

)
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where

c� := L(1, χ−4)

ζ(2)

(

ζ(2)+ log(3)

3

(
L′(1, χ−4)

L(1, χ−4)
+ γ − 2

ζ ′(2)
ζ(2)

)

+ log(3)

3

(
2γ − log(3)

4
− log(2)

6

)
−
∞∑

p=1

1

p

(
log(3)

2
−
∑

p<q<p
√

3

1

q

)

− 4

3

∞∑

k=0

1

2k+ 1

(
1

4
log(3)−

∑

k<�<k
√

3+(√3−1)/2

1

2�+ 1

))

≈ 0.6272237

is the coefficient of (s − 1)−1 in the Laurent series of
∑

n
a�(n)
ns

around s = 1. Here,
γ is the Euler–Mascheroni constant.

Similar calculations are also possible for the hexagonal lattice. If a�(n) is the
number of well-rounded sublattices of the triangular lattice with index n, then the
corresponding Dirichlet series generating function Φ�,wr(s) =∑∞n=1 a�(n)n−s is
given by

Φ�,wr(s)=Φ�(s)+Φ�,wr,even(s)+Φ�,wr,odd(s),

where

Φ�(s)= ζQ(ρ)(s)= L(s,χ−3)ζ(s) (6.4)

is the generating function for the similar sublattices of the hexagonal lattice and

Φ�,wr,even(s)= 3

4s(1+ 3−s)
∑

p∈N

∑

p<q<3p

1

psqs
Φ

pr
� (s), (6.5)

Φ�,wr,odd(s)= 3

1+ 3−s
∑

k∈N

∑

k<�<3k+1

1

(2k + 1)s(2�+ 1)s
Φ

pr
� (s) (6.6)

are the corresponding Dirichlet series for the number of rhombic well-rounded sub-
lattices with even and odd indices, respectively. For the asymptotic behaviour, we
get [5]

Theorem 6.5 The summatory function A�(x)=∑n≤x a�(n) possesses the asymp-
totic growth behaviour

A�(x)= 9 log(3)

16

L(1, χ−3)

ζ(2)
x
(
log(x)− 1

)+ c�x +O
(
x3/4 log(x)

)

= 3
√

3 log(3)

8π
x
(
log(x)− 1

)+ c�x +O
(
x3/4 log(x)

)
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where c� ≈ 0.4915036 is the coefficient of (s − 1)−1 in the Laurent series of
∑

n
a�(n)
ns

around s = 1.

In both examples, we have infinitely many coincidence reflections, which results
in a large number of well-rounded sublattices and in an asymptotic growth behaviour
of x log(x). A similar behaviour is to be expected for all rational lattices, but so far
only weaker results have been obtained [7].

However, in general we have fewer coincidence reflections, and we want to con-
clude with this case. In fact, if the lattice is not rational, there are either no or exactly
two coincidence reflections [5, 10], and both of them have the same coincidence in-
dex. It is remarkable that in the latter case the asymptotic behaviour does not depend
on the details of the lattice but only on the coincidence index of its two coincidence
reflections. In particular, we have [5]

Theorem 6.6 Let Λ be a planar lattice that has exactly two coincidence reflec-
tions. LetΣ be their common coincidence index and let aΛ(n) denote the number of
well-rounded sublattices of Λ with index n. Then, the summatory function AΛ(x)=∑

n≤x aΛ(n) possesses the asymptotic growth behaviour AΛ(x)= log 3
4Σ x +O(

√
x).
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Chapter 7
Octagon-Based Quasicrystalline Formations
in Islamic Architecture

Rima Al Ajlouni

Abstract The unexpected discovery of ancient Islamic ornaments with quasicrys-
talline symmetries has triggered significant discussion and a number of debates
on the mathematical sophistication of Islamic geometry and its generating princi-
ples. Astonishingly, eight centuries before its description in Modern Science, an-
cient artists had constructed patterns with perfect quasicrystalline formations. Re-
cent studies have provided enough evidence to suggest that ancient designers, by
using the most primitive tools (a compass and a straight edge), were able to resolve
the complicated long-range principles of quasicrystalline formations. Derived from
these principles, a global multi-level structural model is presented that is able to
describe the global long-range order of octagon-based quasicrystalline formations
in Islamic Architecture. This new method can be used as a general guiding princi-
ple for constructing infinite patches of octagon-based quasicrystalline formations,
including Ammann–Beenker tiling, without the need for local strategies (matching,
scaling, etc.) or complicated mathematics.

7.1 Quasiperiodic Patterns in Islamic Architecture

The discovery of ancient Islamic patterns with similar quasicrystalline symmetries
has attracted many scientists to investigate their ancient mathematics and generat-
ing principles. To date, three different types of ancient quasiperiodic symmetries
were documented; decagonal, octagonal, and dodecagonal. In their attempt to un-
derstand these complex and chaotic formations, scientists investigated the relation-
ship between these patterns and abstract tiling models which describes quasicrystals.
Decagonal patterns were investigated in relation to Penrose tiling systems [14], and
octagonal patterns were often compared to Ammann–Beenker tiling [7]. One of the
earliest investigations into decagonal quasiperiodic Islamic patterns was carried out
by Makovicky in 1992 [10]. Based on his analyses of the decagonal quasiperiodic
cartwheel pattern in western Iran (1197), Makovicky developed new variations of
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the Penrose aperiodic tiling [10]. In 1996, Makovicky and Hach-Alı, based on their
investigation of the octagonal patterns in Alhambra, Granada, and Alcazar, Sevilla,
in Spain, concluded that these ‘close-to-ideal’ patterns are based on quasiperi-
odic sequences (quasilattice) with nested ‘phantom’ octagons [11]. Two years later,
with colleagues, Makovicky investigated ancient patterns with similar decagonal
quasiperiodic symmetry in Spain and Morocco [13]. Bonner [4] investigated three
types of Islamic geometric ornaments in the fourteenth and fifteenth centuries, fo-
cusing on their self-similarity attributes. In 2007, Lu and Steinhardt [9], based on
their analyses of the decagonal quasiperiodic formations on the Darb-I Imam shrine
(1453) in Isfahan, Iran, concluded that these patterns were constructed by combining
a special set of decorated tiles with self-similar transformations. Recently, the first
dodecagonal quasiperiodic pattern was discovered by Makovicky and Makovicky
[12] in Fez, Morocco, who suggested that the dodecagonal quasiperiodic pattern is
based on the Amman quasilattice grid.

Whereas these investigations have greatly contributed to our understanding of
some aspects of these complicated formations, none were able to describe their
global long-range order or generating principles. It was not until recently that the
first global method for generating ancient quasiperiodic patterns was proposed by
Al Ajlouni [2]. Based on her investigations of three quasiperiodic patterns found on
the external walls of Gunbad-I Kabud tomb tower in Maragha, Iran (1197 C.E.), the
walls of the Madrasa of al-’Attarin (1323 C.E.) in Fez, Morocco, and the walls of
Darb-i Imam shrine and the Friday Mosque in Isfahan (1453 C.E.) in Isfahan, Iran,
she proposed the first global multi-level Hierarchical Framework Model (HFM) for
describing the long-range order of five-fold and ten-fold quasiperiodic formations in
Islamic Architecture [2], including Penrose tiling systems [1]. By using a compass
and a straight edge, ancient designers were able to resolve the complicated long-
range principles of ten-fold quasiperiodic formations. Derived from the same prin-
ciples, this paper presents a structural model for describing the global-long range
order of octagon-based quasiperiodic symmetries in Islamic architecture, including
Ammann–Beenker tiling.

7.2 The HFM Model

The proposed mathematical model (HFM) conforms to the ancient method of us-
ing a compass and straightedge in which all geometric formations are generated
by arrangements of overlapping circles [2, 5, 8]. In general, all patterns in Islamic
Architecture were generated based on a combination of an underlying basic grid
and repeating units [2, 8]. Whereas the decoration of the repeating units dictates the
design variation of the pattern, the underlying basic grid controls the type of sym-
metry. In this process, the underlying basic grid is considered the key in resolving
the long-range order of quasiperiodic symmetries [2]. Consequently, a vast variety
of octagon-based quasiperiodic patterns can be generated through manipulating a
combination of different underlying basic grids with a variety of repeating units. As
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Fig. 7.1 The process of constructing the underlying basic grid

an illustration of the HFM, consider the following examples of octagonal quasiperi-
odic patterns in Islamic Architecture.

• The quasiperiodic panels from the Patio of Virgins, the Royal Alcazar in Seville
(1364–1366) (Figs. 7.2(a) and 7.4(a)).

The Basic Grid From the continuous strip of patterns surrounding the Patio of
Virgins in the Alcazar, Seville, two main variations of octagon-based quasiperiodic
formations can be recognized. The two panels (Figs. 7.2(a) and 7.4(a)) were also
investigated by Makovicky and Fenoll Hach-Alı [11]. An exact copy of both forma-
tions can also be found in the Great Mosque of Cordoba.

Based on my analyses of the first pattern (Fig. 7.2(a)), a framework of nested
octagrams (Fig. 7.1(d)), which is easily attained by using a compass and a straight
edge (Fig. 7.1), serves as the underlying basic grid for generating this quasiperiodic
pattern. The framework grows based on the

√
2 sequence. If we denote the radius of

the largest octagram by rad3 and the radius of the smallest octagram by rad1, then
the ratio rad3/rad1 is equal to 6+ (4 ∗ √2). If we denote the radius of the middle
octagram by rad2 and the radius of the smallest octagram by rad1, then the ratio
rad2/rad1 is equal to 3+ (2 ∗√2). All dimensions within this pattern are related to
each other by the

√
2 proportional system.

The First Hierarchy The full sequence of constructing the first hierarchy
quasiperiodic cartwheel pattern from the Patio of Virgins in the Royal Alcazar of
Seville is demonstrated in Fig. 7.2. According to the HFM model, the octagon-
based quasiperiodic empire is generated around one point; the center of the global
eight-fold proportional system. The size of the central eight-fold star ‘seed’ unit is
proportional to the size of the framework and is strictly derived from the diminu-
tion sequence of the nested octagrams (Fig. 7.2(d)). In this system, the ratio of the
framework to the seed unit is equal to 6+ (4 ∗√2). The design of the repeating star
‘seed’ unit is also derived from the same geometry (Fig. 7.2(b)).

The positions of all repeating ‘seed’ units are determined entirely by the net-
work of the nested octagrams. The dark dots in Fig. 7.2(d) correspond to the center
position of all instances of the star units (Fig. 7.2(e)). The connecting formations
between the main star units are determined by extending the lines of the repeat-
ing units (Figs. 7.2(c) and (f)). As shown in Fig. 7.2(f), some of the repeating star
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Fig. 7.2 The sequence of constructing the first-level hierarchy of the quasiperiodic cartwheel pat-
tern from the Patio of Virgins in the Royal Alcazar of Seville

units were partially modified to allow different connecting formations. The final line
configuration of the quasiperiodic cartwheel pattern is shown in Fig. 7.2(g). Histor-
ically, when incorporated into different material, line patterns were often thickened
and sometimes broken up to suggest an interlacing pattern [6]. Generating the over-
all quasiperiodic panel from the Patio of Virgins requires a combination of nine
cartwheel patterns and eight connecting formations (Fig. 7.2(i)). These combina-
tions are explained in the next section.

Growing the Empire According to the HFM, constructing the global empire
of octagon-based quasiperiodic patterns requires building a progression of multi-
level hierarchical formations. In this infinite multi-generation order, the geometric
arrangement of the higher-level order is built on the previous order and governed
by the same rules of the underlying basic grid. In this order, the final constructed
cartwheel pattern of the first-level hierarchy (Fig. 7.3(a)) acts as the ‘seed’ unit for
the second-level hierarchy. These cartwheel patterns are distributed according to a
new generation of nested octagrams (Fig. 7.3(c)). The dark dots in Fig. 7.3(c) corre-
spond to the center position of all instances of the cartwheel unit (Fig. 7.3(d)). This
specific distribution of the cartwheels reveals a specific formation of connecting oc-
tagons. The internal design of these octagons is shown in Fig. 7.3(b). It is important
to note that the connecting formations can take different internal designs without
affecting the overall symmetry of the pattern. Fig. 7.3(e) shows the final pattern of
the second-level hierarchy of the global quasiperiodic empire.

Building on the same sequence, generating the next higher-level cluster also fol-
lows the same process, in which the new higher-generation order is built on the
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Fig. 7.3 The sequence of constructing the second-level hierarchy of the quasiperiodic cartwheel
pattern from the Patio of Virgins in the Royal Alcazar of Seville

Fig. 7.4 The sequence of constructing the second quasiperiodic panel from the Patio of Virgins in
the Royal Alcazar of Seville

previous order. The final generated pattern of the previous order (Fig. 7.3(e)) acts
as the ‘seed’ unit for the third-level generation order. This process can grow indefi-
nitely to build an infinite empire of quasiperiodic formations.

Constructing the second variation (Fig. 7.4(a)) of the octagon-based quasiperi-
odic formations surrounding the Patio of Virgins follows the same process explained
earlier. However, by manipulating some internal points within the underlying basic
grid, ancient designers were able to create many design variations of these compli-
cated formations. Figure 7.4 demonstrates the process of constructing the first-level
hierarchy of the second quasiperiodic panel from the Patio of Virgins in Seville.
Growing the empire follows the same process demonstrated in Fig. 7.3.
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Fig. 7.5 The sequence of constructing the quasiperiodic panel from the side walls of the Mirador
de Lindaraja, the Hall of the Two Sisters, Alhambra

Fig. 7.6 The sequence of constructing the quasiperiodic panel from the Hall of the Ambassadors,
Alhambra

• The quasiperiodic panel from the side walls of the Mirador de Lindaraja, the Hall
of the Two Sisters, Alhambra (1354–1359).

The same underlying basic grid (Figs. 7.2(d) and 7.3(c)) can be used to construct
the cartwheel quasiperiodic pattern from the Mirador de Lindaraja (Fig. 7.5). Grow-
ing the quasiperiodic empire can follow the process explained in Fig. 7.3. However,
as shown in Fig. 7.5(h), the overall formation of the panel is actually periodic.

• The quasiperiodic panels from the Hall of the Ambassadors, Alhambra (1354).
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Fig. 7.7 The sequence of constructing the second-level hierarchy of the quasiperiodic panel from
the Hall of the Ambassadors, Alhambra

Fig. 7.8 The sequence of constructing the first-level hierarchy of Ammann–Beenker tiling

The Hall of the Ambassadors in Alhambra contains a variety of panels that ex-
hibit similar octagonal quasiperiodic symmetries. As an example of these forma-
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tions, consider the quasiperiodic panel in Fig. 7.6(a) located on the base wall of the
Hall of the Ambassadors.

A framework of nested octagrams (Fig. 7.6(e)) serves as the underlying basic
grid. If we denote the radius of the nth octagram by radn and the next larger radius
by radn+1, then the ratio radn+1/radn is equal to (

√
2+ 1). The size of the central

star ‘seed’ unit is strictly derived from the diminution sequence of the nested octa-
grams (Fig. 7.6(e)). If we denote the radius of the seed unit by radn and the radius
of the first hierarchy framework by radn+2, then the ratio radn+2/radn is equal to
(2
√

2+ 3). The seed units are distributed according to the intersection points of the
basic grid (Fig. 7.6(f)). By changing the connecting formations between the main
star ‘seed’ units, it is possible to manipulate the design of the cartwheel pattern,
without affecting the overall symmetry (Figs. 7.6(g)–(j)).

The overall quasiperiodic panel from the Patio of Virgins requires a combination
of nine cartwheel patterns and eight connecting formations (Fig. 7.6(k)). Following
the same process, the construction of the second-level hierarchy is demonstrated in
Fig. 7.7.

The same underlying grid (Figs. 7.6(e) and 7.7(e)) can also be used to construct
an infinite empire of Ammann–Beenker tiling. Figure 7.8 demonstrates the pro-
cess of constructing the first-level hierarchy of Ammann–Beenker octagonal tiling.
Growing the infinite empire would follow the same process demonstrated in Fig. 7.7.
An algorithm for constructing the global empire of Ammann–Beenker tiling, based
on HFM, can be found in [3].

In conclusion, a global multi-level structural model (HFM) is presented that is
able to describe the global long-range order of octagon-based quasicrystalline for-
mations in Islamic Architecture. The suggested model shows that the position of
the repeating units, locally and globally, is defined by one global framework, and
not based on local rules. This method provides an easy tool for scientists, math-
ematicians, teachers, designers and artists to generate and study a wide range of
octagon-based quasicrystalline formations, including Ammann–Beenker tiling.
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Chapter 8
The Ammann–Beenker Tilings Revisited

Nicolas Bédaride and Thomas Fernique

Abstract This paper introduces two tiles whose tilings form a one-parameter family
of tilings which can all be seen as digitization of two-dimensional planes in the four-
dimensional Euclidean space. This family contains the Ammann–Beenker tilings as
the solution of a simple optimization problem.

8.1 Introduction

Having decided to retile your bathroom this weekend, you go to your favorite retailer
of construction products. There, you see an unusual special offer on two strange
notched tiles (Fig. 8.1): “Pay the squares cash, get the rhombi for free!”

Fearing that this might be a scam, you try to figure out how your bathroom could
be tiled at little cost. After careful consideration, you see that the possible tilings
are exactly those where any two rhombi adjacent or connected by lined up squares
have different orientations (see Fig. 8.2). In particular, rhombi only do not tile, so
you would have to buy at least some squares. You could, of course, tile with squares
only (on a grid), but this would mean missing this special offer!

We will show that the cheapest (if not the simplest) way to tile your bathroom
is to form a non-periodic tiling, namely an Ammann–Beenker tiling. Furthermore,
we will show that the set of all possible tilings form a one-parameter family of
tilings which can all be seen as digitization of two-dimensional planes in the four-
dimensional Euclidean space. Figure 8.3 depicts some possible tilings, with the
rightmost one being an Ammann–Beenker tiling.

This is, of course, not only of interest to tile bathrooms, but it could provide a
new insight into the theory of quasicrystals. Indeed, digitizations of irrational planes
in higher dimensional spaces (also called projection tilings) are a common model
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Fig. 8.1 Two notched tiles

Fig. 8.2 Two rhombi match only if they have different orientations. This still holds with lined up
squares between them, since those just carry the notching

Fig. 8.3 Three different possible tilings (notching are not depicted)

of quasicrystals, and the above results give an example of how very simple local
constraints can enforce long range order, with the non-periodicity simply coming
from tile proportions. In particular, slight variations of tile proportions around those
of a non-periodic tiling can lead to close periodic tilings, reminding approximants
of quasicrystals.

The rest of the paper is organized as follows. Section 8.2 briefly recalls the his-
tory of Ammann–Beenker tilings. Sections 8.3 and 8.4 introduce the main notions,
Sect. 8.5 makes a simple but powerful connection with classic results of algebraic
geometry, and the technical part of our proof is exposed in Sect. 8.6. We conclude
in Sect. 8.7 by formally stating our main result (Theorem 8.1).
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8.2 Ammann–Beenker Tilings

Ammann–Beenker tilings are non-periodic tilings of the plane by a square and a
rhombus with a 45◦ angle. Enjoying a (local) 8-fold symmetry, they became a pop-
ular model of the 8-fold quasicrystals [10]. They were introduced by Ammann in
the 1970s and Beenker in 1982, independently and from different viewpoints.

On the one hand, Ammann defined these tilings as the ones that can be formed
by two specific notched tiles and a “key” tile, with the non-periodicity deriving from
the hierarchical structure enforced by the notching. This can be compared to the first
(and concomitant) definition of Penrose tilings [9].

On the other hand, following the algebraic approach of de Bruijn for Pen-
rose tilings [3], Beenker defined these tilings as digitizations of parallel planes
in R

4, with the non-periodicity deriving from the irrationality of the slope of these
planes, calling them Grid-Rhombus tilings [2]. Unfortunately, Beenker was unaware
of the work of the amateur mathematician Ammann, published only some years
later [1, 6], and he was unable to find notched tiles which can form only these tilings.
Instead, he introduced the notching of Fig. 8.1, called Arrowed-Rhombus tilings, the
tilings which can be formed, and proved that they strictly contain the Grid-Rhombus
tilings.

To conclude this short review, let us mention that Ammann–Beenker tilings can-
not be characterized by their local patterns, that is, for any r ≥ 0, there exists a tiling
whose patterns of radius r all appear in an Ammann–Beenker tiling but which is
not itself an Ammann–Beenker tiling [4]. Suitable notchings of tiles must thus carry
some information over arbitrarily long distances!

8.3 Octagonal Tilings and Planarity

Let v1, . . . ,v4 be pairwise non-collinear unitary vectors of the Euclidean plane. We
define the six rhombi {λvi + μvj |0 ≤ λ,μ ≤ 1}, for 1 ≤ i < j ≤ 4, and we call
octagonal tiling any covering of the Euclidean plane by translated rhombi, where
rhombi can intersect only on a vertex or along a complete edge (Fig. 8.3).

Let e1, . . . , e4 be the canonical basis of R4. A lift of an octagonal tiling is ob-
tained by mapping its rhombi onto faces of unit hypercubes Z

4 so that any two
rhombi adjacent along vk are mapped onto unit faces adjacent along ek . This is a
two-dimensional surface of R4 which is uniquely defined up to translation.

An octagonal tiling is said to be planar if there are a two-dimensional plane
E ⊂R

4 and t ≥ 1 such that it can be lifted into the “slice” E + [0, t]4. The plane E
is called its slope and the smallest suitable t its thickness (both are unique). A planar
octagonal tiling can be seen as a digitization of its slope.

For example, the Ammann–Beenker tilings are the planar octagonal tilings of
thickness one whose slope is generated by (cos kπ4 )0≤k<4 and (sin kπ

4 )0≤k<4.
Planar octagonal tilings form a subclass of the so-called projection tilings. Those

of thickness one are periodic for a rational slope, quasiperiodic otherwise, i.e. any
pattern of radius r which appears somewhere in a tiling reappears in this tiling at
a distance uniformly bounded in r . This perfect order weakens when the thickness
increases, but the long range order nevertheless persists.
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Fig. 8.4 Shadows of the tilings depicted in Fig. 8.3

8.4 Shadows and Subperiods

The kth shadow of an octagonal tiling is the orthogonal projection of its lift along ek .
Formally, a kth shadow is a lift of an octagonal tiling, i.e. a two-dimensional surface
of R4, but since it does not contain unit faces with the edge ek , it can be convenient
to see it as a two-dimensional surface of R3.

A period of a shadow is a translation vector leaving invariant the shadow. The
subperiods of an octagonal tilings are the periods of its shadows.

Figure 8.4 depicts the fourth shadows of the tilings of Fig. 8.3: they are periodic.
Actually, the alternation of rhombus orientations in these tilings, discussed in the
introduction, precisely enforces a period for each shadow. Formally, one checks that

with vk = ei kπ4 (complex notation) for 1≤ k ≤ 4, the kth shadow of any such tiling
admits the period pk defined by

p1 = e2 − e4, p2 = e1 + e3, p3 = e2 + e4, p4 = e1 − e3.

8.5 Grassmann Coordinates and Plücker Relations

First, recall (see, e.g. [7, Chap. 7]) that a two-dimensional plane E of R
4 gen-

erated by (u1, u2, u3, u4) and (v1, v2, v3, v4) has for Grassmann coordinates the
numbers Gij = uivj − ujvi , 1 ≤ i < j ≤ 4. Theses coordinates are unique up to a
common multiplicative constant; one writes E = (G12,G13,G14,G23,G24,G34).
Conversely, any Gij ’s not all equal to zero are the Grassmann coordinates of some
two-dimensional plane of R4 if and only if they satisfy the Plücker relation

G12G34 =G13G24 −G14G23.
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Then, it is not hard to see that if the lth shadow of a planar octagonal tiling of
slope E admits a period (p, q, r), then the Grassmann coordinates satisfy

pGjk − qGik + rGij = 0,

where l /∈ {i, j, k}. Indeed, if E is generated by (u1, u2, u3, u4) and (v1, v2, v3, v4),
then the lth shadow can be seen as a digitization of the plane of R3 generated by
(ui, uj , uk) and (vi, vj , vk). If (p, q, r) is a period of this plane, it belongs to this
plane and thus has a zero dot product with the normal vector (Gjk,−Gik,Gij ).

One can also use shadows to show that in any planar octagonal tiling of slope E,
the ratio between the proportions of tiles with edges vi and vj and those with edges
vk and vl is |Gij/Gkl |.

Now, consider a tiling by tiles of Fig. 8.1: it is octagonal up to the notching. If
we assume that it is planar, then its subperiods yield

G23 =G34, G14 =G34, G12 =G14, G12 =G23,

and plugging this into the Plücker relation, a short computation shows that the slope
must be one of the planes

E0 := (0,0,0,0,1,0), Et �=0 := (1, t,1,1,2/t,1), E∞ := (0,1,0,0,0,0).
Conversely, any planar octagonal tiling with one of these slopes and thickness one
satisfies the alternation of rhombi orientations (two rhombi with the same orienta-
tion would not fit into the slice), thus can be tiled by the tiles of Fig. 8.1.

For example, the tilings of Fig. 8.3 have respective slope E1/4, E1 and E√2. In

the latter case, which is an Ammann–Beenker tiling, there is thus
√

2 rhombi for
each square (since the square area is

√
2 times the rhombus area, each tile covers

exactly half of the plane). Tilings by squares only have slope E0 or E∞.
However, nothing yet ensures that tilings by Fig. 8.1 tiles are indeed planar!

8.6 Planarity

Lemma 8.1 Figure 8.1 tiles form only planar tilings of uniformly bounded thick-
ness.

Proof Let E := E√2. One checks that the orthogonal projection of the ei ’s onto
E are pairwise non-collinear vectors. Let us identify E with the two-dimensional
Euclidean plane and the above projections (up to rescaling) with the vi ’s which
define the tiles, so that the orthogonal projection onto E is a homeomorphism from
any lift of any tiling of the Euclidean plane by these tiles onto E. Let T be such a
tiling and S be a lift of it. Define

q1 = p1 +
√

2e1, q2 = p2 +
√

2e2,

q3 = p3 +
√

2e3. q4 = p4 −
√

2e4.
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Those are pairwise non-collinear vectors of E. Let also ri be obtained by changing√
2 in −√2 in qi . The ri ’s are pairwise non-collinear vectors of E′ := E−√2. One

checks that E and E′ are orthogonal planes, so that there exist two real functions z1
and z2 defined on E such that the lift S is the image of E under

ρ : x �→ x+ z1(x)r1 + z2(x)r2.

Let πi denote the orthogonal projection along ei . One has πi(qi )= πi(ri )= pi . For
any x ∈E, the plane πi(x+E′) intersects the shadow πi(S) along the curve

Ci (x)=
{
πi(x)+ z1(x+ λqi )πi(r1)+ z2(x+ λqi )πi(r2) |λ ∈R

}
.

Since both πi(S) and πi(x+E′) are pi -periodic, so is Ci (x). In particular, it stays at
bounded distance from some line directed by pi . For i = 1, since π1(r1)= p1, this
ensures that λ �→ z2(x+λq1) is uniformly bounded. In other words, z2 has bounded
fluctuations in the direction q1. Similarly, for i = 2, π2(r2)= p2 yields that z1 has
bounded fluctuations in the direction q2. For i = 3, one computes p3 =−π3(r1)−√

2π3(r2), what yields bounded fluctuations for z2−
√

2z1 in the direction q3. Since
q1 and q2 form a basis of E, let zi(λ,μ) stand for zi(λq1 + μq2), i ∈ {1,2}, and
write f ≡ g if the difference of two functions f and g is uniformly bounded. The
bounded fluctuations of z1 and z2 in the directions q1 and q2 yield the existence
of real functions f and g such that z2(λ,μ)≡ f (μ) and z1(λ,μ)≡ g(λ). Further,
since q3 =

√
2q2 − q1, the bounded fluctuations of z2 −

√
2z1 in the direction q3

yield the existence of a real function h such that (z2−
√

2z1)(λ,μ)≡ h(
√

2μ− λ).
Thus

f (μ)−√2g(λ)≡ h(√2μ− λ).
Fix λ= 0 to get f (μ)≡ h(√2μ). Fix μ= 0 to get −√2g(λ)≡ h(−λ). Hence

h(
√

2μ)+ h(−λ)≡ h(√2μ− λ).
From this easily follows that h, hence f , g, z1, z2 and ρ, are linear (up to bounded
fluctuations). The tiling T is thus planar. The thickness is uniformly bounded be-
cause the lifts are Lipschitz surfaces with a constant which depends only on E. �

8.7 Conclusion

The following theorem summarizes the results obtained in Sects. 8.5 and 8.6:

Theorem 8.1 Figure 8.1 tiles can form only planar tilings with slope in {Et }t∈R∪{∞}
and uniformly bounded thickness, and they form at least those of thickness one.

Moreover, the Ammann–Beenker tilings have the slope which maximizes the
area covered by rhombi: they provide the cheapest way to tile your bathroom! Let
us also note that among the tilings by Fig. 8.1 tiles, Ammann–Beenker tilings are
exactly (up to the thickness) those whose slope satisfies the relation G13 =G24, i.e.
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where the squares appear with the same frequency in their two possible orientations.
The above-mentioned result of [4] shows that this relation, although simple, cannot
be enforced by local patterns: when t tends towards

√
2, the tilings of slope Et and

E√2 (and thickness one) become locally indistinguishable.

Comments

At the time we wrote this paper, we unfortunately were unaware of Ref. [5]. There, A. Katz already
obtained Theorem 8.1, and moreover showed that the uniform bound on the thickness of the tilings
that can be formed is actually one. We, however, think that our proof deserve to be published.
Indeed, the proof in [5] relies on purely geometric considerations in the four-dimensional space,
which can be hard to follow by the reader (as acknowledged by the author himself). Alternatively,
the notions of shadows and subperiods we rely on reduce much of the problem to the more usual
three-dimensional space, while the use of Grassmann coordinates points the way towards a purely
algebraic way to solve a wide range of similar tiling problems.

Acknowledgements We thank T.Q.T. Le for sending us the preprint [8] which inspired the proof
of Lemma 8.1, and the referee, notably for pointing us the highly relevant reference [5] (see below).
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Chapter 9
Substitution Rules and Topological Properties
of the Robinson Tilings

Franz Gähler

Abstract A relatively simple substitution for the Robinson tilings is presented,
which requires only 56 tiles up to translation. In this substitution, due to Joan M.
Taylor, neighbouring tiles are substituted by partially overlapping patches of tiles.
We show that this overlapping substitution gives rise to a normal primitive substitu-
tion as well, implying that the Robinson tilings form a model set and thus have pure
point diffraction. This substitution is used to compute the Čech cohomology of the
hull of the Robinson tilings via the Anderson–Putnam method, and also the dynam-
ical zeta function of the substitution action on the hull. The dynamical zeta function
is then used to obtain a detailed description of the structure of the hull, relating it to
features of the cohomology groups.

9.1 Introduction

Robinson’s aperiodic set of tiles [8] was the first reasonably small such set which
could tile the plane only aperiodically. The local matching rules enforce a hierar-
chical structure into the tilings, which is used to prove that only aperiodic tilings
are admitted. Despite this hierarchical structure, for a long time it was not known
whether the Robinson tilings can be generated also by a substitution, which would
have enormous advantages for a more detailed study. Only very recently, a substi-
tution for the Robinson tilings could be constructed explicitly [4], albeit a rather
complicated one. The Robinson tilings therefore remain an interesting example, not
only for historical reasons. In this paper, we present a much simpler substitution,
derived from an overlapping substitution due to Joan M. Taylor, which we then use
to analyse the structure of the hull of the Robinson tilings in more detail, and relate
it to some of the topological invariants of the hull.
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Fig. 9.1 The Robinson tiles. The one on the left is called a cross and plays a special role. All tiles
can also be rotated and reflected

Fig. 9.2 A patch of a
Robinson tiling. Note the red
square frames with corners at
cross tiles, which occur at all
sizes of the form 2n, proving
the aperiodicity of the
Robinson tilings. The corners
of the smallest square frames
are at crosses forming the
odd/odd sublattice of tiles

9.2 A Simple Substitution for the Robinson Tilings

Robinson tilings consist of the five square tiles shown in Fig. 9.1. As the tiles are
allowed to be rotated and reflected, there are 28 tiles up to translation. In a legal
Robinson tiling, the tiles must obey some local rules. Firstly, the decoration lines
must continue across edges, with exactly one arrow head at each line join. Secondly,
there must be a square sublattice of index 4 whose tiles are all cross tiles. Apart
from this lattice of cross tiles, there may be other crosses as well. We assume in
the following, that this sublattice of cross tiles is a the odd/odd position. All tilings
satisfying the two rules (which are both local) are called Robinson tilings. In any
Robinson tiling, the decoration lines form a hierarchy of square frames of all sizes
2n (see Fig. 9.2), which proves that Robinson tilings cannot be periodic.

The local rules given above admit also some tilings with defect lines, which are
not repetitive (for details, see [5, 8]). As we are heading at primitive substitution
rules, by which we can reach only repetitive tilings, we want to discard these de-
fective tilings. We therefore confine ourselves to the minimal subspace of repetitive
tilings which is closed and invariant under translations and substitutions. The tilings
which we discard form a set of measure zero. In particular, their exclusion does not
change any spectral properties.

The hierarchy of square frames of all sizes (Fig. 9.2) suggests a hierarchical
structure in the tilings, and it would only be natural if the Robinson tilings could be
constructed also by a substitution rule. The construction of such a substitution rule
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was achieved only recently [4], and the substitution proved to be rather complicated,
with 208 tiles up to translation. The reason is that the self-similarity inherent in the
Robinson tilings scales around the tile centres, not the vertices. For the substitution,
one therefore had to dissect and reassemble the original tiles to new ones, having
their vertices at the original tile centres, which results in the rather large number of
tiles.

Here, we want to follow a different route, starting from a proposal of Joan
M. Taylor (private communication). Recall that the self-similarity scales about tile
centres. The idea now is to replace a tile by a 3× 3-patch of tiles under the substitu-
tion. This patch is larger than the original tile inflated by a factor of 2, so that there
are consistency conditions to be obeyed: the substitutions of neighbouring tiles have
an overlap, on which they must agree. A relatively simple solution is obtained if we
pass to new tiles which are larger by a factor 2. These new tiles have their centres
at the tiles at even/even positions (recall that the tiles at odd/odd positions are all
crosses). If we add to those even/even tiles a layer of thickness one half, all the re-
maining tiles are consumed, and we end up with new square tiles of edge length 2 at
even/even positions. It turns out that the 28 translation classes of tiles at even/even
positions split up into two classes each, so that we now have 56 tile types up to
translation. Moreover, these tiles admit a well-defined overlapping substitution, as
shown in Fig. 9.3.

The overlapping substitution of Fig. 9.3 is considerably simpler than the one
found previously [4]. The set of translation classes of tiles has been cut to a mere 56,
from 208 previously. For certain applications, however, such as the computation of
the cohomology via the Anderson–Putnam method [1], an overlapping substitution
is not suitable. To avoid this problem, we observe that we can always pass to a
normal substitution by replacing a tile not by a full 3× 3-patch, but by the 2× 2-
subpatch at the upper right corner, say. Note that we always have to take the subpatch
at the same corner, also for the rotated tiles, so that each tile is assigned to a unique
supertile. As a result, this assignment breaks the rotation/reflection covariance of
the substitution rules, but this is a small price to pay.

Having derived our substitution from an overlapping substitution has yet another
advantage. Since the 3×3-patches cover more than the inflated tiles, the overlapping
substitution obviously forces the border [6], a property which is inherited also by
the normal substitution derived from it. This allows to avoid the use of collared tiles
[1] in the Anderson–Putnam method, which is a tremendous advantage, as it also
helps to keep the number of tile types small.

9.3 The Structure of the Hull

Due to the repetitivity, the translation group acts minimally on the space of all repet-
itive Robinson tilings: every translation orbit is dense. The tiling space is therefore
the hull of any of its member tilings. Having a substitution, the hull can now be
constructed as an inverse limit space [1], and having a simple substitution which
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Fig. 9.3 Overlapping substitution for the Robinson tiling. Each tile is replaced by a 3× 3-patch
of tiles. Rotated/reflected tiles are substituted by the corresponding rotated/reflected patches. The
inflated tiles cover only the area shaded in gray. The substitutions of neighbouring tiles have thus
an overlap, on which they agree
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forces the border and requires only 56 tiles up to translation simplifies the task
considerably. The mere fact of having a lattice substitution tiling has some imme-
diate consequences. Since the crosses at odd/odd positions form a lattice-periodic
subset of tiles (with period 4 in each direction), results of Lee and Moody [7] al-
low concluding that the Robinson tilings form a model set and are thus pure-point
diffractive. Since the defective Robinson tilings are a subset of measure zero, the
pure-point diffractiveness extends even to all Robinson tilings.

As a limit-periodic model set, the space of Robinson tilings must project 1-to-1
almost everywhere to an underlying 2d, 2-adic solenoid S

2
2 via the torus parametri-

sation [2]. In the following, we will analyse the structure of the set where this pro-
jection fails to be 1-to-1, and try to connect it to the Čech cohomology of the hull.
The latter was obtained in [4] via the Anderson–Putnam method [1] as

H 2 = Z

[
1

4

]
⊕Z

[
1

2

]10

⊕Z
8 ⊕Z4, H 1 = Z

[
1

2

]2

⊕Z, H 0 = Z, (9.1)

which is confirmed using our new, simpler substitution. There is a natural substitu-
tion action on the hull, whose Artin–Mazur zeta function is defined as

ζ(z)= exp

( ∞∑

m=1

am

m
zm

)

(9.2)

where am is the number of points in the hull that are invariant under an m-fold
substitution. Note that if the hull consists of two components for which the periodic
points can be counted separately, am = a′m + a′′m, the corresponding partial zeta
functions have to be multiplied: ζ(z)= ζ ′(z) · ζ ′′(z).

Anderson and Putnam have given a different way to compute the dynamical zeta
function, as a by-product of computing the Čech cohomology [1]. Recall that the
hull is obtained as the inverse limit of the substitution acting on an approximant
cell complex. As a consequence, the cohomology of the hull is the direct limit of
the substitution action on the cohomology of that cell complex. Suppose A(m) is
the matrix of the substitution action on the mth cohomology group (with rational
coefficients) of the hull of a substitution tiling. The dynamical zeta function is then
given by [1]

ζ(z)=
∏
k odd det(1− zAd−k)
∏
k even det(1− zAd−k) =

∏
k odd
∏
i (1− zλd−ki )

∏
k even

∏
i (1− zλd−ki )

(9.3)

where the latter equality holds if the matrices A(m) diagonalizable, and the λ(m)i are
their eigenvalues. Note that Anderson and Putnam have used the matrices of the
substitution action on the cochain groups of the approximant complex, rather than
the cohomology, but the additional terms in their formula cancel between numerator
and denominator.
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If we apply this to the Robinson tilings, and take into account the eigenvalues of
the substitution action on the cohomology, we obtain for the zeta function

ζ(z)= (1− 2z)2(1− z)
(1− z)(1− 4z)(1− 2z)10(1− z)8 (9.4)

= (1− 2z)2

(1− z)(1− 4z)
·
(

1− z
1− 2z

)10

· 1

(1− z)17
, (9.5)

where in the second line we have written the zeta function as the product of the zeta
functions of one 2d solenoid S

2
2, ten 1d solenoids S2, and 17 extra fixed points.

How can this be interpreted? A Robinson tiling generically consists of a single,
infinite order supertile. Such tilings project 1-to-1 to the solenoid S

2
2. However, a

Robinson tiling can consist also of two infinite order supertiles, which are separated
by a horizontal or vertical row of tiles without any crosses. These are the tilings
where the projection to S

2
2 is not 1-to-1. A separating row of tiles can be decorated

with a single blue line, or a double line with the second line (red) on either side
of the middle blue line, and all three cases can be combined with arrows in one or
the other direction. All six possibilities, everything else being the same, project to
the same point on S

2
2. Moreover, if we take the translation orbit along the defect

line, we obtain a whole 1d sub-solenoid S2 of such 6-tuples. So, in addition to the
2d solenoid S

2
2, the hull contains 5 extra 1d solenoids S2 in horizontal and 5 in

vertical direction. Further, there are 28 fixed points of the substitution, consisting of
4 infinite order supertiles, which all project to the origin of S2

2. The 2d solenoid and
the 10 extra 1d solenoids contain one such fixed point each, so that in addition to
those there must be 17 further ones, which all show up in the zeta function (9.5).
We finally note that the structure of the hull is in line with the interpretation of
[3], were terms Z[ 12 ] in H 2 are associated with extra 1d sub-solenoids S2 in the
hull.

Acknowledgements The author would like to thank J.M. Taylor for sharing her ideas on the
overlapping substitution rules for the Robinson tilings.
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Chapter 10
Short-Range Spin Fluctuation in the Zn–Mg–Tb
Quasicrystal and Its Relation to the Boson Peak

I. Kanazawa, M. Saito, and T. Sasaki

Abstract We introduce the mechanism of localized collective fluctuation of short-
range ordered spin in a dodecahedral spin cluster in Zn–Mg–Tb icosahedral qua-
sicrystals. In addition, we shall discuss the relation to the boson peak in topological
glasses.

10.1 Introduction

Since the discovery of quasicrystals, much research has been directed at their unique
structure and physical properties, especially quasiperiodicity [1, 2]. Ordering and
excitations of quasiperiodically arranged magnetic moments (spins) remain funda-
mental open problems, despite the intensive efforts continuously made since the
discovery of quasicrystals. The Zn–Mg–R (R = rare-earth) icosahedral quasicrys-
tals [3] are the most extensively studied magnetic quasicrystals because of the fol-
lowing experimental advantages. These quasicrystals have well-localized, mostly
isotropic and sizable 4f magnetic moments. Their atomic structure is relatively well
known. Sato et al. [4] have investigated the low-temperature spin dynamics in the
face-centered-icosahedral Zn–Mg–Tb quasicrystal around its spin-glass-like freez-
ing temperature by inelastic neutron scattering. They observed the broad inelastic
peak, which can be interpreted as localized collective fluctuations of short-range-
ordered spins in a dodecahedral spin cluster. Furthermore, they gave a very im-
portant suggestion. That is, they indicated a possible close relation between the
broad inelastic spin-excitation peak and the so-called boson peak in topological
glasses [5, 6]. The boson peak is a broad inelastic excitation peak universally ob-
served in vibrational spectra of topological glasses at a Q-independent excitation
energy of a few meV. Its intensity shows a Q-dependence similar to the static struc-
ture factor, whereas its temperature dependence is given by the Bose temperature
factor. The boson peak is given by the Bose temperature factor. The boson peak
is believed to be related to collective atomic vibrations in a small structural unit.
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Fig. 10.1 Dodecahedral spin
cluster model. A typical
ground-state spin
configuration is shown by the
thick solid lines. The
nearest-neighbor (J1) and
next nearest-neighbor (J2)

interactions are also indicated
by arrows

These characteristics are surprisingly similar to those of the observed inelastic spin-
excitation peak, and thus, at least phenomenologically, we may regard the inelastic
peak as a spin analogue of the boson peak.

One of the present authors (I.K.) [7–11] has introduced a generalized view of
the physical origin of the boson peak in the gauge-invariant formula. Especially the
localized modes (massive gauge modes), which correspond to the boson peak, are
required naturally through the Higgs mechanism. In this study, we shall propose
the mechanism of localized collective fluctuations of short-range-ordered spin in a
dodecahedral spin cluster (Fig. 10.1) and discuss the relation to the boson peak in
topological glasses, by using the theoretical formula [8–11].

10.2 Localized Collective Spin-Fluctuation and the Boson Peak

It has been proposed that the parameter φa(t, r, u) (a = 1–4), whose t , r , and u
are the time axis, the spatial axes and the perpendicular axes, in the quasicrystal is
specified by the rotation, which is related to the gauge fields SO(4) of Aaμ [11, 12],
where a = 1–4 and μ = 1,2,3 correspond to the physical space axes, and μ =
4,5,6 correspond to the perpendicular space axes. To represent the dodecahedral
cluster, we set the symmetry breaking 〈0|φa |0〉 = 〈0,0,0, ν〉 of the Bose parameter
field φa in the Lagrange density as follows:

L = 1

2

(
∂iS

i − g1εijkA
a
i S

k
)2 + 1

2

(
∂μφa − g4εabcA

b
μφc
)2

− 1

4

(
∂νA

a
μ − ∂μAaν + g3εabcA

b
μA

c
ν

)2 − λ2(φaφa − ν2)2. (10.1)

After the symmetry breaking 〈0|φa |0〉 = 〈0,0,0, ν〉, we can obtain the effective
Lagrange density as follows:

Leff = 1

2

(
∂iS

j − g1εijkA
a
i S

k
)2 − 1

4

(
∂νA

a
μ − ∂μAaν + g1εabcA

b
μA

c
ν

)2

+ 1

2

(
∂μρ

β − gεβαγAαμργ
)2 + m

2
1

2

[(
A1
μ

)2 + (A2
μ

)2 + (A3
μ

)2]

+m1
(
A1
μ∂μρ

2 −A2
μ∂μρ

1)+m1
(
A2
μ∂μρ

3 −A3
μ∂μρ

2)
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Fig. 10.2 Hedgehog-like
fluctuation (cluster), which is
similar to the
three-dimensional sphere S3,
with the approximate radius
of the inverse of mass, m1,
introduced by the Higgs
mechanism

+m1
(
A3
μ∂μρ

1 −A1
μ∂μρ

3)+ gm1
{
ρ4[(A1

μ

)2 + (A2
μ

)2 + (A3
μ

)2]

−A4
μ

[
ρ1A1

μ + ρ2A2
μ + ρ3A3

μ

]}

− m
2
1

2

(
ρ4)2 − m2g

2m1
ρ4(ρa

)2 − m
2
2g

2

8m2
1

(
ρaρa
)2 (10.2)

where Sj is the spin of Tb andm1 = ν ·g4, m2 = 2(2)
1
2 λ · ν. The effective Lagrange

density describes three massive gauge fields. A1
μ, A2

μ and A3
μ are created through

the Anderson–Higgs mechanism by introducing the dodecahedral cluster, the fields
A1
μ,A2

μ, andA3
μ are then localized around the dodecahedral cluster within the length

of ∼1/|m1| = (ν.g4)
−1 ≡ Rc.Rc approximately corresponds to the radius of the

dodecahedral cluster.
From the first term in Eq. (10.2), it is shown that the massive gauge fields A1

μ,
A2
μ, and A3

μ induce localized collective fluctuation of spins in a dodecahedral spin
cluster, taking into account the short-range spin fluctuation mechanism by massive
gauge fields [15].

Now we shall consider the relation to the so-called boson peak in topological
glasses. It is preferable that we think of the anomalous density fluctuations in three-
dimensional liquids (glasses) as the hedgehog-like clusters, taking account of the
curvature, as shown intuitively in Fig. 10.2.

We adopt the parameter ρ(r,u) ≡ ρa(a = 1,2,3,4), which is similar to that in
the Sachdev and Nelson model [12]. The SO(4) quadruplet fields Aaμ are sponta-
neously broken through the fluid host around the hedgehog-like fluctuation (cluster)
[13, 14]. When the hedgehog-like cluster (soliton) is created, we set the symmetry
breaking of the quadruplet fields, 0|ρ|0〉, equal to 〈0,0,0, ν4〉.

Now we approximately introduce the Lagrange density as follows:

L=−1

4

(
∂νA

a
μ − ∂μAaν + g1εabcA

b
μA

c
ν

)2 + 1

2

(
∂μρ

B − gεβαγ Aαμργ
)2

+ c2ρaρa − λ(ρaρa)2 − λ2(ρaρa − ν2)2. (10.3)
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Then we set the symmetry breaking as follows:

ρa→ (0,0,0, ν4)+
(
ρ1, ρ2, ρ3, ρ4).

Thus we can introduce the effective Lagrange density

Leff = −1

4

(
∂νA

a
μ − ∂μAaν + g1εabcA

b
μA

c
ν

)2 + 1

2

(
∂μρ

β − gεβαγAαμργ
)2

+ m
2
1

2

[(
A1
μ

)2 + (A2
μ

)2 + (A3
μ

)2]+m1
(
A1
μ∂μρ

2 −A2
μ∂μρ

1)

+m1
(
A2
μ∂μρ

3 −A3
μ∂μρ

2)+m1
(
A3
μ∂μρ

1 −A1
μ∂μρ

3)

+ gm1
{
ρ4[(A1

μ

)2 + (A2
μ

)2 + (A3
μ

)2]−A4
μ

[
ρ1A1

μ + ρ2A2
μ + ρ3A3

μ

]}

− m
2
1

2

(
ρ4)2 − m2g

2m1
ρ4(ρa

)2 − m
2
2g

2

8m2
1

(
ρaρa
)2
. (10.4)

Here m1 is ν4 · g and m2 is 2
√

2λ · ν4.
The effective Lagrange density, Leff, represents three massive vector fields A1

μ,
A2
μ, and A3

μ, and the masses are created through the Higgs mechanism by introduc-
ing the hedgehog-like clusters (solitons), the gauge fields A1

μ,A
2
μ, and A3

μ are only
present around clusters. The inverse, 1/|m|, of the mass of A1

μ, A2
μ, and A3

μ reveals
approximately the radius of the clusters.

Since the gauge field A4
μ is massless, it is thought that the gauge field A4

μ me-
diates the long-range interaction between two excited clusters (the hedgehog-like
solitons).

In glasses and amorphous materials, the broad maximum of Raman spectra and
neutron scattering is due to excess vibrational density of states. It is the so-called bo-
son peak because its intensity changes with T in accordance with the Bose–Einstein
factor. It is thought that the vibrational states responsible for the boson peak con-
tribute also to the thermal conductivity plateau because the energy range spanned
by the plateau covers that of the boson peak spectra, indicating that acoustic excita-
tions must cease to propagate when their wavelength λ reaches the nm range. That
is, acoustic modes may become strongly localized modes, satisfying the Ioffe–Regel
condition. By a computer simulation of a soft sphere glass, it is found that there are
(quasi)localized modes with effective masses ranging from 10 atomic masses up-
wards, which are related to the boson peak. In the present theoretical formulation,
the effective Lagrangian represents three massive vector fields A1

μ, A2
μ, and A3

μ

which are localized within a radius, 1/|m|, around the hedgehog-like clusters [13].
Thus, it is suggested that the localized gauge fields A1

μ, A2
μ, and A3

μ around the
hedgehog-like clusters (solitions) are related to the (quasi)localized modes of the
boson peak. Expanding the present formula, we can introduce a more generalized
view of the origin of the boson peak. We adopt the generalized parameter,

ρ(r,u)≡ ρa (a = 1,2,3,4,5, . . . ,N).
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When the locally favored cluster is created, we set the symmetry breaking of
0|ρb|0= 0, in which b represents components within the components from a =m
to N . As a result, m− 1 massive gauge modes (the localized modes) are introduced
around the locally favored cluster through the Higgs mechanism.

It should be noticed that the massive gauge fields A1
μ, A2

μ, and A3
μ in Eq. (10.2)

are certainly similar to the ones in Eq. (10.4). Thus, the massive gauge fields A1
μ,

A2
μ, and A3

μ, which correspond to the boson peak, induce localized collective fluc-
tuations of spins in a dodecahedral spin cluster. This suggests that we may regard
the inelastic peak as a spin analogy of the boson peak.

10.3 Conclusion

We have proposed the mechanism of localized collective spin-fluctuation in a do-
decahedral spin cluster. Massive gauge fields, which correspond to the boson peak,
induce localized collective spin-fluctuation in a dodecahedral spin clusters.
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Chapter 11
Anomalous Properties and the Electronic
Glass-Like State in Al-Based Stable
Quasicrystals

Kohei Yamada, Tomoaki Sasaki, and Ikuzo Kanazawa

Abstract We discuss the slow dynamics mechanism of the excited carriers in the
Al-based quasicrystal-like system. This glassy relaxation mechanism is closely re-
lated to the long recombination time of the excited carriers in Al–Pd–Re quasicrys-
tals.

11.1 Introduction

Stable quasicrystals have been found in numerous metallic systems, mainly Al-
based systems. Although they consist of metallic atoms, these icosahedral quasicrys-
tals have anomalous electrical conductivities, such as the semiconductor-like prop-
erties [1, 2]. That is, their electrical conductivity is extremely low compared with
that of crystalline and amorphous phases, and the conductivity decreases with de-
creasing temperature. It has been suggested that the semiconductor-like properties
are due to the existence of a pseudogap in the electron density of states at the Fermi
level and the localization tendency of electrons near the Fermi level [3].

In order to obtain detailed information of the density of states (DOS) spectrum,
modulated photocurrent measurements for Al–Pd–Re icosahedral quasicrystals have
been performed [4, 6].

The amplitude and phase shift of modulated photocurrent for Al–Pd–Re qua-
sicrystals can be well explained by the model in which the two processes, carrier
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generation and recombination, are involved. It is interesting that the recombination
time is by about six orders of magnitude larger than those reported for conventional
semiconductors. This suggests a slow dynamics such as glassy relaxation.

The present authors [7–12] have considered the transport property in the ran-
domly distributed system of the correlated configurations (the aggregation) such as
the prolate and oblate rhombohedral, in which the nearest distance between each
configuration is ∼2π/2kF (the quasicrystal-like system).

The quasicrystal-like system is regarded as the system composed of the Gaussian
correlated distribution of the icosahedral cluster such as the Bergman type and the
Mackay type, which includes 2kF-phase shift scattering.

Taking into account the short mean free path of 15–20 Å of the electrons in
quasicrystals, it looks like that the anomalous transport properties of quasicrystals
are not directly related to quasicrystal structures in the longer range than the mean
free path of 15–20 Å.

In addition, it has been suggested that there may exist the electron-glassy prop-
erties in the quasicrystal-like system [12].

In this study, we shall consider the slow dynamic mechanism of the excited car-
rier in Al-based quasicrystal such as Al–Pd–Re.

11.2 Quasicrystal-Like System and the Slow Relaxation

The 2kF-phase shift scattering induces strongly the density wave of sp electrons
with a wavelength of ∼2π/2kF. When the high density region of the standing wave
occupies a transition metal atom, the sp electrons hybridize more strongly the d
wave-function of the transition metal atoms located in the configuration. Thus the
2kF phase shift scattering and the sp–d hybridization are more correlated to each
other. In this case, γ ∝ niN |Vd,sp|2 is a large value, where the matrix element Vd,sp
represents the sp–d hybridization, and ni is the density of the aggregation, which is
composed of N connected configurations with distance ∼2π/2kF. The aggregation
might be identified with the icosahedral cluster such as the Bergman type and the
Mackay type. Intuitively, the electron state of a quasicrystal-like system is regarded
as the aggregation of incoherent standing waves due to 2kF-phase shift scattering.
This is the main difference compared to typical amorphous states.

When the system is amorphous or when many defects are introduced, the ag-
gregation, which is composed of N correlated connected configurations with the
distance ∼2π/2kF, is broken. As a result, the value of γ will decrease remarkably.
This is consistent with the experimental results [20].

In a quasicrystal-like system, we have assumed that the temperature dependence

of the conductivity�σ1+2 is given as �σ1+2 ∝ T 3
4 in the region of low temperature

[11, 12].
Figure 11.1 shows the conductivities of the Al63Cu25Fe12, Al65Cu20Ru15, and

Al70Cu15Ru15 quasicrystals. The solid lines show the fits. The solid lines from 20

to 70 K show the temperature curves described by power laws, σ(T ) = a + bT 3
4 .
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Fig. 11.1 Conductivities in
the temperature region below
70 K for the Al63Cu25Fe12,
Al65Cu20Ru15, and
Al70Cu15Ru15 quasicrystals.
The solid circles, the solid
squares, and triangles are
data points for Al63Cu25Fe12
[21], Al65Cu20Ru15, and
Al70Cu15Ru15 [22],
respectively. The solid lines
show the fits [12]

The solid lines below 20 K show the temperature dependence curves given by the

T
1
2 power law.
The coefficient constants of the residual conductivity are coincident within±5 %.

The T
1
2 power law below 20 K is attributed to the electron–electron interaction

contribution [15, 16]. To average over the randomly distributed aggregation, which
is composed of N connected configurations with distance ∼2π/2kF, we use the
replica method [17]. We calculate the partition function Zn of n replicas of the sys-
tem and average Zn over the aggregations such the icosahedral clusters. Performing
the averaging over the aggregation such as the icosahedral cluster, the potential will
be regarded as a random quantity with a Gaussian δ-correlated distribution

〈
V (r)V

(
r ′
)〉= niN |Vd,sp|

2

2πν
δ
(
r − r ′), (11.1)

where V (r) is the effective potential of the clusters, and ν is the state density per
spin at the Fermi energy at temperature T . Averaging Zn over the distribution (1),
we obtain

〈〈Zn〉〉 =
∫

exp(S)
∏

a

dψ̄adψa,

S =
∫

dr

[∑

n,a

[
ψ̄an

(
iεn + 1

2m
Δ+μ

)]
ψan +

niN |Vd,sp|2
4πν

(ψ̄ψ)2
]
, (11.2)

where

exp

[
niN |Vd,sp|2

4πν
· 1

Ω

∑

P1,P2,k

(ψ̄P1ψP2)(ψ̄P2+k+2kFψP1+k+2kF)

]

=
∫

exp

{
−
∫ [

πνniN |Vd,sp|2
4

SpQ2
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− i

2
niN |Vd,sp|2(ψ̄Qψ)

]
· dr
}∏

dQ

×
[∫

exp

(
−
∫
πνniN |Vd,sp|2

4
SpQ2dr

)∏
dQ

]−1

. (11.3)

Here,

ψ̄Qψ =
∑

ψa†
n Q

ab
nmψ

b
m, SpQ2 =

∑
Qab
nmQ

ba
mn,

with a and b being the replica indices, and n and m the energy states.
Using the analogy of the spin by Wegner [18], we can show the relation

ψ̄Qψ =
∑

ab
nm

ψa†
n Q

ab
nmψ

b
m

=
∑

ab
nm

ψa†
n ψ

a
nσaψ

a†
n ψ

b
mσbψ

†b
m ψ

b
m

=
∑

ab
nm

∣∣ψan
∣∣2qabnm

∣∣ψbm
∣∣2 =
∑

ab
nm

P an q
ab
nmP

b
m. (11.4)

Here σa (σb) is the set of Pauli matrices, Pan = |ψan |2, Pbm = |ψbm|2, and qabnm ≡
σaψ

a†
n ψ

b
mσb. Pan means the probability that the state (the replica index, a, and the

energy level, n) is one of different valleys. The overlap function, P(q), and q̄ are
defined as follows:

P(q) =
〈∑

ab
nm

P an P
b
mδ
(
q − qabnm

)
〉

av
,

q̄ ≡
〈∑

ab
nm

P an q
ab
nmP

b
m

〉

av
,

where 〈 · 〉av represents the bond averaged quantity. By using the overlap function
P(q), we can introduce the relation q̄ = ∫ qmax

0 dq qP (q).
An almost insulating quasicrystal-like system might have the broadly distributed

overlap function, P(q), which corresponds to the replica symmetry breaking states.
The sp electron energies, in one icosahedral cluster, depend strongly on sp–d hy-
bridization and the correlation between the state a of sp electron wavefunctions in
its icosahedral cluster and the state b from the other icosahedral clusters around its
icosahedral cluster.

After the bonding averaging, the distribution of the correlation energy Ec is
∝–(
∑

nm P
a
n q

ab
nmP

b
n )N |Vsp−d |2 ∝ P(q).

That is, the distribution of energy Ec is ρ(Ec)∝ P(q).



11 Anomalous Properties and the Electronic Glass-Like State 85

Fig. 11.2 A model of the
trapped states in the
quasicrystal

A trapped state of the correlation energy Ec is defined by a distribution ρ(Ec) of
the trap energy (the energy levels of the correlation energyEc) as shown in Fig. 11.2.

The primary dynamical quantity is then P0(Ec, t), the distribution of the energy
in a trap of energy Ec at time t , where the subscript 0 indicates that for now we are
considering the dynamics without perturbing fields. The evolution of P0 is given by
the master equation

∂

∂t
P0(Ec, t) = −Γ0(Ec)P0(Ec, t)

+ ρ(Ec)
∫

dE′c W0
(
Ec←E′c

)
P0
(
E′c, t
)
, (11.5)

where W0(Ec←E′c) is the rate of transfer between traps of energy E′c and Ec,

Γ0(Ec)=
∫

dE′cρ
(
E′c
)
W0
(
E′c←Ec

)
, (11.6)

W0(E
′
c←Ec) is represented as follows [19]:

W0
(
E′c←Ec

)= 1

1+ exp[β(E′c −Ec)]
.

Here β = 1/T as usual.
The two-time correlation of the excited carrier density n(t) is then

C(t, tw) =
〈
n(t)n(tw)

〉

=
∫

dEc dndE′c dn′ nn′P0
(
Ec,n
∣∣E′c, n′, t − tw

)

× ρ(n′/E′c
)
P0
(
E′c, tw

)
,

so that C(t, tw) is approximately represented in the simple form

C(t, tw)=
∫

dEc Δ
2(Ec)e

−Γ0(Ec)(t−tw)P0(Ec, tw). (11.7)

Here Δ2(Ec)=
∫

dnn2ρ(n|Ec).
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Assuming that the field h shifts all energy, the rate is then

W
(
E′c, n′ ←Ec,n

)= 1

1+ exp{β[(E′c − hn′)− (Ec − hn)]}
. (11.8)

For low T , as a reasonable approximation [23] of multiplicatively perturbed rates is
given by

W
(
E′c, n′ ←Ec,n

)= eh(γ n
′−μn)W0

(
E′c←Ec

)
. (11.9)

Then the relation between response is as follows:

R(t, tw)=−μ∂C
∂t
+ γ ∂C

∂tw
. (11.10)

In the case of t and tw � 1, C(t, tw)∼ tw/t is introduced approximately [19]. For
the integrated response function, we get

χ(t, tw)≡ χ(C) =
∫ t

tw

dt R
(
t, t ′
)

= γ (1−C)+ μ
2

(
1−C2)

∼ γ
(

1− tw
t

)
+ μ

2

(
1− t

2
w

t2

)
.

This represents the glassy relaxation such as the slow dynamics of the excited carrier
in the quasicrystal-like system. This glassy relaxation mechanism might be closely
related to the long recombination time in Al–Pd–Re quasicrystals [5, 6].

11.3 Conclusion

We have proposed the slow dynamics mechanism of the excited carriers in a sta-
ble Al-based quasicrystal-like system. It is suggested that this mechanism is closely
related to the long recombination time of the excited carriers in Al–Pd–Re qua-
sicrystals.
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Chapter 12
Quantum Diffusion in Separable d-Dimensional
Quasiperiodic Tilings

Stefanie Thiem and Michael Schreiber

Abstract We study the electronic transport in quasiperiodic separable tight-binding
models in one, two, and three dimensions. First, we investigate a one-dimensional
quasiperiodic chain, in which the atoms are coupled by weak and strong bonds
aligned according to the Fibonacci chain. The associated d-dimensional quasiperi-
odic tilings are constructed from the product of d such chains, which yields either
the square/cubic Fibonacci tiling or the labyrinth tiling. We study the scaling be-
havior of the mean square displacement and the return probability of wave packets
with respect to time. We also discuss results of renormalization group approaches
and lower bounds for the scaling exponent of the width of the wave packet.

12.1 Introduction

Understanding the relations between the atomic structure and the physical properties
of materials remains one of the elementary questions of condensed-matter physics
further emphasized by the discovery of quasicrystals [1]. Quasicrystals are charac-
terized by a perfect long range order without having a three-dimensional transla-
tional periodicity. The former is manifested by the occurrence of sharp spots in the
diffraction pattern and the latter in the occurrence of rotational symmetries forbid-
den for conventional crystals. Already in the 1970s, works by Penrose and Ammann
showed that the Euclidean space can be filled gapless and non-overlapping by two
or more tiles which are arranged in a nonperiodic way according to matching rules.
It turned out that these tilings are suitable to describe the structure of quasicrystals.

Experimental studies revealed rather exotic physical properties. For instance,
quasicrystalline surfaces are anti-adhesive in combination with a high level of hard-
ness making them suitable for the production of coatings for medical equipment,
engines, cookware, etc. Further, they possess a low thermal and electrical conduc-
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tance although they contain a high amount of well-conducting elements. For one-
dimensional quasicrystals, many numerical studies helped to establish a better un-
derstanding of the physical properties [2–4]. Further, several exact theoretical results
are known in one dimension today [5]. However, the characteristics in two or three
dimensions have been clarified to a much lesser degree because numerical studies
are usually restricted to small approximants.

To address this problem, we study models of d-dimensional quasicrystals with
a separable Hamiltonian in a tight-binding approach [6]. This method is based on
the Fibonacci sequence, which describes the weak and strong couplings of atoms in
a quasiperiodic chain. After a iterations of the inflation rule P = {s −→ w,w −→
ws}, we obtain the ath order approximant Ca of the Fibonacci chain. The length fa
of an approximant Ca is given by the recursive rule fa = fa−1 + fa−2 with f0 =
f1 = 1. Further, the ratio of the lengths of two successive approximants approaches
the golden mean τ for a→∞. Solving the time-independent Schrödinger equation

H
∣∣Ψ i
〉=Ei∣∣Ψ i

〉 ⇔ tl−1,lΨ
i
l−1 + tl,l+1Ψ

i
l+1 =EiΨ i

l (12.1)

for the Fibonacci chain, we obtain discrete energy values Ei and wave functions
|Ψ i〉 =∑fa+1

l=1 Ψ i
l |l〉 represented in the orthogonal basis states |l〉 associated to a

vertex l. The hopping strength t in the Schrödinger equation is given by the Fi-
bonacci sequence Ca with ts = s for a strong bond and tw = w for a weak bond
(0<w ≤ s).

The d-dimensional separable quasiperiodic tilings are then constructed from the
product of d quasiperiodic chains which are perpendicular to each other. For this
setup two special cases are known for which the systems becomes separable [6]:

• Hypercubic Tiling Hdd
a —This tiling corresponds to the usual Euclidean product

of d linear quasiperiodic chains, i.e., only vertices connected by vertical and hor-
izontal bonds interact as shown in Fig. 12.1. The electronic structure and the
transport properties are understood quite well for these systems [3, 7].
• Labyrinth Tiling Ldd

a —Only coupling terms to neighbors along the diagonal
bonds are considered (cf. Fig. 12.1), where the bond strengths of this tiling equal
the products of the corresponding bond strengths of the one-dimensional chains.

The eigenstates of these tilings in d dimensions can be constructed from the eigen-
states of d one-dimensional chains. In both cases, the wave functions of the higher-
dimensional tiling are constructed as the products of the one-dimensional wave
functions, i.e., Φs

r =Φi,j,...,k
l,m,...,n ∝ Ψ 1i

l Ψ
2j
m · · ·Ψ dk

n . The superscripts s= (i, j, . . . , k)
enumerate the eigenvalues E, and r = (l,m, . . . , n) denotes the coordinates of the
vertices in the tiling. The energies are treated in a different way. In d dimensions,
they are given by Es =Ei,j,...,k =E1i +E2j + · · · +Edk for the hypercubic tiling
and by Es = Ei,j,...,k = E1iE2j · · ·Edk for the labyrinth tiling. This approach al-
lows us to study very large systems in higher dimensions with up to 1010 sites.



12 Quantum Diffusion in Separable d-Dimensional Quasiperiodic Tilings 91

Fig. 12.1 Two-dimensional
square tiling H2d

5 (left) and
labyrinth tiling L2d

5 (right)
constructed from two
Fibonacci chains C5

12.2 Quantum Diffusion

To obtain a deeper understanding of the connections of the electronic transport
and the quasiperiodic structure of a system, we study the time evolution of wave
packets |Υ (r0, t)〉 =∑r∈LΥr(r0, t)|r〉 initially localized at a position r0 which are
constructed from the solutions Υr(r0, t) =∑sΦ

s
r0
Φs

re
−iEst of the time-dependent

Schrödinger equation. The temporal autocorrelation function of a wave packet
equals the integrated probability to be at the position r0 up to time t > 0 [8], i.e.,
C(r0, t)= 1

t

∫ t
0 |Υr0(r0, t

′)|2 dt ′. We denote the integrand as return probability

P(r0, t)=
∣∣Υr0(r0, t)

∣∣2. (12.2)

Another quantity often considered for the description of the electronic transport
properties is the mean square displacement of the wave packet (also called width)

d(r0, t)=
√∑

r∈L |r− r0|2
∣
∣Υr(r0, t)

∣
∣2. (12.3)

The wave-packet dynamics reveal anomalous diffusion with d(r0, t) ∝ tβ(r0), and
the electronic transport is governed by the wave-packet dynamics averaged over
different initial positions r0, i.e., d(t)= 〈d(r0, t)〉 ∝ tβ . The exponent β is related
to the conductivity σ via the generalized Drude formula, where β = 0 corresponds
to no diffusion, β = 1/2 to classical diffusion, and β = 1 to ballistic spreading.

The autocorrelation function is expected to decay with C(r0, t)∝ t−δ(r0) [8]. The
exponent δ(r0) is equivalent to the correlation dimension Dμ

2 of the local density of
states (LDOS) ρ(r0,E) of a system [8]. In one dimension, δ→ 1 corresponds to
the ballistic motion of an electron. More information about the transport can be
obtained by studying the return probability which shows a power-law behavior ac-
cording to P(t)∝ t−δ′ . The integration is only used to smooth the results. However,
this leads to some disadvantages: For δ′ = 1 one obtains an additional logarithmic
contribution C(t) ∝ ln(t)/t , leading to δ significantly lower than 1 [3]. Further, in
higher dimensions δ′ > 1 is possible for large coupling parameters w. This leads to
the convergence of the integral in C(t) as shown in Figs. 12.2 and 12.3 [3].

Some typical results for the mean square displacement d(t) and the temporal
autocorrelation function C(t) are shown in Fig. 12.2. We average the results over
different initial positions of the wave packet, i.e., we study the scaling behavior
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Fig. 12.2 Averaged mean square displacement d(t) for the Fibonacci chain C19 (left), averaged
temporal autocorrelation function C(t) for the Fibonacci chain C20 (center) and the 2D labyrinth
tiling L2d

16 (right) for s = 1

Fig. 12.3 Scaling exponents β (left), δ including the limit behavior (lines) for infinite systems
(center), and δ′/d (right) for the Fibonacci chain and the labyrinth tilings in 2D and 3D for s = 1.
Renormalization group (RG) results are shown by lines in left and right panel

of d(t) = 〈d(r0, t)〉 ∝ t−β and C(t) = 〈C(r0, t)〉 ∝ t−δ . The power-law behavior
can be observed over several orders of magnitude in time, before d(t) and C(t)
approach a constant due to finite size effects. The corresponding scaling exponents
β and δ obtained by least squares fits are compiled in Fig. 12.3. We find δ′ > 1 for
w > 0.55s in two dimensions and w > 0.43s in three dimensions. Consequently,
the scaling exponent δ slowly approaches 1 for this threshold w as indicated by
the dashed lines [9]. This is in reasonable agreement with the known transition to
an absolute continuous energy spectrum for w2d

th ≈ 0.6s and w3d
th ≈ 0.46s [7, 10].

The exponent β indicates anomalous transport for the hypercubic and the labyrinth
tiling for all w < s. Only for w = s ballistic transport is found. Further, we observe
that the exponent δ′2d is about twice as large as the one-dimensional exponent δ′1d.
However, the results for the three-dimensional labyrinth tiling do not entirely fit
into this scheme. While for w ≤ 0.6s the expression δ′3d/d is only slightly smaller
than the exponent δ′1d, the behavior changes completely for large values of w. In
the latter case, the scaling exponent δ′3d becomes almost constant and approaches
δ′3d(w = s)≈ 1.75.
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For the hypercubic tiling the relation δ′1d = δ′dd/d holds, which also charac-
terizes the transition to an absolutely continuous energy spectrum according to
dδ1d(w

dd
th ) = 1 [3]. While the numerical results for the 2D labyrinth tiling seem

to satisfy these relations as well, there are significant differences in the wave-packet
dynamics in three dimensions, which are probably related to the different grid struc-
ture. In three dimensions for w→ s, the labyrinth tiling approaches a body centered
cubic lattice while the cubic tiling approaches a simple cubic lattice.

12.3 RG Approach and Lower Bound for the Scaling Exponent β

For the hypercubic tiling the scaling exponents of the width fulfill the relation βdd =
β1d due to the separability of the time-evolution operator. Numerical results suggest
that this relation is also valid for the labyrinth. For weak couplings (w! s) it is
possible to find a connection between the quasiperiodic structure of the Fibonacci
chain [11] or the labyrinth tiling [12, 13] with the wave-packet dynamics by an
RG approach proposed by Niu and Nori [14]. The results show that the scaling
exponents β for different dimensions approach each other for w→ 0 but are not
identical [12, 13] (cf. Fig. 12.3). The hierarchic structure of the RG enables us to
describe the properties of the wave functions and energy spectrum of the Fibonacci
chain for w! s [14, 15]. This can be used to derive analytical relations, too, for the
mean square displacement [15] and the return probability (cf. Fig. 12.3) [13, 16].

The computation of the scaling exponent β is computationally very expensive.
However, one can make use of two general lower bounds for β . As a rule of thumb,
the wave-packet propagation is faster for smoother spectral measures. This was
proved by Guarneri et al. with the lower bound β ≥Dμ

1 /d based on the information
dimension Dμ

1 of the spectral measure of the LDOS [17]. Ketzmerick et al. showed
that the spreading of a wave packet in a space of reduced dimension D2 (i.e., the
correlation dimension of the wave functions) is described by the bound β ≥Dμ

2 /D2

as long as Dμ
2 < 1, i.e., for singular continuous energy spectra [18]. This result is

based on the normalization condition and the known decay of the center of the wave
packet according to t−D

μ
2 . A comparison with the numerical results in Fig. 12.4

shows that all inequalities are clearly satisfied. However, in the regime of an ab-
solutely continuous energy spectrum, the spectral dimensions fulfill Dμ

q = 1, and
the two inequalities are no longer good lower bounds. We like to point out that the
decay of the center of the wave packet is only described by the correlation dimen-
sion Dμ

2 of the LDOS until the integral in C(t) converges [3], i.e., as long as the
exponent δ′, which describes the decay of the center of the wave packet, is smaller
than 1. Hence, for d-dimensional systems the bound by Ketzmerick et al. should
be replaced by β ≥ δ′/D2 in the absolutely continuous regime. For the hypercu-
bic tiling this bound is as good as for the Fibonacci chain. This bound should hold
also in general because it solely makes use of the normalization condition of the
wave packet. We have checked in Fig. 12.4 whether this relation is satisfied for the
labyrinth tiling and found that this is a significantly better lower bound for w >wth.
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Fig. 12.4 Comparison of β with the lower bounds Dμ
1 /d , Dμ

2 /D2, and δ′/D2 for the Fibonacci
chain (left) and the corresponding labyrinth tilings in two (center) and three dimensions (right) for
s = 1

12.4 Conclusion

We have studied the wave-packet dynamics for separable quasiperiodic tilings. In
higher dimensions, δ→ 1 indicates the existence of an absolutely continuous part
in the energy spectrum rather than the occurrence of ballistic transport. To under-
stand the diffusive properties of a system, it is also necessary to compute the width
d(t) of the wave packet and the return probability P(t) because in three dimensions
the scaling exponents β hardly differ for the considered models although the scal-
ing exponents δ′ are rather different for large coupling parameters w. We also found
good agreement between the scaling exponents δ′ and β with the analytical expres-
sions derived by an RG approach in the regime of strong quasiperiodic modulation.
Further, the exponent δ′ can be used to define a better lower bound for the scaling
exponent β of the wave-packet width in the absolute continuous regime.
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Chapter 13
Hume–Rothery Stabilization Mechanism
of Be-Based Complex Alloys

H. Sato, M. Inukai, E.S. Zijlstra, and U. Mizutani

Abstract We performed first-principles FLAPW (Full potential Linearized Aug-
mented Plane Wave) band calculations for Be13Mg and Be13Sb. Furthermore, we
calculated the Hume–Rothery plot and e/a with the tetrahedron method from the
case.output1 file generated from WIEN2k. These complex alloys belong to fcc
structures with almost the same atom density as hcp Be. From the FLAPW-Fourier
spectrum, we could point out that, in both alloys, the pseudogap is formed by
Fs–Bz interactions with the spheres just coinciding to reciprocal lattice vectors,
|G| = 32,35,36 and 40.

13.1 Introduction

Both the Fermi surface–Brillouin zone (Fs–Bz) interactions and orbital hybridiza-
tions have been considered to be responsible for the formation of a pseudogap across
the Fermi level in structurally complex metallic alloys (CMAs) [1]. Research along
this line had been initiated in the framework of the nearly free electron (NFE) model
and later the linear muffin-tin orbital-atomic sphere approximation [2]. The NFE
model has a serious drawback since it cannot properly handle transition metals (TM)
bearing localized d-band near the Fermi level. To overcome this difficulty, Mizutani
and co-workers employed first-principles FLAPW band calculations and established
a powerful technique named the FLAPW-Fourier method to extract Fs–Bz interac-
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tions even in strongly hybridizing CMAs [3–5]. The square of the effective Fermi
diameter (2kF )2 and the number of itinerant electrons per atom e/a can be deter-
mined by extracting major plane waves of itinerant electrons outside the muffin-tin
spheres and subsequently averaging the square of the wave vectors at the Fermi
level. The method above has been specifically named the Hume–Rothery plot (here-
after abbreviated as the HR plot), since it can determine the e/a value serving as a
key parameter in the Hume–Rothery electron concentration rule. Using the HR plot
method, they could determine e/a values even for TM metals and their alloys [6],
which had been a longstanding subject in the electron theory of metals since the
1930s [7, 8].

In the present work, attention is directed to the Be13X (X=Mg, Ca, Zr, Sb and
La) compounds containing 112 atoms per unit cell (cF112) with space group Fm3̄c.
The structure information of Be13X compounds is available in the literature [9].
They are characterized by a deep pseudogap across the Fermi level. Our objective
is to discuss the origin of the pseudogap from the viewpoint of Fs–Bz interactions
by applying the FLAPW-Fourier analysis to Be13Mg and Be13Sb, both of which are
composed of only sp-bands.

We have recently established the tetrahedron method to enhance the accuracy in
the HR plot method. Its principles will be described in Sect. 13.2. We have per-
formed the HR plot analysis for not only fcc-Be13Mg and Be13Sb but also for hcp-
Be, hcp-Mg, trigonal-Sb as references.

13.2 Electronic Structure Calculations

FLAPW band calculations have been executed with INTEL version Linux personal
computers by using the WIEN2k program package [10]. It provides us the list of the
j th eigenvalue Ejk and the corresponding Fourier coefficient Cjk+G of an allowed
reciprocal lattice vector G for the wave vector k in the irreducible wedge of the first
Brillouin zone.

The tetrahedron method is newly developed for extracting the set of LAPW states
having the largest Fourier coefficient |Cjk+G|2max. The values of Ejk and Cjk+G for
any k point in the Brillouin zone of the parallelepiped are replaced by those for
the equivalent k point in the irreducible wedge of the zone, by means of symmetry
operations in a given crystal structure. The wedge is further divided into the assem-
bly of tetrahedra. The LAPW state {2|k+G|}2E having |Cjk+G|2max is calculated at
the centre of gravity of each cross-sectional area S�(E) formed by cutting the �th
tetrahedron through a given energy surface E, using a linear interpolation approxi-
mation [11], and is averaged over all the tetrahedra in the Brillouin zone:

〈{
2|k+G|}2〉

E
=
∑

� in BZ
{2|k�cg+G|}2S�(E)

|∇E|�∑
� in BZ

S�(E)|∇E|�
(13.1)
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where k�cg specifies the wave vector at the centre of gravity (cg) of S�(E). The
number of itinerant electrons per atom e/a is calculated from

(
e

a

)

local
= π

3Natom

[
V

3/2
uc

4π2

〈{
2|k+G|}2〉

EF

]3/2

, (13.2)

where Natom and Vuc are the number of atoms per unit cell and the volume of unit
cell, respectively.

13.3 Results and Discussions

The HR plot, i.e. the energy dependence of V
3/2
uc

4π2 〈{2|k+G|}2〉E along with the total
and partial DOSs for hcp-Be and hcp-Mg are shown in Figs. 13.1 and 13.2, respec-
tively. A DOS pseudogap of about 5 eV in width is observed across the Fermi level
in Be while a free electron-like DOS with small van-Hove singularities is present
in Mg. As can be seen in Fig. 13.1, the pseudogap in Be can be ascribed to or-
bital hybridizations mainly due to the p states in Be. The direct reading of the or-
dinate at the Fermi level in Be and Mg yield (2kF )2 of 2.64 and 2.46 in units of
(2π/a)2 × 3

√
3a2/4c2, respectively. The effective (e/a)local value is now immedi-

ately calculated from Eq. (13.2) to be 2.24 and 2.02, respectively. The HR data
points in Mg fall on a straight line from the bottom of the valence band up to+10 eV.
The resulting electronic parameters (2kF )2 and (e/a)local are in perfect agreement
with the free electron value.

In the case of Be, we obtained an almost +10 % deviation from the nominal
valence of two. The enhancement in e/a is explained in terms of the existence of
strong orbital hybridization effects in Be. Note that almost 70 % of valence elec-
trons reside inside the MT-sphere of 2 Å in radius while the remaining 30 % as
plane waves in intermediate regions. The p-states in the neighbouring Be atoms are
hybridized via plane waves in intermediate regions strongly enough to split them
into bonding and anti-bonding states across the Fermi level. This effect is reflected
in the HR plot as an upward deviation from otherwise the free electron behaviour,
as is drawn with red in colour in Fig. 13.1. Similarly, the HR plot for trigonal Sb
known as a semimetal provided the value of (e/a)local which is 0.33 larger than its
nominal valence of five due to strong hybridization effects between the p-states in
the same way as in Be.

Now we are ready to discuss Fs–Bz interactions in Be13Mg and Be13Sb. As
shown in Fig. 13.3, we found the DOS pseudogap in Be to remain essentially un-
changed except for the growth of new states immediately above the Fermi level in
fcc-Be13Mg. A horizontal line with small open circles at both ends in Fig. 13.3
refers to bonding and anti-bonding states caused by the zone splitting associated
with {2|k+G|}2 =G2 (see Fig. 13.3). It is clear that electronic states over the en-
ergy range, where both the pseudogap and the new states are involved, are dominated
by those specified by G2 = 35, 36 and 40 in units of (2π/a)2.
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Fig. 13.1 Hume–Rothery
plot, and total and partial
densities of states for hcp Be.
Small open circles denote the
electronic state |G|2 versus
the energy eigen value at
given symmetry points, at
which the square of the
Fourier coefficient |CjG|2 is
the largest in the wave
function outside the MT
sphere

Fig. 13.2 Hume–Rothery
plot, and total and partial
densities of states for hcp Mg.
Small open circles denote the
electronic state |G|2 versus
the energy eigen value at
given symmetry points, at
which the square of the
Fourier coefficient |CjG|2 is
the largest in the wave
function outside the MT
sphere

The HR plot data deviate from otherwise the free electron-like straight line (see
the red line in Fig. 13.3) from−3 up to−1 eV but resume the free electron behaviour
across the Fermi level. The square of the Fermi diameter (2kF )2 = 〈{2|k+G|}〉2EF
can be read off from the ordinate and turned out to be 35.92. This means that the
Fermi surface lies in contact with the zones formed by |G|2 = 35 and 36, indicating
the fulfillment of the matching condition (2kF )2 = |G|2 in the compound Be13Mg.
The (e/a)local value is calculated to be 2.01, which is very close to its nominal
value of two: (e/a)Be = (e/a)Mg = 2.0. We consider this to be brought about by the
restoration of the free electron behaviour at the Fermi level, thanks to the growth of
new states arising from orbital hybridizations between Mg-p and Be-p states.

The HR plot data along with the total DOS for Be13Sb are shown in Fig. 13.4.
The total DOS is again found to be similar to that in Be except for the growth of
new states across the Fermi level. The growth of the new states must be attributed
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Fig. 13.3 Hume–Rothery
plot, and total density of
states for Be13Mg. Small
open circles denote the
electronic state |G|2 versus
the energy eigen value at
given symmetry points, at
which the square of the
Fourier coefficient |CjG|2 is
the largest in the wave
function outside the MT
sphere

Fig. 13.4 Hume–Rothery
plot, and total density of
states for Be13Sb. Small open
circles denote the electronic
state |G|2 versus the energy
eigen value at given
symmetry points, at which the
square of the Fourier
coefficient |CjG|2 is the
largest in the wave function
outside the MT sphere

to orbital hybridization effect between Be-p and Sb-p states. One can see that the
free electron-like behaviour, as guided by the red line in Fig. 13.4, is resumed across
the Fermi level owing to the growth of the new states. The value of (2kF )2 is im-
mediately deduced to be 38.75 from the HR plot. The resulting (e/a)local = 2.26 is
very close to its nominal valence of 2.21 (=31/14), lending strong support to the
restoration of the free electron behaviour at the Fermi level.

Guided by the same symbols as those in Fig. 13.3, we are convinced to say that
electronic states over energies from −2 to +2 eV are heavily perturbed by zone
effects associated with G2 = 35, 36 and 40, thereby resulting in not only a wide
pseudogap but also the new states near the Fermi level inside the pseudogap. In
other words, Fs–Bz interactions involving multi-zones of G2 = 35, 36 and 40 are to
produce a wide pseudogap as a result of interference of electrons with relevant zone
planes in the fcc Brillouin zone.
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The Fs–Bz interactions in hcp-Be and Mg essentially involve a single zone of
G2 = 1.98 and 1.90, respectively. Instead, the participation of multi-zones is essen-
tial upon forming a pseudogap in CMAs including Be13Mg and Be13Sb.

In summary, we revealed that the effective Fermi spheres with (2kF )2 = 35.92
and 38.75 for Be13Mg and Be13Sb, respectively, are embedded in the net of almost
spherical Brillouin zones consisting of 12-fold {440} with G2 = 32, 48-fold {531}
withG2 = 35, 8-fold {600} and 24-fold {442} zones withG2 = 36 and 24-fold {620}
zones with G2 = 40. The Fs–Bz interactions involving the multi-zones above must
be responsible for forming a pseudogap and new states as well across the Fermi level
and thereby lowering the electronic energy of the system. The involvement of the
common Fs–Bz interactions in them leads us to conclude that they obey the Hume–
Rothery stabilization mechanism, though the multi-zone effect causes the resulting
(e/a)local values to be scattered over 2.01 to 2.26.
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Chapter 14
Hume–Rothery Stabilization Mechanism
in Tsai-Type Cd6Ca Approximant and e/a
Determination of Ca and Cd Elements
in the Periodic Table

U. Mizutani, M. Inukai, H. Sato, K. Nozawa, and E.S. Zijlstra

Abstract We performed FLAPW electronic structure calculations with subsequent
FLAPW-Fourier analysis for Tsai-type Cd6Ca containing 168 atoms per unit cell
with space group Pm3̄. The square of the Fermi diameter (2kF )2, e/a and critical
reciprocal lattice vector |G|2s were determined. The origin of the pseudogap across
the Fermi level was interpreted in terms of the Hume–Rothery stabilization mech-
anism based on Fermi surface–Brillouin zone interactions (Fs–Bz) involved. The
intuitively expected value of e/a = 2.0 was confirmed. By extending our work to
intermetallic compounds existing in the Cd–Ca binary alloy system, we determined
the e/a values for Ca embedded in the polyvalent matrix Cd. The effective e/a for
Ca was deduced to be two.

14.1 Introduction

The origin of a pseudogap at the Fermi level in MI-type approximants like Al–Mn
and Al–Cu–Fe had been largely discussed in terms of orbital hybridizations due
mainly to Al-sp and TM-d (TM=Mn, Fe, etc.) states involved. Unfortunately, the
electron concentration-dependent phase stabilization or the Hume–Rothery stabi-
lization mechanism can be hardly approached along this line. Obviously, the Hume–
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Rothery stabilization mechanism can be most efficiently studied in the context
of the Fermi surface–Brillouin zone (Fs–Bz) interactions in reciprocal space [1].
Mizutani and his coworkers [2, 3] have recently made first-principles WIEN2k-
FLAPW electronic structure calculations with subsequent FLAPW-Fourier analy-
sis for both RT- (Rhombic Triacontahedron) and MI- (Mackay Icosahedron) type
1/1–1/1–1/1 approximants and revealed that the Hume–Rothery stabilization mech-
anism works equally for both families of approximants. They confirmed the exis-
tence of common Fs–Bz interactions and could attribute the origin of a pseudo-
gap to the interference phenomenon of electrons across the Fermi level with recip-
rocal lattice vector |G|2s centered at 50 in units of (2π/a)2, where a is the lat-
tice constant. The square of the Fermi diameter (2kF )2 was deduced to be equally
close to 50. Therefore, the matching condition (2kF )2 = |G|2 involving |G|2 = 50
as major plane waves holds universally well for both RT- and MI-type approxi-
mants.

It is now time for us to examine if the matching condition (2kF )2 = |G|2 with
|G|2 = 50 also holds for the family of Tsai-type 1/1–1/1–1/1 approximants. Tsai et
al. [4] reported in 2000 that a stable binary icosahedral quasicrystal can be formed
at the composition Cd5.7Yb in the Cd–Yb alloy system and belongs to a new class
of the quasicrystal consisting of 66-atom icosahedral clusters. Soon after that, both
compounds Cd6Yb and Cd6Ca were identified as 1/1–1/1–1/1 approximants with
space group Im3̄ to the icosahedral quasicrystal in both Cd–Yb and Cd–Ca alloy
systems [5, 6].

The Cd6M (M= Ca and Yb) approximant to the Cd5.7M quasicrystal was found
to involve geometrical disorder in the tetrahedral atom cluster in the first shell. At
room temperature, the orientation of the cluster is so random that the crystal can
be treated on average with space group Im3̄. To the best of our knowledge, the
atomic structure of the low temperature phase Cd6Ca has not been experimentally
determined. Nozawa and Ishii [7] carried out first-principles structural relaxation to
relax short interatomic distances involved in the experimentally derived structure
due to Gómez and Lidin [6]. They pointed out that the structure model proposed
by Lin and Corbett [8], in which four atoms in the first shell are oriented towards
the center of the pentagonal faces of the dodecahedral second shell, is most sta-
ble at the lattice constant 15.3 Å, and that the Ishimasa model [9] becomes more
stable when the lattice constant is lowered to 15.1 Å. It was noted that the Ishi-
masa model above is best suited to describe the low temperature ordered phase of
Zn6Sc [7].

We performed first-principles FLAPW band calculations with subsequent
FLAPW-Fourier analysis for Cd6Ca 1/1–1/1–1/1 approximant by using the model
structure constructed as an extension of [7]. The aim of the present work is to in-
terpret the origin of a pseudogap at the Fermi level in terms of Fs–Bz interactions
involved and to discuss if the Hume–Rothery stabilization mechanism universally
holds in all 1/1–1/1–1/1 approximants.
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14.2 Electronic Structure Calculations

The model structure of the Cd6Ca 1/1–1/1–1/1 approximant was obtained by intro-
ducing the cubeoctahedron model proposed by Lin and Corbett [8] for the tetrahe-
dral cluster in the first shell into the structure refined by Nozawa and Ishii [7]. Here
the relaxation was executed using the generalized gradient approximation (GGA)
for the exchange-correlation energy in place of the local density approximation
(LDA) employed in [7]. After relaxing both lattice constant and atom positions,
we could obtain atomic coordinates for a total of 168 atoms in a cubic unit cell with
the lattice constant a = 15.97 Å in better agreement with the experimentally derived
value of 15.702 Å at 293 K [6].

The FLAPW band calculations have been performed for Cd6Ca by employing
the commercially available WIEN2k-FLAPW program package [10] with INTEL
version Linux personal computers. Our in-house Fortran90 program was employed
to carry out the FLAPW-Fourier analysis by using “case.output1” file generated by
running WIEN2k [1–3]. Briefly, the FLAPW-Fourier spectrum was first constructed
to plot the energy dependence of plane waves specified by the square of reciprocal
lattice vector |G|2 in units of (2π/a)2 at selected symmetry points of the Brillouin
zone. This allows us to extract electronic states dominating at the Fermi level. We
also constructed the energy dispersion relation for the LAPW state {2|ki + G|}2Ej
having the largest Fourier coefficient for a given energy Ej and wave vector ki pro-
duced by partitioning the Brillouin zone into Nk meshes. This is done in an energy
interval Ej ≤E <Ej +�E for all ki values in the Brillouin zone with subsequent
averaging of {2|ki +G|}2E over the Brillouin zone. It provides the energy dispersion
relation of the LAPW states having the largest Fourier coefficient. We specifically
call this the Hume–Rothery plot since it allows us to determine the square of the
effective Fermi diameter (2kF )2 and e/a values for any intermetallic compound
studied [1–3].

The WIEN2k was run by using the cut-off parameter RMTKmax = 6.0, which
determines the number of basis functions or size of the matrices, and Nk = 125 for
Cd6Ca.

14.3 Results and Discussions

The energy dispersion relations and the total DOS for Cd6Ca are shown in Fig. 14.1.
A deep pseudogap is obtained across the Fermi level. The Cd- and Ca-partial DOSs
in Cd6Ca are shown in Figs. 14.2(a) and (b), respectively. The pseudogap at the
Fermi level may well be explained in terms of orbital hybridization effects mainly
due to Cd-sp and Ca-d states. However, in the present work, we discuss the origin
of the pseudogap in terms of Fs–Bz interactions by analyzing both FLAPW-Fourier
spectrum and the Hume–Rothery plot.

Figures 14.3(a) and (b) show the FLAPW-Fourier spectra for selected |G|2s at
symmetry points M and point G for Cd6Ca, respectively. One can immediately find
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Fig. 14.1 (a) Dispersion relations and (b) total density of states (DOS) for Cd6Ca 1/1–1/1–1/1
approximant. VEC indicates the integrated DOS or the number of electrons accommodated in the
valence band

Fig. 14.2 (a) Cd-s, Cd-p and Cd-d and (b) Ca-s, Ca-p and Ca-d partial DOS of Cd6Ca

that LAPW waves of |G|2 = 50 at M and 48 at " are most evenly distributed across
the Fermi level. By studying the FLAPW-Fourier spectrum at symmetry points X
as well, we conclude that electronic states at the Fermi level are dominated over
|G|2s from 44 to 54 and that |G|2 = 48 and 50 are critical. Figure 14.4(a) shows the
energy dependence of 〈∑k+G |Ck+G|2max〉E , or briefly 〈|C|2max〉E , which represents
the square of the maximum Fourier coefficient extracted from wave function outside
the MT spheres on a given energy surface E(k)=E. Here the summation is carried
out over equivalent zone planes. Its value at the Fermi level, 〈|C|2max〉EF , turns out to
be 0.21 for Cd6Ca, indicating that electrons at the Fermi level are well itinerant [11].

The Hume–Rothery plot, along with its non-dimensional standard deviation
F(E) [11] for Cd6Ca, is shown in Fig. 14.4(b). The data points fall on a straight
line from −8 eV above the Cd-4d band to about +2 eV above the Fermi level.
A small anomaly found over +3 to +6 eV is due to Ca-3d states. The square of the
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Fig. 14.3 FLAPW-Fourier spectrum at symmetry points (a) M and (b) G with |G|2 ranging over
32 to 58 for Cd6Ca. The total DOS is superimposed

Fig. 14.4 (a) Energy dependence of 〈|C|2max〉 and (b) Hume–Rothery plot for Cd6Ca

Fermi diameter, (2kF )2 in units of (2π/a)2, is immediately deduced to be 47.7±0.2
at the intercept with the Fermi level. We confirmed that the matching condition
(2kF )2 = |G|2, which plays a key role in the formation of a pseudogap at the Fermi
level [1], is well satisfied, since the value of (2kF )2 thus obtained agrees well with
critical |G|2 s= 48 and 50 mentioned above.

The effective e/a value can be immediately calculated by inserting (2kF )2 ob-
tained above into e/a = [π{(2kF )2}3/2]/3N , where the number of atoms per unit
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Fig. 14.5 Ca concentration
dependence of (e/a)total for
intermetallic compounds in
the Cd–Ca alloy system

cell, N , is equal to 168. It turns out to be 2.05, in good agreement with a composi-
tion average of 2.0 under the condition that (e/a)Cd = 2.0 and (e/a)Ca = 2.0.

It is important to determine the e/a values of intermetallic compounds existing as
stable phases in the Cd–Ca alloy system. There are four compounds: Cd6Ca (cP168)
discussed above, Cd2Ca (hP12), CdCa (cP2), and Cd2Ca3 (tP20) [12]. The FLAPW-
Fourier analysis was made for all of them as well as for the pure elements Cd and
Ca. Due to limited space, we show in Fig. 14.5 only the final results, i.e., the Ca
concentration dependences of the e/a values deduced from the Hume–Rothery plot
for intermetallic compounds in the Cd–Ca alloy system. The data points are found
to fall on straight lines connecting (e/a)Cd = 2.0 and (e/a)Ca = 2.0, irrespective
of sizes of the unit cell and crystal structures. This confirms that the assignment
of e/a = 2.0 to Ca embedded in polyvalent elements like Cd is theoretically well
justified.

As emphasized in the Introduction, the matching condition (2kF )2 = |G|2 with
the most critical |G|2 = 50 equally holds for RT- and MI-type 1/1–1/1–1/1 approx-
imants. The present studies on Cd6Ca revealed the Tsai-type 1/1–1/1–1/1 approxi-
mant to be subjected to the same Hume–Rothery stabilization mechanism. Finally,
it is important to compare the present results with those on the low temperature or-
dered phase Zn6Sc 1/1–1/1–1/1 approximant with N = 336 twice as large as that
for Cd6Ca studied above. The total e/a value for Zn6Sc was calculated to be 2.18
from (2kF )2 = 79.0± 0.2 derived from its Hume–Rothery plot [13]. An insertion
of 2.18 and N = 168 back to the relation e/a = [π{(2kF )2}3/2]/3N gives rise to
(2kF )2 = 49.6, in excellent agreement with our conclusion that all 1/1–1/1–1/1 ap-
proximants including Zn6Sc forming a superlattice obey the same Hume–Rothery
stabilization mechanism specified by (2kF )2 = |G|2 = 50.
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Chapter 15
Hume–Rothery Stabilization Mechanism
in Low-Temperature Phase Zn6Sc Approximant
and e/a Determination of Sc and Y in M–Sc
and M–Y (M = Zn, Cd and Al) Alloy Systems

U. Mizutani, M. Inukai, H. Sato, and E.S. Zijlstra

Abstract We have performed FLAPW electronic structure calculations with sub-
sequent FLAPW-Fourier analysis for the low temperature phase Zn6Sc containing
336 atoms per unit cell with space group B2/b. The square of the Fermi diameter
(2kF )2, electrons per atom ratio e/a and critical reciprocal lattice vector |G|2s were
determined. The origin of its pseudogap at the Fermi level was interpreted as arising
from interference of electrons with (2kF )2 = 79.0± 0.2 with sets of lattice planes
with |G|2 ranging over 72 to 96. The work was extended to intermetallic compounds
existing in M–Sc and M–Y (M= Zn, Cd and Al) binary alloy systems. The effective
e/a values for Sc and Y were deduced to be 3.0 and 3.1, respectively.

15.1 Introduction

Guided by the empirical Hume–Rothery electron concentration rule, Tsai and his
coworkers discovered a series of thermally stable Al–Cu–TM (TM = Fe, Ru and
Os) and Al–Pd–TM (TM =Mn, Re) icosahedral quasicrystals in the early 1990s
[1, 2]. Here negative valences proposed by Raynor [3] for transition metal (TM)
elements were used. Tsai et al. [4] reported in 2000 that a stable binary icosahe-
dral quasicrystal can be formed at the composition Cd5.7Yb and belongs to a new
class of packing 66-atom icosahedral clusters. They also revealed that the compound
Cd6Yb lying next to the quasicrystal above in the phase diagram corresponds to its
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1/1–1/1–1/1 approximant with space group Im3̄. More recently, Ishimasa and his
associates [5] have succeeded in synthesizing the Zn–Mg–Sc quasicrystal guided
by the work of Andrusyak et al. [6]. Later, Ishimasa et al. [7] studied the struc-
tures in more details in both quasicrystals and their 1/1–1/1–1/1 approximants in
Zn–Mg–Sc, Cu–Ga–Mg–Sc and Zn–Mg–Ti alloys and revealed the presence of
a few Zn atoms in the first shell in the 1/1–1/1–1/1 approximants and claimed
them to be isostructural to the family of Cd6M (M = Yb and Ca) 1/1–1/1–1/1
approximants. They also discussed the formation range for the Tsai-type icosa-
hedral quasicrystals in terms of electrons per atom ratio e/a by taking a compo-
sition average of (e/a) values of constituent elements: (e/a)Cu = (e/a)Ag = 1.0,
(e/a)Mg = (e/a)Ca = (e/a)Zn = (e/a)Cd = (e/a)Yb = 2.0, (e/a)Sc = (e/a)Y = 3.0
and (e/a)Ti = 4.0. As a result, they are commonly stabilized at e/a ranging over
2.00 to 2.15. It is worthwhile noting, at this stage, that tri-valence for Sc and Y in
Group 3 and quadri-valence for Ti and Zr in Group 4 in the periodic table were
originally proposed by Pauling [8].

There is a clear difference in the approach between Pauling and Raynor: Paul-
ing treated the valence band of the TM element itself to define its metallic valence,
while Raynor considered the effective e/a of the TM element embedded in the host
metal Al. Obviously, a substantial difference in the electron concentration param-
eter emerged between them. In the past, experimentalists have employed either of
these two models upon discussing the e/a-dependent alloy phase stability or the
Hume–Rothery electron concentration rule, though both models were constructed
without any rigorous justification based on first-principles electronic structure cal-
culations. To overcome this difficulty, Mizutani and coworkers [9–11] employed
first-principles FLAPW (Full potential Linearized Augmented Plane Wave) elec-
tronic structure calculations and established a powerful technique to extract Fs–Bz
(Fermi surface–Brillouin zone) interactions involved and to determine the e/a value
for elements and intermetallic compounds, regardless of whether or not the TM el-
ement is involved. They have made full use of its formalism, in which the wave
functions outside the muffin-tin (MT) spheres are expanded into plane waves over
allowed reciprocal lattice vectors G.

The Zn6Sc compound is known to be the 1/1–1/1–1/1 approximant to its qua-
sicrystal and the structure of its low temperature phase has been recently determined
by Ishimasa et al. [12]. The geometrically disordered atom cluster in the first shell
undergoes an orientational ordering and the structure was described as a perfectly
ordered phase containing a total of 336 atoms per a monoclinic unit cell with space
group C2/c. In the present work, we have performed the WIEN2k-FLAPW band
calculations with subsequent FLAPW-Fourier analysis for Zn6Sc with equivalent
space group B2/b. The calculations above were extended to existing intermetallic
compounds in M–Sc and M–Y (M = Al, Zn and Cd) alloy systems to determine
theoretically the e/a values of the TM elements Sc and Y.
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15.2 Electronic Structure Calculations

FLAPW band calculations have been performed by employing the commercially
available WIEN2k-FLAPW program package [13] with INTEL version Linux per-
sonal computers. Our in-house Fortran90 Program has been devised to carry out
the FLAPW-Fourier analysis by using “case.output1” file generated by running
WIEN2k [9–11].

The FLAPW-Fourier spectrum was first constructed to plot the energy depen-
dence of plane wave components specified by the square of reciprocal lattice vector
|G|2 in units of (2π/a)2 at selected symmetry points of the Brillouin zone. This al-
lows us to extract electronic states dominating at the Fermi level. The reciprocal lat-
tice vectors thus extracted are called critical. As a next step, we construct the energy
dispersion relation for the LAPW state {2|ki +G|}2Ej having the largest Fourier co-
efficient for a given energy Ej and wave vector ki produced by partitioning the Bril-
louin zone into Nk meshes. This is done in an energy interval Ej < E <Ej +�E
for all ki values in the Brillouin zone with subsequent averaging of {2|ki + G|}2E
over the Brillouin zone. It provides the energy dispersion relation reflecting the
LAPW states having the largest Fourier coefficient. We specifically call this the
Hume–Rothery plot since it allows us to determine the square of the effective Fermi
diameter (2kF )2 and the e/a values for each intermetallic compound studied [9–11].

The WIEN2k was run by using the cut-off parameter RMTKmax = 6.0, which
determines the number of basis functions or size of the matrices, and Nk = 400 for
Zn6Sc.

15.3 Results and Discussions

The energy dispersion relations and the total DOS for Zn6Sc are shown in Fig. 15.1.
A deep DOS pseudogap is formed at the Fermi level. The Zn- and Sc-partial DOSs in
Zn6Sc are shown in Figs. 15.2(a) and (b), respectively. Orbital hybridization effects
mainly due to Zn-sp and Sc-d states are apparently responsible for opening a pseu-
dogap across the Fermi level. We can alternatively discuss the origin of a pseudogap
at the Fermi level in terms of Fs–Bz interactions by analyzing both FLAPW-Fourier
and the Hume–Rothery plot.

Figure 15.3 shows the FLAPW-Fourier spectrum at symmetry point Γ for se-
lected |G|2s for Zn6Sc. One can immediately find that LAPW waves of |G|2 = 76
and 80 are most densely distributed across the Fermi level. The electronic states
thus extracted are called critical. By studying the FLAPW-Fourier spectra at sym-
metry points M and X as well, we conclude that electronic states at the Fermi level
are dominated over |G|2s from 72 to 96 and that |G|2 = 76 and 80 are the most
critical. Figure 15.4(a) shows the energy dependence of 〈∑k+G |Ck+G|2max〉E , or
briefly 〈|C|2max〉E , which represents the square of the maximum Fourier coefficient
extracted from wave function outside the MT spheres on a given energy surface
E(k) = E. The summation is carried out over equivalent zone planes. Its value at
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Fig. 15.1 (a) Dispersion relations and (b) total density of states (DOS) for low temperature phase
Zn6Sc. VEC indicates the integrated DOS or the number of electrons accommodated in the valence
band

Fig. 15.2 (a) Zn-s, Zn-p, Zn-d and Zn-f and (b) Sc-s, Sc-p, Sc-d and Sc-f partial DOS of Zn6Sc

the Fermi level, 〈|C|2max〉EF , may be used as a measure to judge the itinerancy of
electrons at the Fermi level. An electron at the Fermi level is regarded as being itin-
erant if 〈|C|2max〉EF > 0.1 [14]. The value for Zn6Sc turns out to be 0.067, indicating
that electrons at the Fermi level are localized.

The Hume–Rothery plot and its non-dimensional standard deviation F(E) [14]
for Zn6Sc are shown in Fig. 15.4(b). The data points fall on a straight line, provided
that the free electron model holds well. A triangle shaped anomaly at about −8 eV
reflects the highly localized Zn-3d band. One can also see that anomalies due to Sc-d
states occur across the Fermi level but are well suppressed. A straight line can be
drawn through the Fermi level, as indicated in Fig. 15.4(b). The square of the Fermi
diameter, (2kF )2 in units of {2π/(abc)1/3}2, is deduced to be 79.0± 0.2. It is clear
that the matching condition (2kF )2 = |G|2, which plays a key role in the formation
of a pseudogap at the Fermi level, is well satisfied, since (2kF )2 thus obtained agrees
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Fig. 15.3 FLAPW-Fourier
spectrum at symmetry point
G with |G|2s ranging over 68
to 96 for Zn6Sc. The total
DOS is superimposed

Fig. 15.4 (a) Energy dependence of 〈|C|2max〉 and (b) Hume–Rothery plot for Zn6Sc. The ordinate
in (b) is expressed in units of that in the orthorhombic structure by ignoring a slight deviation of
an angle g from 90◦ in the monoclinic structure [12]. F(E) represents non-dimensional standard
deviation [14]

well with the critical |G|2s= 76 and 80 mentioned above. This explains the origin
of the pseudogap at the Fermi level in terms of Fs–Bz interactions involved.

The effective e/a value can be immediately calculated by inserting (2kF )2 ob-
tained above into e/a = [π{(2kF )2}3/2]/3N , where N is the number of atoms per
unit cell. It turns out to be 2.18, in a good agreement with a composition average of
2.14 under the condition that (e/a)Zn = 2.0 and (e/a)Sc = 3.0. We showed that the
matching condition for Cd6Ca approximant containing 168 atoms per cubic cell is
satisfied with (2kF )2 = |G|2 = 50 [15]. An insertion of e/a= 2.18 and N = 168 in
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Fig. 15.5 (a) Sc and (b) Y concentration dependence of (e/a)total for intermetallic compounds in
the M–Sc and M–Y (M=Al, Zn and Cd) alloy systems, respectively

place of N = 336 back to the equation above results in (2kF )2 = 50. Hence, we can
say that both Zn6Sc forming a superlattice with N = 336 and Cd6Ca approximant
are isoelectronic and obey the Hume–Rothery stabilization mechanism.

It is of great importance to study the universality for the assignment of (e/a)=
3.0 for Sc and Y in Group 3. The FLAPW-Fourier analysis and the Hume–Rothery
plot were made for existing intermetallic compounds [16] and pure elements in the
M–Sc (M= Al and Zn) and M–Y (M= Al, Zn and Cd) alloy systems. We respec-
tively show in Figs. 15.5(a) and (b) the TM concentration dependences of e/a values
deduced from the Hume–Rothery plot for all intermetallic compounds mentioned
above. The data points for M–Sc (M = Al and Zn) fall on straight lines connect-
ing (e/a)Al = 3.0, (e/a)Zn = 2.0 and (e/a)Sc = 3.0. Similarly, the data for M–Y
(M=Al, Zn and Cd) fall on a straight line connecting (e/a)Al = 3.0, (e/a)Cd = 2.0
and (e/a)Y = 3.1. We conclude that e/a= 3.0 and 3.1, respectively, are assigned to
TM elements Sc and Y in Group 3 in the periodic table, regardless of their concen-
trations in M–TM (M= Al, Zn, Cd) alloy systems and that Zn6Sc with a giant cell
does obey this simple rule.
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Chapter 16
Analysis of Dislocations in Quasicrystals
Composed of Self-assembled Nanoparticles

Liron Korkidi, Kobi Barkan, and Ron Lifshitz

Abstract We analyze transmission electron microscopy (TEM) images of self-
assembled quasicrystals composed of binary systems of nanoparticles. We use an
automated procedure that identifies the positions of dislocations and determines
their topological character. To achieve this, we decompose the quasicrystal into
its individual density modes, or Fourier components, and identify their topological
winding numbers for every dislocation. This procedure associates a Burgers func-
tion with each dislocation, from which we extract the components of the Burgers
vector after choosing a basis. The Burgers vectors that we see in the experimen-
tal images are all of lowest order, containing only 0s and 1s as their components.
We argue that the density of the different types of Burgers vectors depends on their
energetic cost.

16.1 Dislocations in Self-assembled Soft-Matter Quasicrystals

Self-assembled soft-matter quasicrystals have been observed in recent years in a
wide variety of different systems, in all cases but one with dodecagonal (12-fold)
point-group symmetry. First discovered by Zeng et al. [21] in liquid crystals made
of micelle-forming dendrimers, self-assembled soft-matter quasicrystals have since
appeared in other systems such as ABC-star polymers [9], in binary systems of
nanoparticles [16], in block co-polymer micelles [6], and in mesoporous silica [20].
These newly-realized systems not only provide exciting platforms for the funda-
mental study of the physics of quasicrystals [2], they also hold the promise for new
and exciting applications, especially in the field of photonics. An overview of soft
matter quasicrystals, including many references relevant to these systems, is given
by Lifshitz and Diamant [14] as well as by Ungar et al. [17, 18] and Dotera [4, 5].

Here we concentrate on the systems of nanoparticles studied by Talpin et al. [16],
consisting typically of two types of particles, such as PbS, Au, Fe2O3, and Pd,
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with different diameters. These binary systems of particles, when placed in a so-
lution, self-assemble into structures with long-range order, including 12-fold sym-
metric quasicrystals. The dimensions of the particles—typically a few nanometers
in diameter—are such that they can be imaged directly using a transmission elec-
tron microscope (TEM). This allows one to study effects that are inaccessible with
atomic-scale quasicrystals. Here we present a quantitative analysis of the disloca-
tions that are naturally formed in these quasicrystals as they self-assemble.

In periodic crystals in d-dimensions, one can usually identify the position of a
dislocation rather easily by the termination of a plane of atoms in three dimensions,
or a line of atoms in two dimensions. One then chooses a basis for the periodic lat-
tice; encircles each dislocation with a Burgers loop, or a Burgers circuit, of basis
vectors; and counts the accumulated difference between the number of steps taken
forward and backward in the direction of each of the d basis vectors. The d integers
thus obtained define the Burgers vector which encodes the topological character of
the dislocation. A similar real-space procedure can be used on a quasiperiodic crys-
tal by overlaying it with a quasiperiodic tiling of rank D > d (for a definition, see
below), yielding a D-component Burgers vector [19]. A tiling-based analysis [10]
of binary systems of nanoparticles was indeed recently carried out by Bodnarchuk
et al. [3]. Here we propose an alternative approach for analyzing dislocations in
Fourier space that we believe is useful when dealing with aperiodic crystals.

16.2 Density Modes, Winding Numbers, and the Burgers
Function

Let us describe the density of nanoparticles in a self-assembled crystal by a function
ρ(r). The Fourier expansion of such a function is given by

ρ(r)=
∑

k∈L
ρ(k)eik·r, (16.1)

where the (reciprocal) lattice L is a finitely generated Z-module, which means that it
can be expressed as the set of all integral linear combinations of a finite numberD of
d-dimensional wave vectors, b(1), . . . ,b(D). In the special case where the smallest
possible D, called the rank of the crystal, is equal to the physical dimension d , the
crystal is periodic. More generally, for quasiperiodic crystals D ≥ d , and we refer
to all quasiperiodic crystals that are not periodic as quasicrystals [11, 12].

As explained elsewhere [13], the topological nature of a dislocation is related to
the fact that it cannot be made to disappear by local structural changes. For this to
be the case, as one follows a loop around the position of a dislocation and returns to
the point of origin, one sees a crystal that is everywhere only-slightly distorted from
the perfectly ordered state, except near the core of the dislocation. In particular, the
complex amplitudes ρ(k) of the density modes maintain their magnitudes along the
loop, each accumulating at most a phase, which upon return to the point of origin
must be an integer multiple of 2π . The collection of all such integers, or so-called
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winding numbers, for a given dislocation defines a linear function NB(k) from the
lattice L to the set of integers Z, which we call the Burgers function.

The Burgers function of a given dislocation associates a particular winding num-
ber NB(k) with every wave vector k ∈ L. Because this function is linear, after
choosing a basis {b(i)} for the lattice, it is uniquely specified by a set of only D
integers ni ≡NB(b(i)), forming the Burgers vector (n1, . . . , nD). Thus,

∀k=
D∑

i=1

aib(i) ∈ L: NB(k)=
D∑

i=1

aiNB
(
b(i)
)=

D∑

i=1

aini, (16.2)

where ai ∈ Z. This implies that in order to fully characterize a dislocation in an
experimental image it suffices to isolate the D density modes associated with a
chosen basis, and obtain their corresponding winding numbers. This is the basis
of the approach presented below for analyzing dislocations (for more detail, see
[1, 7, 8]).

16.3 Analysis of the Dislocations in a Quasicrystal
of Nanoparticles

We begin with a high-resolution TEM image of one of the dodecagonal quasicrys-
tals grown by Talapin [15], a section of which is shown in Fig. 16.1(a). This partic-
ular quasicrystal is self-assembled from 11.2 nm PbS and 5.2 nm Au nanoparticles,
and contains a distribution of dislocations that are formed naturally during the self
assembly. We Fourier transform the TEM image, to obtain the diffraction image
shown in Fig. 16.1(b), and then choose four of the Bragg peaks in the 12-fold ring
containing the strongest reflections as a basis b(1), . . . ,b(4) for the reciprocal lattice.
These are labeled in the schematic representation of the lattice in Fig. 16.2.

For each of the four pairs of Bragg peaks, associated with the chosen basis vec-
tors and their negatives, we then carry out the following procedure:

1. We filter out small regions around the two opposite Bragg peaks, as indicated by
a pair of red circles in Fig. 16.1(b) for the case of the density mode associated
with the wave vectors ±b(1).

2. We invert the Fourier transform in the filtered regions resulting in a real-space
image of a single density mode. Dislocations appear as discontinuities in the
stripes. We use a routine that identifies all the discontinuities and marks their
positions, as shown in Fig. 16.1(c) for this density mode.

3. For each dislocation, a second routine then extracts the ith component ni =
NB(b(i)) of the Burgers vector. This is done by enclosing a counter-clockwise
loop around its position and calculating the accumulated phase in units of 2π .
Practically what we do is count the number of stripes crossed moving in the di-
rection of the wave vector b(i) on one side of the dislocation, and subtract the
number of stripes crossed moving against the direction of b(i) while returning on
the other side, as demonstrated in Fig. 16.3.



120 L. Korkidi et al.

Fig. 16.1 (a) A section of a TEM image of a dodecagonal quasicrystal, self-assembled from
11.2 nm PbS and 5.2 nm Au showing several dislocations (courtesy of Dmitri Talapin 2012).
(b) Fourier transform of the TEM image in (a), with the central peak blocked. A pair of Bragg
peaks, associated with one of the basis vectors and its negative, is marked in red. (c) The corre-
sponding section of the inverse Fourier transform of the Bragg peaks marked in (b) with red circles
marking the positions of four dislocations

Fig. 16.2 Schematic representation of the three strongest rings in the Fourier transform of
our dodecagonal quasicrystal. The inner ring is the strongest, containing the four basis vectors
b(1), . . . ,b(4). The second strongest ring is the outer one, obtained from all the sums of two adja-
cent vectors in the inner ring, as indicated by solid arrows. The third strongest ring lies in between,
obtained from all sums of vector pairs in the inner ring that are separated by 90 degrees, as indicated
by dashed arrows

Finally, we verify the correctness of the calculation by extracting the values NB(k)
for additional wave vectors k and checking that they satisfy the linearity requirement
given by Eq. (16.2).
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Fig. 16.3 Two typical examples for the dislocations found using our procedure. In each counter–
clockwise loop, the winding number ni is given by the number of red arrows, counting stripes
crossed in the positive direction of b(i), minus the number of green arrows, counting stripes in the
negative direction. (a) A single-subset dislocation with Burgers vector (0,−1,0,−1) and (b) a du-
al-subset dislocation with Burgers vector (0,0,1,−1) (see text for definitions)

16.4 Results and Discussion

We typically find a density of a few dozen dislocations per μm2 in the nanoparticle
quasicrystals of [15]. All of these dislocations are of lowest order in the sense that
ni = 0, 1, or −1. To understand the topological nature of these dislocations, it is
useful to classify them by dividing the four basis vectors into two hexagonal subsets,
{b(1),b(3)} and {b(2),b(4)} (see Fig. 16.2). By doing so, we find that the density of
dislocations with non-zero components in only one of the subsets, which we call
single-subset dislocations, is five times larger than that of dislocations with non-
zero components in both subsets, which we call dual-subset dislocations. Examples
of the two types of dislocations are shown in Fig. 16.3.

To try and explain these observations, consider the free energy of the self-
assembled crystal as an expansion in products of density mode amplitudes ρ(k)
(see [13]),

F{ρ} =
∞∑

n=2

∑

k1...kn

A(k1, . . . ,kn)ρ(k1) · · ·ρ(kn), (16.3)

where one can show that A(k1, . . . ,kn) = 0 unless k1 + · · · + kn = 0. We argue
that products in the sum (16.3) that contain high-intensity modes with large wind-
ing numbers have a greater contribution to increasing the free energy away from
its minimum value in the perfect crystal. Accordingly, high-intensity modes tend to
exhibit smaller winding numbers. Indeed, we find that all the winding numbers as-
sociated with the two brightest rings (see Fig. 16.1(b) and Fig. 16.2) are either 0 or
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Fig. 16.4 Inverse Fourier transform of a pair of Bragg peaks using filters of different size. For
a circular filter with a radius of 25 pixels, used in (a), we find 12 dislocations, marked with red
circles in (c). As we decrease the filter radius to 15 pixels, in (b), we find only 5 dislocations in the
inverse Fourier transform in (d)

±1, whereas it is only on the 3rd ring that we begin to see winding numbers that are
either 0, ±1, or ±2. Moreover, owing to the linearity of the Burgers function, the
fact that the winding numbers on the second brightest ring are at most of magnitude
1 prevents two adjacent peaks from the different subsets in the first ring from having
non-zero winding numbers of the same sign. Because the ring of Bragg peaks, ob-
tained by adding pairs of wave vectors separated by 60 degrees, is extremely weak
(see Fig. 16.1(b)), there is no such constraint on the winding numbers belonging to
the same subset of basis vectors. The fact that this constraint applies only to dual-
subset dislocations reduces their possible combinations and overall relative density.

A word of caution is in order regarding our approach for analyzing dislocations.
Because the density of the dislocations is relatively high, the Bragg peaks are not
point-like but are rather spread as can be seen in Fig. 16.1(b). This means that some
of the information about the dislocations may lie between Bragg peaks and may be
lost if the filters are too small. Therefore, our approach is sensitive to the shape and
size of the filter that we use around each Bragg peak. As we increase the filter size
we obtain more information and potentially find more dislocations, as demonstrated
in Fig. 16.4. We thus try to optimize the filter by gradually enlarging its size until
the number of dislocations stops increasing substantially.

Our approach for analyzing dislocations should be easily adapted to other sys-
tems even when the density of the dislocations is quite large, as one may expect for
soft matter systems. Moreover, for dynamical systems that can be imaged in real
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time one can use our automated method to follow and quantitatively analyze the
dynamics of the dislocations.
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Chapter 17
Average Unit Cell in Fourier Space and Its
Application to Decagonal Quasicrystals

B. Kozakowski and J. Wolny

Abstract This paper describes a new technique for solving the structure of qua-
sicrystals. The technique is based on transformations between an average unit cell
(AUC) and an envelope of diffraction peaks. For centrosymmetric structures like
the Penrose tiling, the envelope makes it possible to determine the sign of the phase
straight from the diffraction pattern. A Fourier transform of an envelope leads to a
distribution of atomic positions within an AUC. Apart from theoretical and model-
ing aspects of the technique, the paper also presents the results of applying it to the
well-known decagonal quasicrystal Al–Ni–Co.

17.1 Introduction

The most commonly used techniques for recovering the phase of diffraction re-
flections are Low Density Elimination [12] and Charge Flipping [10]. Their com-
parison and efficiency in the examination of decagonal quasicrystalline structures
were discussed in [4, 5]. The results of such analyses are entry points to a refine-
ment process which uses a structure factor derived for a chosen structure model.
The best-known structure model of 2D quasicrystals which proved to be an excel-
lent starting point for the structure refinement of real decagonal quasicrystals is
the Penrose tiling [1, 13–15]. Structure factors based on this tiling can operate in a
higher-dimensional space—“cut-and-project” [2, 7, 9] method or solely in the phys-
ical space: average unit cell (AUC) approach [18]. In this paper, we use the AUC
approach and, as the model structure, the Penrose tiling with rhombuses of the edge
length equal to one. Based on those two, we developed a new technique for the phase
recovery. It is achieved by using “envelope” curves. They allow us to determine the
sign of the phase. The technique is still being developed but the initial results ob-
tained on the widely studied alloy Al72Ni20Co8 [8, 14–16] prove that the method is
effective.
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The paper is structured as follows: first, we define some basic terms we use in
the diffraction analysis based on the average unit cell approach—among them, the
structure factor and envelope function. Then, we show how we use the envelope
function in the phase retrieval process and the reverse Fourier transform. Finally,
we discuss an application of this method to Al72Ni20Co8 alloy.

17.2 Average Unit Cell Approach

The Reference Grid is a regular set of points r such that ri =Niλ, whereNi is an
integer and λ denotes the vector of lengths between two neighboring points in the
grid. For a 1D example, we simply have xi = Niλx . The vector λ defines also the
elementary cell of a grid. The reduced coordinate u is the distance of an arbitrary
position. For a 1D reference frame X, we haveXj = uxj +Nxj ·λx . An average unit
cell is a distribution of reduced coordinates P(u). The choice of λ is determined by
the diffraction pattern that is studied and is associated with the base vectors of the
reciprocal space λ= 2π/k0, where k0 is the length of a chosen base vector.

It is shown [3, 11] that for the Fibonacci chain the average unit cell is non-zero
only within a limited space where it assumes a constant value and the distribution
becomes uniform. Similarly, in case of the Penrose tiling, the non-zero area of the
AUC consists of four pentagonal areas within which the density is constant [17].

The Base Vectors of the Reciprocal Space define the coordinate system of the
reciprocal space. For a 1D grid, we have k = nk0+mq0, where k0 is called the main
vector and q0 is the modulated vector, n andm are integers, q0 = k0/τ and the value
of τ = 0.5(1+√5)∼= 1.618.

Structure Factor We can apply the definitions set above to a derivation of the
structure factor:

F(k) =
∑

j

exp i(k · rj )=
∑

j

exp i(nk0uj +mq0vj )

=
∫∫

P(u, v) exp i(nk0u+mq0v)dv du.

The sum is over a very large set of points. In the first step of the derivation, we use
reduced coordinates written in two reference grids u, v associated with the main and
modulated vectors. In the second step, we exchange the sum for an integral over a
density function P(u, v) of a 2D AUC.

v(u) Relationship For both the Fibonacci chain and the Penrose tiling, this func-
tion assumes non-zero values only along a line segment defined by the equation
v = −τ 2 · (u − b) + b. For the Fibonacci chain b = 0, and for the Penrose tiling
b= j · λ/5 [6, 18].
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Envelope Function Let’s examine the implication of employing the v(u) relation-
ship to the structure factor. For the Fibonacci chain, we have

F(w)=
∫
P(u) · exp i(w · u)du= exp i(−w · u0) · sin(w · u0)

w · u0

where w = k0(n− τ ·m), u0 = 1/2τ , and the integral is over a uniform distribution
limited by (0, u0). In general, the structure factor of the Fibonacci chain is a complex
function. However, it is possible to cancel out the complex part of the function by
introducing a shift in atomic positions �u. This shift should result in moving the
v(u) relationship to one of the symmetry points of the rectangular reference frame
(u, v). It can be easily proved that if we choose as the main vector k0 = 2π/(3− τ)
and at the same time we shift the whole chain by u0, we get

F(w)= cos(m · π) · sin(w · u0)

w · u0
.

Even though this is a special case for the Fibonacci chain and generally, for a freely
decorated chain, it is impossible to make this sequence symmetric, the equation
obtained above will prove very useful for a demonstration of a technique that allows
us to establish the phases of the diffraction peaks for more symmetrical structures,
such as decagonal, freely decorated Penrose tilings.

We can relate w to k by combining the definition of τ, v(u) relationship, and
q = k/τ . As a result we obtain w = k−m√5k0,

F(k)= cos(m · π) · sin(k −m√5k0 · u0)

k−m√5k0 · u0
.

The structure factor can be used not only for the positions of peaks (k = nk0+mq0)
but for any other continuous value of k. In such a case, it is called the envelope
function. An envelope connects the tops of peaks that share the same value ofm. For
other peaks we observe a shift of an envelope by m

√
5k0 (plus a reversion caused

by the cosine factor for odd m’s); see Fig. 17.1 (bottom, left).
Note that form= 0 we obtain exactly the same equation as for F(w). This allows

us to construct an envelope based on the experimental data. Namely, if we plot the
function F(w) for the experimental peaks, the tops of those peaks will approximate
the curve of the envelope function; see Fig. 17.1 (top, right).

Obviously, experimental data gives us little indication about the phase. For sym-
metrical structures, however, the relationship between theoretical envelops and en-
velops obtained from experimental data allows us to recover the phase. It is so be-
cause, firstly, those two types of envelops cross the k-axis at the same points and,
secondly, because the phase is constant between two neighboring zeros of the func-
tion. After the phase is estimated and we have the model curve of the envelope
function, we use the reverse Fourier transform to obtain the distribution of atoms
within an AUC; see Fig. 17.1 (bottom, right)

P(u)=
∫
F(w) · exp i(−w · u)dw.
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Fig. 17.2 Intensity maps of the three types of Penrose tiling envelopes (j = 0: top, left; j = 1:
top, right; j = 2: bottom left) and their cross-section along the X-axis (bottom, right)

A very similar reasoning can lead us to the envelope function for the Penrose tiling:

F(wx,wy) =
∑

j=1,2,3,4

exp i
(
J (nx,ny,mx,my) · j/5

)

×
∫
Pj (ux,uy) · exp i(wx · ux +wy · uy)dux duy.

The integral over the pentagonal density functions has a simple closed-form solu-
tion. It is provided in [6]. The sum goes over all 4 distributions. The factor in front of
the integral is a function of the diffraction peaks indices. An important property of
function J is that it returns only integers. Consequently, the whole complex factor
containing this function assumes only 5 different values. If, additionally, we take the
symmetry into consideration this number reduces to only 3 values. As a result, for a
given pair (wx,wy ) we can find three different sets of indices that approximate this
pair, and as a result, three different types of envelope functions. Figure 17.2 shows
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Fig. 17.3 2D envelopes
(j = 0) curves aggregated
radially. A comparison of the
experimental data and the
Penrose tiling

2D maps of the Penrose tiling envelopes. Their cross-sections are presented in the
bottom, right figure. Note that all high peaks belonging to one envelope have the
same phase. The reverse Fourier transform over those envelopes gives the pentago-
nal distributions of atomic positions reduced to an AUC.

17.3 Application—Al–Ni–Co Alloy

The technique described in the paper was applied to the widely discussed
Al72Ni20Co8 alloy [8, 14–16]. We used 264 unique reflections. Due to a low num-
ber of peaks available, it is not possible to show envelopes as in Fig. 17.2. Instead,
we took advantage of an approximate radial symmetry of the envelopes and com-
bined peaks into a radial function F(wr), where w2

r =w2
x +w2

y . The results for the
envelope indexed as j = 0 (see Fig. 17.2 for a reference) are presented in Fig. 17.3
where the envelope obtained from the experimental data is compared to the com-
bined envelope of the Penrose tiling. The curve proves that the envelope is present
and that its zeros are very close to the zeros of the Penrose tiling envelope. It means
we can use Penrose tiling envelopes as a source of the phase sign. After applying the
signs to the experimental data, we calculated the initial distribution, and afterwards,
we used the LDE algorithm to validate and correct the phase signs. It turned out that
out of 264 peaks only 22 required further phase modification. Those were only very
low peaks. The final results are presented in Fig. 17.4. The density and the shape of
the distributions retrieved are in accordance to other analyses [4, 5, 15].

It is important to point out that those are initial results. There are some challenges
to overcome. Firstly, the method assumes centrosymmetric structures. It is able to
predict only the sign of the phase. Secondly, well-shaped envelopes appear only
for structures that closely resemble the Penrose tiling. Additionally, the amplitudes
of very low peaks do not form an envelope of clearly exposed zeros. And only by
examining zeroes we can deduce the sign of a group of peaks. Currently, whenever
we were uncertain, we used the phase obtained from the Penrose model. Finally,
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Fig. 17.4 Distributions of atomic positions of the Al–Ni–Co alloy obtained as a result of a re-
verse Fourier transform and the technique described in the paper. Left: small pentagon; right: large
pentagon

with only a few hundred peaks we were unable to reconstruct the whole envelope.
Therefore, here we used only peaks and not continuous curves.

17.4 Conclusions

The paper presents a fast technique for the retrieval of the phase sign straight from
the experimental diffraction data. The technique is based on the analysis of the en-
velope functions. The reverse Fourier transform performed on envelopes results in
distributions of atomic positions written in boundaries of an average unit cell. We
applied the technique to the experimental data for the Al72Ni20Co8 alloy and ob-
tained results that are in accordance with the generally accepted view of the structure
of this alloy.
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Chapter 18
A Study of Phase Equilibria in the Al–Pd–Co
System at 700 ◦C

I. Černičková, R. Čička, P. Švec, D. Janičkovič, P. Priputen, and J. Janovec

Abstract Al68Pd14.6Co17.4, Al69.8Pd13.8Co16.4, Al72Pd12.8Co15.2, Al73.8Pd11.9
Co14.3, and Al76Pd11Co13 alloys annealed at 700 ◦C for 2000 h were studied. In
the investigation, scanning electron microscopy including energy dispersive X-ray
spectroscopy and electron backscatter diffraction, X-ray diffraction, and transmis-
sion electron microscopy were used. Altogether five near-equilibrium phases (β, U,
Al5Co2, ε, Al9Co2) were identified. Transitions between β, U, and ε phases were
also determined dependent on the alloy bulk metal composition. The experimental
results were used to propose the partial isothermal section of the Al–Pd–Co phase
diagram at 700 ◦C. The maximum solubilities at 700 ◦C of Pd in Al9Co2 and Al5Co2
were determined as 1.7 and 2.69 at.%, respectively.

18.1 Introduction

Structurally complex phases consisting of large cluster-base unit cells are attributed
to complex metallic alloys (CMA) inclusive of ternary Al-base CMAs [1–5]. In
the Al–Pd–Co alloys, more structurally complex phases were observed [6–11], e.g.,
the ternary monoclinic U-phase or orthorhombic phases of the ε-family. The latter
phases can be classified as either binary phases alloyed with the third element (ε6
and ε28) or ternary phases (ε22 and ε34) [12]. Yurechko et al. [6, 7, 9, 11] studied
phase equilibria in the Al–Pd–Co system and published isothermal sections of the
related phase diagram at 1050, 1000, 940, and 790 ◦C.

In the present work, five ternary alloys (Al68Pd14.6Co17.4, Al69.8Pd13.8Co16.4,
Al72Pd12.8Co15.2, Al73.8Pd11.9Co14.3, and Al76Pd11Co13) were long-term annealed
at 700 ◦C and the near-equilibrium phases formed were characterized. The exper-
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iment was done with the intention to propose a partial isothermal section of the
Al–Pd–Co phase diagram at 700 ◦C still missing in the literature.

18.2 Experimental Procedures

The investigated alloys were prepared by arc melting of pure components under
argon atmosphere. After casting, the samples were annealed at 700 ◦C for 2000 h
and rapidly cooled in water to fix their high-temperature microstructure.

In the investigation, scanning electron microscopy (SEM) including energy dis-
persive X-ray spectroscopy (EDX) and electron backscatter diffraction (EBSD),
X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used.
For XRD a Philips PW 1830 diffractometer with Bragg–Brentano geometry was
selected using iron filtered CoKα1 radiation, scattering angle 2θ ranged between
5 and 70◦, step size was 0.02◦, and exposure time was 10 s per step. For SEM a
JEOL JSM-7600F microscope was used equipped with an EDX spectrometer X-
max working with INCA software and an EBSD Nordlys detector working with
FLAMENCO software. At least 10 measurements per microstructure constituent
were performed to determine their metal compositions. To calculate volume frac-
tions of microstructure constituents an ImageJ software was used. The identification
of phase by selected-area electron diffraction (SAED) was performed in a JEOL
2000FX microscope operating at 200 kV.

18.3 Results

The results of the characterization of near-equilibrium phases present in particu-
lar alloys are summarized in Table 18.1. Each of the observed microstructure con-
stituents was found to consist of a single phase. For instance, the single-phase con-
stituents observed in the Al76Pd11Co13 alloy (Fig. 18.1) were identified as ε and
Al9Co2 (Fig. 18.2). Altogether five phases were found in the investigated alloys.
Monoclinic U, cubic β , orthorhombic ε, and monoclinic Al9Co2 were identified by
XRD because their volume fractions were detectable for this technique (compare
Table 18.1 and Fig. 18.2). These phases were also identified by SAED/TEM as doc-
umented in Fig. 18.3 for β . For the identification of hexagonal Al5Co2 appearing
in extremely small amounts in Al68Pd14.6Co17.4 and Al69.8Pd13.8Co16.4 alloys, the
EBSD/SEM technique was used (Fig. 18.4). Metal compositions and volume frac-
tions of the identified near-equilibrium phases are also given in Table 18.1.

18.4 Discussion

The experiments were done with the aim to find correlations between the mi-
crostructure constituents (SEM), the identified near-equilibrium phases (XRD,
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Table 18.1 Overview of experimental results. Observed microstructure constituents, identified
phases, and metal compositions and volume fractions of the phases are given in respective columns
for all the investigated alloys. Experimental techniques used are related to the obtained results (see
two bottom rows)

Microstructure
constituent

Phase Atomic content in % Volume
fraction
in %Al Co Pd

Al68Pd14.6Co17.4

grey U 68.85± 0.12 16.14± 0.12 15.01± 0.09 92.8

white β 57.61± 0.26 8.13± 0.13 34.26± 0.18 6.6

dark Al5Co2 72.52± 0.1 25.42± 0.11 2.06± 0.06 0.6

Al69.8Pd13.8Co16.4

grey U 69.09± 0.16 15.13± 0.14 15.78± 0.11 99.4

dark Al5Co2 72.47± 0.19 24.84± 0.19 2.69± 0.05 0.6

Al72Pd12.8Co15.2

darker grey ε 72.78± 0.81 14.60± 0.93 12.62± 0.49 87.5

lighter grey U 69.92± 0.21 15.47± 0.64 14.62± 0.52 12.5

Al73.8Pd11.9Co14.3

grey ε 73.0± 0.14 14.1± 0.12 12.9± 0.13 100

Al76Pd11Co13

grey ε 74.2± 0.21 12.7± 0.19 14.1± 0.08 71.5

dark Al9Co2 81.8± 0.05 16.5± 0.05 1.7± 0.03 28.5

Experimental technique used

SEM XRD,
SAED/TEM
EBSD/SEM

EDX/SEM SEM

SAED/TEM, EBSD/SEM), as well as metal compositions (EDX/SEM) and volume
fraction (SEM) of the identified phases. Bulk metal compositions of the investi-
gated alloys were selected with the intention to hold the Pd/Co-ratio constant. Thus,
an increase in the Al bulk content was accompanied by a decrease in both Pd- and
Co-bulk contents. As follows from Fig. 18.5, there is a correlation between the bulk
Al content and the occurrence of dominant phases in the investigated alloys. The in-
crease in the Al bulk content from 68 to 76 at.% evoked β +U→U→U+ ε→ ε

phase transitions. This shows that Al stabilizes mainly ε and Pd + Co stabilize
mainly β in the investigated alloys. Moreover, the Al contents in both U and ε
were found to increase slightly with increasing the bulk Al content in agreement
with [6–8].

The partial isothermal section of the Al–Pd–Co phase diagram (in the next text
shortly “diagram”) at 700 ◦C (Fig. 18.6) was proposed with respect to both own ex-
perimental results and the diagram published by Yurechko for 790 ◦C [7]. Positions
and sizes of single-phase ε and U areas were modified only slightly. The double-
phase ε+U area became wider. The positions of ε+Al9Co2 and U+ β +Al5Co2
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Fig. 18.1 SEM micrograph showing single-phase microstructure constituents (the phases were
determined by XRD) in Al76Pd11Co13 alloy (a) and compositional changes along the indicated
line determined by EDX (b)

Fig. 18.2 Powder X-ray diffraction pattern corresponding to Al76Pd11Co13 alloy

areas are extended towards the higher Pd contents. Dashed lines were used when
experimental results were not available. The F-phase was not found experimentally
after long-term annealing at 700 ◦C. It confirms the trend reported in [7, 8] that F
disappears gradually with decreasing temperature. This happens probably between
790 and 700 ◦C. Several binary Al–Co and Al–Pd phases exhibit extensions into the
ternary compositional area. At 700 ◦C, the maximum solubilities of Pd in Al9Co2

and Al5Co2 were determined as 1.7 and 2.69 at.%, respectively. Congruent AlCo
and AlPd phases of the CsCl-type were found to form continuous set of β-Al (Pd,
Co) solid solutions [7–9].
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Fig. 18.3 SAED/TEM patterns of β in Al68Pd14.6Co17.4 alloy with three different zone axes

Fig. 18.4 EBSD/SEM
pattern of Al5Co2 in
Al68Pd14.6Co17.4 alloy

Fig. 18.5 Schematic diagram showing transitions in phase occurrence in dependence on alloy bulk
composition

18.5 Conclusions

In the investigated Al68Pd14.6Co17.4, Al69.8Pd13.8Co16.4, Al72Pd12.8Co15.2, Al73.8
Pd11.9Co14.3, and Al76Pd11Co13 complex metallic alloys, altogether five near-
equilibrium phases (β , U, Al5Co2, ε, Al9Co2) were identified after annealing at
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Fig. 18.6 Partial isothermal section of Al–Pd–Co phase diagram proposed for 700 ◦C with respect
to experimental results. In the diagram the symbol B2 is used for β-phase

700 ◦C for 2000 h. The microstructure constituents, their metal compositions, and
volume fraction were assigned to the near-equilibrium phases identified. The in-
crease in the bulk Al content from 68 to 76 at.% was found to evoke β +U→U→
U+ ε→ ε phase transitions. The partial isothermal section of the Al–Pd–Co phase
diagram at 700 ◦C was proposed based on the experimental results. The maximum
solubilities at 700 ◦C of Pd in Al9Co2 and Al5Co2 were determined as 1.7 and
2.69 at.%, respectively.
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Chapter 19
Evolution of Phases in Selected Al–Co–Cu
Complex Metallic Alloys Under
Near-Equilibrium Conditions at 800–1150 ◦C

P. Priputen, T.Y. Liu, I. Černičková, D. Janičkovič, P. Švec, E. Illeková,
M. Drienovský, R. Čička, and J. Janovec

Abstract This work is focused on the experimental investigation of intermetallic
phases in Al60Co29Cu11, Al63Co24Cu13, and Al67Co20Cu13 complex metallic al-
loys at near-equilibrium conditions. The alloys were long-term annealed at temper-
atures between 800 and 1150 ◦C and subsequently rapidly cooled to fix their high-
temperature microstructures. Annealing temperatures were chosen with respect to
the results of differential thermal analysis. Particular samples were studied by X-ray
diffraction, scanning electron microscopy including energy dispersive X-ray spec-
troscopy and electron backscatter diffraction, and transmission electron microscopy.
In the microstructures of particular samples, various combinations of D, B2, m,
Al5Co2, and Θ-Al2Cu phases were identified depending on both bulk metal com-
position and thermal history.

19.1 Introduction

Binary and ternary systems based on aluminium as a dominant component and tran-
sition metals as complementary components belong to the most investigated metallic
systems in the last decades [1]. The reason resides in looking for new complex inter-
metallic phases including quasicrystals, all characterized by giant unit cells contain-
ing up to thousands of atoms ordered in clusters and exhibiting interesting physical
properties [2, 3].

Al–Cu–Co is one of the systems where stable decagonal quasicrystalline phase
(D-phase) was observed and studied in several alloys [4–8]. Beside the D-phase,
ternary tetragonal (T) and hexagonal (H) phases and several binary phases extending
into the ternary region (e.g., B2, Al13Co4) were found in this system [7]. The binary
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B2-phase in the Al–Cu–Co diagram separates Al-rich and Al-poor areas. In this
phase, a relevant amount of Co can be replaced with Cu [1]. The monoclinic m-
phase of the Al13Co4 family can also dissolve a significant amount of Cu. Contrary
to B2, Cu atoms in m replace mostly the positions of Al atoms and contribute in
this way to the reduction of Al content. Besides m the Al13Co4 family contains at
least three other phases denoted as Z, Y, and o [9]. The latter phases occur within
the compositional range Al5Co2–Al9Co2 of the Al–Co phase diagram and are con-
sidered as quasicrystalline approximants of the D-phase. Even if the binary phases
from the Al13Co4 family show structural similarities with m, they do not dissolve
any significant amounts of Cu. Al5Co2 and Al9Co2 exhibit the same feature [1].

In the Al–Cu–Co system, depending on the bulk alloy composition, a direct for-
mation of D from liquid (L) is possible between 700 and 1100 ◦C [4–7]. On the other
hand, Zhang and Gille [8] proposed the partial reaction scheme where D is expected
to be formed by peritectic reaction involving L, m, and B2 phases. The present
paper is focused therefore on the study of phase evolution under near-equilibrium
conditions between 800–1150 ◦C in three complex metallic alloys (Al60Co29Cu11,
Al63Co24Cu13, and Al67Co20Cu13) showing metal compositions suitable for the D
formation by peritectic reaction. The attention was paid to the precise characteriza-
tion of particular phases in the samples after differential thermal analysis (DTA) as
well as after annealing at 800, 1050, and 1150 ◦C. The annealing temperatures were
chosen with respect to the results of DTA analysis.

19.2 Experimental Procedures

The investigated Al60Co29Cu11, Al63Co24Cu13, and Al67Co20Cu13 alloys were pre-
pared from pure elements (>99.99 wt.%) by arc melting in argon atmosphere and
subsequently cast to form button ingots. Each of the ingots was then sectioned into
several pieces (samples). One of the samples was used for DTA performed with rate
of 10 ◦C/min under argon atmosphere from ambient temperature up to 1550 ◦C and
vice versa. The mass of the DTA samples was about 120 mg. Based on the results
of DTA measurements, 800, 1050, and 1150 ◦C were chosen as annealing temper-
atures. The other three samples were placed into evacuated silica capsule (the cap-
sules used for this purpose were several times purged with argon and subsequently
evacuated before being sealed up) and annealed at 800 ◦C for 1200 h, 1050 ◦C
for 200 h, and 1150 ◦C for 50 h. To prevent contact with silica and a possible con-
tamination with silicon, the samples annealed at 1050 ◦C and 1150 ◦C were inserted
into silica capsules placed in small alumina crucibles. Every annealing was followed
with immediate water quenching to fix the high-temperature microstructures of the
samples.

An X-ray diffractometer Philips PW 1830, a scanning electron microscope JEOL
JSM-7600F (SEM) equipped with both an energy dispersive X-ray spectrometer X-
max (EDX) using INCA software and an electron backscattered diffraction detector
Nordlys (EBSD) using FLAMENCO software, and a differential thermal analyser
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Fig. 19.1 DTA records for Al60Co29Cu11 (a), Al63Co24Cu13 (b), Al67Co20Cu13 (c) alloys. Larger
and smaller plots correspond to cooling and heating regimes, respectively

STA 409 CD Netzsch calibrated for the heating regime were used to characterize
the samples. The X-ray diffraction (XRD) was performed on powder samples with
the iron filtered Co-Kα1 radiation, between 20 and 70◦ of 2θ , and with the rate
of 0.02◦/step. For the identification of minor phases with volume fractions lower
than 5 %, the highly sensitive EBSD technique was used in addition to the XRD
technique.

19.3 Results and Discussion

In Figs. 19.1(a)–(c), DTA records are illustrated for the originally as-cast samples
of the respective Al60Co29Cu11, Al63Co24Cu13, and Al67Co20Cu13 alloys. To see
high temperature transformations, the cooling regime was preferred in this work.
Two pronounced temperature ranges were observable for all the alloys. In the first
temperature range between 1500 and 1200 ◦C, smooth and sharp peaks were observ-
able. The former peaks appearing at approximately 1450 ◦C are not any solidifica-
tion peaks. They can originate from long rising time of temperature after switching
between heating and cooling regimes of relatively heavy samples. The latter sharp
peaks are shifted to higher temperatures with decreasing the bulk Al content. These
peaks seem to be solidification peaks. In the second temperature range between 1100
and 950 ◦C, two overlapping peaks were observable for all the alloys. The higher
peaks are located close to 1100 ◦C and the lower peaks appear at slightly lower
temperatures. To see the correct temperatures of phase transformations related to
both the peaks, the records corresponding to heating regime were also inserted into
Figs. 19.1(a)–(c). To find a correct interpretation of the observed peaks, annealing
experiments at 800, 1050, and 1150 ◦C were done.

The microstructure (SEM/BSE mode), the corresponding XRD pattern, and
EBSD patterns identifying all the present phases are documented in Fig. 19.2 for
the Al60Co29Cu11 alloy annealed at 800 ◦C. This is the characteristic illustrative
presentation applicable to all the investigated alloys.

In the samples investigated, altogether five phases (B2, D, m, Al5Co2, and Θ-
Al2Cu) were identified. The presence of phases in particular conditions of all the
alloys is summarized in Table 19.1.

The annealing temperature 1150 ◦C is positioned between the high- (1500–
1200 ◦C) and low-temperature (950–1100 ◦C) ranges of the peak occurrence in the
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Fig. 19.2 Microstructure constituents and diffraction patterns (XRD, EBSD) of corresponding
phases presented for Al60Co29Cu11 alloy annealed at 800 ◦C

DTA records corresponding to the cooling regime (Fig. 19.1). As follows from Ta-
ble 19.1, three phases (B2, D, andΘ-Al2Cu) were identified in the samples annealed
at 1150 ◦C and subsequently quenched. However, in the high-temperature range, one
solidification peak only was found related to the formation of a solid phase from the
liquid. The explanation of this apparent discrepancy follows from Fig. 19.3 showing
the characteristic microstructure and the corresponding XRD pattern of the condi-
tion annealed at 1150 ◦C. Based on both, XRD pattern and metal composition, the
white-colour microstructure constituent forming discrete areas with sharp bound-
aries was identified as B2. Two other phases (Θ-Al2Cu and D) forming fine-grained
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Table 19.1 Phases identified in Al60Co29Cu11, Al63Co24Cu13, and Al67Co20Cu13 alloys

Sample Condition

DTA
10◦/min

Annealed at
800 ◦C, quenched

Annealed at
1050 ◦C, quenched

Annealed at
1150 ◦C, quenched

Al60Co29Cu11 m, B2 m, Al5Co2, B2 m, B2 D, B2, Θ-Al2Cu,

Al63Co24Cu13 m, D, B2 m, B2 D, B2, Θ-Al2Cu D, B2, Θ-Al2Cu

Al67Co20Cu13 m, D, B2 m, D D, B2, Θ-Al2Cu D, B2, Θ-Al2Cu

Fig. 19.3 Microstructure of Al67Co20Cu13 alloy annealed at 1150 ◦C and subsequently quenched
(a) and corresponding XRD pattern (b). D-phase is indexed following decagonal notation by
Mukhopadhyay

and well-mixed grey areas of different shades of grey correspond to the liquid phase
co-existing at 1150 ◦C with B2. They are products of the final step of sample solid-
ification during quenching. Θ-Al2Cu is the typical low-temperature phase forming
at around 592 ◦C [10].

In the samples annealed at 1050 ◦C and subsequently quenched, the same phases
were identify in the Al63Co24Cu13, and Al67Co20Cu13 alloys as it is documented
for the samples annealed at 1150 ◦C (B2, D, and Θ-Al2Cu). However, beside B2
also D was found to form discrete areas with sharp boundaries. Between D-grains
a mixture of D and Θ-Al2Cu phases representing the original liquid was found
in a small amount. Contrary of the Al63Co24Cu13, and Al67Co20Cu13 alloys, m
and B2 were observed in the Al60Co29Cu11 alloy after annealing at 1050 ◦C and
quenching. The reason resides in positions of the overlapped peaks from the low-
temperature range of the DTA records (see curves corresponding to the heating
regime in Fig. 19.1). For the Al63Co24Cu13 and Al67Co20Cu13 alloys, the onset
temperature of the higher peak is slightly below 1050 ◦C (Figs. 19.1(b)–(c)), how-
ever, that corresponding to the Al60Co29Cu11 alloy occurs at a bit higher tempera-
ture than 1050 ◦C (Fig. 19.1(a)). Taking into account the fact that m was identified
in both the condition after DTA and the condition annealed at 800 ◦C for all the
alloys (Table 19.1), the higher peak has to correspond to the direct formation of D



146 P. Priputen et al.

from the liquid and the lower peak represents the formation of m at the expense
of either D (Al60Co29Cu11 and Al63Co24Cu13 alloys) or B2 (Al67Co20Cu13). In
the Al60Co29Cu11 alloy, a small amount of Al5Co2 was also formed besides m at
temperatures between 800 and 1050 ◦C.

19.4 Conclusions

The investigation of phase evolution under near-equilibrium conditions between
800–1150 ◦C in Al60Co29Cu11, Al63Co24Cu13, and Al67Co20Cu13 alloys can be
summarized as follows: Three peaks are observable in the DTA records of each of
the alloys. The high-temperature peak corresponds to the direct formation of B2
from the liquid. The higher of two overlapping peaks from the low-temperature
range can be related to the formation of D from the liquid and the lower to the for-
mation of m at the expense of either D (Al60Co29Cu11 and Al63Co24Cu13 alloys) or
B2 (Al67Co20Cu13). The formation of D by peritectic reaction was not confirmed
in the current study, but it cannot be excluded in the case of Al–Co–Cu alloys with
smaller bulk contents of copper.
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Chapter 20
Superspace Description of the System
Bi2(n+2)MonO6(n+1) (n = 3, 4, 5 and 6)

P.J. Bereciartua, F.J. Zuñiga, J.M. Perez-Mato, V. Petříček, E. Vila, A. Castro,
J. Rodríguez-Carvajal, and S. Doyle

Abstract The system Bi2(n+2)MonO6(n+1) is described with the superspace formal-
ism. Considering the cationic distribution of the member with n= 3, a superspace
model is constructed beginning with a model previously proposed for the compound
Bi2MoO6. The description of even members requires additional modifications. As
a result, two superspace models are proposed for the different members of this sys-
tem, depending on the parity of the parameter n. Both models have been checked
through the Rietveld method combining synchrotron and neutron powder diffraction
data.

20.1 Introduction

Four new compounds have been synthesized within the binary system Bi2O3–MoO3

(Bi10Mo3O24, Bi6Mo2O15, Bi14Mo5O36 and Bi8Mo3O21) [7]. They can be consid-
ered as members of the system Bi2(n+2)MonO6(n+1) (members n= 3, 4, 5 and 6).
As shown by electron diffraction patterns obtained for each phase, the unit cells of
these compounds are related to the fluorite-type unit cell ({aF,bF, cF}) of the com-
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pound δ-Bi2O3 (member with n= 0) through the equation
⎛

⎝
a
b
c

⎞

⎠=
⎛

⎝
n+ 1 0 1

0 1 0
− 1

2 0 3
2

⎞

⎠

⎛

⎝
aF
bF
cF

⎞

⎠ . (20.1)

The atomic structure of the compound Bi10Mo3O24 (n= 3) presents space group
C2. It is described as a stacking of puckered layers along b direction combined
with groups of three isolated {MoO4} tetrahedra [5]. Considering Eq. (20.1), this
model can be extended to the whole family. The member n= 5 keeps the same C2
space group with 5 tetrahedra and members n = 4 and 6 exhibit 4 and 6 tetrahe-
dra, respectively, with space group P21/a. The cationic skeletons of these phases
were confirmed by a high-resolution transmission electron microscopy (HRTEM)
study [6].

In the superspace formalism, the obtained diffraction patterns can be described as
consisting of a common set of main reflections and satellite reflections, associated
with a modulation vector which depends on the composition. The modulation vector
qV = 1

3n+4 (6a∗F + 2c∗F ) is proposed in [7].
In the present work, we develop the superspace description for this family of

compounds. After choosing the proper average unit cell and modulation vector, a
superspace model has been constructed. However, the application of this model to
the even members requires some modifications. A more comprehensive description
of this work is published in [1].

20.2 Experimental Section

Samples of the four studied compounds were obtained through the wet-chemistry
method described in [7]. The XPD data were collected on the PDIFF beamline at the
ANKA Synchrotron in Bragg–Brentano geometry. The NPD data were measured on
the D2B diffractometer at the ILL (Grenoble) in Debye–Scherrer geometry.

20.3 Odd Members

The 3D structure proposed for the member n = 3 is considered as a starting point
for the superspace construction.

20.3.1 Choice of the Average Unit Cell and the Modulation Vector

The cationic distribution of this 3D structure can be described with the above men-
tioned fluorite-like unit cell, which associates all cations with the same average posi-
tion. The embedding process gives rise to certain order along internal space. Using
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Fig. 20.1 Occupational
modulation of Bi (green) and
Mo (blue) atoms. Two
different orderings are
obtained with modulation
vectors qV (top) and qo
(middle). The second one
allows a simple description
with two complementary
crenel functions (bottom).
(Reprinted by permission of
the IUCr)

the proposed modulation vector qV leads to the ordering indicated in Fig. 20.1.
A more simple ordering can be obtained with the modulation vector

qo = 1

3n+ 4

(−2a∗F + 2(n+ 1)c∗F
)
. (20.2)

In this case, the occupational modulation can be represented by only two comple-
mentary crenel functions (see Fig. 20.1).

The embedding also establishes the symmetry group F2(α0γ ) for this super-
space model. The t-section which allows recovering the correct cationic distribution
in 3D structure is defined by the value t = 0 (or its equivalent).

20.3.2 Construction of the Superspace Model

The compound Bi2MoO6 (n = ∞) belongs to the space group Pca21 [4] with
a structure close to the ideal Aurivillius. Within superspace approach, Aurivil-
lius phases have been characterized as cation-deficient perovskites with formula
AB1−γO3 within the range 0< γ < 1

2 [2, 3]. Thus, the compound Bi2MoO6 can be
described as a modulated structure with γ = 1

2 . The superspace group of this model
is X2cm(00γ )000 with centring vectors ( 1

2
1
2

1
2 0), ( 1

2 00 1
2 ) and (0 1

2
1
2

1
2 ). This model

contains four atoms: Bi, Mo, O1 and O2. Bi and Mo atomic domains present occu-
pational modulation given by the corresponding crenel functions. The fcc cationic
distribution of the 3D structure can be obtained by including appropriate sawtooth
functions for these atoms (see Fig. 20.2). The resulting Bi and Mo atomic domains
are aligned along direction [0 0 1 2] with an ordering equivalent to the one obtained
in Fig. 20.1. Thus, there is a suitable change of the unit cell which allows to obtain a
model with the desired cationic occupational modulation. This transformation leads
to the average unit cell used in the previous embedding. This change also implies
a new modulation vector qF = 2c∗A − 2qA = c∗A = 2

3 c∗F , corresponding to the limit
for n=∞ of the propose modulation vector qo (see Eq. (20.2)).
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Fig. 20.2 Distribution of the
Bi (green) and Mo (blue)
atomic domains in the
Aurivillius model with the
indicated sawtooth functions.
A more convenient
superspace unit cell can be
defined (dashed line)
(Reprinted by permission of
the IUCr)

The oxygen atomic domains resulting from the unit cell transformation can also
be described in a more suitable way by considering neighbouring cations. They
are divided, giving rise to several discontinuous atomic domains described by the
corresponding crenel functions. Finally, the symmetry of this model can be reduced
to the group F2(α0γ ). Note that this constructed model corresponds to the member
with n=∞ (Bi2MoO6), but can be extrapolated to any value of n parameter by just
including the oblique modulation vector qo (Eq. (20.2)) and modifying accordingly
the widths of the atomic domains.

The positional modulations of the different atoms have been determined through
the embedding of the 3D structure. This superspace model has been checked through
the Rietveld method combining the XPD and NPD data. The displacive modulations
obtained in this model are large and rather irregular, especially for the O atoms
associated with the environments of Mo atoms (O1 and O2), as shown in Fig. 20.3.

20.3.3 Member with n = 5

The initial superspace model for member n = 5 can be derived from the general
model. This structure presents the expected cation distribution and a rather accurate
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Fig. 20.3 Positional
modulation along z
coordinate for O1, O2, O3
and O4 atomic domains
(continuous lines). Only some
points of the atomic domains
are relevant (discrete points)
(Reprinted by permission of
the IUCr)

description of the O atoms related to Bi atoms. However, with this model, there ap-
pear corner-sharing [MoO6] octahedra instead of the expected {MoO4} tetrahedra.
Actually, to obtain the correct positional modulations it is necessary to perform the
embedding of the 3D structure. This model has been checked using the Rietveld
method combining XPD and NPD data. As in previous case, the displacive modula-
tions of the O1 and O2 atoms are very irregular.

20.4 Even Members

For the superspace description of the even members, we first consider the compound
with n= 4. The main modification implies using a different modulation vector since
neither qo nor qV are suitable choices to index the diffraction pattern. It is necessary
to introduce another modulation vector given by

qe = 1

3n+ 4

(
a∗F + (2n+ 3)c∗F

)
. (20.3)

With this modulation vector the reflection condition h0 l m : m = 2n should be
assumed, pointing out to space group F2/m(α0γ )0s or Fm(α0γ )s, and the cen-
trosymmetric group is chosen. Maintaining the same average unit cell, this new
modulation vector qe also implies changes in the superspace unit cell, the atomic
domains distribution and the t value which determines the 3D commensurate super-
structure.

The 3D structure obtained from this superspace model again leads to Mo co-
ordinations very different from the expected ones. As previously, it is necessary to
carry out the embedding of the 3D structure to determine the positional modulations.
The superspace models for the compounds n= 4 and 6 were obtained and checked
through the Rietveld method using XPD and NPD data. The atomic domains of the
final model also present very strong and irregular positional modulations, especially
O1 and O2 atomic domains.
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20.5 Discussion

Many different systems with flexible composition have been described in the su-
perspace formalism, where each family is described by a unique model. How-
ever, two superspace models are introduced in the present work for the system
Bi2(n+2)MonO6(n+1). The symmetry, the modulation vector and the atomic domain
distribution of each model are different. The main reason is that the diffraction pat-
terns of the even compounds cannot be indexed using the modulation vector of the
odd model (qo). And the modulation vector of even model (qe) does not lead to
the correct 3D space group for the corresponding superstructure when used with
the odd model. Probably, a general model would require combining one of the two
superspace groups used in this work with an alternative modulation vector, different
from vectors qo and qe. Actually, the construction of such a model for both odd
an even members of this system is an open question which would require further
investigations.

Notwithstanding, the application of the superspace formalism to this system
shows both the possibilities and the limitations of this approach. The cationic distri-
bution is represented in a rather concise manner, using complementary crenel func-
tions whose widths depends on the n parameter. On the other hand, the O atoms
forming {MoO4} tetrahedra present large and irregular positional modulations, so it
is not straightforward to describe their distribution through an average position and
the corresponding distortion. In any case, both superspace models make visible the
structure-composition relationship of the family.
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Chapter 21
Pseudo-Commensurate GdBaCo2O5+δ and Its
Phase Transition at Elevated Temperatures

N. Ishizawa, T. Asaka, T. Kudo, K. Fukuda, N. Abe, and T. Arima

Abstract An in-situ single-crystal X-ray diffraction study on tetragonal GdBaCo2
O5+δ with δ ∼ 0.38 revealed that the crystal is pseudo-commensurate at room
temperature with the magnitudes of the modulation vectors q1 and q2 parallel to
the basal axes increasing gradually from the nearly commensurate value close to
1/3 upon heating. The basic structure of the compound is a double-layered per-
ovskite type, having an alternating layer sequence [GdOδ]–[CoO2]–[BaO]–[CoO2]
along the c axis. The oxygen deficiency of the crystal occurs only in the [GdOδ]
layer, though it causes many positional modulations of constituent atoms in asso-
ciation with the valence fluctuation of Co cations between +2 and +3. Because of
its pseudo-commensurate nature, the room temperature structure was also investi-
gated by the commensurately-modulated approach as well as the conventional three-
dimensional ones assuming a 3× 3× 2 supercell of the P4/mmm symmetry. These
approaches successfully reproduced a prime structure of the compound, consisting
of intersecting CoO5 pyramidal arrays parallel to a and b axes. The incommensurate
approach, on the other hand, also suggested a presence of a local disorder having a
structural similarity with the high-temperature modification.

21.1 Introduction

Double perovskite-type cobaltates LnBaCo2O5+δ (Ln= lanthanide or yttrium) have
attracted considerable attention because they exhibit strong correlation among their
crystallographic, magnetic, and electric properties [1, 2]. They are also proposed
as potential candidates for intermediate-temperature solid state oxides fuel cells be-
cause of their excellent oxygen transport properties [3–5]. The structure consists of
layers with a stacking sequence [CoO2]–[BaO]–[CoO2]–[LnOδ] along the c axis.
The basic structure is tetragonal with unit cell dimensions 1ap × 1ap × 2ap (abbre-
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viated as 112 hereafter), where ap corresponds to the edge length of the perovskite-
type cube [6]. In addition to 112, another three structural modifications for the
compound are known to date, 3ap × 3ap × 2ap(332), 1ap × 2ap × 2ap(122), and
2ap × 2ap × 2ap(222) [2, 7–9].

Recently, the transmission electron microscope analysis revealed that the 332
phase of GdBaCo2O5+δ (δ ∼ 0.38) is incommensurate under the magnetic field
with q1 = (∼1/3,0,0) and q2 = (0,∼1/3,0) with respect to the fundamental 112
tetragonal cell, and that the compound undergoes a phase transition to commensu-
rate 122 at elevated temperatures through different routes depending on the magnetic
field applied [10]. In this paper, we investigated the temperature dependence of the
q vectors of the 332 phase of GdBaCo2O5+δ (δ ∼ 0.38) by the single-crystal X-ray
diffraction under zero magnetic fields, determined the incommensurately-modulated
structure at room temperature, and compared the results with those obtained by the
commensurate and supercell approaches [11].

21.2 Experimental

Crystals of GdBaCo2O5+δ grown by the floating-zone method were investigated by
the in-situ single-crystal X-ray diffraction at temperatures 296–393 K using Mo Kα.
The crystal has a tetragonal symmetry at room temperature and its superspace group
was determined to be P4/mmm(α00)0000(0α0)0000 with α = 0.3368(1) accord-
ing to the notation for five-dimensional superspace groups [12]. The temperature
dependence of the q vectors and cell dimensions of the 332 phase were determined
at elevated temperatures through the phase transition.

The average structure of 332 belongs to the space group P4/mmm, contain-
ing 6 crystallographically independent atoms Gd1, Ba1, Co1, O1, O2, and O3
(Fig. 21.1). Only the O3 site is oxygen-deficient. The occupational modulation
waves for the O3 site and the positional modulation waves for all atom sites were
then examined step by step in the 5-dimensional superspace using Jana2006 [13].
The incommensurately-modulated structure model converged with R = 0.0285 us-
ing 67 parameters for 2216 reflections with I > 3σ(I). The composition was deter-
mined as GdBaCo2O5+δ , δ = 0.38(1) in the final stage of refinement.

Since the magnitude of the modulation vectors are close to 1/3, the structure was
also examined by the supercell models and the commensurately-modulated model.
One supercell model assuming split-atom sites for part of Gd atoms converged with
the best R factor of 0.0240 using 77 parameters. Another supercell model assuming
the 3rd order anharmonic atomic displacement parameters (ADPs) for part of Gd
atoms also converged with R = 0.0269 using 78 parameters. The commensurately-
modulated model assuming the 3rd order ADP for Gd converged with R = 0.0279
using the minimum number of 63 parameters.
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Fig. 21.1 The average
structure (left) of the 332
phase in the 112 fundamental
cell and the local distortion
around the O3 defect (right)
with the displacement
direction of O2 indicated by
arrows

Fig. 21.2 Temperature
changes in the magnitude α
of the modulation vector q
and the fundamental unit cell
volume V of the 332 phase

21.3 Results and Discussion

As shown in Fig. 21.2, the magnitude α of the modulation vector q increased rapidly
when the temperature approached ∼393 K around which the commensurate 122
phase commenced to appear in addition to 332. Since α is so close to 1/3 at room
temperature, the incommensurate nature of the 332 phase tends to be overlooked.
The present study first confirmed the incommensurability of the 332 phase quantita-
tively through the measurement of temperature dependence of the q vector by X-ray
diffraction under zero magnetic fields.

Crystals contain the oxygen deficiency in the [GdOδ] layer, which causes posi-
tional modulations of constituent atoms in association with the valence modulation
of nearby Co cations between +2 and +3. The O3 defect in the GdO layer invokes
the displacement of not only the neighboring Gd on the same layer but also the Co
and O2 atoms in the adjacent [CoO] layer. Resultant z shifts of O2, as shown by ar-
rows in Fig. 21.1 (right), get larger a pair of electrical dipole moments of the CoO5
pyramids opposing each other along c in the fundamental cell. The dipoles in tail
to tail arrangement are mitigated by reduction in the oxidation state of Co in the
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Fig. 21.3 Changes in the bond valence sum of Co (left) and the occupation parameter of O atom
at the O3 site (right) on the t − u section with minimum and maximum extrema at t = u = 1/3,
and t = u= 5/6, respectively

Fig. 21.4 Projection of the
332 supercell structure
(0< z < 1/2) along c.
Oxygen pyramids of Co1bO5
and Co1cO5 form
one-dimensional arrays
parallel to a or b axis

pyramidal coordination. As such, the changes in Co valency, occupational, and po-
sitional modulations occur in a concerted manner. A close relationship between the
first two, for example, is exemplified in the topological similarity of the t − u plots
[14] of the bond valence sum [15] of Co and the occupation parameter of O atoms at
the O3 site, having extrema at the same positions t = u= 1/3 and 5/6 (Fig. 21.3).

The 332 supercell and the commensurately-modulated approaches succeeded in
obtaining a clear-cut image of the structure of prime importance (Fig. 21.4), which
contains one-dimensional CoO5 pyramidal arrays running along the a and b axes.
At the intersection of the pyramidal arrays, the occupation factor of the apical O3 is
minimized and the cobalt cation (Co1c in Fig. 21.4) takes the lowest oxidation state
close to +2.
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The incommensurately-modulated approach not only revealed the typical struc-
ture (Fig. 21.4) as obtained by the other approaches, but also succeeded in describ-
ing another approximant which has a structural similarity with the high-temperature
orthorhombic 122 modification in a point that the CoO5 pyramidal arrays run paral-
lel only along one direction, either a or b [11]. This sort of intrinsic local disorder
would append important information to the phase transition mechanism of the com-
pound at elevated temperatures. In this respect, the incommensurately-modulated
approach seems to have an advantage over the other ones.
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Chapter 22
Al4(Cr,Fe): A Structure Survey

B. Bauer, B. Pedersen, and F. Frey

Abstract A single crystal of Al4(Cr,Fe) grown by the Czochralski method has been
investigated using X-ray and also neutron diffraction. The average structure of this
crystal with a composition of Al79.1Cr17.8Fe3.1 was found to be body-centered or-
thorhombic with the space group Immm. Using neutrons it was possible to distin-
guish the Fe and Cr positions within the structure. However, the diffraction patterns
of both, X-ray as well as neutrons, showed additional reflections beyond the Bragg
reflections violating the body-centering and reducing the space group symmetry to
Pmm2. A renewed structure analysis taking also these additional reflections into ac-
count exhibits significant changes of about 30 % of the atomic positions. Features
related to extra diffraction phenomena beyond the Bragg reflections are discussed
in some detail.

22.1 Introduction

Al4(Cr,Fe) is considered as an approximant of the decagonal quasicrystal in the
appropriate system. Several different structure models related to this composi-
tion have been published during the last decades. In the following, a short sum-
mary of the different models will be given. In an alloy of nominal composition
Al12Fe2Cr, Sui et al. [1] identified an orthorhombic phase with lattice constants
a = 1.234 nm, b = 1.241 nm and c = 3.071 nm. Using high-resolution electron
microscopy, a structure model was derived and the space group Imm2 was de-
termined (Pearson symbol: oI316-10.85). Additionally, on ordering a C-centered
monoclinic superstructure occurred (aM = c/ sinβ = 3.31 nm, bM = a = 1.23 nm,
cM = 2b = 2.48 nm and β = 112◦), leading to superlattice reflections in the elec-
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tron diffraction patterns [2]. Deng et al. [3] investigated a crystal with compo-
sition Al80.6Cr10.7Fe8.7 using single crystal X-ray diffraction. The space group
Immm rather than Imm2 was obtained with the lattice constants a = 1.2500(6) nm,
b = 1.2617(2) nm and c = 3.0651(8) nm (Pearson symbol: oI366-59.56). In this
structure model, there are 28 Al and 11 TM (TM = Cr/Fe) sites in a unit cell, where
two Al sites are statistically occupied by Al and TM. Positions of Cr and Fe atoms
are not distinguished [3]. No superlattice reflections are mentioned. On the basis of
powder X-ray diffraction data and electron diffraction patterns, a recent publication
by Pavlyuchkov et al. [4] suggested that Al4(Cr,Fe) is actually the ternary extension
of the binary phase η-Al11Cr2. This phase was reported to have a body-centered
orthorhombic structure with a = 1.24 nm, b = 1.26 nm and c = 3.05 nm based on
single crystal X-ray diffraction [5]. Though further investigations using transmis-
sion electron microscopy revealed additional information, and finally, a monoclinic
C-centered structure with a = 1.76 nm, b= 3.05 nm, c= 1.76 nm and β ≈ 90◦ was
deduced [5]. From a study of anisotropic transport measurements of Al80Cr15Fe5,
a relaxed version of the structural model by Deng et al. [3] is concluded where
atomic sites of mixed and partial occupancies are discarded [6]. A preliminary study
using X-ray and neutron diffraction on a single crystal of Al4(Cr,Fe) grown via the
Czochralski method supports the body-centered orthorhombic model [7, 8]. But the
diffraction patterns of X-ray as well as neutron data showed additional reflections
which were mentioned in a former publication [7] but were not included in the anal-
ysis up to now. Two of the previously mentioned publications also report the occur-
rence of additional reflections, which are in both cases referred to monoclinic su-
perstructures [2, 5]. The authors of [5] relate their findings to a layered two-domain
structure with a twin relation between the domains. The aims of this work are to give
a renewed structure analysis using extended X-ray data sets including all reflections
and also neutron data towards:

(a) The space group of the average structure and the distinction of Cr and Fe sites
in comparison with the structure model published by Deng et al. [3],

(b) The true structure (superstructure), i.e., including all reflections, and
(c) A qualitative discussion of the Bragg and diffuse scattering phenomena.

22.2 Experimental

The investigated single crystal was grown from an off-stoichiometric melt using the
Czochralski method. Further details have been given elsewhere [9]. According to
previous studies investigating the 1000 ◦C isothermal section of the Al–Cr–Fe phase
diagram, it could be shown that the existence region of Al4(Cr,Fe) decomposes into
four regions of structurally different phases depending on the Cr/Fe ratio [9]. The
composition of the analyzed crystal was measured to be Al79.1Cr17.8Fe3.1 using
electron probe microanalysis. For the experimental details of the neutron diffraction
work such as the used wavelength λ = 0.15391 nm (without λ/2-contamination),
we refer to [7]. The main X-ray work is well documented in [8]. In order to inspect
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the diffraction patterns in more detail up to high Q-values, supplementary X-ray
diffraction was carried out. The measurement was performed at room temperature
using Mo-Kα radiation (λ = 0.071073 nm, rotating anode, graphite monochroma-
tor) and a MAR345 image plate detector. All the neutron data, Bragg reflections as
well as additional scattering phenomena, were recorded at the instrument RESI of
the FRM II reactor facility; cf. [7]. For a rough estimate of the relative contributions
of the different atomic species to the diffraction intensities, the ratio of the respective
X-ray scattering power (Z2 with Z = number of electrons at θ = 0◦), i.e., neglect-
ing the form factor influence, is compared to the neutron scattering cross-sections
(assuming a natural isotope abundance of the species) given in barns: XRD: Al:
0.79 · 132 ≈ 133; Cr: 0.18 · 242 ≈ 103.7; Fe: 0.03 · 262 ≈ 20; i.e., Al:Cr:Fe ≈
6:5:1; ND: Al: 0.79 · 1.5 ≈ 1.2; Cr: 0.18 · 1.66 ≈ 0.3; Fe: 0.03 · 11.3 ≈ 0.3; i.e.,
Al:Cr:Fe ≈ 4:1:1. Generally, the overall relative influence of the Cr and Fe species
in the diffraction patterns should therefore be better contrasted in X-ray diffraction
(XRD) than in neutron diffraction (ND). On the other hand, the heavy metals have a
similar weight in ND. These statements relate both to Bragg-scattering and “extra”-
diffraction phenomena.

22.3 Observations

Apart from the Bragg reflections, extra reflections and diffuse phenomena are
clearly observable. Figures 22.1(a)–(b) and 22.2(b) show different X-ray diffrac-
tion patterns, i.e., the (0 k l), (h 1.5 l) and the (h 3.5 l) planes, respectively. Note
that the planes where k = n/2 (n= odd) are away from any regular Bragg positions.
Figures 22.2(a)–(b) show sections of neutron diffraction patterns again of the (0 k l)
and of the (h 3.5 l) planes, respectively. The main observations can be summarized
as follows:

(a) Additional well-defined strong and weak but somewhat diffuse “extra”-reflec-
tions are observable at Bragg-off positions (h k′ l) half-way between k =
integer positions which are denoted by k′. These k′-reflections (h n/2 l) (n =
integer, odd) are arranged along rows parallel to c∗ (parallel to l). They are
somewhat broader along the l-direction as compared to the main Bragg reflec-
tions (h k l). No additional k′-reflections exist in the planes (h k 0), h= even
or odd. Apart from different Bragg intensities, there is no general difference be-
tween X-ray and neutron patterns. The presence of these extra reflections clearly
violates the extinction rule for a body-centered lattice.

(b) The strong reflections (h k′ l) are observed at the same positions in the X-ray
and the neutron patterns. Moreover, (h k′ l) reflections are strong if neighboring
regular (h k l) Bragg reflections are also strong.

(c) The relative intensities of the k′-reflections increase with increasing Q-vectors
(distance from the origin) which could be easily recognized comparing the spots
in the interlayer sections: (h n/2 l), n = +/−3,5,7, . . . (XRD or ND). There
are no or only very weak k′-reflections close to the reciprocal origin, i.e., where
the Q-values are small.



166 B. Bauer et al.

(a) (b)

Fig. 22.1 (a) 0kl-layer from X-ray diffraction data. (b) h1.5l-layer from X-ray diffraction data

(a) (b)

Fig. 22.2 (a) 0kl-layer from neutron diffraction data. (b) h3.5l-layer from X-ray diffraction data;
in the left hand corner, an extract of the same layer from neutron data is shown

(d) Beneath the rows of k′-reflections there are diffuse rods (“streaks”) along c∗
which are not due to a superposition of diffuse intensity parts of “smeared out”
k′-reflections (cf., for example, Figs. 22.1(b) or 22.2(b)). This indicates a dif-
ferent origin of these “continuous” l-rods. The widths measured across these
rods do not increase with increasing l-index. The intensity ratio between these
diffuse rods and the superimposed rows of k′-reflections becomes much smaller
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with higher Q, enhancing the tentative interpretation of a different structural
phenomenon.

From these observations it becomes clear that the k′-type reflections indicate
a superstructure—at least in the particular Al–Cr–Fe sample with this chemical
composition—with a doubled lattice constant along the b-direction (cf. Sect. 22.5
for a more detailed discussion). It should be pointed out that this superstructure may
be changed or even absent dependent on only small changes of stoichiometry.

22.4 Analysis of Bragg Data

22.4.1 Average Structure from Neutron Data (k′-Reflections
Omitted)

The refinement of the average structure using neutron diffraction data was done us-
ing the program JANA 2006 [10]. The orthorhombic body-centered structure model
published by Deng et al. [3] was taken as a starting model. Out of 8303 measured
reflections 2592 symmetrically independent reflections were averaged. The final re-
finement led to R1 = 0.07 for 2578 reflections with I > 3σ(I) in the space group
Immm with a = 1.2498(3) nm, b = 1.2550(3) nm and c = 3.0512(2) nm. Accord-
ing to Deng et al. [3], there exist 11 TM (TM = Cr/Fe) sites in the structure. The
refinement of the neutron data showed that the sites TM 1, 4, 6, 9 and 11 are only
occupied by Cr while the other sites are mixed sites occupied by both Cr and Fe
atoms. The mixed position Al/TM5 is occupied by Al as well as Fe while a mixed
occupation for Al15 could not be confirmed. The occupation of the Al sites Al19–28
is less than 100 %.

22.4.2 Superstructure from X-ray Data (k′ Reflections Treated as
Bragg Peaks)

Refining the X-ray data set that was measured up to high Q-values and including
also the superstructure reflections, the structure model could be improved even
more. However, in this refinement no distinction between Cr and Fe atoms is
made. Including also the superstructure reflections in the refinement leads to a
doubling of the b-axis and also to a reduction of the high symmetry space group
Immm to Pmm2. Out of 79763 measured reflections, 30188 symmetrically in-
dependent reflections were averaged. The final refinement led to R1 = 0.15 for
16252 reflections with I > 3σ(I) with a = 1.2480(1) nm, b = 2.5029(1) nm
and c = 3.0581(1) nm. The significant larger R-value is due to the worse qual-
ity of the integrated intensities of the weaker reflections which are superimposed
on the diffuse background due to the diffuse rods. Figure 22.3 shows a compar-
ison of projections of the structure along c for the neutron (average structure,
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Fig. 22.3 (a) Projection of
the average structure along c
(two unit cells in b-direction)
(white: Al, red: Fe/Cr , blue:
Cr). (b) Projection of the real
structure (i.e., including the
2b-superordering) along c
(white: Al, black: TM (TM =
Cr/Fe))

(a)

(b)

Fig. 22.3(a)) and the X-ray (superstructure, Fig. 22.3(b)) data. For example, four
atomic groups which violate the body-centering lead to the doubling of the b-
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axis, and finally, to the occurrence of the superstructure reflections which are en-
circled.

22.5 Discussion and Conclusions

A superstructure exhibiting the characteristics indicated in Sect. 22.3 may be de-
scribed by a modulation wave along the b-direction which doubles the b-period.
The relative intensity increase of k′-reflections with higher Q-values (and the ab-
sence of k′-reflections close to O∗) indicates a dominant displacive character of
atoms from mean positions. Moreover, the general absence of this type of super-
structure reflections in the (h k 0) plane and their intensity increase with increasing
Q are indicative of a transversal displacive modulation and are not due to a chem-
ical modulation. The displacements (“polarization vectors” of the modulation) are
basically perpendicular to the c-direction (in real space), and are restricted to the
a–b-plane. From the (weak) broadening of the k′-reflections along c∗, one may
conclude some limited correlation length, which may be, however, not adequately
described by “short-range” correlations. From the arguments given above, we may
separate the origin of the “continuous” diffuse rods from the discussion of the super-
structure itself: Lamellar-type domain-slabs extended perpendicular to c, i.e., paral-
lel to the a–b-plane, are formed within which the “(a,2b, c)”-superstructure exists.
These domains are relatively large in the a–b-plane as can be deduced from an
only marginal increase of the widths of k′-reflections compared to those of the basic
Bragg reflections. Domain walls might be due to a (irregular) mixing of these do-
mains with regular “(a, b, c)”-domains. The average structure remains unaffected by
these walls, long-range correlations still exist, and the widths of the “basic” Bragg
reflections remain sharp. If the lateral distribution of walls between these two types
of (a, b, c) and (a,2b, c) domains is irregular, there are no correlations (with respect
to positions of the walls) between slabs separated in the c-direction. Continuous dif-
fuse rods correspond to such a lamellar-domain structure. Therefore, a conventional
twin-domain structure seems to be not realized. Moreover, the superstructure reflec-
tions could not be related to a formation of twins. It would be, however, worthwhile
to check this model by TEM investigations.
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X-ray data set.
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Chapter 23
Phase Transitions in Aperiodic Composite
Crystals

P. Rabiller, B. Toudic, C. Mariette, L. Guérin, C. Ecolivet,
and M.D. Hollingsworth

Abstract Aperiodic alkane/urea inclusion compounds (UIC) are prototype com-
posites which exhibit complex sequences of phases that can clearly be described in
the (3+ d) dimension crystallographic superspace. By simply changing the length
of the guest alkane molecules (CnH2n+2) which pile up in the channels of the host
urea honeycomb-like framework, it is, for instance, possible to have phase-ordering
phase transition from 3 to (3+ 1) dimension in the case of n-heptane/urea (n= 7),
or as in the case of n-hexadecane/urea (n = 16) or n-nonadecane/urea (n = 19),
a generalization to higher dimensions of the phase transitions found in modulated
structures. Such results are successfully obtained with the help of high resolution
diffraction methods.

23.1 Introduction

Certain small molecules, such as urea, thiourea, and perhydrotriphenylene, can
be co-crystallized with long-chain hydrocarbon molecules to form inclusion com-
pounds. The guest chains are confined into narrow, approximately cylindrical chan-
nels created by the host small-molecules lattice. The stoichiometry and the con-
formation of the chains included inside the channels are function of internal inter-
actions such as intra-chain interaction, but also of overall cooperative properties of
the resulting three-dimensionally ordered single crystal [1]. These intergrowth com-
pounds may form incommensurate composite crystals where the two subsystems
present at least one incommensurate ratio of their respective sub-lattice parame-
ters. Their diffraction pattern are characterized by a (3 + d)-dimensional module
[2, 3] where the so-called “main reflections” are found in the reciprocal space at
locations corresponding to the two separate sub-lattices (one of them being called
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Fig. 23.1 n-alkane/urea inclusion compound (n-alkane UIC). Urea molecules are connected
through hydrogen bonds network forming a honeycomb like hexagonal structure with n-alkane
(CnH2n+2) chains filling the channels. In most alkane length cases (n ranging from 7 to more than
35), the ratio of the “host” and “guest” periodicities along the channel is incommensurate

“host” and the other one “guest”) whereas additional satellite reflections arise due
to the subsystem interactions. For the uniaxial composites with a single incommen-
surate direction (c-axis), the diffraction spots indexation reads:

Qhklm = ha∗ + kb∗ + lc∗h +mc∗g.
Bragg peaks may be separated into four classes. Peaks from the commensurate

(a∗,b∗) plane are indexed (h k 0 0) and called common Bragg peaks; host peaks
are indexed (h k l 0); guest peaks are indexed (h k 0 m); and finally, satellite peaks,
which characterize the intermodulation, are indexed as (h k l m) with l and m �= 0.

A prototype example of such uniaxial intergrowth crystals is the family of n-
alkane/urea inclusion compounds (UICs). In these supra-molecular systems, urea
molecules (CO(NH2)2) are connected by H-bonds to form helical ribbons, which
repeat every six urea molecules to form a series of linear, hexagonal tunnels that can
accommodate linear alkanes (CnH2n+2) (Fig. 23.1, left).

Most of these compounds exhibit incommensurate composite feature since the
guest alkane periodicity cg along the channel does not fit with the helical parameter
ch of the host urea matrix which turns to be independent of the guest molecule
(Fig. 23.1, right). An evidence of this intermodulation is given on the high resolution
neutron scattering scan shown in Fig. 23.2 [4].

Because the channels (∼0.53 nm) are larger than the hydrocarbon chains, guests
are held loosely and typically undergo substantial motions. At low temperatures,
these materials undergo continuous or weakly first order structural phase transi-
tions. The literature first reported a single phase transition from a hexagonal phase
to a sheared orthorhombic one combined with a preferred orientation of the guest
molecules and a distortion of the host sub-lattice [5, 6]. As part of an effort to under-
stand the extra degrees of freedom that aperiodic materials utilize when undergoing
phase transitions, we have undertaken a systematic study of n-alkane UICs with
alkane carbon atoms’ number ranging from 7 to 28. We have found quite differ-
ent results with at least nine different phases and eleven types of phase transitions,
some of which referring only to degrees of freedom associated to the internal part of
the superspace. Almost all high symmetry and low symmetry phases are aperiodic
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Fig. 23.2 Illustration of the modulated character of n-nonadecane UIC along a (h 0 l m) scan
measured on a 3-axes cold neutron spectrometer [4]. (h k 0 0) reflections (pink) are common two
the host and guest sub-lattices, (h k l 0) reflections in red and (h k 0 m) in blue respectively corre-
spond to the host and guest lattices. (h k l m) reflections in green are inter-modulation satellites

Table 23.1 Sequences of phases at ambient pressure for n-heptane, n-hexadecane, and n-
nonadecane UICs with associated superspace groups. The dimension of the superspace is given
in parentheses in the upper left corner of each cell

n-nonadecane n-nonadecane
0.5 GPa

n-hexadecane n-heptane

ch/cg 0.418 0.428 0.486 0.981

Phase I Hexagonal (3+ 1) Hexagonal (3+ 1) Hexagonal (3+ 1) Hexagonal (3+ 0)

P 6122(00γ ) P 6122(00γ ) P 6122(00γ ) P 6122

Tc1 ∼ 150 K

Phase II Orthorhombic
(3+ 2)

Orthorhombic
(3+ 2)

Orthorhombic
(3+ 1)

Monoclinic
(3+ 0)

C2221(00γ )(10δ) C2221(00γ )(10δ) P 212121(00γ ) P 2111

Tc2 ∼ 130 K

Phase III Orthorhombic
(3+ 2)

– Orthorhombic
(3+ 1)

Monoclinic
(3+ 1)

P 212121(00γ )(00δ) – P 212121(00γ )(00δ) P 2111(0βγ )

and these complex sequences of phases can be discussed in term of group/subgroup
relationship within crystallographic superspace formalism.

We report here on the phase transitions exhibited by three n-alkane UICs, namely
n-heptane [7], n-hexadecane [8, 9], and n-nonadecane [10, 11] UICs. Although the



174 P. Rabiller et al.

Fig. 23.3 Temperature evolution of the cell parameters in the scattering diffraction plane (a, b),
as obtained by cold neutron diffraction analysis of the splitting of the Bragg peak (2 0 0 0) in one
of the six induced domains. In the orthorhombic phase, the value of the bo parameter (blue) is
divided by

√
3 for extrapolation to the high symmetry phase degenerated value. Upper right inset

gives DSC scans performed at increasing (in blue) and decreasing (in red) temperature, revealing
two structural instabilities

first two have a γ = ch/cg ratio very close to simple low index commensurate ratios
(0.981∼ 1 : 1 and 0.486∼ 1 : 2) no lock-in is observed at ambient pressure. Their
sequences of phases are given in Table 23.1 with explicit superspace groups and all
present two different phase transitions the first one around 150 K and the second
one at about 130 K.
n-hexadecane UIC is one of those presenting a phase transition from high tem-

perature hexagonal symmetry to low temperature orthorhombic symmetry. A sig-
nificant shearing occurs as revealed by the changes of a and b parameters and the
existence of domains (Fig. 23.3) below Tc1 = 149 K. It nevertheless differs from
what was reported since a second phase transition occurs at Tc2 = 128 K with small
anomaly of specific heat and cell parameters. The intermediate state is character-
ized by an increase of the superspace dimension from (3+ 1) to (3+ 2). A lock-in
plateau towards a 3-dimensional structure with γ = 1/2 is observed when applying
pressure of a few tenths of GPa and which evolution from 60 K to room temper-
ature gives an estimation of the intermodulation energy of about 1 kcal mol−1 [9].
A lowering of symmetry is expected in this pressure induced 3-dimensional struc-
ture to accommodate the double helix construction of urea framework together with
ordering of alkane molecules

The PT phase diagram is given in Fig. 23.4 for n-nonadecane/urea which exhibits
an original phase transition. There, in phases II and IV, the symmetry breaking only



23 Phase Transitions in Aperiodic Composite Crystals 175

Fig. 23.4 Phase diagram (P,T ) of the fully deuterated n-nonadecane/urea, as determined by neu-
tron diffraction (4F1, LLB Saclay). All phases (I, II, III, IV) require a description within a crys-
tallographic superspace: hexagonal for the phase I, orthorhombic for the phases II, III and IV. The
dashed region indicates a metastable region, between phases II and III on one hand and phase IV
on the other hand. The inset 3D plot of reciprocal section in phase II along the superstructure
line h= 1, k = 2 (D10, ILL Grenoble) shows the absence of 3D antiferro-distorsive cell doubling
signature (the latter case only occurring in phase III)

affects the internal variable of the superspace, as evidenced by the absence of Bragg
spots at position l =m= 0 (Fig. 23.4, 3D inset) on superstructure lines (h= 2n+ 1
in the low symmetry orthorhombic notation).

The phase transition from the phases I to II and II to III are found to be contin-
uous or weakly discontinuous therefore allowing superspace group/subgroup sym-
metry breaking assertion from the hexagonal group P6122(00γ ) to the C-centered
orthorhombic maximum subgroup C2221(00γ,10δ) and then to the primitive or-
thorhombic maximum subgroup P212121(00γ,00δ). At pressure above 0.3 GPa,
no distortion from the hexagonal metrics can be depicted through the single phase
transition which thus leads to a C-centered orthorhombic group C2221(00γ,10δ)
in phase IV. The value of the parameter δ characterizing the fifth dimension ranges
from 0.09 to 0.12 when going from atmospheric pressure to 0.4 GPa which can be
interpreted in terms of alkane sub-lattice elastic potential [11].

Last example is that of n-heptane UIC with a γ = 0.981 very close to one. The
high temperature phase is not very stable and characterized by the absence of guest
Bragg spots and intermodulation satellites. The alkane subsystem diffraction pat-
tern consists only in sharp diffuse planes which width increases monotonically with
their index. This is the signature of a one dimensional liquid-like system, confined,
in the present case, inside a 3D host structure. The first transition is observed at
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Fig. 23.5 Temperature evolution in n-heptane/urea of: (2) host Bragg peak (1,2,2) appearing in
phase II defining the first transition at Tc1 = 145 K, (") guest Bragg peaks l = 0 and m= 1, (!)
guest Bragg peaks l = 0 and m= 2 and (a) intermodulation satellites l = 1 and m= 1. The inset
in phase III gives a schematic representation of the mean host and guest monoclinic cells

Fig. 23.6 Reconstruction of the (h, k, 0, 1) and (h, k, 0, 2) layers at 90 K on the left and right,
respectively. Hexagons are guides for the eyes and refer to six equivalent domains (2π/6 rotation
about c∗). The corresponding 3D reciprocal pattern of these six domains is schematized in the
center of the figure. Non-co-linearity of c ∗ h and c ∗ g is a signature of the incommensurate offset
of the alkane chains from one channel to the adjacent one as illustrated in Fig. 23.5

Tc1 = 145 K (Fig. 23.5), far above the one that could be extrapolated from that
of usual long alkane chains UICs. It corresponds to a distortion of the hexago-
nal cell towards monoclinic symmetry. Ordering of the alkane chains only takes
place at the second phase transition at Tc2 = 130 K. This transition leads to a modu-
lated monoclinic composite with a modulation vector having a nonzero component
β � 0.5 along b∗. This corresponds to a temperature dependant incommensurate
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offset �g ∼ 0.5cg of the alkane chains from one channel to the adjacent one along
b direction as illustrated in the inset of Fig. 23.6 [7].

The study of phase transitions in aperiodic composites is a complex and challeng-
ing field. The host-guest n-alkane/urea inclusion compounds constitute a prototype
family where the single change of the number of carbon atoms in the alkane guest
molecules totally modifies the sequences of phases in 3, 4 and 5 dimensional crys-
tallographic superspaces.
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Chapter 24
Pseudo-Symmetry in Tungsten Bronze Type
Sr3TiNb4O15

Thomas A. Whittle, William R. Brant, and Siegbert Schmid

Abstract The structure of Sr3TiNb4O15 has been re-investigated using synchrotron
X-ray powder diffraction data. Rietveld refinements of a structural model against
these data were performed and confirmed a new unit cell and space group sym-
metry. Sr3TiNb4O15 was found to possess Pna21 symmetry with a unit cell a =
12.36081(2) Å, b= 12.40288(2) Å, c= 7.751270(10) Å.

24.1 Introduction

Compounds with tungsten bronze type structures have been shown to display tech-
nologically important properties. The properties common to these materials make
them useful for applications in non-volatile memory and data storage, oscillators
and transducers, thermistors and infrared radiation detectors as well as in non-linear
optics and phase conjugated mirrors [1–8]. The determination of symmetry is es-
sential to explain and predict properties for these materials, e.g. ferroelectric mate-
rials must lack an inversion centre and possess a unique, reversible, polar axis for
the properties to arise. The point group symmetry of these compounds establishes
which properties may be present [9, 10].

Sr3TiNb4O15 is a compound which forms with a tungsten bronze type structure.
Sr3TiNb4O15 has been reported in several publications, yet questions remain con-
cerning its unit cell dimensions and details of the symmetry it adopts (Table 24.1).

Most of the proposed structural models are very similar and result in a reasonable
fit to the data. However, the published models were all tested by refinements against
conventional X-ray powder diffraction data, which do not have the high resolution
or intensity necessary to detect subtle symmetry changes or weak superstructure
reflections. Nonetheless, Rao et al. [11] published a model with a doubled c-axis.
However, the only reflection listed in support of this doubling was the (521) reflec-
tion, with an intensity that was 73 % of the strongest reflection. This is unusual for
the only superstructure reflection observed and, in addition, this reflection is extinct
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Table 24.1 Unit cell parameters and space groups reported for Sr3TiNb4O15

Year Space group Cell parameters

a b c

1970 [12] P 4bm 12.48 3.99

1970 [13] P 4bm 12.36 3.89

1992 [14] Cmm2 17.311 17.321 3.895

1997 [11] Cmm2 17.461 17.811 7.776

2004 [15] Pba2 12.3647 12.4039 3.8782

2005 [16] P 4bm 12.38 3.88

2011 [17] Pba2 12.3556 12.3911 3.8757

in the Cmm2 symmetry they propose for Sr3TiNb4O15. Chi et al. [15] published
the most comprehensive paper on Sr3TiNb4O15 in 2004, but the R-values for their
refinements were somewhat high. The aim of the present paper is to report on our
re-investigation of the structure of Sr3TiNb4O15 using synchrotron X-ray powder
diffraction data.

24.2 Experimental

Polycrystalline powder samples of Sr3TiNb4O15 were prepared by conventional
solid state synthesis techniques using the appropriate carbonates and oxides. The
reagents were calcined at 950 ◦C for 36 h to remove CO2 and were then annealed at
1300 ◦C in steps of 24 to 96 h.

Synchrotron X-ray powder diffraction patterns were collected across a range of
temperatures at the powder diffraction beamline of the Australian Synchrotron with
a wavelength of λ = 0.82521(1) Å at room temperature and 0.82521(1) Å above.
High temperature data were collected using a hot air blower (300–1248 K).

Structural refinements employing the Rietveld method were performed using the
refinement program JANA2006 [18].

24.3 Results and Discussion

Three space group symmetries have been proposed in the literature for Sr3TiNb4O15.
The models based on these symmetries include a tetragonal, P4bm, model and two
orthorhombic, Cmm2 and Pba2, models [12, 14, 15].

The first priority for this work was determining in which crystal system, or-
thorhombic or tetragonal, Sr3TiNb4O15 forms. Peak splitting observed in the syn-
chrotron X-ray powder diffraction pattern for Sr3TiNb4O15 confirms that it crys-
tallises in the orthorhombic crystal system. The inset in Fig. 24.1 clearly shows the
splitting for the (140) and (410) reflections.
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Fig. 24.1 Synchrotron X-ray
diffraction pattern for
Sr3TiNb4O15. Peak splitting
is clearly observed for the
(140) and (410) reflections

Fig. 24.2 Synchrotron X-ray
diffraction pattern of
Sr3TiNb4O15. Inset shows an
example of a weak reflection
present which is indexed by a
doubled unit cell but not by
the cell proposed in the
literature

After it had been confirmed that Sr3TiNb4O15 crystallised in an orthorhombic
crystal system, the two proposed models were tested against the data collected. The
Cmm2 model, which has a doubled unit cell compared to the tetragonal P4bm cell,
was relaxed and refined. This refined Cmm2 model gave a relatively poor fit to
the data, as was found previously [15]. The structural model proposed by Chi et
al. [15] with Pba2 symmetry and a 12× 12× 4 Å unit cell was also tested. This
model gave a much better fit to the data and indexed all the strong reflections quite
well. However, there remained a significant number of weak reflections at low angle
which were not indexed by this model. A doubling of the unit cell in the c direction
led to many of these weak reflections being indexed. An example of such reflections
is the (121) reflection of the 12× 12× 8 Å unit cell, shown in Fig. 24.2.

A model of Sr3TiNb4O15 with Pba2 symmetry and a doubled unit cell to 12×
12× 8 Å gave a reasonable fit to the data. This model significantly improved upon
the R-factors published in the literature from Chi et al. [15] with Rwp = 16.8 to
a value of 6.83 as well as a RBragg of 4.69. This unit cell and symmetry not only
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Fig. 24.3 Low angle region of the synchrotron X-ray diffraction pattern for Sr3TiNb4O15. Peak
markers are shown for Pna21 symmetry (blue), Pba2 symmetry (red), Cmm2 symmetry (green)
and P 4bm symmetry (black)

modelled the strong reflections well, but it also took into account the majority of the
weak reflections. Unfortunately, there were still some weak, low angle reflections
which were not accounted for. In an attempt to index all observed reflections, models
with the same unit cell but with different space group symmetries were tested.

The refinements against synchrotron X-ray powder diffraction data showed that
the best stable refinement for the doubled unit cell was in the Pna21 space group.
A comparison of the allowed reflections for this model and those suggested in the
literature is shown in Fig. 24.3 for part of the powder diffraction pattern.

Lower symmetry space groups such as P21212 and P222 were also considered.
Refinements in these space groups were found to be less stable and problematic. In
addition, no extra reflections were indexed and there was no appreciable improve-
ment of the refinement statistics. Information from the refinement with Pna21 sym-
metry is provided in Table 24.2. The structural model obtained from this refinement
is shown in Fig. 24.4.

Despite the improvement in the quality of refinement when it was performed with
Pna21 symmetry, there remained some very weak unindexed reflections. These re-
flections are most likely due to the presence of a small impurity phase in the powder.

Having confirmed that the structure adopted orthorhombic symmetry at room
temperature, the high temperature phase behaviour of Sr3TiNb4O15 was examined.
Variable temperature synchrotron X-ray powder diffraction data were collected and
confirmed that Sr3TiNb4O15 underwent an orthorhombic to tetragonal phase tran-
sition. Figure 24.5 depicts the coalescence of the (140) and (410) reflections as
Sr3TiNb4O15 adopts the higher symmetry structure on heating. These data indicate
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Table 24.2 Selected
parameters from the
refinement of Sr3TiNb4O15
against synchrotron X-ray
diffraction data

a (Å) 12.36081(2)

b (Å) 12.40288(2)

c (Å) 7.751270(10)

V (Å3) 1188.344(2)

λ 0.82521 Å

Space group Pna21

RBragg (%) 3.41

Rwp (%) 4.80

Fig. 24.4 Structure of
Sr3TiNb4O15 obtained from
Rietveld refinement against
synchrotron X-ray powder
diffraction data

that the phase transition has been completed by about 648 K with possibly a small
amount of orthorhombic character remaining.

Rietveld refinements of the high temperature structure were performed against
the synchrotron data collected at 773 K. This is well above the phase transition tem-
perature and therefore none of the low temperature orthorhombic phase should be
present. Selected details for the refinement are provided in Table 24.3. The refine-
ment against these data indicated that at this high temperature the structure adopted
P4bm symmetry with the 12× 12× 4 Å unit cell, similar to what was originally
proposed for the room temperature structure [12]. Above the phase transition tem-
perature, the superlattice reflections, including the (211) reflection, are no longer
present. The R-factors for this refinement are somewhat higher, in part due to the
lower signal-to-noise ratio of the data caused by the lower flux in the high tem-
perature experimental set-up. The refinement profile shows that there are no major
discrepancies across the profile. A close inspection of the low angle region of the
profile, which was problematic in the room temperature refinement, shows that there
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Fig. 24.5 Variable
temperature diffraction
patterns for Sr3TiNb4O15.
Depicted is the coalescence
of the (140) and (410)
reflections as the structure
adopts tetragonal symmetry

Table 24.3 Information for
refinement of Sr3TiNb4O15
against synchrotron X-ray
diffraction data at 773 K

a (Å) 12.45145(1)

c (Å) 3.913271(7)

V (Å3) 606.7084(10)

λ 0.82664 Å

Space Group P 4bm

RBragg (%) 12.14

Rwp (%) 7.18

are no additional reflections observed and that all are successfully indexed by the
12× 12× 4 Å unit cell in P4bm symmetry.

24.4 Conclusions

The room temperature structure of Sr3TiNb4O15 is structurally complicated due to
the presence of nearly observed symmetry elements. The observation of weak sym-
metry breaking reflections makes the refinement of a model for Sr3TiNb4O15 dif-
ficult. The major difficulty arises because low symmetry space groups are required
to correctly model the structure of Sr3TiNb4O15, but there are very few reflections
on which to base a lower symmetry model. The best model of the room temperature
structure determined from synchrotron X-ray powder diffraction data suggests the
presence of an n-glide plane as well as a screw axis making the overall symmetry
Pna21. A possible solution to the problems arising due to pseudo-symmetry would
be a symmetry mode analysis of the structure as it is distorted from the high tem-
perature P4bm symmetry to the room temperature structure. This type of analysis
would allow for modelling in lower symmetry but would provide the appropriate
constraints, which would stop the refinement from becoming unstable.
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Chapter 25
Structural Investigation of the Incommensurate
Modulated Ta2O5·Al2O3 System

Denissa T. Murphy, Veronica Fung, and Siegbert Schmid

Abstract The (1− x)Ta2O5·xAl2O3 solid solution series was re-investigated using
synchrotron X-ray powder diffraction and neutron powder diffraction data. Struc-
tures were refined using the Rietveld method and an incommensurately modulated
composite structure approach in superspace group Xmmm(0β0)s00 with a compo-
sition dependent modulation wave vector. Variable temperature synchrotron X-ray
powder diffraction data were collected between 27 and 990 ◦C. The magnitude of
the modulation wave vector was found to be constant over most of the temperature
range.

25.1 Introduction

The low temperature form of tantalum pentoxide, L-Ta2O5, changes to the tetrag-
onal high temperature modification, α-Ta2O5 (or H-Ta2O5), via a slow, reversible,
phase transition at∼1360 ◦C [1, 2]. It was found that the addition of a range of other
oxides (e.g. WO3, GeO2, Al2O3) [3], is possible, while maintaining the character-
istics of the L-Ta2O5 structure. In addition, the temperature of the phase transition
increases for these examples.

One example of the resulting phases, the (1 − x)Ta2O5·xWO3, 0 ≤ x ≤ 0.267
solid solution, has been described as a continuous incommensurate composite phase
[4, 5]. The composite structure description considers two periodic substructures
(M and O), with identical a and c subcell dimensions, and an incommensurate
relationship in the b-direction. The M-substructure is made up of the metal atoms
and the oxygen atoms at apical positions, while the O-substructure consists of the
remaining oxygen atoms (at z= 0), as illustrated in Fig. 25.1.

Traditionally, the more strongly scattering M-substructure has been taken as the
main substructure, but when neutron powder diffraction results are included this as-
signment is no longer conclusive. The b∗ basis vectors of each substructure are at
the same time the modulation vectors q of the other substructure, i.e. resulting in re-
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Fig. 25.1 Diagram of an
average structure unit cell of
L-Ta2O5 related structures.
The metal atoms and the
apical oxygen atoms belong
to the M-substructure. The
remaining oxygen atoms
belong to the O-substructure

ciprocal basis vectors a∗, b∗M , c∗, b∗O , with qM = b∗O and qO = b∗M . The modulation
wave-vector q was found to be composition and temperature dependent.

We have recently studied the addition of Al2O3 to L-Ta2O5 and established many
similarities to the (1− x)Ta2O5·xWO3 system [6]. In particular, it was found that
the atomic modulation functions were similar for both systems. We report here on
further synthesis and structural characterisation of the (1−x)Ta2O5·xAl2O3 system
with L-Ta2O5 type structure. Particular emphasis is placed on the x = 0.06 member
of the solid solution and the use of room and variable temperature synchrotron X-ray
powder diffraction and neutron powder diffraction data.

25.2 Experimental

The (1− x)Ta2O5·xAl2O3 system was synthesised from x = 0 to 0.08 in steps of
0.01 via solid state reaction. Stoichiometric mixtures were heated at temperatures
between 1000 and 1600 ◦C for between 10 and 40 hours to produce pure samples.

Synchrotron X-ray powder diffraction data were collected at the powder diffrac-
tion beamline, 10-BM-1, at the Australian Synchrotron. Due to the high absorption
coefficient of tantalum, the samples were diluted with BN for data collection. Vari-
able temperature data were collected using a hot air blower for temperatures up to
990 ◦C.

Neutron diffraction data were collected on Echidna at ANSTO. Data were col-
lected at room temperature only, with a wavelength of 1.622(1) Å.

All refinements and structural analyses were carried out in JANA2006 [7]. Dis-
placive modulation waves were refined up to fifth order for both subsystems, start-
ing from lower order terms, which are generally associated with stronger satellite
reflection intensities.
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Fig. 25.2 Synchrotron X-ray powder diffraction pattern for (1 − x)Ta2O5·xAl2O3, x = 0.06
(λ = 0.82555 Å), showing the observed data (black crosses), calculated pattern (red line), and
difference between the two (black line underneath). The markers show the locations of main reflec-
tions of both substructures (red), main reflections of M- and satellites of O-substructure (black),
main reflections of O- and satellites of M-substructure (orange), and satellites of both substruc-
tures (blue)

25.3 Results and Discussion

Room temperature synchrotron X-ray diffraction patterns were collected for sam-
ples across the composition range. The x = 0.06 sample was diluted with BN for
data collection, to reduce the overall absorption of the sample while still using a cap-
illary of manageable diameter. The diffraction pattern for this sample is shown in
Fig. 25.2, where the BN reflections were excluded from the Rietveld refinement as
incommensurate composite structure. In contrast to an incommensurate modulated
structure, which has main reflections and satellites, for an incommensurate compos-
ite structure four types of reflections can be distinguished. In the present case, these
are reflections of type (h0l0), i.e. main reflections of both substructures; (hkl0), i.e.
main reflections of the M- and satellites of the O-substructure; (h0lm), i.e. satel-
lites of the M- and main reflections of the O-substructure; (hklm), i.e. satellites of
both substructures (see Fig. 25.2). Refinements were carried out in the orthorhom-
bic superspace group Xmmm(0β0)s00, whereX indicates the non-standard centring
(1/2,1/2,0,1/2) [8].

As the amount of aluminium in the structure increased, the magnitude of the
modulation wave vector q decreased, leveling out at ∼6 % aluminium content
(Fig. 25.3). This signals the end of the solid solution range, with AlTaO4 forming as
a second phase on further addition of Al2O3. The refinements for x = 0.07 and 0.08
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Fig. 25.3 Magnitude of
q-vector versus Al2O3
content in the
(1− x)Ta2O5·xAl2O3
composition range (the values
for x �= 0.06 have been
reported previously [6])

both correspond to the end member of the (1− x)Ta2O5·xAl2O3, 0 ≤ x <∼ 0.06
solid solution. This composition range is slightly smaller than reported in the litera-
ture [3, 6].

Neutron diffraction data are particularly useful in the case of
(1 − x)Ta2O5·xAl2O3. The partial diffraction pattern for the x = 0.05 composi-
tion, shown in Fig. 25.4, has many more strong satellite reflections (see Fig. 25.2),
due to the relatively higher scattering power of oxygen when compared to X-ray
diffraction data. The contribution of the O-substructure to the pattern is therefore
enhanced. In addition, the lack of significant absorption effects is another advantage
of neutron powder diffraction for this particular system. It is appropriate to extract
the most reliable data from each of the X-ray or neutron refinements, e.g. parame-
ters pertaining to the metal atoms may be better determined from X-ray data while
those of the oxygen atoms are likely to benefit from neutron data. For example, the
bond distances of interest in this structure are those between the metal atoms and
the oxygen atoms, and in particular those between the different subsystems.

The distances between atoms in different subsystems are continuously changing
throughout the incommensurate structure. Therefore, plots of atomic modulations
functions (AMFs) are used to succinctly describe the structure (in addition to the
average structure unit cell). AMFs are plotted as a function of the internal param-
eter t . For an incommensurate structure, t = q.T modulo integer (q—modulation
wave vector; T —translation vector of average subcell), can take all possible values
between 0 and 1, but only once [9].

Metal–oxygen distances are plotted in Fig. 25.5 as a function of the internal pa-
rameter t . The blue lines represent a distance between a metal and an oxygen of the
O-substructure, and show a continuous variation of distances from a minimum of
∼1.9 Å. Bond distances between tantalum and oxygen of the M-substructure are
depicted with the solid green line, and are approximately constant, with small vari-
ations around t = 0 and 0.5. The dotted red lines represent metal to O-substructure
oxygen distances of the average structure (i.e. without the modulations). It can be
seen that the modulations increase the minimum distance from ∼1.6 Å to a more
reasonable value of ∼1.9 Å. The bond distance plot also highlights the variable
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Fig. 25.4 Observed data (black crosses), calculated pattern (red line), and difference line (black)
for the Rietveld refinement of (1−x)Ta2O5·xAl2O3, x = 0.05, against neutron powder diffraction
data (Echidna at ANSTO; λ= 1.622(1) Å). Peak markers are colour coded as in Fig. 25.2. Note the
strong reflection at about 45◦ 2θ , which corresponds to a weak feature in the synchrotron pattern

Fig. 25.5 Plot of M–O
distances (Å) as a function of
the internal phase parameter t
for (1− x)Ta2O5·xAl2O3,
x = 0.05. Dark blue lines
show distances between M
and OO . The green line
represents distances between
M and OM . Dashed red lines
indicate non-modulated
distances between M and
OO . Regions showing
(4+ 2)-fold coordination and
(5+ 2)-fold coordination are
labelled with the respective
polyhedra

metal coordination environments from slightly distorted octahedra to pentagonal
bipyramids (indicated in Fig. 25.5 with the respective polyhedra).

The determination of the solid solution field indicated that x = 0.06 was the
end member of the (1 − x)Ta2O5·xAl2O3 solid solution. It was therefore consid-
ered important to collect variable temperature synchrotron X-ray diffraction data for
this composition to establish the high temperature behaviour of the end member. In
previously investigated L-Ta2O5 related systems, the modulation wave vector was
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Fig. 25.6 Variable
temperature synchrotron
X-ray diffraction data
collected at the powder
diffraction beamline of the
Australian Synchrotron
(λ= 0.82555 Å)

Table 25.1 Cell dimensions for (1− x)Ta2O5·xAl2O3, x = 0.06

T [◦C] a (Å) b (Å) c (Å) Vol. (Å3) q

27 6.21056(2) 3.64488(1) 3.87772(1) 87.7790(4) 1.62744(1)

200 6.22113(4) 3.64425(2) 3.87629(2) 87.8807(7) 1.62764(4)

400 6.23460(3) 3.64604(2) 3.87624(1) 88.1130(5) 1.62737(2)

600 6.24558(8) 3.65197(3) 3.87700(2) 88.4292(9) 1.62750(2)

700 6.24565(2) 3.65201(1) 3.87688(2) 88.4285(6) 1.62783(1)

800 6.2450 (2) 3.65235(6) 3.87708(5) 88.432(2) 1.62762(9)

900 6.26256(4) 3.66357(2) 3.87803(2) 88.975(1) 1.62913(1)

990 6.26819(5) 3.66659(3) 3.87815(3) 89.131(2) 1.63045(3)

found to be dependent on thermal treatment of the samples. Figure 25.6 shows a
plot of the collected variable temperature diffraction patterns. It can be seen that the
satellite reflections persist up to the highest achievable temperature in the set-up that
was used (see the (210-1) reflection at ∼17.3◦ 2θ ). Otherwise the cell appears to be
expanding smoothly on heating.

Analysis of the data revealed some interesting behaviour that warrants further
investigation. Table 25.1 lists the cell dimensions from the Le Bail fits to the data. It
can be seen that the cell volume increases slightly (∼1.5 % overall), but it does that
in small steps rather than continuously. In addition, the magnitude of the modulation
wave vector stays virtually constant from 27 to 800 ◦C and only changes for the last
2 temperature steps. For an incommensurate structure the normal expectation is that
the modulation wave vector would vary smoothly with changing temperature. This
raises the question whether the x = 0.06 end member may have locked-in to the
value of ∼1.6275.
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25.4 Conclusions

The (1−x)Ta2O5·xAl2O3 composition range was investigated and from the change
in the magnitude of the modulation wave vector the solid solution range was deter-
mined to extend from x = 0 to 0.06. The variable temperature investigation of the
x = 0.06 composition revealed that the volume was expanding stepwise rather than
smoothly and the modulation wave vector was constant up to at least 800 ◦C. Given
the small change of the volume overall and the change to the modulation wave vec-
tor at high temperatures further investigation of the thermal behaviour in the solid
solution is warranted.
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Chapter 26
First-Principles Study for Phase Diagrams
of Cd–Ca and Cd–Y Tsai-Type Approximants
Under Pressure

K. Nozawa and Y. Ishii

Abstract We discuss the crystal structure and phase transitions in the Cd–Ca sys-
tem by comparing the phase diagram and pressure dependence of the potential en-
ergy curves for the rotation of the tetrahedral cores. It turns out that some phase
boundaries especially between the cubic phases seem to be well described by the
rotation of the tetrahedral cores. Based on this analysis, we predict expected differ-
ences in the phase diagram in the Cd–Y system. We also point out the connection
between the orientational configurations of the tetrahedral cores and valency of the
second element. Furthermore, we also mention the possibility of the binary Cd–Y
QC.

26.1 Introduction

Cd6Ca and Cd6Y are known as 1/1 cubic approximants of Tsai-type quasicrys-
tals (QCs) Cd5.7Ca and Cd5.7Yb [1]. A structural building block of Tsai-type QCs
and approximants is a five-layered atomic cluster referred to as Tsai-cluster. Tsai-
clusters are ordered quasiperiodically in QCs, but periodically in approximants. As
shown in Fig. 26.1, a Cd-tetrahedron is sitting at the center of the Tsai-cluster. Al-
though there are still some ambiguities about the structure of the tetrahedral core, it
inevitably breaks icosahedral symmetry of the outer shells.

Several phase transitions accompanied with changes in orientational configura-
tion of the tetrahedral cores are found in Tsai-type 1/1 approximants. Tamura et
al. found out that an order–disorder transition is universally observed in binary ap-
proximants at about 100 K [2]. It is also reported that the order–disorder transition
disappears when even a small amount of impurities, or a third element, is added
in the binary system [3]. First-principles density functional study for the Zn–Sc
system shows that a Cu atom introduced as an impurity stabilizes a specific ori-
entational configuration of the tetrahedral core, meaning the impurity increase the
energy difference between different orientational configurations [4]. An increased
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Fig. 26.1 Five-layered atomic shells of the Tsai-cluster. The innermost shell is a Cd tetrahedron

Fig. 26.2 Phase diagrams of
Cd–Yb approximant [5]

energy difference implies that it would prevent orientational changes of the tetrahe-
dral cores as observed in the experiment. As for the other phase transition accompa-
nied with orientational changes in the tetrahedral core, Watanuki et al. reported that
1/1 approximant phase exhibits various phase transitions under pressure as a phase
diagram, which is reproduced in Fig. 26.2 [5]. In the phase diagram, ordered phases
are labeled from I to V. As mentioned above, the order–disorder phase boundary is
found at about 100 K. Phase I transforms into phase III at 1 GPa and this structure
is kept until transforming the higher-pressure phase V at about 3.5 GPa. Depending
on temperature, there are several phases in this pressure range, which are labeled
II, III and III′. We investigated the phase transitions under pressures for an Cd–Ca
approximant using the first-principles calculation within the local density approxi-
mation and found out that the tetrahedral core rotate around the twofold axis under
high pressure [6]. The potential energy curve of the rotation around the twofold axis
is of parabolic shape at the ambient pressure, but it turns to double-well shape at
about 1 GPa, in good agreement with the transition pressure from I to III. In this
paper, we present a more detailed comparison of the phase diagram and calculated
results within the generalized gradient approximation (GGA). We also try to predict
the phase diagram of Cd6Y under pressure based on the analysis for Cd6Ca.
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Fig. 26.3 Rotation around
the twofold axis of the
tetrahedral core

26.2 Calculation Methods

The density functional first-principles method is used to calculate the total energy
of Cd6Ca and Cd6Y compounds. A cubic cell including 144 Cd atoms and 24 Ca or
Y atoms is used as a unit cell. The unit cell contains two Tsai-clusters. An earlier
study reported that the low-temperature phase at ambient pressure (Phase I) has
a tetragonal unit cell including four Tsai-clusters [2]. Therefore, the cubic unit cell
used here cannot represent structural configurations of Phase I completely, but some
kind of tendency is probably derived from this calculation. Effective potentials of
ionic cores are constructed using the projector-augmented wave method [7]. Also
the GGA proposed by Perdew et al. is used for the exchange correlation term [8].
Calculations are done using the VASP code [9, 10], and standard settings for the
plane-wave cut-off energy are adopted.

We previously reported a favorable structure of the tetrahedral core in the Cd6Ca
system. The four atoms of the tetrahedral core are located inside the pentagonal
faces of outer dodecahedral shell [6]. Moreover, we found out that the tetrahedral
cores are rotated around their twofold axis under pressure as shown in Fig. 26.3.
In this paper, we concentrate on a rotation around the twofold axis. The optimal
structure of the tetrahedral core is not the regular tetrahedron but the one having
the C2v symmetry. The four atoms of the tetrahedral core are placed inside the pen-
tagonal faces of the outer dodecahedral shell. The twofold axis of the tetrahedral
core can be aligned with the x, y or z axes, meaning the tetrahedral core can face
six directions. Since we have Tsai-clusters at the vertex and body-center of the cu-
bic unit cell, we can have three combinations as cluster configuration, and it can be
described using the directions of the twofold axes as parallel: (x, x), anti-parallel:
(x,−x) and threefold: (x, y). However, we consider only parallel and anti-parallel
configurations in this paper. We also consider rotational degrees of freedom around
the twofold axis. Consequently, the structural configurations we argue here are four
configurations shown in Fig. 26.4. Tetrahedral cores are anti-parallel and rotated dif-
ferent/same directions in IS2/ISI configurations, while those are parallel and rotated
different/same directions in ISS/ISE configurations.

The equilibrium lattice constants are determined by calculating the total energy
with varying the lattice constant, and evaluated as 15.88 Å for Cd–Ca and 15.72 Å
for Cd–Y. Those are slightly larger than the experimental values 15.702 Å and
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Fig. 26.4 Schematic
illustrations of IS2, ISI, ISS
and ISE configurations

15.482 Å [11], and the errors are only 1.1 % and 1.5 %, respectively. The differ-
ences can be explained as an error from the GGA. We evaluate pressure as a numer-
ical differentiation of the total energy with respect to the volume. Strictly speaking,
the calculated value depends on the configuration of the tetrahedral cores because
the total energy depends on the configuration. However, it is confirmed that different
configurations give almost same value of pressure.

26.3 Results and Discussions

Potential energy curves for rotation around the twofold axis at different pressures are
shown in Fig. 26.5. We begin with comparing the results of the Cd–Ca system with
the experimentally determined phase diagram for the Cd–Yb system (Fig. 26.2).
Cd–Ca and Cd–Yb are considered to be isostructural. Up to 1 GPa, experiment
shows that a non-cubic ordered phase exists below about 100 K. As previously men-
tioned, Phase I has a tetragonal unit cell containing four Tsai-clusters. We can find
from calculated potential energy curves that anti-parallel configurations are favor-
able at the rotation angle θ = 0◦. The full vertical range for the potential energies
in Fig. 26.5 is taken as 60 meV (600 K), which is compatible with the melting tem-
perature of these systems. The parallel configurations (ISS and ISE) are not in the
plotted energy range. Therefore, it is expected that the configurations of tetrahedral
cores in Phase I are related to the anti-parallel configuration.

We notice that the potential energy curve for IS2 configuration turns to double-
well shape at 2 GPa, meaning the ground state structure at this pressure is no longer
the same as that of ambient pressure but the core is rotated about θ = 12◦. This
is consistent with the experimental result that I–III phase boundary is located at
1 GPa. As indicated in the figure of Cd–Ca 2 GPa, the excitation from IS2 θ =±12◦
configuration to IS2/ISI θ = 0◦ configuration needs 50 K. It is also 70 K from IS2
θ = ±12◦ configuration to ISI θ = ±12◦ configuration. Comparing the result of
2 GPa and 5 GPa, it is expected that these required excitation energies increase with
pressure. They are consistent with the experimentally determined phase boundary
from III to III′ (100 K) or III to II (∼120 K) and with the increasing behavior of
those.
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Fig. 26.5 The potential energy curves for the rotation around the twofold axis of the tetrahedral
cores at 0, 2 and 5 GPa

At 5 GPa, the potential energy curves of the IS2 configuration has deep two
minima at about θ =±15◦, and θ = 0◦ is not even a metastable state. The excitation
energy from IS2 to ISI seems not to correspond to the experimentally determined
phase boundary. Since, however, Phase IV, IV′ and V are also assigned as a non-
cubic structure, there may be other possible combinations, which can describe the
thermal transition between these phases.

From the comparison of the pressure dependence of the potential energy curves
and phase diagram, it turns out that our analysis based on the cubic cell seems to
well describe the phase transition from Phase I to III and those in cubic phases (II,
III, III′). Thus, we try to predict the phase diagram of Cd6Y based on the analogy
of the Cd–Ca case.
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At ambient pressure, θ = 0◦ configurations are stable as the Cd–Ca system. How-
ever, the parallel configurations are also stable in contrast to the Cd–Ca system. We
discuss this problem later. Thus Phase I of Cd–Y may have different orientational
ordering of the tetrahedral cores or perhaps different unit cell. The potential energy
curves are not of the double-well shape even at 5 GPa. It means I–III phase bound-
ary presumably shifts toward higher-pressure side. The potential energy curves at
5 GPa also imply that the phase boundaries III–III′ and III′–II may shift toward
higher-temperature side compared with Cd–Ca. Experimental studies are desirable
to examine these speculations.

We should also mention a substantial difference in the favorable orientational
configurations of tetrahedral cores. As previously mentioned, anti-parallel config-
urations (IS2/ISI) are much favorable than parallel ones (ISS/ISE) in the Cd–Ca
system, and we cannot find parallel configurations in the considered energy range
(60 meV). In contrast with the Cd–Ca system, one can find that the parallel con-
figurations are comparably stable with the anti-parallel ones in the Cd–Y system.
Although the equilibrium lattice constant of Cd–Y is slightly smaller than that of
Cd–Ca, the tendency about the orientational configuration cannot be explained by
the difference in the lattice constant. The parallel configurations in the Cd–Y system
are also stable even at larger lattice constant. The parallel configurations are stable
also in the Zn–Sc system [12], but anti-parallel configurations are stable again in
the Cd–Yb system [13]. These trends imply that the stability depends on the va-
lency of the second elements. With divalent second elements (Ca or Yb), the anti-
parallel configurations are more stabilized than parallel configurations, whereas the
parallel configurations are stabilized with trivalent second elements (Y or Sc). The
cohesive mechanism of Tsai-type compounds is explained by interactions between
sp-states of the first elements (Cd/Zn) and low-lying d-states of the second ele-
ments [14]. More low-lying d-states in the trivalent elements probably increase the
cohesive energy as shown in the values in Fig. 26.5, and also can affect on the ori-
entational configuration. On the other hand, differences in the atomic radius also
may contribute to determine the stable configuration. The atomic radius is closely
related to the valency, and the trivalent elements (Sc:1.62 Å, Y:1.80 Å) has a smaller
atomic radius than Ca (1.98 Å). It is not clear what determines the stability of the
orientational configurations so far, but some connections have emerged from these
results. This may concern with the stability of the binary quasicrystalline phase.
It is known that Cd-based binary QCs form at Cd5.7M (M = Ca/Yb), but in the
Zn–Sc system QC forms at far Zn-richer composition Zn88Sc12 [15]. Although the
role of the second element for the formation of the binary QC has also not been
completely clarified yet, the series of tendencies between the orientational config-
urations and second elements may imply existence of the Cd–Y binary QC at dif-
ferent, maybe Cd-richer, compositions compared with the Cd–Ca and Cd–Yb sys-
tems.
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26.4 Summary

We discussed the crystal structure and phase transitions in the Cd–Ca system by
comparing the phase diagram and pressure dependence of the potential energy
curves for the rotation of the tetrahedral cores. We found out that some phase bound-
aries, especially related to the cubic phase, seem to be well described by the rotation
of the tetrahedral cores. Based on this analysis, we predicted some expected differ-
ences in the phase diagram in the Cd–Y system. Furthermore, we pointed out the
connection between the orientational configurations of the tetrahedral cores and va-
lency of the second element. We also mentioned about the possibility of the binary
Cd–Y QC.
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versity of Tokyo and Yukawa Institute, Kyoto University.
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Chapter 27
The Choice of Vector Basis for Ammann Tiling
in a Context of the Average Unit Cell

R. Strzalka, J. Wolny, and P. Kuczera

Abstract For the construction of the average unit cell (AUC) within the statistical
approach, the use of a so-called reference lattice is needed. The choice of the lattice
constants is in general arbitrary. However, it is convenient to bind them with the re-
ciprocal space vectors k and q (main and modulation vector, q = k/τ ) which we use
for indexing the diffraction pattern, λk = 2π/k, λq = 2π/q. AUC is a distribution
of projections of atomic positions in real space on the reference lattice. With the
choice of lattice as above, the shape of the AUC is related to the shape of the atomic
surface (AS), used in the higher-dimensional approach. In this paper, the discussion
on the choice of the set of wave vectors k and q is provided in terms of different
geometrical bases used for a construction of Ammann–Kramer–Neri tiling (simply
called Ammann tiling—AT, a model for icosahedral quasicrystal) and relation of
the AUC and AS shapes. The dependence of the AUC shape on the choice of wave
vectors is also demonstrated. Additionally, it is proved that the diffraction pattern
does not depend on the basis chosen.

27.1 Introduction

Ammann tiling is one of the ideas used for the structural modelling of icosahedral
quasicrystal [1, 2]. For the statistical approach, where the numerical calculations are
crucial, AT seems to be most promising [8]. The AT is a kind of space covering with
the points reflecting the icosahedral symmetry (the 5-fold axes in particular). It is the
fully aperiodic covering, which means that atoms put in the positions of AT build a
quasiperiodic system. In the higher-dimensional mathematical description, one can
obtain the real-space AT points as projections of points in 6D hyperspace with the
cubic arrangement. The 3D window through which one projects the hypercube is
defined by the geometrical basis of a system. After [8], at least two settings of dif-
ferent bases can be used for the description of AT. For these two sets, the discussion
on the AUC approach will be held.
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The AUC is built as a projection of the AT points (in real space) on the reference
lattice. This is a numerical derivation. The reference lattice is a 3D periodic grid
with parameters simply related to three wave vectors ki in reciprocal space:

|ki | = 2π

λki
, i = x, y, z, (27.1)

λi are the lattice constants of the three directions. Vectors ki are used for indexing
the diffraction pattern. Relation (27.1) is just a choice. However, it is approved to
be used within the statistical approach [10]. The atomic positions ui in AUC are
the distances from the projections to the nodes of the reference lattice and form the
continuous distribution P(u).

As it was posted in many works [3, 4, 7], because of the aperiodicity of a system,
the second reference lattice is needed. The parameters of this new lattice are τ−
times larger, and the reciprocal space vectors qi connected with that lattice are τ−
times smaller and called modulation vectors. The choice of vectors ki and qi is in
general arbitrary, but the shape of the AUC depends on the chosen reference lattice.

The important property of the AUC shape is its linear relation to the shape of the
atomic surface (AS), which is the perpendicular component of the AT in the direct
space [9]. AUC is an oblique projection of the AS along the certain direction (for
details, see [5, 6]). The coordinates of the positions ui in the AUC and i⊥ in the
perpendicular space are related as follows [8]:

ui =−1

τ
i⊥, i = x, y, z. (27.2)

However, it is more convenient to get the “simple” shape of the AUC (as a linear
transformation of the AS) in the context of analytical calculations. This is dictated
by the basis ki , qi chosen for derivation of the AUC. In this paper, such a choice
and its consequences will be discussed.

27.2 Icosahedral Basis (Setting 1)

The reciprocal space basis V∗ within the setting 1 is related directly to the icosa-
hedral symmetry (the so-called “icosahedral basis”). The 6D basis vectors d∗i are
defined as follows:

d∗1 = a∗

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
0
1
0
0
1

⎞

⎟⎟⎟⎟⎟⎟
⎠

V ∗

, d∗i = a∗

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

sin θ cos 2πi
5

sin θ sin 2πi
5

cos θ

− sin θ cos 4πi
5

− sin θ sin 4πi
5

− cos θ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

V ∗

, i = 2, . . . ,6, θ = 2 arctg
1

τ

(27.3)
a∗ is a constant (arbitrarily set to 1).
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Fig. 27.1 Real-space (left)
and perpendicular-space
(right) components of the
reciprocal space vectors d∗i
(setting 1)

Fig. 27.2 Left: rhombic triacontahedron. Right: atomic surface (black) and average unit cell (red).
The blue layer is common both for AS and AUC. The shape of AS and AUC is presented with 6
pentagons and 2 points building the rhombic triacontahedron

The 3D components of the basis V ∗ (three upper—real-space, and three lower—
perpendicular-space components) can be defined geometrically as vectors spanned
by an icosahedron (see Fig. 27.1).

The set of vectors d∗i can be used as an indexing scheme for the diffraction pat-
tern of the icosahedral quasicrystals. The 6D wave vector K can be expressed in
basis V ∗ as V

∗H, where V
∗ is a matrix with vectors d∗i set in columns and H is

column vectors of integer indices (h1, h2, h3, h4, h5, h6). The wave vector of each
diffraction peak is given by the real space component κ of a vector K.

The direct space basis V (vectors di ) is just orthogonal to V ∗ (basis vectors look
like (27.3) with opposite signs and different unit). The projection of the 6D cubic
set of points via perpendicular-space components of the basis vectors di gives the
AS which has the shape of the rhombic triacontahedron (see Fig. 27.2, left). The
AUC shape is related to the shape of AS by formula (27.2). It also has the shape
of rhombic triacontahedron. This is an exact result obtained purely from analytical
derivation (see Fig. 27.2, right).
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Fig. 27.3 Left: Average Unit Cell for about 77 000 points of Ammann tiling and the skele-
ton of rhombic triacontahedron. The AUC is built for wave vectors of the strongest peaks
(indices in brackets): |κx | = 13.7082 (0,−5,−5,2,6,2); |κy | = 7.2068 (0,2,−2,−3,0,3);
|κz| = 17.9443 (9,4,4,4,4,4). The reference system (3) is used. Right: The projection of the
AUC on the uxuz—plane. It is clear that the shape of the AUC is triacontahedral but distorted
(re-scaled)

Fig. 27.4 Same graphs as in Fig. 27.3, but for other wave vectors: |kx | = 22.1803
(0,−8,−8,3,10,3); |ky | = 11.6609 (0,−3,3,5,0,−5); |kz| = 4.2361 (2,1,1,1,1,1). The tria-
contahedral shape is irregular again

As mentioned, to obtain the statistical distribution of AT points with respect to
the reference lattice, some choice of the reciprocal space basis is needed. One of the
possibilities is to take the real-space components of the 6D vectors of “icosahedral
basis” for AT. However, there is some inconvenience. The reference lattice is 3D, so
according to formula (27.1), one needs only 3 vectors ki (and 3 vectors qi for the
second reference lattice, as well). One could also choose any 3 of projections of the
6D Cartesian unit vectors spanning the 6D cube on the real space (using setting 1).
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Fig. 27.5 The relative
orientation of two bases B∗
and V ∗ in real space. For
vectors d∗i only the ends were
marked (in the vertices of an
icosahedron). The shape of
AS in basis B∗ it is also given
by a rhombic triacontahedron
but rotated relative to that
from Fig. 27.2

Such a choice gives, however, the oblique reference system. It could be expected
in this case that the distribution P(u) will have a distorted shape. As it is shown
in Figs. 27.3 and 27.4, it is still a triacontahedron, but not regular anymore. These
figures prove additionally that the shape of the AUC is strongly dependent on the
choice of wave vectors ki and qi .

For analytical calculation (like integrating to obtain the diffraction pattern), it is
inconvenient to handle with irregular shapes. The integral over the AS (in higher-
dimensional approach) or the AUC (in statistical method) gives the diffraction pat-
tern. The integration over platonic solids (like rhombic triacontahedron) is much
more preferable.

27.3 Cubic Basis (Setting 2)

There is an alternative reciprocal space basis B∗ which is cubic and easily related
to the “icosahedral basis” V ∗ by the following formula:

⎛

⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

b∗1
b∗2
b∗3
b∗4
b∗5
b∗6

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

B∗

= 1

2

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 1̄ 0 0 0 1
0 0 1̄ 0 1 0
1 0 0 1̄ 0 0
0 1 0 0 0 1
0 0 1 0 1 0
1 0 0 1 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

d∗1
d∗2
d∗3
d∗4
d∗5
d∗6

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

V ∗

= 1

2

⎛

⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

d∗6 − d∗2
d∗5 − d∗3
d∗1 − d∗4
d∗6 + d∗2
d∗5 + d∗3
d∗1 + d∗4

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

V ∗

. (27.4)

Basis B∗ is called after [8] setting 2. The orientation of basis B∗ versus basis
V ∗ in real space is shown in Fig. 27.5. Interestingly, the vectors {b∗1,b∗2}, {b∗3,b∗4},{b∗5,b∗6} are parallel in pairs and the lengths of vectors with even indices are τ -times
larger. This is the reason why basis B∗ comes out naturally as a choice for sets of
main and modulation vectors ki and qi .
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Fig. 27.6 Left: Average Unit Cell for about 77 000 points of Ammann tiling and the skeleton of
rhombic triacontahedron constructed in cubic basis B∗ (the reference system (27.4)). The AUC is
built for basis wave vectors from Eq. (27.5). Right: The projection of the AUC on the uxuz-plane.
It is clear that the shape of the AUC is given by rhombic triacontahedron without any distortion or
scaling

Using the relations of the golden ratio τ and the cosine function of 36◦ (τ =
2 cos π5 ), one can easily get wave vector K in the cubic reference system (setting 2):

K= hQx + h′Kx + kQy + k′Ky + lQz + l′Kz,

κ = hqx + h′kx + kqy + k′ky + lqz + l′kz,

qx =
[

1√
τ + 2

,0,0

]
; qy =

[
0,

1√
τ + 2

,0

]
; qz =

[
0,0,

1√
τ + 2

]
,

kx =
[

τ√
τ + 2

,0,0

]
; ky =

[
0,

τ√
τ + 2

,0

]
; kz =

[
0,0,

τ√
τ + 2

]
,

(27.5)

where 2√
τ+2
≈ 0.5257 and 2τ√

τ+2
≈ 0.8507. Integers h–l′ are the peak indices. Qi ,

Ki are the basic and modulation wave vectors in 6D and qi ,ki are their real-space
components, i = {x, y, z}. κ is the real-space wave vector.

Now for the construction of the AUC, the reference system (27.4) may be used.
Every diffraction peak can now be indexed with vectors qi , ki from Eq. (27.5).
Indices are transformed from the set h1–h6 to h–l′ according to the transformation
matrix from Eq. (27.4).

Figure 27.6 presents the shape of the AUC generated for the basis vectors qi , ki
from Eq. (27.5). One can see that the shape of the AUC in this picture is regularly
triacontahedral.

Finally, it has to be pointed out that the diffraction pattern derived as the Fourier
transform of the atomic positions in the AUC (numerical calculation) is the same
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Fig. 27.7 Diffraction pattern
for AT (empty lattice, with no
decoration) in the direction
κx of a diffraction wave
vector calculated as the
numerical Fourier transform
for two AUCs: icosahedral
basis setting 1 (vertical
lines)—data from Fig. 27.3;
cubic basis setting 2 (dashes
over peaks)—data from
Fig. 27.6. Patterns agree with
little deviation for small
peaks

for both bases used to build the Ammann tiling points and the average unit cell.
The comparison of diffraction intensities in direction κx for both considered cases
(i.e. for the AUCs from Figs. 27.3 and 27.6) is shown in Fig. 27.7. The intensity of
a peak is understood as a square of the structure factor for empty Ammann tiling
(with no decorative atoms). The structure factor is simply the Fourier transform of
atomic positions (in the AUC).

27.4 Conclusions

This paper is related to Ammann tiling (also called Ammann–Kramer–Neri tiling)
as a model for an icosahedral quasicrystal. The statistical approach using the con-
cept of an average unit cell is applied for consideration. It is shown that the AUC
shape as a distribution of atomic positions projected on the reference grid is strongly
dependent on the vectors k and q chosen for building a grid. The two complemen-
tary geometrical bases (“icosahedral” and cubic) were used and the argumentation
for the choice of the cubic one for the AUC method is delivered. Finally, the nu-
merical diffraction pattern (over points in the AUC) is calculated to show that the
diffraction pattern does not depend on the choice of reference system.
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Chapter 28
Real Space Structure Factor and Scaling
for Quasicrystals

J. Wolny, B. Kozakowski, P. Kuczera, L. Pytlik, and R. Strzalka

Abstract This paper describes the average unit cell (AUC) approach and its ap-
plication to a derivation of the structure factor for quasicrystals. Scaling plays a
special role in this approach. The TAU2-scaling in AUC simplifies the formulae for
the structure factor. The TAU-scaling of peak positions distinguishes quasicrystals
from twins, indicating a phase transition at some critical concentration of atoms.

28.1 Introduction

Quasicrystals are aperiodic structures. Consequently, their structure cannot be char-
acterized by a single periodic unit cell defined in the physical space. Recently, it
was shown that the structure of quasicrystals can be successfully described in the
physical space by the statistical approach where a regular unit cell is replaced by an
average unit cell (AUC) [3–5, 12–14] in which the atomic positions are occupied by
atoms with some probability. The knowledge of the probability distribution allows
calculating the structure factor and using it during a structure refinement [7, 8, 14].
An advantage of the AUC approach is that the structure refinement can be carried
out in physical space only. Moreover, with this method one can go beyond qua-
sicrystals, even to more complicated structures with singular continuous diffraction
patterns [17].

In most cases, the structure of a quasicrystal is analyzed by means of the “cut and
project” method which works in a high-dimensional space [2, 6, 9, 10]. According
to this method, the structure is represented by its atomic surface which provides sta-
tistical information of high-dimensional atomic coordinates. One disadvantage of
the method is that it is not easy to incorporate dynamic structural properties into a
structure model. Randomness or structural defects is another issue which is not eas-
ily accessible by this method [1]. It was shown that an AUC and an atomic surface
are related by an oblique projection onto the physical space [5, 11].
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Fig. 28.1 (Left) P (u) distribution for the Fibonacci chain calculated for the scattering vector
k0 = 2π/a0 ≈ 4.55, where a0 corresponds to a mean distance of atoms equal to 3 − τ ≈ 1.38.
(Middle) Trace of P (u, v) distribution calculated for scattering vector k0 and q0 = k0/τ . The dis-
tribution is monotonic and nonzero only along a line segment described by formulae: v =−τ 2u,
for u ∈ 〈1 − τ,0〉. A Fourier transform of this AUC leads to the envelope functions connecting
periodic series of peaks as is shown in the right figure

For all crystalline structures (including quasicrystals) one can define an appro-
priate scaling factor. The distances scaled by such a factor result in a self-similar
structure. The same holds for the reciprocal space. When the scattering vector of
any diffraction peak is multiplied by the scaling factor, another diffraction peak is
reached. For the model quasicrystals, like the Fibonacci chain, the Penrose tiling
or the 3D Amman–Kramer–Neri tiling, the scaling factor is related to the value of
τ ≈ 1.618. The fact that this number is irrational is a source of quasicrystal aperi-
odicity. It is also possible to express this scaling factor as a rational number. In such
a situation, we observe structural approximants.

28.2 Average Unit Cell

The concept of the reference lattice was presented in details in [5, 12, 16]. Suppose
we have a one-dimensional set {rn} of N points (atoms) with scattering intensities
equal to one. With some appropriate assumptions about the sequence {rn}, we get
the following expression for the structure factor for the scattering vector k:

F(k)=N−1
N∑

n=1

exp(ikrn)=
∫ λ/2

−λ/2
P(u) exp(iku)du (28.1)

where P(u) is a probability distribution of distances un measured from the atomic
positions to the nearest points of the reference lattice points mλ,λ = 2π/k,m is
an integer number. The function P(u) may be viewed as a probability distribution
within an average unit cell. The structure factor for the scattering vector k is just
the first Fourier mode of this distribution. A single average unit cell is sufficient
to analyze structures in situations when scattering occurs at multiples of a fixed
scattering vector k0. For the Fibonacci chain, the AUC has a rectangular shape as
shown in Fig. 28.1 (left).
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Fig. 28.2 Diffraction patter of the Penrose tiling (left) with two sets of scattering vectors k1, k2
and τ -times smaller vectors q1, q2, used for further calculations of the AUC. The AUC obtained
for the first set of scattering vectors is shown in the middle part of the figure. The AUC obtained
for vectors q1, q2 is shown on the right; k1 = k2 = 20.25, q1 = q2 = 12.52

Fig. 28.3 The same as in Fig. 28.2 but for a different set of scattering vectors (orthogonal frame)
as marked in the diffraction pattern (left): kx = 17.23, qx = 10.65; ky = 20.25, qy = 12.52

In case of 2D quasiperiodic structures, like the Penrose tiling, to obtain a proba-
bility distribution a pair of scattering vectors is required. As an example, histograms
for a set of 105 points of the Penrose tiling are presented in Figs. 28.2 and 28.3.
In the left figures, the scattering vectors that were used are marked. Two nonlinear
vectors, k1 and k2, were used to construct the histogram of the probability distribu-
tion shown in the middle figures. In the right figures, similar distributions are shown
but for scattering vectors τ -times shorter: q1 = k1/τ and q2 = k2/τ . The AUC of
the Penrose tiling consists of four pentagons resembling the atomic surface used in
the 5D analysis. The periodic arrangements of AUCs superimposed on the Penrose
tiling are shown in those figures as well.

In order to describe modulated structures (including quasicrystals), there is usu-
ally a need for two periods, a and b, which may be incommensurate. With two
reference lattices, the first one of periodicity a and the second one of periodicity b,
the structure factor can properly describe peaks positioned at a linear combination
of k0 = 2π/a and q0 = 2π/b (k = nk0 +mq0), and can be expressed as:

F(k)=
∫∫

AUC
P(u, v) exp

(
i(nk0u+mq0v)

)
dudv (28.2)
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where u and v are the shortest distances of an atomic position to the appropriate
points of two reference lattices and P(u, v) is the corresponding probability distri-
bution of a two dimensional AUC. Formula (28.2) indicates that the average unit
cell calculated for the wave vectors of the main structure and its modulation can be
used to determine the intensities of peaks of any of the main reflections and their
satellites in an arbitrary order. The structure factor in the AUC approach reads:

F(k)=
∑

t

∑

α

[

Fαt (k)
nt∑

j=1

f tj exp
(
ik · rt,αj

)
]

(28.3)

where Fαt (k) is the Fourier transform of a triangular probability distribution associ-
ated with a given structure unit t of the Penrose tiling and directed at angle α. The
first sum (t) is over all independent structure units and the second (α) over all possi-
ble orientations of each structure unit. The position of an atom j in a given structure
unit t at orientation α is represented by rα,tj , nt is the number of atoms decorating
the structure unit and f tj is the atomic form-factor. The structure factor (3) has been
successfully used for refinement of many decagonal quasicrystals [7, 8, 14, 15].

28.3 Scaling

TAU2-Scaling for AUC In the AUC approach, scaling plays a very important
role. It is observed for quasicrystals in the form of the probability distribution of
atomic positions being nonzero only along a line, as shown in Fig. 28.1 (right).
Such a linear relationship has an essential effect on the calculation of the corre-
sponding structure factor. Its general form is v = −τ 2u + b, and we call such a
relationship “TAU2-scaling”. If the scaling is expressed as a rational approximant
of τ , the distribution becomes broader and this affects the intensity of diffraction
peaks at the inflated positions of the scattering vector. The size of the broadening is
an order parameter. It can be used to describe the critical behavior of a diffraction
pattern when the value of the scaling factor approaches the golden mean value.

Figure 28.4 (left) shows the distribution P(u, v) which was calculated for the
Fibonacci cluster consisting of 103 points (atoms). The chosen wave vector is
k0 = 2π/a0 and the modulation vector is q = k0/κ , where κ is some rational ap-
proximant of τ (κ = 1.6177 in the figure). Similarly to the previous results, the
obtained distribution P(u, v) is nonzero along a line segment (v =−τ 2u), but this
time the line is broadened and the width is marked as �v. The width depends lin-
early on κ and reaches zero for the critical value equal to τ (middle figure). The size
of the width depends not only on the value of the ratio k0/q but also on the number
of atoms in the cluster. The linear dependence of the width on the number of atoms
is shown in Fig. 28.4 (right). Only at the critical point, the width decreases to zero,
leading to the TAU2-scaling.

The TAU2-scaling observed in the Penrose tiling reduced to the AUCs, which
are shown in Figs. 28.2 and 28.3, is presented in Fig. 28.5. In this case, the linear
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Fig. 28.4 TAU2-scaling is a typical behavior of AUC at the critical ratio of the two scattering
vectors. In the left figure, the P (u, v) was calculated for a finite cluster (N = 103) of the Fibonacci
chain and a ratio of scattering vectors given by an rational approximant κ = 1.6177 (very close
to the irrational value of τ ). The observed broadening of the distribution is analyzed versus κ for
N = 103 (middle) and number of N atoms for κ = 1.616 (right)

Fig. 28.5 TAU2-scaling for
AUC of the Penrose tiling
shown in Fig. 28.2 along two
directions: x (left) and y
(right). The AUC
distributions from Fig. 28.3
for both directions, k1 and
k2, scales identically as
shown in the right figure

relationship between u and v variables is observed as well. This time, however, the
relationship is not monotonic as it was in the case of the Fibonacci chain. The shape
of the obtained distributions resembles the pentagonal distributions of the perfect
Penrose tiling. In many cases, such a distribution can be successfully approximated
by a Gaussian, which essentially simplifies calculations of the structure factor.

By using the TAU2-scaling, one can reduce the expression for the structure factor
to the equation:

F(nk0 +mq0)= eimq0b

∫ +u1

−u1

P(u)eik0(n−mτ)u du=Anmeimϑ (28.4)

where Anm is an amplitude, ϑ = q0b, and the probability distribution P(u) is as-
sumed to be uniform for the Fibonacci chain. After its symmetrization ϑ = π , the
final result is:

F(k)= eimπ sin(w)

w
(28.5)

where: w ≡ 1
2τ (k −mk0

√
5) and k is a running scattering vector, k = nk0 +mq0.

The diffraction intensity is shown in Fig. 28.1 (right). For continuous k one gets the
so-called envelope function, also marked in the figure.
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Fig. 28.6 Different
structures obtained by
decoration of 2D arrangement
of decorated Robinson
triangles: (a) The Penrose
tiling, (b) twins, (c) random
structure, (d) precipitated
structure

Fig. 28.7 (Left) Series of diffraction peaks for different structures: 1—the Penrose tiling (cp),
2, 3—random structures (c ≈ 0.37), 4—twins (c = 0.5), 5—precipitated structure (c ≈ 0.8), and
6—twins (c = 1). (Middle) Linear scaling of scattering vectors versus the radius of the cluster.
(Right) Critical behavior of the linear scaling coefficient near the Penrose concentration

As already mentioned, the distributions of the Penrose tiling atomic positions can
be approximated by Gaussians. In such a situation, the resulting structure factor is
also a Gaussian. Moreover, the integral in (28.4) is a real function for any symmet-
rical P(u). Consequently, the phase value of each component of the structure factor
must be equal to ϑ = q0b.

Scaling for Peak Positions We used the TAU-scaling to differentiate between dif-
ferent 2D structures shown in Fig. 28.6. All these structures have been constructed
by simple decoration of Robinson triangles [16]. Four different classes of structures
have been used: (a) Penrose tiling (c = cp = 1/τ 2 ≈ 0.382), (b) twins (c = 0.5),
(c) random structure (c ≈ 0.37), and (d) precipitated structure (c ≈ 0.8). The con-
centration of small Robinson triangles is given in parentheses.
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Diffraction patterns of all the structures discussed consist of peak series posi-
tioned at k = k0τ

n where n is an integer; it is shown in Fig. 28.7 (left). The tops
of the diffraction peaks form the shape of the envelope function. The envelope ob-
tained for the Penrose tiling can be used to describe other structures as well. To
achieve that, it must be shifted along the scattering vector. This shift allows us to
define the similarity parameter as a ratio of the position of a scattering vector k for
a chosen structure to the position of the corresponding scattering vector for the Pen-
rose tiling kp, that is, (k/kp), conditioned on F(k) = F(kp). For all the structures
discussed, the similarity parameter depends linearly on the size of the cluster, as
shown in Fig. 28.7 (middle). The linear coefficient scales critically with the concen-
tration of atoms, as shown in Fig. 28.7 (right).

28.4 Conclusions

The AUC approach operates in physical space only. For each scattering vector one
can construct a grid of planes and calculate an atomic position with respect to the
grid. A probability distribution of these new positions defines the AUC and can be
used in determination of periodic series of peaks within a diffraction pattern. To
fully reconstruct a diffraction pattern of a quasicrystal (or a modulated structure),
one has to use another wave-vector, a modulation vector, and calculate another AUC.
The correlation between the atomic coordinates expressed in two reference lattices
leads to a linear relationship v = −τ 2u+ b which we call the “TAU2-scaling”. In
case of the centrosymmetric distributions, the structure factor is given by a simpler
formula (4) where the amplitude is a Fourier transform of the distribution, and all
phases can be easily calculated as a product of the length of the modulation vector
(q0), parameter b, and satellite peak’s index (m).

Another scaling property, the TAU-scaling of peak positions, is used to define
the similarity parameter which distinguishes between different structures, includ-
ing twins and random structures. This similarity parameter behaves critically at the
critical concentration, indicating a continuous phase transition.
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Chapter 29
Direct Observations of Aperiodic Arrangements
of Transition-Metal Atoms in Al–Co–Ni
Decagonal Quasicrystals by Cs-Corrected
HAADF-STEM

A. Yasuhara, K. Saito, and K. Hiraga

Abstract HAADF (high-angle annular detector dark-field) images with Cs-cor-
rected scanning transmission electron microscopy (STEM) have been observed
for a W-(AlCoNi) crystalline phase and two-types of decagonal quasicrystals in
Al71.5Co25.5Ni3 and Al72.5Co17.5Ni10 alloys. We have secured positive evidence
that three-dimensional arrangements of transition-metal (TM) atoms of decago-
nal quasicrystals can be directly derived from the arrangements of bright dots in
HAADF-STEM images, which correspond to individual TM atoms, by reference to
results on HAADF-STEM observation and the structure of W-(AlNiCo) determined
by X-ray diffraction analysis. We could conclude that pure TM atomic sites and
mixed TM sites (with Al atoms) on A and B planes stacking along the periodic axis
are located at the lattice points of a Penrose lattice with a bond length of 0.25 nm. In
both planes atomic sites form pentagonal tilings with bond lengths of 0.47 nm and
0.76 (=0.47 · τ ) nm, respectively, in both the Al71.5Co25.5Ni3 and Al72.5Co17.5Ni10
decagonal quasicrystals, whose structures were formally characterized as rhombic
and pentagonal tilings of atom columnar clusters with a bond length of 2 nm.

29.1 Introduction

Several types of decagonal quasicrystals have been found in Al–Co–Ni alloys [1],
and their structures have been characterized as two-dimensional aperiodic arrange-
ments of decagonal columnar atom clusters whose size is 2 nm in diameter, with the
so-called bond-orientational order (BOO) that is one of important structural features
of quasicrystals [2, 3]. On the other hand, the structures of W-(AlCoNi) [4] and τ 2-
Al13Co4 [5] crystalline phases show that TM atoms are located at lattice points of
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a Penrose lattice with a bond length of 0.25 nm, and are arranged with BOO. Recent
Cs-corrected STEM has successfully reproduced individual TM atoms in decagonal
quasicrystals projected along the periodic axes [6]. However, in a previous report
on Cs-corrected HAADF-STEM observations, it has still been used for examining
the structure of 2 nm atom clusters, and the structures in wide regions including the
outside of the atom clusters, i.e., glue regions, have never been discussed. In this pa-
per, we aim to derive the structures of the Al–Co–Ni decagonal quasicrystals from
direct observations of individual TM atoms by Cs-corrected HAADF-STEM with
reference to the result, by our HAADF observation of the W-(AlCoNi) crystalline
phase and its structure determined by X-ray structure analysis.

29.2 Experiment

Two alloys of nominal compositions of Al71.5Co25.5Ni3 and Al72.5Co17.5Ni10
were prepared from molten high-purity (99.99 %) Al, Co, and Ni metals, which
were heated and mixed in an arc furnace in Ar atmosphere. The alloy ingots of
Al71.5Co25.5Ni3 and Al72.5Co17.5Ni10 sealed in evacuated quartz tubes were an-
nealed at 1160 °C for 3 h and at 900 °C for 40 h, respectively. HAADF-STEM
images of those samples were observed by using a Cs-corrected electron micro-
scope (JEM-ARM200F) with the incident beam along the periodic axis. And an
HAADF-STEM image of the W-(AlCoNi) crystalline phase in the Al72.5Co20Ni7.5
alloy annealed at 900 °C for 280 h was also observed with an incident beam along
the b-axis as a reference.

29.3 Results and Discussion

The arrangements of TM atomic sites and mixed sites of TM and Al atoms on the A
and B planes of W-(AlNiCo), determined by the single-crystal X-ray analysis [4],
are shown in Figs. 29.1(a) and (b). The structure of the W-(AlCoNi) crystalline
phase has a stacking ofABA′B along the b-axis. Most of TM atoms on theA andA′
planes have the same arrangement, except for TM atoms indicated by the red circle
(on the A plane) and the green circle (on the A′ plane) on the deformed hexagonal
tiles. It should be noted here that the TM atoms of red and green circles have a phase
flip relation, as indicated by red and green lines. The TM atomic site and mixed sites
in the structure are exactly located at lattice points of a Penrose lattice with a bond
length of 0.25 nm, which is indicated by thin dashed lines in Figs. 29.1(a) and (b),
and they form pentagonal lattices with a bond length of 0.47 nm on the A plane and
0.76 (=τ · 0.47) nm on the B plane. On the other hand, Al atoms are shifted from
lattice points of a Penrose lattice, and they prefer to be located at energetically stable
positions between the definite arrangements of TM atomic sites and mixed sites with
BOO [4]. This result indicates that the structures of decagonal quasicrystals could
be characterized as arrangements of TM atomic sites and mixed sites.
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Fig. 29.1 (a)–(b) arrangements of TM atoms on the A and B planes, respectively, in the
W-(AlCoNi) structure, and (c)–(d) HAADF-STEM images of the W-(AlCoNi) phase observed
with the incident beam parallel to the b-axis. Note that almost all of bright dots in (d) are con-
nected by pentagonal tilings with bond lengths of 0.47 nm and 0.76 nm, and that mixed sites of
TM and Al atoms are represented as weak dots in downward pentagons indicated by solid lines

Figure 29.1(c) is an observed HAADF-STEM image. In the image, one can see
characteristic clusters, formed in a ring of ten bright dots, which surrounds a down-
ward pentagonal bright dot ring, indicated by a white circle. And one can say that
the clusters are arranged within a thin rhombic frame with a side-length of 2 nm,
as indicated by red lines. Almost all of the bright dots in the HAADF-STEM im-
age of Fig. 29.1(c) can be connected by lines with bond lengths of 0.47 nm and
0.76 nm, which are indicated by white solid and dashed lines, respectively, as shown
in Fig. 29.1(d). One can recognize that the bright dots at lattice points of pentagonal
lattices with bond lengths of 0.47 nm and 0.76 nm in Fig. 29.1(d) correspond to TM
atoms in the A and B planes of Figs. 29.1(a) and (b), respectively.

In addition to the bright dots corresponding to TM atoms, mixed sites of Al and
TM in the B plane appeared as relatively weak bright dots and located in smaller
downward pentagonal tiles indicated by solid lines in Fig. 29.1(d). Judging from
the structure of the W-(AlNiCo), the TM atoms indicated by red and green circles
in Fig. 29.1(a) correspond to single atomic TM sites along the b-axis in the unit
cell. The other TM sites have two atoms in the unit cell. Therefore, the brightness
of atomic sites corresponding to red and green circles in Fig. 29.1(d) should be
of 1/4 weak brightness compared with the other bright dots in the HAADF-STEM
image formed by Z2 (Z = atomic number) contrast. Therefore, the TM atomic sites,
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Fig. 29.2 HAADF-STEM images of the Al72.5Co17.5Ni10 decagonal quasicrystal taken with the
incident beam parallel to the periodic axis. (a) Shows that atom clusters indicated by circles are
arranged in a pentagonal framework with a bond length of 2 nm, and (b) and (c) show that bright
dots in the images can be connected by solid and dashed lines with bond lengths of 0.47 and
0.76 nm. Note that the weak dots in downward pentagons of solid lines correspond to mixed sites
of TM and Al atoms

except for the sites indicated by red and green circles, are considered to be located in
both atomic planes of A and B . With this consideration, we performed the structure
analysis of two-types of quasicrystals (Al71.5Co25.5Ni3 and Al72.5Co17.5Ni10) with
two atomic planes of A and B .

Figure 29.2(a) is an observed HAADF-STEM image of the decagonal quasicrys-
tal in Al72.5Co17.5Ni10. This structure of the decagonal quasicrystal was called as a
Co-rich basic structure in [1], and its structure was formally characterized by a pen-
tagonal tiling of 2 nm atom clusters [2, 7]. In the image, one can see that the clus-
ters, indicated by a circle, are arranged by a pentagonal network with a side length
of 2 nm, as indicated by thick solid lines. Almost all of bright dots in the HAADF-
STEM image can be connected by solid and dashed lines with bond lengths of 0.47
and 0.76 nm, respectively, as shown in Figs. 29.2(b) and (c). Bright dots connected
by solid lines and dashed lines correspond to TM atoms in the A and B planes,
respectively, and the weak bright dots corresponding to mixed sites of TM and Al
atoms are located in downward pentagonal tiles indicated by solid lines, except for
an upward pentagon located at the center of a pentagonal network in Fig. 29.2(c).
From the HAADF-STEM images of Figs. 29.2(b) and (c), arrangements of TM
atoms and mixed sites in the A and B planes can be directly derived, as shown in
Fig. 29.3. The actual structure of this decagonal quasicrystal is considered to be
made of four atomic planes, with the ABA′B stacking along the periodic axis, and
the order of four atomic planes is a result of atoms indicated by red and green circles
in Fig. 29.3(a), which are located in the A and A′ planes, respectively.

Figure 29.4(a) is an observed HAADF-STEM image of the Al71.5Co25.5Ni3
decagonal quasicrystal. The decagonal quasicrystal was called a Pentagonal super-
structure in [1], and its structure was formally characterized as a rhombic tiling
of 2 nm atom clusters [2, 8]. Bright dots in the image can be connected by lines
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Fig. 29.3 Arrangements of TM atoms and mixed sites in A (a) and B (b) planes, determined from
the observed HAADF-STEM images of Fig. 29.2

Fig. 29.4 (a) HAADF-STEM image of the Al71.5Co25.5Ni3 decagonal quasicrystal, and (b)–(c)
arrangements of TM atoms and mixed sites in A (b) and B (c) planes, respectively, determined
from (a)

with bond lengths of 0.47 and 0.76 nm, as indicated by solid and dashed lines in
Fig. 29.4(a), respectively. From Fig. 29.4(a), arrangements of TM atoms and mixed
sites in the A and B planes can be directly derived as shown in Figs. 29.4(b) and (c),
respectively. The structure of this quasicrystal is made of four atomic planes, with
the order ofABA′B . The structure is considered to be a result of the atoms indicated
by red and green circles in Fig. 29.4(b) in analogy with the W-(AlCoNi) structure.
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29.4 Summary

The structures of two-types of decagonal quasicrystals in Al71.5Co25.5Ni3 and
Al72.5Co17.5Ni10 alloys have been studied by Cs-corrected HAADF-STEM obser-
vations, on the basis of the close examination between an observed HAADF-STEM
image of the W-(AlCoNi) crystalline phase and its structure determined by X-ray
single crystal analysis. Individual TM atoms and mixed sites of TM and Al atoms
appeared as bright dots in HAADF-STEM images observed with the incident beam
parallel to the periodic axis. We can conclude that the three-dimensional arrange-
ments of TM atoms and mixed sites in the quasicrystals can be directly determined
from Cs-corrected HAADF-STEM images. The TM atoms and mixed sites in the
two atomic planes stacking along the periodic axis are located at lattice points in
a Penrose lattice of a bond length of 0.25 nm and form pentagonal tilings with
bond lengths of 0.47 and 0.76 nm. This result suggests that the structures of Al–
TM decagonal quasicrystals should be characterized as aperiodic arrangements of
TM atoms with BOO, instead of previous cluster models in which the structures of
decagonal quasicrystals were characterized by aperiodic arrangements of 2 nm atom
clusters.

References

1. Ritsch S, Beeli C, Nissen H-U, Godecke T, Scheffe M, Lück R (1998) Philos Mag Lett 78:67–
75

2. Hiraga K (2002) Advances in imaging and electron physics, vol 122. Elsevier Science, Amster-
dam

3. Hiraga K, Ohsuna T, Sun W, Sugiyama K (2001) Mater Trans 42:2354–2367
4. Sugiyama K, Nishimura S, Hiraga K (2002) J Alloys Compd 342:65–71
5. Sugiyama K, Yasuhara A, Hiraga K (2012) In: Proceedings of aperiodic 2012
6. Taniguch S, Abe E (2008) Philos Mag 88:1949–1958
7. Hiraga K, Sun W, Ohsuna T (2001) Mater Trans 42:1146–1148
8. Hiraga K, Ohsuna T, Nishimura S (2001) Philos Mag Lett 81:123–127



Chapter 30
Arrangement of Transition-Metal Atoms
in an Approximant Crystal Related
to Al–Cu–Co Decagonal Quasicrystals Studied
by Cs-Corrected HAADF-STEM

K. Yubuta, A. Yasuhara, and K. Hiraga

Abstract A crystalline approximant, which is related to Al–Cu–Co decagonal
quasicrystals with two aperiodic planes stacking along the periodic axis, in an
Al66Cu15Co19 alloy annealed at 900 ◦C for 36 h has been studied by high-angle an-
nular detector dark-field (HAADF) observations with Cs-corrected scanning elec-
tron microscopy (STEM). Observed HAADF-STEM images represent individual
transition-metal (TM) atoms as bright dots, and so a three-dimensional arrangement
of TM atoms in the approximant can be derived from the arrangement of bright
dots. The structure has an orthorhombic unit cell with a0 = 10.1 nm, b0 = 0.4 nm
and c0 = 6.7 nm, formed by an ordered arrangement of two types of atom colum-
nar clusters in a τ 3-inflated monoclinic Al13Co4 structure formed by a network of
pentagons with an edge-length of 2 nm. The TM atoms in the two planes stacking
along the b-axis are located at lattice points of a Penrose lattice with a bond length
of 0.25 nm and pentagonal tilings with bond lengths of 0.47 and 0.76 nm.

30.1 Introduction

A series of decagonal quasicrystals with two or four aperiodic planes along the
periodic axis have been found in Al–TM alloys, and also a number of crystalline
approximants related to the decagonal quasicrystals are formed in alloys around the
decagonal quasicrystals [1–3]. Almost all of those structures have been examined by
HAADF-STEM, forming Z (atomic number) contrast images, and have been char-
acterized by arrangements of columnar atom clusters with 2 nm in diameter, with a
bond-orientational order, which is one of structural features of quasicrystals [2, 4].
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In the present paper, we have examined the structure of a crystalline approximant
in an Al66Cu15Co19 alloy, which has a composition near that of Al64Cu22Co14 for
an Al–Cu–Co decagonal phase [5], by Cs-corrected HAADF-STEM observations.
Modern Cs-corrected STEM has enough resolution to reproduce individual TM
atoms as bright dots in observed images taken with the incident beam parallel to
the periodic axis of the decagonal quasicrystals [5]. Older Cs-corrected HAADF-
STEM is still being used for examining the structure of 2 nm atom clusters; however,
it has never been employed for discussing the structures in wide regions, including
the outside of the atom clusters, i.e., glue regions [5]. The purpose of the present
paper is to discuss the structure of the approximant using an arrangement of TM
atoms.

30.2 Experimental Procedures

An alloy of a nominal composition of Al66Cu15Co19 was prepared by melting high-
purity (99.99 %) Al, Cu, and Co metals in an arc furnace in Ar atmosphere. The
ingot was sealed in an evacuated quartz tube and annealed at 900 ◦C for 36 h.
HAADF-STEM images were taken by using a Cs-corrected electron microscope
(JEM-ARM200F).

30.3 Results and Discussion

Figure 30.1 shows electron diffraction patterns of the Al66Cu15Co19 approximant,
taken with the incident beam parallel to three primary axes. Figure 30.1(a) shows the
pseudo-tenfold symmetry, and Figs. 30.1(b) and (c) taken along the two directions
of t and s indicated in Fig. 30.1(a) show a structure formed with two layers along
the pseudo-tenfold axis, if diffuse scattering in Fig. 30.1(b) is ignored.

Figure 30.2(a) is an HAADF-STEM image of the Al66Cu15Co19 approximant
taken with the incident beam parallel to the pseudo-tenfold axis. In the image, one
can see a characteristic cluster with a contrast distribution formed by ten bright
dots surrounding a pentagonal arrangement of bright dots, as indicated by circles of
solid and dotted lines, and one can also recognize that the clusters are arranged with
a pentagonal framework of an edge length of 2 nm, as shown in Fig. 30.2(b). Here-
after, the cluster with a diameter of 1.2 nm is called a 1.2 nm decagonal cluster. The
orthorhombic unit cell of a0 = 10.1 nm and c0 = 6.7 nm is formed by an ordered
arrangement of two types of the 1.2 nm decagonal clusters, which have different
directions of centered pentagons of bright dots, indicated by circles of solid and
dotted lines in Fig. 30.2(b), in a τ 3-inflated monoclinic Al13Co4 unit cell indicated
with red lines in Fig. 30.2(b) [6].

Almost all of bright dots corresponding to a TM atom in the HAADF-STEM
image can be connected by two pentagonal tilings with bond lengths of 0.47 and
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Fig. 30.1 Electron diffraction patterns of the Al66Cu15Co19 approximant, taken with the incident
beam parallel to the three primary axes. (a) shows a pseudo-tenfold symmetry, and (b) and (c) were
respectively taken along the two directions of t and s in (a)

Fig. 30.2 (a) HAADF-STEM image of the Al66Cu15Co19 approximant taken with the incident
beam parallel to the pseudo-tenfold axis, and (b) ordered arrangement of two-types of 1.2 nm
atom clusters in the unit cell. A τ 3-inflated monoclinic Al13Co4 unit cell is indicated by red lines

0.76 nm, as shown by solid and dashed lines in Figs. 30.3(a) and (b), which cor-
respond to those in the A and B planes stacking along the b-axis. The pentagonal
tilings with bond lengths of 0.47 and 0.76 nm exist in the A and B planes of a
W-(AlCoNi) crystalline phase, respectively [7], which is an important approximant
related to Al–TM decagonal quasicrystals. The structure of the W-(AlCoNi) phase
is formed by one type of the 1.2 nm decagonal clusters connected with an interval
of 2 nm, and consequently the pentagonal tilings with bond lengths of 0.47 nm and
0.76 nm are distinguished as those in different planes ofA and B [7, 8]. On the other
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Fig. 30.3 HAADF-STEM images of the Al66Cu15Co19 approximant and tilings formed by con-
necting bright dots corresponding to TM atoms in the A (a) and B (b) atomic planes stacking along
the pseudo-tenfold axis

hand, the structure of this approximant is formed by two kinds of the 1.2 nm decago-
nal clusters, and consequently pentagonal tilings with bond lengths of 0.47 nm and
0.76 nm simultaneously appear in each of the planes, and the tiling with a bond
length of 0.47 nm around the one type of decagonal clusters is connected to the
tiling of 0.76 nm bond length around another type of decagonal clusters, and some-
times their tilings interpenetrate each other. In the images of Fig. 30.3, one can see
that the starfish-shaped distributions of bright dots are located in downward pen-
tagons with a bond length of 0.76 nm in Fig. 30.3(a) and in upward pentagons in
Fig. 30.3(b). In the starfish-shaped distribution, most outside dots with a pentagonal
arrangement correspond to TM atoms in the planes forming the pentagonal tilings,
but inside pentagonal dots with a central one can be considered as corresponding to
mixed sites of TM and Al atoms in different atomic planes. The above characteristic
arrangements of TM and mixed sites can be seen in the structure of the W-(AlCoNi)
approximant [7, 8].

From arrangements of bright dots in Fig. 30.3, we can directly derive the arrange-
ments of TM and mixed sites in the A and B planes stacking along the b-axis, as
shown in Fig. 30.4. In the model, the TM atoms and mixed sites of TM and Al atoms
are distinguished from each other, in analogy with the W-(AlCoNi) structure [7, 8],
but it should be noted that the difference between TM atoms and mixed sites is not
clear from the observed HAADF-STEM image.

As can be seen in Fig. 30.4, the TM atoms and mixed sites are located at lattice
points of a Penrose lattice having a bond length of 0.25 nm, and so they are arranged
in a bond-orientational order. It should be noticed here that the atomic arrangement
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Fig. 30.4 Arrangements of TM atoms (open circles) and mixed sites (gray circles), and pentagonal
tilings in the A (a) and B (b) planes. Note that TM atoms and mixed sites are located at lattice
points of a Penrose lattice with a bond length of 0.25 nm, indicated by thin lines

in the pentagon frame of Q with an edge-length of 2 nm is formed from that in the
P pentagon by two-fold screw operation of a rotation by 180 degrees and a glide of
b0/2. Also atomic arrangements in P ′ and Q′ pentagons are formed from those of
the P and Q pentagons, respectively, by the reflection operation against the vertical
mirror plane. The structure of the crystalline approximant is formed by an ordered
arrangement of those pentagons, as indicated in Fig. 30.2(b).

30.4 Summary

An Al66Cu15Co19 crystalline approximant, which is related to Al–Cu–Co decago-
nal quasicrystals with two aperiodic planes stacking along the periodic axis, has
been studied by Cs-corrected HAADF-STEM observations. The structure has an
orthorhombic unit cell with a0 = 10.1 nm, b0 = 0.4 nm and c0 = 6.7 nm, which is
formed by an ordered arrangement of two types of atom clusters in a τ 3-inflated
monoclinic Al13Co4 structure formed by a network of pentagons with an edge-
length of 2 nm. Individual TM atoms and mixed sites of TM and Al atoms are
represented as bright dots in HAADF-STEM images, and so a three-dimensional
arrangement of TM atoms and mixed sites in the approximant can be directly deter-
mined. The TM atoms and mixed sites in the two atomic planes stacking along the
b-axis are located at lattice points of a Penrose lattice with a bond length of 0.25 nm
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and form pentagonal tilings with bond lengths of 0.47 nm and 0.76 nm. This result
suggests that the structure of Al–TM decagonal quasicrystals should be character-
ized as aperiodic arrangements of TM atoms with a bond-orientational order, instead
of previous cluster models in which the structures of decagonal quasicrystals were
characterized by aperiodic arrangements of 2 nm atom clusters [2, 4].
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Chapter 31
Structure of ε16 Phase in Al–Pd–Co System
Studied by HREM and X-Ray Diffraction

K. Yubuta, S. Suzuki, R. Simura, and K. Sugiyama

Abstract A variety of orthorhombic approximant εn (n= 6, 16, 22, and 28)-phases
exist in Al–Pd–(Mn, Fe, Co, Rh) systems. HREM images and the corresponding
electron diffraction patterns show that the ε16 phase in an annealed Al80Pd11Co9
alloy exhibits a locally disordered structure consisting of pentagonal and banana-
shaped tiles with an edge length of 0.76 nm. This paper demonstrates a feasible
structural model for the ε16 phase in the Al–Pd–Co system by single-crystal X-ray
diffraction coupled with HREM.

31.1 Introduction

A variety of orthorhombic phases related to the Al3Pd approximant phase with eight
planes along the periodic axis were found in Al–Pd–(Mn, Fe, Co, Rh) systems [1].
Their lattice parameters of a = 2.35 and b (pseudo-tenfold axis)= 1.68 nm are es-
sentially similar to each other; nevertheless, the corresponding c parameters are 1.2,
3.2, 4.5, and 5.7 nm for ε6 (Al3Pd phase), ε16, ε22, and ε28 phases, respectively [2].
Balanetskyy et al. reported compositional ranges of εn (n = 6, 16, 22, and 28)-
phases on the Al–Pd–Fe system [3, 4] as shown in Fig. 31.1(a). As one can notice in
Fig 31.1(a), the compositional range of the εn-phases extends to the Pd-poor region
with increasing temperature range.

The crystal structures of the ε6 phase were determined by some groups [5, 6]. On
the other hand, the atomic positions for a series of εn (n = 16, 22, and 28)-phases
were not studied quantitatively, though their structures were investigated by using
transmission electron microscopy [7, 8].

In the present paper, the crystal structure of the ε16 phase (Fig. 31.1(b)) in an-
nealed Al–Pd–Co alloys [7, 9, 10] was investigated by HREM and single-crystal
X-ray diffraction.
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Fig. 31.1 (a) Compositional range of the εn (n= 6, 16, 22, and 28)-phases on the Al–Pd–Fe sys-
tem reported in [3, 4]. Three circles indicate compositions of the Al–Pd–Co system in the present
study. (b) The tiling image for the ε16 phase is shown together with a rectangular unit cell for the
convenience of discussion

Table 31.1 Annealing conditions of Al80Pd11Co9, Al72Pd18Co10, and Al73Pd20Co7 alloys

No. Phase Composition Annealing and cooling conditions

APC1 ε16 Al80Pd11Co9 1000 ◦C for 6.5 h, 790 ◦C at a rate of 2.3 ◦C/h

APC2 ε∗x Al72Pd18Co10 1000 ◦C for 6.5 h, 790 ◦C at a rate of 2.3 ◦C/h

APC3 ε6 Al73Pd20Co7 1000 ◦C for 6.5 h, 700 ◦C at a rate of 7.5 ◦C/h

∗εx—incommensurate phase

31.2 Experimental Procedures

Alloy ingots with compositions Al80Pd11Co9 (APC1), Al72Pd18Co10 (APC2), and
Al73Pd20Co7 (APC3) were prepared from high-purity Al, Pd, and Co metals by
conventional arc-melting in a purified Ar atmosphere. Three circles in Fig. 31.1(a)
indicate the compositions of Al–Pd–Co alloy ingots prepared in the present study.
Fragments of the as-prepared ingot were charged into a carbon crucible and an-
nealed in a high vacuum furnace. Conditions of the annealing for the alloy samples
are listed in Table 31.1.

HREM images and selected area electron diffraction (SAED) patterns were
taken by using a 200 kV electron microscope (TOPCON EM-002B). Single crys-
tal diffraction data was measured by Mo Kα (λ = 0.071073 nm) radiation with
Rigaku RAPID-AUTO equipped with an imaging plate. The least-squares software
of SHELXL-97 [11] was used for the structural analysis.

31.3 Results and Discussion

Figure 31.2 shows SAED patterns of (a) Al80Pd11Co9, (b) Al72Pd18Co10, and
(c) Al73Pd20Co7 alloys, taken with the incident beam parallel to pseudo-tenfold
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Fig. 31.2 Electron diffraction patterns of (a) Al80Pd11Co9, (b) Al72Pd18Co10, and
(c) Al73Pd20Co7 alloys, taken with the incident beam parallel to pseudo-tenfold axis. Arrows in
the enlarged patterns on the bottom indicate structural modulations

axis. Patterns on the bottom are enlarged from the areas enclosed by rectangles on
the top. Arrows in the enlarged patterns on the bottom indicate structural modula-
tions. Although there is a slight splitting of diffraction spots indicated by arrows
in Fig. 31.2(a), new periodicity (2.35 and 3.27 nm with a base-centered symmetry)
exists on the long-range. In addition, diffuse streaks are running along the arrows.
From SAED patterns, Al80Pd11Co9 (Fig. 31.2(a)) and Al73Pd20Co7 (Fig. 31.2(c))
alloys correspond to the locally disordered ε16 and ε6 phases, respectively. On the
other hand, in Al72Pd18Co10 (Fig. 31.2(b)) alloy, zigzag-like shifts of diffraction
spots can be readily recognized. This appearance is similar to the Al–Pd–Fe sys-
tem as reported by Balanetskyy et al. [3, 4]. It is reasonable to suppose that com-
mensurate, incommensurate, and no modulations occur in Al80Pd11Co9 (ε16 phase),
Al72Pd18Co10 (intermediate state between ε6 and ε16 phases), and Al73Pd20Co7 (ε6
phase) alloys, respectively.

Figure 31.3 is an HREM image of the ε16 phase in the Al80Pd11Co9 alloy taken
with the incident beam parallel to the pseudo-tenfold axis. In the image, one can
see ring contrasts corresponding to the decagonal atom columns with the 1.68 nm
periodicity. As indicated by black lines, the ε16 phase consists of pentagonal and
banana-shaped tiles with an edge length of 0.76 nm, which is the typical distance of
edge-sharing of the decagonal atom columns. As indicated by thick lines, one can
notice the stacking defects exist on the (101̄) plane. The direction of the stacking
defects is consistent with that of the observed diffuse streaks in Fig. 31.2(a).

The observed reflection conditions, hkl: h + l = 2n, in the diffraction pattern
suggest the B-centered orthorhombic structure with a = 2.35 nm, b = 1.67 nm,
and c = 3.27 nm. Although the four space groups of B222, Bm2m, B2mm, and
Bmmm fulfill these conditions, the HREM image of Fig. 31.3 leads to the further
selection of space group symmetry—the possible space group was concluded as
B2mm. A single crystal sample of size 75 × 90 × 150 μm3 was cut out from the
annealed Al80Pd11Co9 alloy and used for the X-ray examination. Since the dif-
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Fig. 31.3 HREM image of
the Al80Pd11Co9 alloy taken
with the incident beam
parallel to the pseudo-tenfold
axis. The bright circles in the
image correspond to the
projection of the decagonal
atom columns with the
1.68 nm periodicity. Gray
rectangles indicate the unit
cells of the ε16 phase

fuse scattering feature in the observed diffraction pattern of the ε16 phase could
not allow us to measure an accurate intensity data set, the least-squares refinement
was performed only by using the observed reflections with F > 4.0σ(F ). During
the refinement of atomic positions and corresponding isotropic atomic displace-
ment parameters, several chemically disordered sites of Pd/Co, Pd/Al, and Co/Al
were introduced so as to produce the reasonable atomic distance together with the
isotropic displacement parameters. The refinement converged with R1 = 0.175 for
the observed 8325 reflections. The refined cell parameters are a = 2.321(1) nm,
b= 1.6426(1) nm, c= 3.1941(8) nm. The chemical composition for Al70Pd17Co13

of the obtained model deviates in Al-poor region from an analyzed one, namely that
of Al74.4Pd15.9Co9.7 determined by EPMA. This suggests that several additional Al
sites should be considered in the structural model. Nevertheless, the heavy metal
sites of the obtained model agree well with those proposed for the ε16 structure of
the Al–Rh system[8].

The structure model of the ε16 phase along the a-axis is shown in Fig. 31.4(a).
The structure could be described by the stack of eight layers perpendicular to the
b-axis. The layers at y = 0 (A), � 0.125 (B), � 0.25 (C), � 0.375 (D), and 1/2 (E)
are independent (Figs. 31.4(b)–(f)) and the other three can be generated by a mirror
symmetry located at y = 1/2. Each layer structure indicates a pentagonal tiling with
heavy metal apexes. The flat layers of A, C, and E indicate a pentagonal tiling with
an edge length of 0.76 (=0.47τ ) nm so as to form ship-shaped octagons as indicated
by broken lines. On the other hand, the puckered layers of B and D show a tiling
with an edge length of 0.47 nm and star-shaped pentagons, ship-shaped octagons
and hexagons are realized in the tiling as indicated by broken lines. As shown in
Fig. 31.4, the structure of the ε16 phase could be described by two types of colum-
nar structures along the b-axis: a decagonal column and a pentagonal column. The
connection of five decagonal columns forms the pentagonal tile with a pentagonal
column inside and that of nine decagonal columns forms the banana-shaped tile,
which could be observed in the HREM image, as indicated by red lines.
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Fig. 31.4 The refined structure model of the ε16 phase

31.4 Summary

The present paper demonstrates the structural model of the ε16 phase in the Al–Pd–
Co system. The structure could be described by the layered structure stacked along
the pseudo-tenfold axis and the transition metal positions represent two different
ways of a pentagonal tiling in the flat and puckered layers. The alternate stack of
these pentagonal tiling produces the characteristic atomic arrangement of decagonal
and pentagonal columns running parallel to the pseudo-tenfold axis whose linkage
produces the pentagonal and the banana-shaped tiles with an edge length of 0.76 nm
observed frequently in the decagonal quasicrystals of the Al–Pd–TM systems. It
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should be added that our structural model introduces the chemically disordered sites
between Pd and Co. Such chemical disorder by the elements with different size may
account for the significant structural imperfection realized in the ε16 phase of the
ternary Al–Pd–TM systems.
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Chapter 32
Structure of τ 2-Al3Co, a Monoclinic
Approximant of the Al–Co Decagonal
Quasicrystal

K. Sugiyama, A. Yasuhara, and K. Hiraga

Abstract The structure of the approximant τ 2-Al3Co (P2/m: a = 3.9831(3) nm,
b = 0.8127(1) nm, c = 3.2182(3) nm, and β = 108.03(1)◦), associated with the
decagonal quasicrystals with a period of 0.8 nm, was analyzed using a high-angle
annular detector dark-field (HAADF) observation withCs-corrected scanning trans-
mission electron microscopy (STEM). The HAADF-STEM image clearly showed
the arrangement of individual Co atoms as bright dots. The contrast among the
atoms in the lattice led to an image of the fundamental structure of the τ 2-Al3Co
phase, composed of an ordered arrangement of pentagonal columnar units with
edge lengths of 0.47 nm. The arrangements of atoms in the columnar units were
quantitatively determined by single crystal X-ray diffraction (XRD). The results
demonstrate that the pentagonal columnar units form common tiles in the shape of a
squashed hexagon, a pentagonal star, and a crown. Among the tiles, the pentagonal
star composed of 10 pentagonal units was similar to that found in the W-(AlNiCo)
approximant for the Al–Ni–Co decagonal quasicrystal (DQC).

32.1 Introduction

A variety of intermetallic crystalline phases, structurally associated with quasicrys-
tals, have been found while researching Al-based quasicrystals. They are referred
to as crystalline approximants for quasicrystals, and their structural features enable
the elucidation of atomic arrangements in quasicrystals. In particular, decagonal
quasicrystals (DQCs) and their approximants share a common decagonal columnar
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structure running parallel to the periodic axis [1]. Recent atomic-scale observations
made using high-resolution electron microscopy (HREM) coupled with high-angle
annular detector dark-field scanning transmission electron microscopy (HAADF-
STEM) have revealed the structural features of DQCs in terms of their columnar
structures [2].

In the binary Al–Co system, DQCs with periodicities of about 0.4, 0.8, and
1.6 nm have previously been reported for rapidly solidified samples [3–6]. The (100)
twins of the τ 2-Al3Co phase have been achieved by annealing DQCs in particular,
and the [010] electron diffraction pattern showed a strong resemblance to the ten-
fold electron diffraction pattern of DQCs [7]. This led to an interesting discussion
about whether DQCs and the τ 2-Al3Co phase consisted of similar columnar struc-
tures, and a structural model for the τ 2-Al3Co phase was proposed based on HREM
images [8–11]. A pentagonal unit, with an edge length of 1.2 nm, composed of
six smaller pentagonal subunits with edge lengths of 0.47 nm, was proposed in the
structural model. This configuration of the smaller pentagons is also found in the
Penrose pattern, which is frequently used as a structural model for quasicrystals.

In this context, single crystal X-ray diffraction (XRD) is necessary in order to
understand the atomic-level structures of the pentagonal columnar structures in the
τ 2-Al3Co phase. Since the advantages of using single crystal XRD coupled with
HAADEF-STEM was demonstrated in the analysis of the complex approximant W-
(AlCoNi) [12], we used it to analyze the structure of the τ 2-Al3Co phase.

32.2 Experimental Procedure

An alloy ingot of Al79Co21 was prepared from pure Al (99.999 %) and Co (99.9 %)
in Ar atmosphere in a conventional arc furnace. The solidified ingot was remelted
several times to ensure sample homogeneity. Fragments of the prepared sample were
charged into an Al2O3 crucible and were subsequently sealed in an evacuated silica
tube. The sample tube was heated at 1180 ◦C for 24 h and then cooled to 1150 ◦C
at the rate of 10 ◦C/h. Electron probe microanalysis (EPMA, JEOL JXA-8621MX)
showed that the chemical composition of the present phase was Al74.8Co25.2. Thin
samples for transmission electron microscopy were prepared by dispersing crushed
samples onto holey carbon films. HAADF-STEM images were taken using a spher-
ical aberration (Cs)-corrected electron microscope (JEOL-ARM200F) operated in
scanning transmission mode. It should be added that recent Cs-corrected STEM has
high-enough resolution to produce images of individual transition metal atoms as
bright dots when the images are taken with the incident beam parallel to the periodic
axis of the DQCs. A single crystal sample with a volume of 0.03×0.04×0.05 mm3

was cut from the annealed sample and was used for the XRD analysis. Inten-
sity data sets for the structural analysis were collected in the ω-scan mode on a
Bruker SMART APEX-II system by using MoKα radiation (λ= 0.71073 Å). After
Lorentz and polarization corrections, an absorption correction was performed using
an SADABS algorithm [13]. The refined cell parameters were a = 3.9831(3) nm,
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Fig. 32.1 HAADF-STEM
image of the τ 2-Al3Co phase
and tilings formed by
connecting bright dots
corresponding to Co atoms in
A (solid) and B (dotted)
layers stacked along
pseudo-tenfold axis. Black
lines indicate unit cell of the
τ 2-Al3Co phase

b = 0.8127(1) nm, c = 3.2182(3) nm, and β = 108.03(1)◦, consistent with those
reported in previous research [8–11]. For the present analysis, the least-squares soft-
ware SHELXL-97 [14] was used.

32.3 Results and Discussion

Figure 32.1 shows an HAADF-STEM image of the τ 2-Al3Co phase, taken with the
incident beam parallel to the pseudo-tenfold axis. Almost all of the bright dots (cor-
responding to Co atoms) in the image can be connected as pentagonal tiles with
edge lengths of 0.47 (solid lines) and 0.76 nm (dashed lines), which were later re-
vealed by single crystal XRD to be those in the A and B layers, respectively, stacked
along the b-axis. It should be added that pentagonal tilings with edge lengths of
0.47 and 0.76 nm also exist in the A and B layers of the W-(AlCoNi) approximant
phase [12]. Although the structure of the W-(AlCoNi) phase consists of one type
of 1.2 nm columns connected at an interval of 2 nm, the structure of the τ 2-Al3Co
phase appears to be formed by two kinds of 1.2 nm decagonal columns, whose de-
tailed arrangements of atoms is well characterized in the following single crystal
XRD image.

The XRD pattern indicates no systematic absence of reflections, and the space
group P2/m was selected for the τ 2-Al3Co phase. However, a number of weak in-
tensity peaks for the reflection condition h+ k = 2n indicated pseudo-translational
symmetry in the structure. Starting from the structural model produced from the
HAADF-STEM image, the least-squares refinement revealed the atomic positions
of 73 Co, 12 Co/Al, and 168 Al sites, among which 2 Co/Al and 5 Al sites were split
into several additional sites. During the refinement, the atomic positions and corre-
sponding isotropic displacement parameters were refined, and several chemically
disordered Co/Al sites were introduced so as to obtain the reasonable isotropic dis-
placement parameters. The reliable factor for the present structural model converged
to R1 = 0.104 for the observed 27201 reflections, with F > 4.0σ(F ). The chemi-
cal composition of the structural model was Al511.6Co175.6, which corresponds well
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Fig. 32.2 The a-axis projection of τ 2-Al3Co structure

with Al3Co. It should be added that a pseudo-merohedral (001) twin was also con-
sidered in the present analysis.

The structural model of the τ 2-Al3Co phase viewed along the a-axis is shown in
Fig. 32.2. There are four atomic layers perpendicular to the b-axis. Three of them
(at y = 0 (A), ≈0.25 (B), and =1/2 (C)) are independent. The other one can be
generated through a mirror symmetry located at y = 1/2. The atoms within the
B layer deviate from y = 1/4, so it is considered to be a puckered layer. Several
noticeably chemically disordered sites are located outside these layers. The sites
correspond to the centers of pentagonal units with edge lengths of 1.2 nm, composed
of six smaller pentagonal subunits with edge lengths of 0.47 nm.

Figure 32.3 shows the structures of the three layers, (A), (B), and (C). As shown
in the HAADF-STEM image, the locations of Co atoms in layers (A) and (C) are
well-defined by pentagonal tilings with edge lengths of 0.47 nm, and those in layer
B are well-defined by a pentagonal tiling with an edge length of 0.67 nm. The
association between the two types of pentagonal tiling is shown in the HAADF-
STEM image by solid and dotted lines. It is clear that the six smaller Co pentagons
form a τ 2-inflated pentagon with edge lengths of 1.2 nm, as shown in Figs. 32.3(A)
and (C) [8–11, 15]. The tessellation of the τ 2-inflated pentagons in the τ 2-phase
is exactly the same as that of the smaller pentagons in monoclinic Al13Co4 [16].
This is attributed to the fact that the a and c parameters of the τ 2-phase are τ 2

times (τ = (1+ 51/2)/2) greater than those of monoclinic Al13Co4. Further, almost
all of the Co pentagons with edge lengths of 0.47 nm in τ 2-phase are similar to
those found in monoclinic and orthorhombic Al13Co4 [16–18]. This suggests that
the structure of the τ 2-phase is achieved by linking the pentagonal columnar units
found in monoclinic and orthorhombic Al13Co4. The pentagonal columnar units
produce three common basic tilings: a squashed hexagon (H), a pentagonal star (S),
and a crown (C) (marked in Fig. 32.3(A)). Two H tiles linked together with one C
tile form a decagonal ring, and each S tile is surrounded by three decagonal rings. It
is interesting to note that the chemically disordered sites are located at the junctions
of the H, S, and C tiles.
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Fig. 32.3 Atomic arrangements for three layers: (A), (B), and (C), in the τ 2-Al3Co. A τ 2-inflated
pentagon, composed of six smaller Co pentagons, with edge lengths of 0.47 nm, is shown by
the solid line. Three types of tiles, namely, a squashed hexagon (H), a pentagonal star (S), and a
crown (C), composed of Co pentagons are shown by the dotted lines

32.4 Summary

The crystalline approximant τ 2-Al3Co was analyzed using Cs-corrected HAADF-
STEM coupled with single crystal XRD. Its structure was found to be a monoclinic
unit cell (P2/m: a = 3.9831(3) nm, b = 0.8127(1) nm, c = 3.2182(3) nm, and
β = 108.03(1)◦), associated with decagonal quasicrystals with a period of 0.8 nm.
The structure consists of alternating flat and puckered layers, which are well-defined
by pentagonal tilings with edge lengths of 0.47 and 0.76 nm, respectively. Single
crystal XRD quantitatively revealed fundamental columnar units, similar to those
found in monoclinic and orthorhombic Al13Co4. These pentagonal columnar units
form three common basic tilings: a squashed hexagon, a pentagonal star, and a
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crown. In particular, the pentagonal star was similar to that found in the W-(AlNiCo)
approximant for the Al–Ni–Co DQC.
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ploratory Research (22656152) from the Japan Society for the Promotion of Science (JSPS).

References

1. Steurer W (2004) Twenty years of structure research on quasicrystals, part I: pentagonal, oc-
tagonal, decagonal and dodecagonal quasicrystals. Z Kristallogr 219:391–446

2. Hiraga K (2002) Advances in imaging and electron physics, vol 122. Elsevier Science, Ams-
terdam

3. Dong C, Li GB, Kuo KH (1987) Decagonal phase in rapidly solidifies Al6Co alloy. J Phys F,
Met Phys 17:L189–192

4. Suryanarayana C, Menon J (1987) An electron microscopic study of the decagonal phase in a
melt-spun Al-26 wt.% Co alloy. Scr Metall 21:459–460

5. Menon J, Suryanarayana C, Singh G (1989) Polytypism in a decagonal quasicrystalline Al–Co
phase. J Appl Crystallogr 22:96–99

6. Ma XL, Kuo KH (1992) Decagonal quasicrystal and related crystalline phases in slowly so-
lidified Al–Co alloys. Metall Trans 23A:1121–1128

7. Ma XL, Kuo KH (1994) Crystallographic characteristics of the Al–Co decagonal quasicrystal
and its monoclinic approximant τ 2-Al13Co4. Metall Trans 25A:47–56

8. Ma XL, Li XZ, Kuo KH (1995) A family of τ -inflated monoclinic Al13Co4 phases. Acta
Crystallogr, Sect B 51:36–43

9. Ma XL, Kuo KH (1995) Multiple twins of τ 2-Al13Co4 showing fivefold symmetry. Metall
Trans 26A:757–763

10. Li XZ, Hiraga K (1998) High-resolution electron microscopy of the ε-Al3Co, a monoclinic
approximant of the Al–Co decagonal quasicrystal. J Alloys Compd 269:L13–L16

11. Saitoh K, Yokosawa T, Tanaka M, Tsai AP (2004) Formation of an Al–Co quasicrystal from
a τ 2-inflated Al13Co4 approximant. J Phys Soc Jpn 68(9):2886–2889

12. Sugiyama K, Nishimura S, Hiraga K (2002) Structure of a W-(AlCoNi) crystalline phase
related to Al–Co–Ni decagonal quasicrystals, studied by single crystal X-ray diffraction. J Al-
loys Compd 342:65–71

13. Bruker (2001) Bruker AXS Inc., Madison, WI, USA
14. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr, Sect A 64:112–122
15. Saitoh K, Yokosawa T, Tanaka M, Tsai AP (1999) Structural studies of monoclinic approx-

imants of Al13Fe4 and τ 2-Al13Co4 by the high-angle annular dark-field method. J Electron
Microsc 48(2):105–114

16. Hudd RC, Taylor WH (1962) The structure of Co4Al13. Acta Crystallogr 15:441–442
17. Widom M, Phillips R, Zou J, Carlsson AE (1995) Structural model of orthorhombic Al3Co.

Philos Mag B 71:397–406
18. Grin J, Burkhardt U, Ellner M, Peters K (1994) Crystal structure of orthorhombic Co4Al13.

J Alloys Compd 206:243–247



Chapter 33
Reverse Monte Carlo Study of Diffuse Scattering
from a Frustrated Protein System

T.R. Welberry, A.P. Heerdegen, and P.D. Carr

Abstract Distinctive diffuse rings around Bragg positions have been observed in
the diffraction patterns of a crystal of the N-terminal fragment of the Gag protein
from Feline Foamy Virus. It is shown that these are caused by geometric frustration
as molecules try to pack on the triangular a–b mesh of the space group P6122.
The disorder prohibits conventional structure solution. The possibility of using the
diffuse scattering to aid solution is explored using Reverse Monte Carlo modelling.

33.1 Introduction

Strong diffuse scattering has been observed in Bragg data collected from a crystal
of the N-terminal fragment of the Gag protein from Feline Foamy Virus. Reciprocal
space sections reconstructed from these data show diffuse scattering, largely con-
fined to thin layers normal to c corresponding to the sections h k nl, with n integral.
Within these layers the scattering lies in diffuse rings around each Bragg position.
For layers with n= 5m (m integral) the diffuse intensity is virtually absent and the
sections contain only Bragg peaks; for n = 5m ± 1 the layers contain moderately
strong Bragg peaks and weak diffuse scattering; while for n= 5m± 2 the sections
contain very weak Bragg peaks but strong diffuse scattering.

These patterns have been shown [1] to be caused by frustration on a triangular
lattice (see, e.g. [2]). The protein is occupationally disordered and the crystal con-
tains two different molecular entities, A and B. Neighbouring pairs on the triangular
mesh of the a–b plane prefer to be of type AB or BA rather than AA or BB. For the
diffuse scattering to be confined to layers of integral l, neighbours along c of type
AA and BB are preferred. This is shown schematically in Fig. 33.1(a) where the
motifs shown in two different colours represent (in projection) columns of AAA . . .
or BBB . . . molecules. Figure 33.1(c) shows a representation of a region of crystal
in which the frustration has been built-in using Monte Carlo simulation (see [1]).

To explain the distributions of Bragg reflections and diffuse features described
above, A and B must have the same molecular shape but differ in their position along
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Fig. 33.1 (a) and (b) show projections of a disordered structure containing molecules A and B
with two different shifts along c. (c) shows a region of the lattice illustrating the frustrated distribu-
tion. (d) shows the diffraction pattern of this distribution when A and B are single atoms. (e) shows
the same result when A and B correspond to the 12 atom helical molecules shown in (a) and (b)

c by 0.2c (Fig. 33.1(b)). If FA and FB are the two molecular scattering factors,

FB = FA exp(2πiS · c/5),
FA − FB = FA

(
1− exp(2πiS · c/5)),

FA + FB = FA
(
1+ exp(2πiS · c/5)).

(33.1)

Since the diffuse scattering is proportional to the difference of the scattering fac-
tors and the Bragg scattering to the average [3], Eq. (33.1) explains the observations.

Figures 33.1(d) and (e) show diffraction patterns computed from the distribution
shown in Fig. 33.1(c) when the two different scatterers are: (d) single atoms and
(e) helical 12 atom molecules (as shown in Figs. 33.1(a) and (b)) [1]. This model
explains the basic form of the observed diffraction patterns. We suggest that in the
real protein crystal the same basic physics is occurring but the scatterer is the protein
molecule, with its highly complicated molecular scattering factor giving rise to the
far richer detail in the diffuse scattering.

Since only one reciprocal section in five contains normal Bragg peak intensities,
two contain reduced intensity and two contain little or no Bragg intensity, the num-
ber of reliable observations available for structure determination is much reduced
compared to a normal data set and this has so far prevented structure solution. In
the work described herein, we aim to use the rich detail in the diffuse scattering to



33 RMC Study of Protein Frustration 245

help solve the protein structure. We use Reverse Monte Carlo (RMC) simulation to
simultaneously fit a generic scattering model to both the observed diffuse scattering
and to the Bragg reflection data.

33.2 X-Ray Data

Data were collected and processed as noted in [1]. For modelling, diffuse scatter-
ing from eight reciprocal sections was used (h k nl, with n = 1,2,3,4,6,7,8,9),

totalling ∼112,000 unique pixels with (sin θ/λ) < 0.111 Å
−1

(∼4.5 Å resolution).

Bragg data from 3941 reflections ((sin θ/λ) < 0.17 Å
−1

, ∼3.0 Å resolution) were
used.

33.3 Reverse Monte Carlo Simulation

Reverse Monte Carlo (RMC) [4] is a variation of the Monte Carlo (MC) algorithm
[5] where the difference between observed and calculated intensity is minimised,
rather than the system energy. A model is set up in terms of variables such as atomic
occupancies or displacements and these are adjusted as the RMC proceeds. In each
step, a site in the model is selected at random and its variables are changed by
a random amount. The scattering is calculated before and after the shift and the
change in the goodness-of-fit parameter (Eq. (33.2)) is computed:

χ2 =
N∑

i=1

[Ie(hi )− Ic(hi )]2
σ 2

. (33.2)

The sum is over all measured data points hi . Ie is experimental and Ic calculated
intensity. The change in χ2 is�χ2 = χ2

old−χ2
new. If�χ2 < 0 the move is accepted.

If �χ2 > 0 the move is accepted with a probability of P = exp(−�χ2/2). σ (inde-
pendent of h) is analogous to the temperature T in the normal Monte Carlo method.

33.3.1 Development of RMC Model

The choice of the generic scattering model used in the study was influenced by
several considerations. In the first stage of modelling, static sites were created on a
grid within the asymmetric unit of the cell and the RMC process adjusted only the
occupancies of these sites.

Parasitic scattering precluded reliable measurements of diffuse intensities at high
Q and usable diffuse scattering data were confined to moderately low values of Q
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Fig. 33.2 The generic occupancy scattering model. Small discs represent possible scattering sites.
The asymmetric unit in P6122 is outlined by the heavy (blue) lines. Each point in the asymmetric
unit is duplicated in each of the 11 other symmetry related units

within the protein solvent ring (minimum d-spacing of ∼5 Å). Within a given a–
b layer of the 73 × 73 Å cell 25 × 25 grid points were used, giving a real-space
resolution of ∼3 Å—somewhat better that of the observed diffuse scattering data.
Correspondingly, of the full set of Bragg reflection data available, only those with a
resolution of >∼3 Å were used (3941 reflections).

In the c direction, the asymmetric unit occupies only 1
12 of the 109 Å cell. Ten

grid points per asymmetric unit were used along c—a resolution of better than 1 Å.
This was considered necessary to allow the fitting of different sections of data nor-
mal to c to develop independently. The total number of sites within the asymmetric
unit (see the heavy (blue) lines in Fig. 33.2) was 6760.

The real molecule possesses a large number of non-H atoms (>1000), and so
as a starting model we allowed the 6760 possible scattering sites to be occupied at
random with ∼1000 scatterers. For this preliminary study, since almost all the non-
H atoms in the protein are C, N or O (i.e. having a similar size), the same atomic
scattering factor was used for all scatterers. At each RMC step, an occupied site was
swapped with an unoccupied one, preserving the total number throughout.

Once the first stage of refinement had reached a χ2 minimum, the scatterers were
then allowed to shift away from the fixed grid points in stage two.

33.3.2 Results of RMC for Model 1

The RMC simulation was carried out for∼350,000 steps to minimise χ2. Table 33.1
lists agreement factors for 8 diffuse sections and 3941 Bragg reflections.

The final configuration of scatterers in molecule A is shown in Fig. 33.3(a). Inter-
scatterer vectors <4 Å have been plotted to give a qualitative rendering of the elec-
tron density. Figure 33.4 shows observed and calculated patterns for sections hk 1–
hk 4. Note that sections hk 6–hk 9 (not shown) were also used in the fitting.
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Table 33.1 Agreement factors for observed and calculated diffuse intensities in the 8 reciprocal
sections used in the RMC fit as well as the value of RBragg. Note the sections hk 1–hk 4 are shown
in Fig. 33.4. RDiffuse =

√∑
(�I)2/

∑
(Iobs)2, RBragg =

√∑
(�F)2/

∑
(Fobs)2

Section Over all hk 1 hk 2 hk 3 hk 4 hk 6 hk 7 hk 8 hk 9 RBragg

R (Model 1) 0.357 0.358 0.321 0.298 0.378 0.364 0.384 0.347 0.404 0.246

R (Model 2) 0.351 0.374 0.333 0.294 0.383 0.366 0.343 0.329 0.386 0.324a

aThis value does not correspond to an agreement between observed and calculated data. See text

Fig. 33.3 Representations of the two different RMC-fitted scattering models (see text):
(a) Model 1; (b) Model 2. All vectors between pairs of scatterers (atoms) <4 Å are plotted. The
left panels correspond to projection down c and the right panels to projection down a. In (a), the
scatterers are distributed over the whole cell. In (b), they are confined to the space outside of the
pink isosurface that bounds the ‘solvent’ region
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Fig. 33.4 Observed and
calculated diffraction patterns
for the four reciprocal
sections: (a) hk 1; (b) hk 2;
(c) hk 3; (d) hk 4. The upper
half of each figure is
observed data and the lower
half is calculated from the
RMC Model 1. All four
sections are on the same
intensity scale

In protein crystals, the polypeptide chain usually forms into compact structural
domains that can be delimited by a molecular envelope. These regions are inter-
spersed with large solvent channels of a comparable total volume, within these
channels the solvent is considered to be totally disordered leading to a uniform elec-
tron density outside the molecular envelope. Improvement of initial error-containing
phases can be achieved using knowledge of these properties and is the basis of the
solvent flattening technique used in protein crystallography, for example in the pro-
gram dm [6]. For the next stage of the current investigation, we attempt to use
solvent flattening to try to constrain our RMC model to be more protein-like.

33.4 Solvent Flattening

The molecular coordinates A from the Model 1 RMC refinement were used to gen-
erate a list of structure factors and an electron density map which was used as the
preliminary electron density model. The dm software essentially identifies regions
of the map that contain errors (i.e. below threshold within the molecular envelope
or significantly above the mean solvent density outside the envelope). The software
replaces the values in the solvent region with a constant value and at the same time
manipulates the values within the envelope so that the overall histogram of density
values matches as closely as possible what has been commonly observed in other
proteins. The chosen threshold dictates what percentage of the cell volume is oc-
cupied by solvent. For the present Gag protein, the solvent region is expected to
be ∼44 % [7]. However, using this percentage the solvent flattened map appeared
quite disjointed with no clearly defined single molecular envelope. Consequently,
for a first pass through the process a lesser percentage (30 %) was used.
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33.5 Reverse Monte Carlo—Model 2

RMC simulation was repeated using the molecular envelope derived from the sol-
vent flattening (Sect. 33.4). The ∼1000 scatterers were now constrained to lie ini-
tially within the molecular envelope although subsequently the displacements in
stage 2 of the refinement allowed them to encroach into the solvent region, thus en-
abling the envelope to evolve with time. It might be anticipated that by repeating the
cycle of solvent flattening followed by RMC simulation a self-consistent molecular
envelope will be established.

This procedure assumes that the observed diffuse patterns result from the molec-
ular region alone. Any diffuse scattering from the solvent would be a relatively
structureless background and this would most likely have been removed by the data
reduction algorithms. Thus it is appropriate to ignore the solvent regions in mod-
elling the diffuse scattering. However, the Bragg scattering still contains a contribu-
tion from the solvent. In carrying out the new RMC simulation, Bragg scattering was
calculated for a crystal of only A molecules and this was compared to the structure
factors calculated from the solvent flattened electron density map. Consequently,
the value of RBragg given in Table 33.1 is not a true reflection of the Model 2 fit and
cannot be related to the value given for Model 1.

33.5.1 Results of RMC for Model 2

RMC simulation 2 proceeded much as the Model 1 simulation. For the diffuse scat-
tering, the agreement factors (Table 33.1) and the observed and calculated intensi-
ties (not shown) are very similar to those for Model 1. The agreement factors for
the higher layers, hk 5–hk 9, are somewhat better than for Model 1. Figure 33.3(b)
shows a plot of the resulting structure, much like that of Model 1 (Fig. 33.3(a))
but including the isosurface marking the partition between the solvent (inside) and
molecule regions.

The Fourier transformation of the Model 2 molecule A coordinates gives a re-
vised electron density map which has an appearance that is much more protein-like
than Model 1, with the solvent and protein regions clearly delineated.

As an initial step towards interpretation, we ran software [9, 10] that uses algo-
rithms to recognize peptide chains within electron density maps, and where possible
to include side chains in agreement with the known protein sequence. This produced
a partial model containing 106 residues in 8 chains (longest containing 21 residues,
17 residues with side chains from the sequence). Our GAG protein fragment se-
quence is known to contain 154 residues.

As an additional piece of evidence we used the molecular envelope produced
from small angle scattering data [8]. This was manually manipulated onto our elec-
tron density map. It was possible to find a region coinciding approximately in shape
and overall dimensions with the strong electron density without large excursions
into the solvent channels. This is encouraging as these are independent data and no
knowledge of this small angle scattering model was used in producing our maps.
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Although the resulting model coincided well with the molecular shape derived
from small angle scattering, it did not match very well any known protein structure
available in the protein data bank (PDB) [11]. This may mean we have an unusual
and therefore interesting structure.

33.6 Conclusion

An initial model, consisting of a set of ∼1000 identical scatterers (atoms), has been
derived that gives good agreement between observed and calculated data for both the
diffuse scattering and the Bragg reflections for the N-terminal fragment of the Gag
protein from Feline Foamy Virus. However, the derived model did not comprise
a clearly discernible molecular envelope with interspersed solvent regions which
is typical of a protein structure. While in our view the good agreement indicates
that the derived structure must contain a great deal that is right, it must still con-
tain extraneous features or noise that preclude its further interpretation as a protein
molecule. In order to move forward, we have applied solvent flattening and density
modification techniques to the electron density maps given by this model to derive
a first estimate of a molecular envelope. Subsequently, a second RMC simulation
was carried out in which the scatterers were constrained to lie within this envelope.
This second model gave equally good agreement for the diffuse scattering patterns.
Using algorithms to recognize peptide chains within the newly generated electron
density map produced a partial model containing 106 residues (of 154 residues) in
8 chains (longest containing 21 residues). Moreover, this partial model fitted well
within a molecular envelope derived independently from small angle scattering.

In a situation where the presence of disorder has drastically reduced the reliability
of Bragg peak observations and solving the structure from the Bragg peaks alone
has failed, using the rich detail in the diffuse scattering intensity distributions has
been shown to have good potential to help solve the structure. Although the present
model is clearly only the first step in obtaining such a solution, the indications are
sufficiently encouraging to suggest that further application of the iterative strategy
outlined should eventually lead to structure solution. Further work is in progress.

Acknowledgements The authors wish to thank David Goldstone for allowing us to use his X-ray
data and Dr. Darren Goossens for assistance with the manuscript preparation.
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Chapter 34
Dynamical Flexibility in the Periodic Zn6Sc
1/1-Approximant

Holger Euchner, Tsunetomo Yamada, Helmut Schober, Stephane Rols,
Marek Mihalkovič, Ryuji Tamura, Tsutomu Ishimasa, and Marc de Boissieu

Abstract Using quasielastic neutron scattering (QENS) and molecular dynamics
(MD) simulations, dynamical disorder was shown to be present in the Zn6Sc cubic
1/1-approximant to Tsai type quasicrystals. This dynamical disorder originates from
reorientations of the innermost tetrahedron shell inside the Tsai type clusters’ build-
ing blocks. To enable such a rotational motion inside a close-packed alloy, a unique
dynamical flexibility is necessary. We present a study of the tetrahedron dynamics
with respect to this structural flexibility.
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34.1 Introduction

Binary Tsai type quasicrystals (QC) are to date the structurally best understood
icosahedral QC phases [3]. Due to the existence of periodic approximants featur-
ing the same structural building blocks, important information on the structure and
physical properties [4] could be gained and in parts transferred to the QCs. For
many Tsai type QCs, a periodic approximant can be synthesized with almost the
same chemical composition [5, 6], e.g. Cd5.7Yb and Mg4.2Zn80.5Sc15 in case of the
icosahedral QCs with their Cd6Yb and Zn6Sc cubic 1/1-approximants. Recently,
a description of the structure of a QC and its approximant was achieved using a
packing of the same large rhombic triacontahedral (RTH) unit [3]. An RTH clus-
ter consists of 158 atoms arranged in a close packed manner on successive shells
with icosahedral symmetry, surrounding the central, symmetry-breaking tetrahedron
(Fig. 34.1). In QCs and 1/1-approximants, these RTH units are connected along their
twofold axes by shared faces and overlap along their threefold axes. While in the
1/1-approximant they are located on the vertices of a bcc lattice with space group
Im3̄ (lattice parameter a = 1.57 and 1.38 nm for Cd6Yb and Zn6Sc, respectively),
in the QC the RTH units are arranged on the vertices of a quasiperiodic network.

In this study, we investigate the dynamical flexibility in the Zn6Sc 1/1-
approximant which is isostructural to Cd6Yb and also evidence the, for this structure
type well-known, low-temperature order disorder phase transition [7, 8]. This phase
transition was attributed to the central tetrahedron ordering, and in the case of Zn6Sc
occurs at a transition temperature (Tc) of about 160 K [9–11]. Above Tc , the tetra-
hedral shell in Zn6Sc is randomly disordered and occupies six orientations which
are equivalent under the cubic symmetry group [5, 6]. In Fig. 34.1, the different
positions of the atoms of the tetrahedral shell are shown together with their thermal
ellipsoids and one possible tetrahedron orientation. At 160 K, the phase transition
from the cubic high temperature (HT) phase to a monoclinic low-temperature (LT)
phase with space group C2/c takes place. In this LT phase, the tetrahedra are ordered
anti-parallel along the [110] direction of the HT phase [11] (see also Fig. 34.1). The
structure analysis of the LT phase [11] reveals strong distortions of the shells that
surround the innermost tetrahedron and therefore depart significantly from perfect
icosahedral symmetry. Since its discovery, this phase transition has been suggested
to be driven by a new kind of mechanism [7]. The low Tc at which the transi-
tions occur in Zn6Sc and related intermetallic compounds (between 100 and 160 K)
excludes atomic diffusion as its origin. However, the ordering of the tetrahedra be-
low Tc goes along with large atomic displacements not compatible with a simple
displacive transition. Therefore, it was speculated that these transitions are indeed
induced by the dynamical reorientation of the tetrahedra above Tc . This hypothesis
was supported by total energy ab-initio calculations and long term MD simula-
tions [12–15].

Recent measurements of diffuse scattering [16] in combination with our quasi-
elastic neutron scattering (QENS) results and atomic scale simulations are clear ev-
idence of tetrahedron short range order above Tc with almost diverging correlation
length when Tc is approached. With this knowledge it could be demonstrated that the
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Fig. 34.1 (Top panel) Successive shells of the large RTH found in 1/1-approximant and qua-
sicrystal in the ZnSc (or CdYb) system. Light grey and dark colour stand for Zn and Sc atoms,
respectively; from left to right: Zn thetrahedron, Zn dodecahedron, Sc icosahedron, Zn icosido-
decahedron, Zn triacontahedron. (Bottom panel) (i) Positions and atomic displacement parame-
ters (ADP) of the central Zn atoms, constituting the disordered tetrahedron as determined in [8].
A cube is given as a guide for the eye. One tetrahedron orientation is given by the yellow lines.
(ii) Schematic representation of the tetrahedron ordering along the 110 direction. The two different
[110] planes are highlighted with different colours

disorder in the HT phase is indeed dynamical in nature with tetrahedra ‘jumping’ as
rigid objects between energetically equivalent orientations. Such tetrahedron reori-
entations necessitate an exceptional dynamical flexibility of the structure, a feature
unique to this system.

34.2 Quasielastic Neutron Scattering (QENS)

Diffusive or relaxational processes in materials can be investigated by use of QENS
(see [17] for an introduction). Close to the elastic line, the dynamic response,
S(Q,E), contains information on such processes, the so-called quasielastic con-
tribution. Typically, the QENS signal stems from processes that decay with time
and thus is of a Lorentzian lineshape, which in turn is characterized by temperature
and Q-dependence of its widths and intensity.

In Fig. 34.2, the Q-integrated S(Q,E) response function is depicted for four
different temperatures, as it was obtained from the IN5 time-of-flight spectrometer
at the ILL in Grenoble, using high resolution geometry. The grey shaded curve in
Fig. 34.2 is obtained for a measurement at 150 K, i.e. below Tc, thus in a state where
the tetrahedra are ordered. For this temperature no quasielastic signal is visible and
we only find elastic (Bragg scattering) and inelastic (phonons) contributions. How-
ever, if the temperature is increased above Tc, a clear quasielastic contribution be-
comes visible. Furthermore, we evidence that the QENS signal broadens from 175
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Fig. 34.2 Evolution of the
quasielastic signal measured
at T = 175, 300 and 550 K.
Filled circles stand for the
measured data; error bars are
smaller than the size of the
circles. The shaded, grey
curve corresponds to the
measurement carried out at
150 K. The additional
quasielastic contribution at
175 K is clearly visible

to 550 K, indicating a classical over barrier jump. Indeed, the Lorentzian width can
be shown to follow an Arrhenius law (activation energy of 60 meV) with tempera-
ture, while being independent of Q [1]. Altogether these are typical characteristics
of a spatially limited jump process. Since moreover the QENS signal is only present
above Tc, these is a strong proof that we indeed deal with tetrahedra that are con-
stantly in motion above Tc. The characteristic jump distance is of the order of 1.6 Å,
while the tetrahedron jumps occur on a ps timescale.

34.3 Simulation

Due to the size limit imposed by DFT, a study of the dynamics in this system is only
possible using MD simulations with effective interaction potentials. Oscillating pair
potentials, which have proven to be well suited to access the dynamics of the ZnSc
system [4], are used to conduct simulations with the IMD code [18].

The simulation reproduces perfectly the average structure, as obtained from
X-ray diffraction. Figure 34.3 shows the time averaged probability to find a tetrahe-
dron atom at a certain position extracted from an MD simulation. This distribution
is almost identical to what has been observed experimentally [6] (see Fig. 34.1).
Not only the position of the randomly occupied sites are well reproduced, but also
their distribution, which in the Lin and Corbett model is given by the anisotropic
thermal displacement (ADP) parameters. Notice in particular that the ellipsoids are
flat and with different orientation along a cube, which serves as a guide for the eye.
Both simulation and experiment fit nicely. Moreover, it could be shown recently [1]
that MD simulations are indeed able to capture the dynamics of the system. For
example, the activation energy extracted from the QENS measurement is perfectly
reproduced by simulations such that it is reasonable to assume that we capture the
main dynamical features. Therefore, with our knowledge about the dynamical dis-
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Fig. 34.3 Time averaged
distribution of the central Zn
tetrahedron from MD

Fig. 34.4 Tetrahedral and dodecahedral shell at t = 0, 1.0 and 2.6 ps during a simulation. The
displacement of the tetrahedron is almost a clock-wise rotation around a threefold axis passing
through the atom in the back. Notice the strong distortion of the dodecahedron as the rotation
proceeds. Qualitative investigations of the tetrahedron motion indicate a shorter lifetime of the
central configuration

order with corresponding tetrahedron jumps, a next step is the investigation of the
dynamical flexibility of the Zn6Sc approximant on an atomistic level.

To do so, the trajectories of the atoms belonging to tetrahedron, as well as the
surrounding dodecahedral, icosahedral and icosidodecahedral shells have been eval-
uated throughout long MD simulations. It was already discussed that the tetrahedron
motion is accomplished on a very short time scale, with all four atoms moving to-
gether and ‘jumping’ on a distance of the order 1.6 Å. For a given orientation, there
are two positions for which the tetrahedron is in a stable configuration, of which
one has a shorter lifetime than the other (see also [13, 15]). This is exemplified in
Fig. 34.4 which depicts three snapshots of the tetrahedron orientations taken dur-
ing a MD run at t = 0, 1.0 and 2.6 ps. The positions at t = 0 and 2.6 ps have a
lifetime which is roughly of the order of 3 ps, whereas the other one at 1.0 ps is
of the order of about 0.5 ps. During its motion, the tetrahedron ‘pushes’ the atoms
in its surrounding away to avoid too short Zn–Zn distances and thus induces large
displacement to the surrounding shells which can be nicely seen from our MD sim-
ulation. The tetrahedron rotation thus distorts the surrounding shells, meaning that
the corresponding atoms are displaced strongly out of their equilibrium positions.
This in turn is only possible due to a ‘dynamical flexibility’ of the whole structure,
which is a unique feature of this system. In Fig. 34.5, the probability distribution of
the cluster shells surrounding the tetrahedron are depicted. As expected the dodec-
ahedral shell evidences elongated displacements which are a consequence of atoms
being pushed away during at tetrahedron rotation. The Sc atoms of the icosahedral
shell are less prone to displacements, but they as well are affected when the tetrahe-
dron is moving. Interestingly the next shell, the Zn icosidodecahedron, shows again
sites which are strongly displaced throughout a MD run. This indeed shows that
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Fig. 34.5 Probability distribution of the atoms surrounding the tetrahedral shell around there equi-
librium position, projected along the z-axis; from left to right: dodecahedron, icosahedron, icosi-
dodecahedron. A probability up to 5 % is depicted in red (Zn) and blue (Sc). Higher probabilities,
i.e. close to the equilibrium, are inside the coloured areas and depicted in white

the distortion, introduced by a tetrahedron flip, propagates throughout the different
cluster shells and thus is able to mediate a tetrahedron–tetrahedron interaction. In
the following, the different cluster shells and their displacements are investigated
in more detail. The dodecahedral shell (Fig. 34.5, left) shows two different kinds
of displacements. While atoms on the 8 cubic sites are uniformly displaced, we
find elongated displacements for the 12 remaining sites, which point away from the
cluster centre in radial direction (RMSD ∼0.22 Å). For the Sc icosahedron, the dis-
placements are almost spherical (Fig. 34.5, middle) and also less pronounced than
for the other shells (RMSD of ∼0.1 Å). Finally, the Zn icosidodecahedron shows
again anisotropic displacements, yet elongated along the cluster surface, thus or-
thogonal to the radial direction. The RMSD of these displacement amounts up to
∼0.25 Å, however, depends on the symmetry of the site.

34.4 Conclusion

The above findings thus indeed support the picture of a structure with a high dy-
namical flexibility, with distortions that are introduced by the tetrahedron motion.
The introduced distortions then propagate throughout the different cluster shells and
thus are involved in the long range ordering of the structure. These propagative dis-
tortions most likely are strongly involved in the ordering mechanism at Tc. The
large distortions of the successive shells are certainly what drives the ‘interaction’
between the neighbouring tetrahedra despite the fact that they are located at a rather
large distance of 1.2 nm. Since especially the Zn atoms show strong displacements
out of their equilibria, it is likely that the evidenced flexibility originates in pecu-
liarities in the Zn–Zn interaction as also observed, e.g. in Zn11Mg2 [19]. Due to
the same cluster building blocks the here evidenced dynamical flexibility is also ex-
pected to be in play for QCs in the high temperature range. However, in the case of
QCs the tetrahedron–tetrahedron linkages are different and this may be expected to
introduce a ‘frustration’ term.

Moreover, it is worthwhile to realize that such tetrahedron flips may correspond
to phason ‘flips’ in the QC [2, 20–22] since the occupation domain which describes
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the central tetrahedron in the 6D model of the i-CdYb QC is located on the external
part of the atomic surface [3]. It has to be pointed out that a single ‘phason flip’ can
exist in QC and 1/1-approximant, while long-wavelength phason fluctuations [23]
are unique to QCs [24]. Yet, phason hopping has only been observed for tempera-
tures of the order 0.8 Tm (with melting temperature Tm), whereas here we evidence
tetrahedron jumps even below room temperature, and as low as 0.2 Tm (Tm is of
the order 1000 K for Zn6Sc). Furthermore, phason hopping has been found to be
phonon assisted [20], which in our case could not be evidenced.

Finally, our results point to the importance of the cluster description in Tsai type
phases and their relevance for the dynamics of these systems.

Acknowledgement This work is part of a common project within the European C-MAC net-
work.
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Chapter 35
Trajectories of Colloidal Particles in Laser
Fields with Eight-, Ten-, or Twelve-Fold
Symmetry and Phasonic Drift

Matthias Sandbrink and Michael Schmiedeberg

Abstract Quasicrystals are structures with long range order but no translational
symmetry. Besides phonons, quasicrystals posses additional hydrodynamic modes
called phasons. In a recent article (Kromer et al., Phys. Rev. Lett. 108:218301,
2012), the trajectories of colloidal particles in a laser field with decagonal symmetry
were studied when the phasonic displacement was changed. Here we generalize the
results to laser fields with eight- and twelve-fold symmetry. In principle, the method
can also be used to predict collective rearrangements of atoms due to phasons in
intrinsic quasicrystalline systems.

35.1 Introduction

Quasicrystals have long range order but are not periodic [9, 18]. Therefore, they
might possess rotational point symmetries that are forbidden in periodic structures.
Furthermore, there are additional hydrodynamic modes called phasons that corre-
spond to correlated rearrangements of the atoms of a quasicrystal. Many properties
of phasons are still a main topic of research [6].

Colloidal particles are widely employed to study ordering, crystallization and
dynamics in external potentials [10]. In a laser field, a force in the direction towards
the highest light intensity acts on the colloids [1, 2]. Therefore, colloidal particles
can be forced to form complex structures [4]. In particular, quasicrystalline ordering
of the colloids can be obtained and studied by employing an interference pattern
with quasicrystalline symmetry [3, 7, 11–17]. By tuning the phases of the laser
beams appropriately it is possible to change the phasonic displacements of the laser
field in a controlled way [7, 14, 16].

In a recent article [7], Kromer et al. presented a method to predict the trajectories
of colloidal particles in a laser field with phasonic drift. The laser field is created by
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Fig. 35.1 Interference patterns calculated from Eq. (35.1) for different numbers of laser beams.
The length unit is given by aV = 2π/|Gj |

five laser beams, which corresponds to an external potential with decagonal sym-
metry. Kromer et al. showed that every colloid can be mapped into characteristic
areas of reduced phononic and phasonic displacement. Therefore, only the paths of
colloids inside the characteristic areas have to be studied. Here we generalize this
method to laser fields with eight- and twelve-fold symmetry. The corresponding
interference patterns are depicted in Fig. 35.1.

In Sect. 35.2, we introduce the model system. In Sect. 35.3, we determine the
characteristic areas of reduced phononic and phasonic displacement before we study
the behavior of a colloid inside these areas in order to predict colloidal paths in
general in Sect. 35.4. Finally, we conclude in Sect. 35.5.

35.2 Laser Fields and Phasonic Drifts

A laser field acts on colloidal particles like an external potential. The interference
pattern created by N laser beams corresponds to an external potential [5, 15, 17]

V (r)=− V0

N2

N−1∑

i=0

N−1∑

j=0

cos
(
(Gi −Gj ) · r+ φi − φj

)
(35.1)

where Gj = (2π/aV cos[2πj/N ],2π/aV sin[2πj/N ]) are the wave vectors of the
laser beams projected onto the sample plane, aV denotes the length scale of the po-
tential and φj the phases of the laser beams. For N beams the resulting interference
pattern has 2N -fold rotational symmetry if N is odd and N -fold if N is even. The
laser fields that we consider in this article are shown in Fig. 35.1.

The phases are parametrized in accordance with [8]

φj = u ·Gj +w ·Gkj modN + γ /N (35.2)

where we use k = 3 for N = 5 or N = 8 and k = 5 for N = 12. The vector u =
(ux,uy) describes the phononic and w = (wx,wy) the phasonic displacement. In
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contrast to u and w, the global phase γ is not a hydrodynamic variable and vanishes
in the interference patterns. We denote a potential with a phasonic displacement w
by Vw(r).

Note that the laser fields are similar to the Fourier description that is often used
to describe a density field ρ(r) of a typical quasicrystal [8]

ρ(r)=
N−1∑

j=0

cos(Gj · r+ φj ). (35.3)

The reciprocal lattice vectors Gj and the phases φj are the same as in (35.1) and
(35.2). While in the laser fields the colloids usually occupy the minima, atoms are
most-likely located close to maxima in the Fourier description.

In the following, we consider the limit of high potential strengths or low temper-
atures, e.g., V0� kBT , such that all colloids are always located in local minima of
the external potential. We apply a phasonic drift to the potential, i.e., the phasonic
displacement is changed at a constant rate in time.

35.3 Characteristic Areas

All colloidal positions can be mapped onto particles inside characteristic areas of
small phononic and phasonic displacements. The reason is that there are combina-
tions of phononic and phasonic displacements �u and �w that do not change the
potential, i.e., Vw(r)= Vw+�w(r+�u). For example, for j = 0,1, . . . ,M displace-
ments with

�u= (ur cos[2πj/M], ur sin[2πj/M]) and

�w= (wr cos[2πkj/M],wr sin[2πkj/M])
(35.4)

change the differences between phases φj − φk only by integer multiples of 2π if
the step lengths ur and wr are chosen appropriately (see Table 35.1 for possible
values). The number of symmetry axes is M = 2N for an odd number of beams and
M =N for an even one.

By using suitable combinations obeying Eq. (35.4), we can map a colloid at po-
sition r in a potential Vw(r) onto a particle at reduced position r(red) = r−�u in a
potential Vw(red) (r(red))with reduced phasonic displacement w(red) =w+�w within
characteristic areas whose size is determined as follows: We first consider the map-
ping along a phononic direction given by ej = (cos[2πj/M], sin[2πj/M]) and its
phasonic counterpart. The sizes of the characteristic intervals δu and δw have to
be chosen at least such that the two-dimensional subspace spanned by the consid-
ered phononic and phasonic directions can be completely covered with rectangles
of dimensions δu and δw that are displaced by �u in phononic and �w in phasonic
direction. We list the appropriate interval lengths δu and δw in Table 35.1. Consid-
ering all symmetry directions, we end up on reduced values r(red) and w(red) within
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Table 35.1 The step lengths ur and wr of phononic and phasonic displacement vectors used in
Eq. (35.4) such that there is no change to the laser field for all integer numbers n and m. In the
last two columns, the size of the characteristic areas is given. Note, the same step lengths and area
sizes occur for a density field ρ(r) given by (35.3). We denote the corresponding symmetry in the
second column

Laser Fourier ur/aV wr/aV δu/2aV δw/2aV

5 2
5n+ ( 1

5 + 1√
5
)m 2

5n+ ( 1
5 − 1√

5
)m (1+√5)/10 (1+√5)/10

10 5; 10 2√
5
n+ (1+ 1√

5
)m − 2√

5
n+ (1− 1√

5
)m 1

2 (1+ 1√
5
) 1

2 (1+ 1√
5
)

8 8 1
2n+ 1√

2
m 1

2n− 1√
2
m 1

2
√

2
1
2 (

1
2 + 1√

2
)

12 12 n+ 1√
3
m n− 1√

3
m 1

2
1
2 (1+ 1√

3
)

areas of polygonal shape defined by

∣∣r(red) · ej
∣∣≤ δu

2aV
and

∣∣w(red) · ej
∣∣≤ δw

2aV
(35.5)

for all j = 1, . . . ,M (see also black polygons in Fig. 35.2).
To gain a complete understanding of the colloidal dynamics, it is sufficient to

study the colloidal behavior within the characteristic areas. We follow the paths of
colloids that are started at the origin for phasonic drifts in all directions. In Fig. 35.2,
the important points of these trajectories are shown as described in more detail in
the caption of the figure. Note the color is always the same for the reduced phononic
displacement and its corresponding reduced position. Therefore, the color indicates
in what direction a colloid is moving depending on the direction of the phasonic
drift. A detailed description of the analysis for a laser field created by five beams is
given in [7]. In the next section, we will show that the path of a colloid started at an
arbitrary position can be predicted by using the diagrams shown in Fig. 35.2.

35.4 Colloidal Trajectories

With the diagrams deduced in the previous section one can predict colloidal trajec-
tories due to phasonic drifts. Since the ten-fold case has been studied before [7], we
focus here on the potentials with eight- and twelve-fold rotational symmetry. Each
column in Fig. 35.3 contains the description of a single trajectory.

A trajectory depends on the starting value of w(red). All initial conditions that
lead to similar trajectories are marked by the crosshatched areas in Fig. 35.3. The
procedure of vanishing minima, sliding colloids and mapping is explained in detail
in the caption of Fig. 35.3. We obtain a straight path if this procedure repeats after
one slide and a zigzag path in case it repeats after two slides.
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Fig. 35.2 The areas of reduced positions r(red) (a1, b1, c1) and phasonic displacements w(red)

(a2, b2, c2) are depicted for different laser potentials. The characteristic areas are marked by
black polygons. The threshold value of w(red) where a minimum disappears is shown by solid col-
ored lines inside the polygons [in (b2) and (c2) drawn on top]. If this threshold value is surpassed,
the colloid slides into a new minimum whose position is marked by the outermost colored spots in
the diagrams for r(red). Note, the reduced positions are drawn with the same color as the associated
reduced phasonic displacements. Afterwards r(red) and w(red) are mapped back into the character-
istic areas as illustrated by the innermost colored dashed lines or spots that lie on the opposite site
of the lines where the sliding started. In (b2) and (c2), the remapping ends exactly underneath the
lines where a slide for opposite phasonic drift starts. Note, the mapping does not change the real
position or the real phasonic displacement. The diagrams (a1, a2) correspond to the ones already
shown in [7]. Examples of colloidal paths within the diagrams are given in Fig. 35.3

35.5 Conclusions

We have extended previous studies [7] to quasicrystals with eight- and twelve-fold
rotational symmetry and showed how one can predict colloidal trajectories that are
caused by phasonic drifts. In the future, we want to investigate the particle motion
that originates from phasonic modes with finite wavelength. In principle, all rear-
rangements of colloidal particles due to any given phasonic mode can be predicted
with the diagrams shown in Fig. 35.2.

As indicated, our method is also applicable to intrinsic quasicrystals, e.g., atomic
systems characterized by a density distribution, where atoms reside at the most pro-
nounced maxima. By analyzing the properties of these maxima within the reduced
phononic and phasonic areas, in principle, it is possible to predict the correlated
rearrangements of atoms due to phasonic fluctuations.
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Chapter 36
Catalytic Properties of Five-Fold Surfaces
of Quasicrystal Approximants

M. Krajčí and J. Hafner

Abstract Recently it has been shown that some low order approximants to decago-
nal or icosahedral quasicrystals provide excellent activity and selectivity for hydro-
genation of alkynes. Our recent works on Al13Co4 and AlPd compounds demon-
strated that the catalytically active surfaces in both cases are surfaces with (pseudo-)
five-fold symmetry. Ab-initio DFT calculations have been used to identify the reac-
tion centers and to construct a detailed atomistic scenario for the acetylene to ethy-
lene hydrogenation. It was found that the activity of the catalysts is not promoted
by the transition metal (TM) atoms alone but by a cluster of Al atoms centered at a
slightly protruding TM atom. In the present contribution, we demonstrate that local
configurations of Al and TM atoms favorable for selective catalysis of the hydro-
genation reactions naturally appear at Al–TM surfaces with pentagonal symmetry.
We discuss the possibility to use surfaces of the Al–TM quasicrystals and their ap-
proximants as catalysts for hydrogenation reactions.

36.1 Introduction

Surfaces of transition metals are often used to catalyze oxidation and hydrogena-
tion reactions. The possibility to use for chemical catalysis instead of the surfaces
of close-packed transition metals the surfaces of complex metallic compounds like
quasicrystals and their approximants is a new, promising and so far largely unex-
plored research area. While surfaces of the close-packed metals have only a few
inequivalent adsorption sites, the surfaces of complex intermetallics provide a rich
variety of different adsorption sites, leading to a multitude of possible reaction chan-
nels for catalytic reactions. Al–TM compounds are a class of intermetallics that can
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exhibit very high complexity of their surfaces. A particularly large number of in-
equivalent sites can be expected on the surfaces of quasiperiodic systems and their
approximants. At some surface terminations, the local atomic environments of the
surface TM atoms can modify their catalytic properties in a desired way. An isola-
tion of the transition metal sites on the surface of a complex intermetallic compound
[1] provides thus a possibility to optimize their catalytic properties.

The potential of using the complex intermetallic compounds for chemical catal-
ysis is demonstrated on hydrogenation of acetylene, the simplest alkyne. We shall
consider a chemical reaction where acetylene C2H2 is hydrogenated to ethylene
C2H4. The hydrogenation reaction C2H2 + H2→ C2H4 is a subprocess in the in-
dustrial production of the polyethylene. Usually, Pd is used to catalyze the ethylene
hydrogenation subprocess. The role of the catalyst in ethylene hydrogenation, as in
any other reaction, is to provide an alternative reaction pathway to the reaction prod-
uct. Without a catalyst, the reaction would proceed only at very high temperatures.
The reaction temperature can be substantially reduced and the rate of the reaction
can dramatically increase if the alternative path has a lower activation energy than
the reaction path not mediated by the catalyst. The activity of the catalyst is its most
important property. Pd catalysts exhibit sufficient activity but low selectivity. In the
polyethylene production, it is undesired if the hydrogenation reaction continues and
ethylene is further hydrogenated to ethane C2H6. In addition to the activity, the se-
lectivity of the catalyst thus also plays a very significant role.

Recently, it has been shown that some low order approximants to decagonal or
icosahedral quasicrystals provide excellent activity and selectivity for hydrogena-
tion of alkynes [1, 2]. Our recent works on Al13Co4 and AlPd compounds [3, 4]
demonstrated that the catalytically active surfaces in both cases are surfaces with the
(pseudo-)five-fold symmetry. Ab-initio DFT calculations have been used to identify
the reaction centers and to construct a detailed atomistic scenario for the acetylene-
to-ethylene hydrogenation. The local configurations of Al and TM atoms favorable
for selective catalysis of the hydrogenation reactions naturally appear at the Al–TM
surfaces with the pentagonal symmetry. We discuss the possibility to use surfaces
of the Al–TM quasicrystals and their approximants as catalysts for hydrogenation
reactions.

36.2 Hydrogenation on Surfaces of Quasicrystalline
Approximants

The Al13Co4 and AlPd (and isostructural GaPd) compounds have been identified
as active and selective catalysts for acetylene hydrogenation [1, 2]. Al13Co4 is an
approximant to the decagonal Al–Co–Ni quasicrystal. AlPd crystallizing in the B20
structure can be considered as the smallest approximant to the i-Al–Pd–Mn qua-
sicrystal. We have analyzed the hydrogenation process and found that in both com-
pounds the catalytically active surfaces are the surfaces with the (pseudo-)five-fold
symmetry. In Al13Co4, the active surface is the (100) surface. In AlPd, the active
surface seems to be the (210) surface with the pseudo-five-fold symmetry.
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Fig. 36.1 The atomic structure of the catalytically active surfaces of Al13Co4 (a) and AlPd (b).
The light blue and gray circles: Al, the violet circles: TM atoms. The red triangles mark the most
active reaction centers

The hydrogenation reaction on the surface of an intermetallic compound pro-
ceeds via the Langmuir–Hinshelwood mechanism. Both reactants H2 and C2H2

must to be coadsorbed on the surface. First, the H2 molecule dissociates. Then the
reaction proceeds via thermally activated diffusion of H atoms and two reaction
steps. The complete reaction path is a multistep process involving in addition to
the chemical reactions C2H2 + H→C2H3 and C2H3 + H→C2H4, the diffusion of
coadsorbed atomic hydrogen towards the hydrocarbon species.

On the studied Al–TM surfaces, the H2 molecule binds exclusively only on top
of a TM atom. Dissociation of H2 is an activated process with the activation energy
of Ea ≤ 60 kJ/mol. Diffusion of dissociated atomic hydrogen over the surface is
also a thermally activated process. We have observed that the diffusion jumps over
Al atoms (Ea ≈ 40–60 kJ/mol) are more difficult than over TM atoms (Ea ≈ 5–
20 kJ/mol). Although the C2H2 molecule also binds on top of the TM atoms, it was
found that the most preferable adsorption sites for this molecule are not the TM
atoms, as expected, but certain bridge positions between two neighboring Al atoms.

The most remarkable observation was that the adsorption configurations of the
reactants and hydrogenation mechanisms on (100)-Al13Co4 and on the (210) sur-
face of AlPd are essentially the same. In both cases, the catalytically active sites
are formed by a pentagonal arrangement of Al atoms around a slightly protruding
transition metal atom. The most active reaction centers in both cases are triangular
configurations of two Al atoms and one TM atom, see Fig. 36.1. The preferable ad-
sorption geometry for acetylene is the Al–Al bridge position, forming a di-σ -bond.
Vinyl C2H3 is adsorbed with the bond between the C–H group and an Al atom.
The product of the reaction, the ethylene molecule, is adsorbed via a π -bond on top
of the TM atom. During the hydrogenation reaction, the molecular complex shifts
from the bridge position between the Al sites to the top position on top of the TM site
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Fig. 36.2 The most active reaction center. The preferable adsorption geometry for C2H2 is the
Al–Al bridge position. The product of the reaction, the C2H4 molecule, is adsorbed on top of
the TM atom. During the hydrogenation reaction, the molecular complex shifts from the bridge
position between the Al sites to the top position on the TM site

where it is only weakly bound, favoring desorption. The highest activation energy
barriers of the whole reaction path for the (100)-Al13Co4 and (210) AlPd surfaces
are 63 and 71 kJ/mol, respectively. These values are lower than that of 74 kJ/mol
calculated for the reference (111) Pd surface. The selectivity of both investigated
intermetallic compounds results from a low desorption energy for C2H4 that is by
≈10 kJ/mol lower than the activation energy for further hydrogenation to C2H5 and
ethane.

The vertical position of the TM atom above the surrounding atoms plays an es-
sential role. There is a clear correlation between the height of the TM atom above
the surface plane and the adsorption energy of C2H4. The binding energy of C2H4
increases with the increasing height of the TM atom above the surface plane which
leads to a lower selectivity. On the other hand, if the vertical position of the TM
atom is below the neighboring atoms, the TM atom does not bind the hydrocarbons
and the TM site becomes catalytically inactive. In an optimal configuration, the TM
atom is slightly protruding above the surrounding surface atoms.

A catalytic reaction is generally a complex nonlocal process. We have seen that
the adsorption site of the reactant and the product need not be the same site. One
has to consider also the length of diffusion paths determined by distant positions of
the adsorption sites of both reactants. In this short contribution, we have restricted
our analysis only on the dependence of the catalytic properties of an active site on
structural details of its local environment. The Sabatier principle is known as a qual-
itative concept in the chemical catalysis. According to this principle, the interactions
between the catalyst and the reacting adsorbates should be “just right”, that is, nei-
ther too strong nor too weak. If the interaction is too weak, the adsorbates fail to
bind to the catalyst and no reaction takes place. On the other hand, if the adsorption
is too strong, the activation energies of the reaction steps become too large.

A pure Al(111) surface cannot be used as a hydrogenation catalyst. Although
C2H2 is adsorbed with a sufficient binding energy of Eb ≈ −119 kJ/mol, the sur-
face does not bind H2 at all. The presence of the TM atoms at the surface is thus
essential for the hydrogenation. At the B20 compounds the studied pseudo-five-
fold (210) surface plays the same role as the (110) surface at the B2 compounds.
The triangular configuration of the atoms similar to that presented in Fig. 36.2
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can be found also on the (110) surfaces of B2 compound AlCo. However, in-
stead of the pentagonal arrangement here each surface atom has 4 nearest neigh-
bors of the opposite chemical type. While on the (100)-Al13Co4 surface the C2H2
molecule is adsorbed with a moderate binding energy of Eb = −184 kJ/mol, at
the AlCo(110) surface the acetylene molecule is adsorbed with much higher bind-
ing energy of Eb ≈ −276 kJ/mol. On this surface, the first hydrogenation step is
strongly endothermic (�Eb ≈ +75 kJ/mol) and the activation energy of this step
of ≈125 kJ/mol is very high. The activity of such a catalyst would be very poor.
Because of the too strong C2H2 adsorption, also the (0001) surface of hcp Co is
not a good hydrogenation catalyst. The adsorption energy of acetylene is here even
stronger (Eb ≈ −320 kJ/mol). These results demonstrate how the local environ-
ments of the active sites modify their catalytic properties. An increased lateral inter-
action of atoms in the denser packed pentagonal cluster on (100)-Al13Co4 reduces
the too strong adsorption of the C2H2 molecule observed at other surfaces. The
pentagonal cluster centered at a TM atom provides high activity and good selectiv-
ity for acetylene hydrogenation. As the pentagonal environments of TM atoms can
be naturally found on surfaces of quasicrystals, we have performed an inspection
of the surfaces of some quasicrystals to estimate possible catalytic activity of these
intermetallic compounds.

36.3 Discussion

Perhaps best understood is the structure of the five-fold surface of i-Al–Pd–Mn.
Theoretical studies based on the KGB model [5–7] of the structure of the i-Al–Pd–
Mn quasicrystal confirmed by experimental analysis [8] show that of the five-fold
surface is highly Al-rich. The five-fold surface of this quasicrystal is formed by 2
atomic planes separated (in the ideal structure) by 0.48 Å. The chemical composition
of the top plane is ≈95 % Al and ≈5 % Mn. Pd atoms thus occur only in the second
plane below the top plane. This information about the chemical composition of the
top surface planes is sufficient for the conclusion that the clean five-fold surface of i-
Al–Pd–Mn is a poor hydrogenation catalyst. The Pd atoms buried in the surface are
catalytically inactive. A closer inspection shows that the only catalytically active
sites are in the top atomic plane exposed centers of the pseudo-Mackay clusters
occupied by Mn atoms. In pentagonal Al environments of these Mn atoms, one
can also recognize (see Fig. 1 in [7]) the triangular reaction centers as shown in
Fig. 36.2. However, because of the small number of such sites, the surface will have
low catalytic activity.

As Al(111) surface has lower surface energy than TM close-packed surfaces, one
can generally expect that the surfaces of Al–TM quasicrystals will be Al-rich. As
H2 binds exclusively on the top of TM atoms, the small number of these sites at the
surface reduces the hydrogenation activity. One possibility to improve the hydro-
genation activity is to use instead of the quasicrystals their approximant phases with
a higher TM content as it was demonstrated in Sect. 36.1 in the study of the AlPd
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compound. Another possible remedy of this problem is to reveal the subsurface TM
sites. In the second TM-rich layer, there are many possibly active sites. This can
be done, for example, by dissolving the surface Al atoms from the top plane by an
etching process [9].

It is interesting to look also at the d-Al–Co–Ni quasicrystal related to the studied
Al13Co4 compound. Unfortunately, neither the bulk nor the surface structure of this
quasicrystal is so far well understood. As a representative for the surface of the d-Al–
Co–Ni quasicrystal we have considered the surface of the W-approximant phase. In
our earlier studies of the surface of the d-Al–Co–Ni quasicrystal [10], the chemical
Al–TM ordering was based on the original proposal of Sugiyama et al. [11]. We
note that a recent structure refinement [12] proposed a slightly modified chemical
ordering. The bulk structure consists of two kinds of atomic planes—flat (F ) and
puckered (P ). It can be expected that the more Al-rich P plane will be preferably
exposed at the surface. A short inspection of the structure and the Al–TM ordering of
the P plane shows that at this surface there are plenty of TM sites with a pentagonal
environment; see Fig. 1 in [10]. The TM sites with the pentagonal environment can
be found in the centers and in the vertices of a superposed pentagonal tiling. In a
half of the TM sites, the TM atoms are slightly buried in the surface, but in the other
half they are slightly protruding. This quasicrystal thus has a potential to be a good
hydrogenation catalyst and deserves further theoretical investigations.
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Chapter 37
Effect of Leaching on Surface Microstructure
and Chemical Composition of Al-Based
Quasicrystals

T.P. Yadav, M. Lowe, R. Tamura, R. McGrath, and H.R. Sharma

Abstract We have studied the effect of leaching treatments on the surface mi-
crostructure and chemical composition of Al-based quasicrystals. The high symme-
try surfaces of single grain icosahedral (i-) Al–Cu–Fe and decagonal (d-) Al–Ni–Co
quasicrystals and a polygrain i-Al–Pd–Re quasicrystal with random surface orien-
tation were leached with NaOH solution at varying times and the resulting surfaces
were characterized by scanning electron microscopy, energy dispersive X-ray anal-
ysis and X-ray photoelectron spectroscopy. The leaching treatments preferentially
remove Al producing nanoparticles of the transition metals and their oxides. The
leached fivefold surface of i-Al–Cu–Fe exhibits micron sized dodecahedral cavities
on which the nanoparticles are precipitated. However, no specific microstructure has
been observed on the tenfold surface of d-Al–Ni–Co and the polygrain i-Al–Pd–Re.
The quasicrystalline surface can be regained after polishing the leached layer, indi-
cating that leaching occurs only in a limited depth from the surface. This was re-
vealed by low energy electron diffraction after the surface was prepared under ultra
high vacuum conditions. These results provide important information for prepara-
tion of model catalysts of nanoparticles of catalytically active metals on quasicrystal
surfaces.

37.1 Introduction

Quasicrystals (QCs) have orientationally ordered structures with no periodicity.
They are intermetallic compounds with a specific chemical composition and of-
ten possess classically forbidden rotational symmetries such as fivefold and ten-
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fold. For the revolutionary discovery of QC, the 2011 Nobel Prize in chemistry
was awarded to Danny Shechtman [1]. Quasicrystalline structure was discovered in
1982 on rapidly solidified Al–Mn alloys, which exhibited sharp diffraction peaks
with icoshahedral symmetry [1]. QCs show physical properties different from those
of their metallic and amorphous counterparts such as low coefficient of friction,
high hardness, low surface energy, good wear-resistance, high thermal and electric
resistivity [2], which can be exploited for industrial applications [3].

Many quasicrystals contain catalytically active elements and they are stable at
high temperatures, and thus they have the potential to be used as catalysts where
high thermal stability is necessary [4–9]. Tsai et al. studied the catalytic activ-
ity of leached quasicrystals in steam reforming of methanol [4, 5]. In their early
experiments, the powder of polygrain icosahedral i-Al–Cu–Fe quasicrystal was
leached with NaOH aqueous solutions. The thus-prepared powder shows higher
reactivity and thermal stability than usual metal catalysts in steam reforming of
methanol [8, 9]. Al is selectively dissolved during leaching yielding Cu and Fe
nanoparticles on top of the quasicrystalline surface. These nanoparticles are be-
lieved to be responsible for the catalytic reaction. Iron species are homogeneously
distributed in the leached layer, which suppresses the aggregation of Cu [9].

Recently, the same authors found that leaching of i-Al–Cu–Fe followed by cal-
cination at 600 ◦C in air [10] drastically increases the catalytic activity. This is
attributed to the formation of composite materials with fine Cu nanoparticles dis-
persed in a spinal matrix of (Fe,Al)3O4 [11]. Furthermore, the catalytic behaviour
of QCs and related crystalline materials with composition similar to that of QCs,
the so-called approximants, has been compared. It was found that QCs show higher
catalytic activity and durability than approximants [9]. The dissolution rate of Al in
approximants is higher than in QCs and produces a layer of Cu, instead of homoge-
nous distribution of Cu and Fe [9], which deteriorates the activity.

Because of their complex nature, it has been difficult to gain atomic scale un-
derstanding of catalytic activity of leached quasicrystals. Additionally, the role of
underlying quasicrystals in the catalytic activity is yet to be understood. In order
to achieve this information, we have attempted to create a simple model catalyst
of nanoparticles on quasicrystalline surfaces by leaching well defined surfaces of
single grain quasicrystals. As the first step of these studies, we present here the
effect of leaching treatments on surface morphology and chemical composition of
different quasicrystals studied by scanning electron microscopy (SEM), energy dis-
persive X-ray (EDX) analysis and X-ray photoelectron spectroscopy (XPS). The
studied systems include the fivefold surface of i-Al–Cu–Fe and tenfold surface of d-
Al–Ni–Co. The results from the single grains QCs will be compared with a leached
polygrain i-Al–Pd–Re QC with random surface orientations.

37.2 Experimental Procedure

Single grains of i-Al63Cu24Fe13 and d-Al72Ni11Co17 were grown by the Bergman
method [12]. Single grain nature of the samples was confirmed by low energy elec-
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tron diffraction (LEED), prior to leaching experiments. The i-Al–Pd–Re sample
was synthesized by spark plasma sintering method using a mixture of raw mate-
rial powders of Al, Pd and Re with a nominal composition of i-Al70.5Pd21Re8.5
[13]. The as-cast ingots was annealed at 923 K for 48 hours for better homogeneity
and the phase purity of the samples was examined by X-ray diffraction (XRD). All
the peaks in the XRD pattern obtained from the surface of the disc can be indexed
by icosahedral phase and the intensity distribution is similar to that obtained from
i-Al70.5Pd21Re8.5 QC powder. This reveals that the surface is composed of random
grain orientations.

The surfaces were polished before each leaching treatment using diamond paste
of successively smaller size of 6 to 0.25 μm. Leaching was performed in ambient
conditions by placing droplets of NaOH aqueous solution with 10 mole concen-
tration on the surfaces using a pipette. Leaching was performed at various times
from 30 min to 8 hours. After leaching, the surfaces were thoroughly washed with
methanol and distilled water in ultrasonic bath until no alkali was detected. It was
found by XPS that 4–5 times of washing with water for 15 minutes each is needed to
completely remove alkali from the surface. The leached surfaces were characterized
using JEOL-JSM-6610 SEM, EDX and XPS.

37.3 Results and Discussions

The effect of leaching on surface was first examined by an optical camera. In the
inset of Fig. 37.1(a), we show optical micrographs of fivefold surface of i-Al–Cu–
Fe. The surface is mirror-like after polishing. Leaching turns the surface to reddish
brown color with a reduced reflectivity. The colour and roughness indicates the pres-
ence of Cu and Fe metal particles on the surface after leaching.

Figure 37.1(a) shows an SEM of the polished fivefold i-Al–Cu–Fe surface, re-
vealing the flatness of the surface. Some scratches were noticed, which were cre-
ated during polishing the surface. The average elemental composition determined by
EDX taken at different parts of the polished surface is Al: 63.4 at%, Cu: 23.2 at%
and Fe: 13.1 at%, which is close to the nominal composition of the bulk. Small
amount of oxygen (0.3 at%) was also detected as expected for an air-exposed sur-
face.

Figure 37.1(b) shows an LEED pattern from the i-Al–Cu–Fe surface after sev-
eral cycles of sputtering with 2 keV argon ions (8 μA ion current) for 30 min and
annealing at 870 K for 4 hours. The LEED pattern exhibits fivefold symmetry with
diffraction spots located at τ -scaling distances, τ is an irrational number character-
istic of quasiperiodic symmetry, as expected from bulk symmetry of a single grain
sample. After confirming single grain nature, the surface was taken out from ultra
high vacuum (UHV) and leached by NaOH.

Figure 37.2 shows SEM images of the fivefold i-Al–Cu–Fe surface after leach-
ing at different times. Leaching at 0.5 hours creates shallow cracks on the surface
(Fig. 37.2(a)). After longer exposure to NaOH, the surface is leached deeper and
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Fig. 37.1 (a) SEM micrograph of the fivefold i-Al–Cu–Fe surface after polishing. Inset: optical
photographs of polished and leached surface (leaching time 4 hours). (b) LEED pattern from the
same surface after ion bombardment and annealing under ultra high vacuum. (c) EDX spectrum
from the polished surface

Fig. 37.2 (a) SEM micrograph of the fivefold i-Al–Cu–Fe surface after leaching at different times:
(a) 0.5, (b) 2, (c) 4, (d) and (e) 8, (f) 1 hour

pentagonal facets are developed (Figs. 37.2(b)–(c)). The edge length of the pen-
tagons varies from 3–5 μm for all leaching treatments. The pentagons have the same
orientation. Their density increases with leaching time. After leaching at 8 hours,
dodecahedral cavities are formed (Fig. 37.2(d)). A close up view of dodecahedrons
is shown in Fig. 37.2(e). The boundary between the pentagonal facets are leached
deeper. Possibly, dissolution of next layer begins from these deep boundaries.

High magnification of SEM images show nanoparticles which are precipitated
atop of the pentagonal facets. The exact determination of particle size was not pos-
sible with the available microscope. We estimate the size to be 100 nm or less for
the surface after leaching at 1 hour (Fig. 37.2(f)).

The local chemical information of the surface is achieved by EDX. It reveals that
the nanoparticles observed on the pentagonal facets are composed of Cu and Fe,
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Fig. 37.3 Change in
chemical composition of the
fivefold i-Al–Cu–Fe surface
as a function of leaching time
determined by EDX

which are homogeneously distributed on the surface. Cu and Fe are also present on
the dip boundaries of the pentagonal facets or elsewhere on the surface. EDX is un-
able to provide information about oxidation states of Cu and Fe and it is less surface
sensitive. Therefore, we studied the surface by XPS, which is more surface sensitive
and capable of providing oxidation states. XPS from the surface after leaching at
2 hours show the existence of copper and iron oxides and a trace of metallic iron.
The observed chemical composition is very similar to that observed on polygrain
i-Al–Cu–Fe QC powders after leaching [10, 11].

A trend of composition change with leaching time is shown in Fig. 37.3. The
composition was determined by EDX taken at different locations of the surface. As
seen in the graph, Al is selectively removed, while Cu and Fe content increases. The
dissolution rate of Al is almost linear after 2 hours of leaching. The dissolution is
slower for the first 2 hours. This is probably because Al oxide layer formed on the
surface prior to leaching is hard to be dissolved compared to pure quasicrystal or it
may take a while to establish a good contact between the surface and solution. After
8 hours of leaching, Cu content increases faster than Fe and thus the surface is more
Cu rich than Fe.

The surface was polished after leaching experiments and checked by LEED in
UHV. LEED patterns after UHV treatments were identical to those observed before
the leaching experiments. This suggests that the leaching effect was limited to a
certain depth from the surface.

Now we come back to the facets observed after leaching. At early stage of leach-
ing, most of the facets are of fivefold symmetry and are parallel to the surface.
Longer leaching produces dodecahedral cavities, which are composed of facets
along other fivefold planes, which are inclined with respect to the surface. We note
that an icosahedral quasicrystal has six fivefold axes inclined at 63.4◦ from each
other. The formation of the dodecahedral cavities can be explained if the surface is
preferentially leached along all fivefold planes, but not limited to the fivefold plane
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Fig. 37.4 SEM micrograph of the tenfold d-Al–Ni–Co surface after polishing (a) and after leach-
ing (b). Corresponding EDX spectra of polished (c) and leached (d) surface. Leaching time was
2 hours

parallel to the surface. This further implies that the formation of pentagonal facets
is not dictated by the surface orientation.

In order to check whether the facets were induced by surface matrix, we studied
the influence of leaching on microstructure of tenfold surface of single grain d-Al–
No–Co QC. The tenfold surface did not show any decagonal facets facets (refer to
below), which may suggest that shape of facets is not induced by surface orienta-
tion but by crystallographic directions. However, results from leached i-Al–Pd–Re
polygrain samples are somewhat different, which will be discussed later. Pentag-
onal facets are commonly observed in i-Al–Cu–Fe and i-Al–Pd–Mn systems. The
i-Al–Cu–Fe QC grows in dodecahedron shape [14]. The same system after oxidation
under UHV shows pentagonal micropores [15]. The fivefold surface of i-Al–Pd–Mn
after cleavage [17] or after cleaning under UHV also exhibits similar features [16].

The tenfold surface of d-Al–Ni–Co was leached at selective time (2 hours) with
NaOH solution in the same way as for i-Al–Cu–Fe. Figure 37.4 shows SEM image
and EDX spectrum from the leached surface. The corresponding images from the
polished surface are also given for comparison. The composition of the polished sur-
face determined from EDX is Al: 72.5 at%, Ni: 10.0 at% and Co: 17.5 at%, which
is close to the nominal composition of the bulk. As in i-Al–Cu–Fe, Al is preferen-
tially removed by leaching and Co and Ni content is evolved (compare Figs. 37.4(c)
and (d)). Small amount of oxygen was also detected. Unlike in i-Al–Cu–Fe, no
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Fig. 37.5 (a) SEM micrograph of the polygrain i-Al–Pd–Re surface after leaching at 2 hours.
Inset: magnified views of SEM images showing elongated features (marked) and grain boundaries.
(b) High magnification SEM image of the same surface after leaching at 4 hours

decagonal features of the substrate symmetry were observed. Instead, liner features
are seen.

Figure 37.5(a) shows an SEM image from the polygrain i-Al–Pd–Re surface.
The leaching effect is enhanced at grain boundaries, which appear as dark thread
like features in the image. A high magnification SEM image within a single grain
is shown in Fig. 37.5(b), demonstrating nanoparticles. These particles are observed
after 4 hours leaching. EDX confirms that the concentration of Al is quite low com-
pared to Pd and Re. The surface becomes more Pd-rich than Re.

Unlike in i-Al–Cu–Fe, no pentagonal facets have been observed within a grain
or inside grain boundaries, indicating that this surface is not leached along the five-
fold axis. The leaching kinetic in i-Al–Pd–Re may not be same as in i-Al–Cu–Fe,
possibly due to more covalent nature of the former, and thus may produce differ-
ent surface microstructures. The same i-Al–Pd–Re sample studied by STM showed
that twofold surface is most stable [13]. Occasionally, we observed elongated fea-
tures appearing perpendicular to each others after leaching the i-Al–Pd–Re surface
as shown in Fig. 37.5(a), inset. However, it is not clear at this stage whether higher
stability of the twofold surface is related to these features. More experiments are
underway in this direction.

37.4 Conclusions

The surface morphology and chemical composition of three different quasicrystals
are studied after leaching with NaOH solution using different experimental tech-
niques, namely, SEM, EDX and XPS. Investigated systems are the fivefold surface
of i-Al–Cu–Fe and tenfold surface of d-Al–Ni–Co single grain quasicrystals and a
polygrain i-Al-Pd-Re quasicrystal with random surface orientations. It was found
that in all systems Al is preferentially dissolved producing nanoparticles of transi-
tion metals and their oxides. The fivefold i-Al–Cu–Fe surface is leached selectively
along the fivefold planes producing micron sized dodecahedral cavities. However,
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no specific microstructure has been observed on the tenfold surface of d-Al–Ni–Co
and the polygrain i-Al–Pd–Re under the given leaching conditions. Leaching occurs
only in the top surface layers and the underlying quasicrystalline structure can be
regained after polishing the surface. These preliminary results provide ideas about
the preparation of model catalysts comprising nanoparticles of catalytically active
metals on quasicrystal surfaces.
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Čech cohomology, 71
Closeness condition, 7
Co, 273
Coincidence site lattice, 44
Colloids, 261–265
Complex intermetallics, 269
CoO5 pyramidal arrays, 160
Crenel function, 151, 152
Critical reciprocal lattice, 101
Cross ratio, 31
Crystal, definition, 1, 123
Crystallographic superspaces, 171

S. Schmid et al. (eds.), Aperiodic Crystals, DOI 10.1007/978-94-007-6431-6,
© Springer Science+Business Media Dordrecht 2013

283

http://dx.doi.org/10.1007/978-94-007-6431-6


284 Index

Cs-corrected scanning transmission electron
microscopy (STEM), 219, 229

Cyclotomic Delone set, 31

D
Decagonal, 270, 275, 280, 281
Decagonal quasicrystal, 4, 219, 237
Delone set, 30
Dendrimers, 117
Density functional, 197
Determined, 32
DFT calculations, 270
Differential thermal analysis, 141
Diffraction, 14, 23, 35
Diffraction measure, 36
Diffraction pattern, 211, 213, 214, 216
Diffraction solution class, 35
Diffuse scattering, 243–246, 249, 250
Dirichlet series, 45
Discrete parallel X-ray, 31
Discrete tomography, 29
Dislocation, 117, 119
Displacive modulation, 152
Dodecagonal quasicrystal, 120
Dodecahedral spin cluster, 75–77, 79
DOS pseudogap, 111
Double perovskite-type cobaltates, 157
Dynamical flexibility, 253–255, 257, 258
Dynamical zeta function, 71

E
Electron backscatter diffraction, 133, 141
Electronic transport, 89
Electrons per atom ratio (e/a), 95–97, 99–101
Energy dispersive X-ray analysis, 133, 276,

277
Entropy, 20
Ethylene, 270

F
Fermi diameter, 101, 109
Fermi surface–Brillouin zone interactions

(Fs–Bz), 95–97, 99,101, 110
Five-fold symmetry, 270
FLAPW, 96, 101, 102, 110, 111
Fourier expansion, 118
Fourier module, 5
Fourier transform, 14, 36
Free energy, 121

G
Gag protein, 243
GdBaCo2O5+δ , 158
Generating function, 46, 47

Global empire, 52, 56
Grassmann coordinates, 62, 63
Grid, underlying, 50, 51, 53, 54, 56

H
HAADF (high-angle annular detector

dark-field), 219
HAADF-STEM, 237
HFM, 50–52, 56
High resolution diffraction methods, 171
High resolution transmission electron

microscopy, 29
Homometry, 35
Hull, 23
Hume–Rothery electron concentration rule,

109
Hume–Rothery plot, 95, 96, 98, 99, 104, 111
Hume–Rothery stabilization mechanism, 100,

101, 114
Hydrogen, 271
Hydrogenation reactions, 269
Hypercubic tiling, 90

I
Icosahedral, 275–277, 279
Icosahedral quasicrystal, 4, 203, 205, 209, 270
Incommensurate composites, 3, 6, 171, 187,

189
Incommensurate spin wave, 4
Incommensurately modulated phases, 2, 6,

171, 213
Interference phenomenon, 102
Inverse problem, 29, 35
Islamic architecture, 49–51, 56
Islamic patterns, 49

J
JANA2006, 188

L
Labyrinth tiling, 90
Langmuir–Hinshelwood mechanism, 271
Laser field, 262, 263
Lattice periodicity, 1
Leaching, 275–282
Liquid crystals, 117

M
Mackay icosahedron, 102
Magic number, 29, 34
Magnetic superspace group, 7
Matching condition, 102, 112
MD simulation, 256, 257
Mean square displacement, 91, 93
Mesoporous silica, 117



Index 285

MI-type approximants, 101
Misfit structures, 3
Mn, 273
Model set, 29
Modulation wave vector, 151, 153, 188, 193
Molecular dynamics (MD) simulations, 253
Molecular envelope, 248
Molecular scattering factors, 244

N
n-cyclotomic Delone set, 30
n-cyclotomic model sets, 31
Nanoparticles, 117, 275, 276, 278, 281, 282
Neutron diffraction data, 188, 190
Non-periodic tiling, 59–61
nth cyclotomic field, 30

O
Occupational modulation, 151
One-parameter family of tilings, 59
Orbital hybridization, 101, 111
Order–disorder transition, 195
Oxygen deficiency, 159

P
Pauling, 110
Pd, 270
Penrose tiling, 3, 31, 49, 50
Pentagonal and the banana-shaped tiles, 235
Period doubling sequence, 38
Phase transitions, 8, 171, 173, 196
Phases

Θ-Al2Cu, 141
Al5Co2, 141
B2, 141
m-Al13Co4, 141

Phasonic drift, 261, 263–265
Phasons, 261
Photonics, 117
Plücker relation, 62
Poisson summation formula, 38
Pseudogap, origin, 102, 113

Q
Quasiperiodic patterns in Islamic art, 49–52,

54
Quasicrystals, 29, 59–61, 125, 211–214, 275

decagonal (D), 141
Quasielastic neutron scattering (QENS), 253,

255, 256

R
Random substitution, 20
Rank, 5, 118

Raynor, 109
(reciprocal) lattice, 118
Return probability, 91, 93
Reverse Monte Carlo, 243, 245
Rhombic triacontahedron, 102
Rhombus tilings, 61
Riesz product, 15
Rietveld method, 180, 183, 187
RMC, 245–250
Robinson tilings, 68

S
Sabatier principle, 272
Scaling, 211, 212, 214–217
Scanning electron microscopy (SEM), 133,

141, 275–277
Separable quasiperiodic tilings, 90
Shadow, 62–64
Shield tiling, 31
Short-range spin fluctuation, 75, 77
Singular continuous, 14
Slow dynamic mechanism, 82
Soft-matter quasicrystals, 117
Solid solution, 191
Sp-states, 200
Space group symmetries, 180
Space-time symmetries of electrodynamic

systems, 6
Spectral dimensions, 93
Spin wave, 4
Squiral tiling, 12
Sr3TiNb4O15, 179–184
Steam reforming of methanol, 276
Structure model, 50, 164
Structure refinement, 125
Sublattice, 44
Subperiods, 62
Substitution, 19
Substitution matrix, 22
Substitution rule, 11, 69
Subword frequency, 22
Superspace formalism, 4, 150, 154
Superspace group, 5
Superspace model, 151, 154
Superstructure, 164, 167–169
Surface, 273
Surface of a complex intermetallic compound,

270
Synchrotron X-ray diffraction, 189, 191
Synchrotron X-ray powder diffraction data,

180, 182, 184, 188

T
Tempered distribution, 39



286 Index

Temporal autocorrelation function, 91
Tetrahedron dynamics, 253–259
Tetrahedron method, 95, 96
Thue–Morse, 11
Tiling space, 69
Time reversal operator θ , 7
Transmission electron microscopy (TEM),

117, 120, 133
Tsai-cluster, 195, 197, 198
Tsai-type Cd6Ca approximant, 101
Tsai-type QCs and approximants, 195
Tübingen triangle tiling, 31
Tungsten bronze, 179

U
U -polygon, 32
Unique reconstruction, 29

V
Variable temperature investigation, 193

W
W-(AlNiCo), 237
Well-rounded, 43
WIEN2k, 95, 96, 102, 111
Wiener diagram, 36
Winding numbers, 119

X
X-ray diffraction, 133, 141
X-ray photoelectron spectroscopy, 275, 276
X-ray photoemission spectroscopy, 277

Z
Zeta function, 45, 71
Zn–Mg–Tb quasicrystal, 75
Zn–Sc, 200
Zn6Sc compound, 110
Zn88Sc12, 200


	Aperiodic Crystals
	Preface
	Contents
	Contributors

	Chapter 1: A Brief History of Aperiodic Crystals: 1962-2012
	1.1 History
	1.1.1 Incommensurate Modulated Phases and Composites
	1.1.2 Aperiodic Tilings and Quasicrystals
	1.1.3 Incommensurate Magnetic Structures

	1.2 Superspace Treatment
	1.2.1 Incommensurate Modulated Phases and Composites
	1.2.2 Aperiodic Tilings and Quasicrystals
	1.2.3 Incommensurate Magnetic Structures

	1.3 Phase Transitions
	1.4 Conclusion
	References

	Chapter 2: Squiral Diffraction
	2.1 Introduction
	2.2 The Squiral Block Inﬂation
	2.3 Autocorrelation and Diffraction Measure
	2.4 Riesz Product Representation
	2.5 Summary and Outlook
	References

	Chapter 3: Random Noble Means Substitutions
	3.1 Introduction
	3.2 Construction
	3.3 Topological Entropy
	3.4 Frequencies of Subwords
	3.5 Diffraction Measure
	References

	Chapter 4: Magic Numbers in the Discrete Tomography of Cyclotomic Model Sets
	4.1 Introduction
	4.2 Cyclotomic Delone Sets
	4.3 Determination of Convex Subsets by X-Rays
	4.4 Concluding Remarks
	References

	Chapter 5: Some Comments on the Inverse Problem of Pure Point Diffraction
	5.1 Introduction
	5.2 A Simple Diffraction Measure with Simple Origins
	5.3 A Lattice Diffraction Measure with All Kinds of Origins
	5.4 Further Remarks
	References

	Chapter 6: Well-Rounded Sublattices and Coincidence Site Lattices
	6.1 Introduction
	6.2 Well-Rounded Lattices and CSLs
	6.3 Well-Rounded Sublattices of Planar Lattices
	References

	Chapter 7: Octagon-Based Quasicrystalline Formations in Islamic Architecture
	7.1 Quasiperiodic Patterns in Islamic Architecture
	7.2 The HFM Model
	The Basic Grid
	The First Hierarchy
	Growing the Empire

	References

	Chapter 8: The Ammann-Beenker Tilings Revisited
	8.1 Introduction
	8.2 Ammann-Beenker Tilings
	8.3 Octagonal Tilings and Planarity
	8.4 Shadows and Subperiods
	8.5 Grassmann Coordinates and Plücker Relations
	8.6 Planarity
	8.7 Conclusion
	Comments
	References

	Chapter 9: Substitution Rules and Topological Properties of the Robinson Tilings
	9.1 Introduction
	9.2 A Simple Substitution for the Robinson Tilings
	9.3 The Structure of the Hull
	References

	Chapter 10: Short-Range Spin Fluctuation in the Zn-Mg-Tb Quasicrystal and Its Relation to the Boson Peak
	10.1 Introduction
	10.2 Localized Collective Spin-Fluctuation and the Boson Peak
	10.3 Conclusion
	References

	Chapter 11: Anomalous Properties and the Electronic Glass-Like State in Al-Based Stable Quasicrystals
	11.1 Introduction
	11.2 Quasicrystal-Like System and the Slow Relaxation
	11.3 Conclusion
	References

	Chapter 12: Quantum Diffusion in Separable d-Dimensional Quasiperiodic Tilings
	12.1 Introduction
	12.2 Quantum Diffusion
	12.3 RG Approach and Lower Bound for the Scaling Exponent beta
	12.4 Conclusion
	References

	Chapter 13: Hume-Rothery Stabilization Mechanism of Be-Based Complex Alloys
	13.1 Introduction
	13.2 Electronic Structure Calculations
	13.3 Results and Discussions
	References

	Chapter 14: Hume-Rothery Stabilization Mechanism in Tsai-Type Cd6Ca Approximant and e/a Determination of Ca and Cd Elements in the Periodic Table
	14.1 Introduction
	14.2 Electronic Structure Calculations
	14.3 Results and Discussions
	References

	Chapter 15: Hume-Rothery Stabilization Mechanism in Low-Temperature Phase Zn6Sc Approximant and e/a Determination of Sc and Y in M-Sc and M-Y (M=Zn, Cd and Al) Alloy Systems
	15.1 Introduction
	15.2 Electronic Structure Calculations
	15.3 Results and Discussions
	References

	Chapter 16: Analysis of Dislocations in Quasicrystals Composed of Self-assembled Nanoparticles
	16.1 Dislocations in Self-assembled Soft-Matter Quasicrystals
	16.2 Density Modes, Winding Numbers, and the Burgers Function
	16.3 Analysis of the Dislocations in a Quasicrystal of Nanoparticles
	16.4 Results and Discussion
	References

	Chapter 17: Average Unit Cell in Fourier Space and Its Application to Decagonal Quasicrystals
	17.1 Introduction
	17.2 Average Unit Cell Approach
	The Reference Grid
	The Base Vectors of the Reciprocal Space
	Structure Factor
	v(u) Relationship
	Envelope Function

	17.3 Application-Al-Ni-Co Alloy
	17.4 Conclusions
	References

	Chapter 18: A Study of Phase Equilibria in the Al-Pd-Co System at 700 °C
	18.1 Introduction
	18.2 Experimental Procedures
	18.3 Results
	18.4 Discussion
	18.5 Conclusions
	References

	Chapter 19: Evolution of Phases in Selected Al-Co-Cu Complex Metallic Alloys Under Near-Equilibrium Conditions at 800-1150 °C
	19.1 Introduction
	19.2 Experimental Procedures
	19.3 Results and Discussion
	19.4 Conclusions
	References

	Chapter 20: Superspace Description of the System Bi2(n+2)MonO6(n+1) (n = 3, 4, 5 and 6)
	20.1 Introduction
	20.2 Experimental Section
	20.3 Odd Members
	20.3.1 Choice of the Average Unit Cell and the Modulation Vector
	20.3.2 Construction of the Superspace Model
	20.3.3 Member with n=5

	20.4 Even Members
	20.5 Discussion
	References

	Chapter 21: Pseudo-Commensurate GdBaCo2O5+delta and Its Phase Transition at Elevated Temperatures
	21.1 Introduction
	21.2 Experimental
	21.3 Results and Discussion
	References

	Chapter 22: Al4(Cr,Fe): A Structure Survey
	22.1 Introduction
	22.2 Experimental
	22.3 Observations
	22.4 Analysis of Bragg Data
	22.4.1 Average Structure from Neutron Data (k'-Reﬂections Omitted)
	22.4.2 Superstructure from X-ray Data (k' Reﬂections Treated as Bragg Peaks)

	22.5 Discussion and Conclusions
	References

	Chapter 23: Phase Transitions in Aperiodic Composite Crystals
	23.1 Introduction
	References

	Chapter 24: Pseudo-Symmetry in Tungsten Bronze Type Sr3TiNb4O15
	24.1 Introduction
	24.2 Experimental
	24.3 Results and Discussion
	24.4 Conclusions
	References

	Chapter 25: Structural Investigation of the Incommensurate Modulated Ta2O5·Al2O3 System
	25.1 Introduction
	25.2 Experimental
	25.3 Results and Discussion
	25.4 Conclusions
	References

	Chapter 26: First-Principles Study for Phase Diagrams of Cd-Ca and Cd-Y Tsai-Type Approximants Under Pressure
	26.1 Introduction
	26.2 Calculation Methods
	26.3 Results and Discussions
	26.4 Summary
	References

	Chapter 27: The Choice of Vector Basis for Ammann Tiling in a Context of the Average Unit Cell
	27.1 Introduction
	27.2 Icosahedral Basis (Setting 1)
	27.3 Cubic Basis (Setting 2)
	27.4 Conclusions
	References

	Chapter 28: Real Space Structure Factor and Scaling for Quasicrystals
	28.1 Introduction
	28.2 Average Unit Cell
	28.3 Scaling
	TAU2-Scaling for AUC
	Scaling for Peak Positions

	28.4 Conclusions
	References

	Chapter 29: Direct Observations of Aperiodic Arrangements of Transition-Metal Atoms in Al-Co-Ni Decagonal Quasicrystals by Cs-Corrected HAADF-STEM
	29.1 Introduction
	29.2 Experiment
	29.3 Results and Discussion
	29.4 Summary
	References

	Chapter 30: Arrangement of Transition-Metal Atoms in an Approximant Crystal Related to Al-Cu-Co Decagonal Quasicrystals Studied by Cs-Corrected HAADF-STEM
	30.1 Introduction
	30.2 Experimental Procedures
	30.3 Results and Discussion
	30.4 Summary
	References

	Chapter 31: Structure of epsilon16 Phase in Al-Pd-Co System Studied by HREM and X-Ray Diffraction
	31.1 Introduction
	31.2 Experimental Procedures
	31.3 Results and Discussion
	31.4 Summary
	References

	Chapter 32: Structure of tau2-Al3Co, a Monoclinic Approximant of the Al-Co Decagonal Quasicrystal
	32.1 Introduction
	32.2 Experimental Procedure
	32.3 Results and Discussion
	32.4 Summary
	References

	Chapter 33: Reverse Monte Carlo Study of Diffuse Scattering from a Frustrated Protein System
	33.1 Introduction
	33.2 X-Ray Data
	33.3 Reverse Monte Carlo Simulation
	33.3.1 Development of RMC Model
	33.3.2 Results of RMC for Model 1

	33.4 Solvent Flattening
	33.5 Reverse Monte Carlo-Model 2
	33.5.1 Results of RMC for Model 2

	33.6 Conclusion
	References

	Chapter 34: Dynamical Flexibility in the Periodic Zn6Sc 1/1-Approximant
	34.1 Introduction
	34.2 Quasielastic Neutron Scattering (QENS)
	34.3 Simulation
	34.4 Conclusion
	References

	Chapter 35: Trajectories of Colloidal Particles in Laser Fields with Eight-, Ten-, or Twelve-Fold Symmetry and Phasonic Drift
	35.1 Introduction
	35.2 Laser Fields and Phasonic Drifts
	35.3 Characteristic Areas
	35.4 Colloidal Trajectories
	35.5 Conclusions
	References

	Chapter 36: Catalytic Properties of Five-Fold Surfaces of Quasicrystal Approximants
	36.1 Introduction
	36.2 Hydrogenation on Surfaces of Quasicrystalline Approximants
	36.3 Discussion
	References

	Chapter 37: Effect of Leaching on Surface Microstructure and Chemical Composition of Al-Based Quasicrystals
	37.1 Introduction
	37.2 Experimental Procedure
	37.3 Results and Discussions
	37.4 Conclusions
	References

	Index

