Chapter 8
Spanning Fullerenes as Units in Crystal
Networks

Mircea V. Diudea and Beata Szefler

Abstract Fullerenes are molecules consisting of tri-connected polyhedral cages of
various covering. Spanning fullerenes can be obtained by deleting some atoms or
bonds, thus resulting in open structures with di-connected atoms which can further
join to atoms of the same or different repeating units in construction of crystal- or
quasicrystal-like networks. In this chapter, a variety of spanning fullerenes, designed
either by opening cages or by sequences of map operations, are used to build more
complex nanostructures. Energetics of some spanning fullerenes has been calculated
on optimized structures at Hartree-Fock and/or DFT level of theory. The topology
of crystal networks is described in terms of Omega polynomial.

8.1 Introduction

Fullerenes are molecules consisting of tri-connected polyhedral cages of various
coverings or tessellations. When there is a single type of polygonal faces, the
covering is called Platonic; when there are two types of faces, the covering is called
Archimedean (Diudea 2010a). A molecule can be represented by a molecular graph.
A graph G(V, E) is an ordered pair of two sets, V and E, V = V(G) being a finite
nonempty set and E = E(G) a binary relation defined on V (Harary 1969; Diudea
et al. 2002). A graph can be visualized by representing the elements of V by points
(i.e., vertices) and joining pairs of vertices (i, j) by a bond (i.e., edge) if and only if
(i, j) € E(G). The number of vertices in G equals the cardinality v = |V| of this set.
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A graph is said connected if any two vertices, i and j, are the endpoints of a path;
otherwise, it is disconnected. The molecular graphs are in general connected graphs.

Spanning fullerenes can be designed by deleting, from their molecular graph,
some vertices/atoms or edges/bonds, thus resulting in open structures with di-
connected atoms which can further be joined with atoms of the same or different
repeating units in designing periodic nanostructures, as those encountered in nano-
dendrimers, in crystals or quasicrystals. Note that spanning of fullerenes can be
obtained in laboratory by irradiating the closed cages by electron or ion beams,
while many of the molecular constructions to be presented in the following can
be seen as potentially real structures. Since fullerenes can be designed from the
Platonic polyhedra, tetrahedron T, cube C, octahedron Oct, dodecahedron Do, and
icosahedron Ico, by applying some operations on maps, the spanning fullerenes can
be designed by such sequences of operations, the “opening” Op operation included.

A map is a discretized (closed) surface. Among the most important map
operations we mention are the following: dual Du, medial Med, Py-mapping,
k =3-5, Leapfrog Le, Chamfering Q, and Capra Ca. These operations are imple-
mented in the CVNET software package (Stefu and Diudea 2005). More about map
operation the reader can find in Diudea (2010a) and Stefu et al. (2005).

Dendrimers are hyper-branched structures with a well-tailored architecture.
Their endgroups can be functionalized, thus modifying their initial properties.
Dendrimers have gained a wide range of applications in supramolecular chemistry,
particularly in host-guest reactions and self-assembly processes. Promising applica-
tions come from polyamidoamine dendrimers as gene transfer vectors and peptide
dendrimers as antipeptide antibodies and synthetic vaccines (Diudea 2010a, p. 80).

The number of edges emerging from each branching point is called the progres-
sive degree (Diudea and Katona 1999), p (i.e., the edges increasing the number of
points of a newly added generation). It equals the classical vertex degree d minus 1:
p=d—1.

The stepwise growth of a dendrimer follows a mathematical progression. A
first problem in studying the topology of dendrimers is that of enumerating its
constitutive parts: vertices, edges, or fragments.

The number of vertices in the ith orbit (i.e., that located at distance i from the
center) of a regular dendrimer can be expressed as a function vertex degree d:

vi=Q2-2)d+z—1)d -1V i>0 8.1)

where z = 1 for a monocentric dendrimer and z = O for a dicentric one. By using the
progressive degree p, relation (8.1) becomes

vi=Q2-2(p+2p"Y; i>0 (8.2)

For the core, the number of vertices is v9 = 2 — z, while the number of external
vertices (i.e., the endpoints) is obtained by

vy =02-2(p+2p" " (8.3)
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where r is the radius of the dendrimer and equals the number of its
orbits/generations.

The total number of vertices v(D), in dendrimer, is obtained by summing the
populations on all orbits:

v(D)=Q2-2+Q2-2(p+2 ) pi™ (8.4)

i=1

By developing the sum in (8.4), one obtains

r_1 2 l‘+l_1
1;_1): (pp_1 )_Zpr 8.5)

viD)=2-2)+2—-2)(p+2) (

A useful recurrence enables one to calculate v(D) from the number of vertices of
the precedent term of a dendrimer family (i.e., a homologous series of dendrimers,
having the same progressive degree, p) v(D,+1) = pv(D,) + 2, irrespective of
monocentric or dicentric the dendrimer is.

The term nano-dendrimer refers here to hyper-branched structures of which
branching nodes represent nanotube junctions (i.e., spanned fullerenes), while the
bonds joining them are nanotubes of various length.

Crystals are (MacKay 1981; Hargittai and Hargittai 2010) periodic structures,
of which (one-type) unit cells, consisting of one or more atoms or other identical
components, repeat a large number of times by three noncoplanar translations.
Corresponding atoms in each unit cell have almost identical surrounding, while the
fraction of atoms near the surface is small and the effects of the surface can be
neglected.

Quasicrystals are quasiperiodic structures (Levine and Steinhardt 1984), showing
more than one type of repeating unit, or the same unit repeating quasi-regularly.
Quasicrystals can have the topology of multi-tori, particularly of those with
icosahedral symmetry. These kinds of periodic structures will be exemplified in the
following.

Multi-tori are structures of high genera, consisting of more than one tubular
ring (Diudea and Petitjean 2008). They are supposed to result by self-assembly
of some repeat units or monomers; their geometry is eventually superimposed on
surfaces of negative curvature, like FRD or P-surface, and shows a high porosity.
Multi-tori can be designed starting from small cages, for example, the Platonic
solids. Modeling of porous structures has been previously reported by Mackay and
Terrones (1991), Lenosky et al. (1992) and Terrones and Mackay (1993), etc. Such
structures appear in spongy carbon (already synthesized, Benedek et al. 2003), in
schwarzites (named in honor of mathematician Schwarz 1865, 1890), or in zeolites
(natural aluminosilicates).
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8.2 Design of Spanning Fullerenes

There are at least two ways to design a tubular nano-junction: (1) by sequences of
map operations and (2) by spanning appropriate fullerenes.

8.2.1 Junctions by Map Operations

Three basic map operations Leapfrog Le, Chamfering (Quadrupling) O, and Capra
Ca (the reader is invited to consult: Diudea 2004, 2005; Diudea et al. 2003, 2006a;
Stefu et al. 2005), associated with the opening Op operation, are most often used
to transform small polyhedral objects (basically, the Platonic solids) into tubular
junctions (Diudea and Nagy 2007). These transforms preserve the symmetry of the
parent map. Figure 8.1 presents a realization by Leapfrog Le operation (Nagy et al.
2011).

8.2.2 Junctions by Spanning Fullerenes

Spanning a fullerene graph can be done by deleting/braking some edges (and ver-
tices), thus getting a particular patch (eventually identical to a circulene molecule).
Figure 8.2 illustrates the case of coronene-preserving opening (left) and sumanene-
preserving opening (right) of fullerene Cgs_20—T4 (Diudea 2010b). Figure 8.3
presents three octahedral nano-junctions derived from the hypothetical fullerene
Cies that consists of eight (disjoint) sumanene patches (Szefler et al. 2012a), lying
in the corners of cube, while on cube faces having octagons, Sum_CZ_192 and
Sum_CA_216 are obtained by opening operations Op(1a) and Op(2a), respectively;
the third one, Sum_OctS,;LeX_168, results by simply deleting the alternating edges
of octagon, Op(—a). Observe that the last numbers in the name of structures
represent the number of carbon atoms. Other particular monomeric units will be
presented below.

7 %% (= b J

ﬁ—“;’ }; Qi\ A I}‘

LA= | _\ri-r

Le(T) Le(Le(T)) Op(Le(Le(T))) Le(Op(Le(Le(T))))

Fig. 8.1 Design of a tetrapodal junction by Leapfrog Le map operation
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Fig. 8.2 Opening Cg4 20-T,:
as coronene, 4[6:6¢], v =84,
e=114, fo =28, g =2 (left —
also designed by the sequence
of map operations — see

Fig. 8.1) and sumanene,
4[6:(5,6)3], v=284, e =114,
fs =12, f¢ =16, g =2 (right)
patches, respectively;
optimized structures are
shown in the bottom row

Fig. 8.3 Sumanene motif decorating octahedral nano-junctions: Sum_CZ_192 (left), Sum_CA_216
(middle), and Sum_OctS,LeX_168 (right)

The spanned cages can be used to build dendrimers or other periodic nanos-
tructures by joining with other units (the same or not) or by identifying common
substructures (see below).

Table 8.1 lists the energetics of these hypothetical nano-junctions, optimized at
the Hartree-Fock level of theory, as hydrogen-ended molecules. When compared to
the values for Cgp, the reference structure in nanoscience, one can see the spanned
fullerenes show at least (or higher) the stability of the reference. The extent of
strain, as given by POAV theory (Haddon 1987, 1990), is favorable for the opened
fullerenes (Table 8.1, last column) in comparison to that of Cgp, the structures
included in this table being real candidates to the status of real molecules.
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Table 8.1 Total energy E,,, and HOMO-LUMO gap, at Hartree-Fock HF (HF/6-31 G(d,p)) level
of theory, for some hypothetical nano-junctions and Ce reference nanostructure

Structure Ey (au) Eo/C (au/mol) HF_gap (eV) POAV/C (kcal/mol)
1 Cor T_84 —3,194.767 —38.033 7.347 1.477
2 Sum._T_84 —3,155.466 —38.028 7.562 1.685
3 Sum_CZ_192 —7,298.367 —38.012 6.044 1.049
4  Sum_CA_216 —8,206.401 —37.993 6.442 0.550
5  Sum_OctS,;LeX_168 —6,389.018 —38.030 6.637 0.821
6 Ceo —2,271.830 —37.864 7.418 8.256

8.3 Dendrimers

Dendrimers (Fig. 8.4) can be designed from monomers with tetrahedral symmetry,
either by joining the two-connected terminal vertices or by identification of appro-
priate (open) faces (Diudea 2010b). Dendrimers at 2nd generation are illustrated in
Fig. 8.5 (Diudea 2010c).

The corresponding dimers (Fig. 8.6, top) are “intercalated” ones. A possible
linear evolution of the above monomers is presented in Fig. 8.6, bottom (Diudea
2010b).

Other examples come from polybenzenes (Fig. 8.7), which are nanostructures
consisting of benzene ring as the main motif (O’Keeffe et al. 1992) of tessellation.

8.4 Crystal-Like Networks

When monomers have octahedral symmetry, they can embed in the P-type surface
in getting crystal-like networks which belong to the space group P,3m. Figure 8.8
illustrates nets showing the sumanene 6:(5,6); motif (Szefler et al. 2012a).

Other examples of crystal-like networks are given in Fig. 8.9 (Szefler and Diudea
2013): their covering consists of motifs of hexagon triples (unit C_3HexZ_104) and
heptagon triples (unit C_3HepA_104), respectively, for which the energetic data are
given in Table 8.2.

Again the open structures (i.e., nano-junctions) appear less strained than the
reference Cgp fullerene and, according to the total energy (calculated on the
optimized structures at Hartree-Fock HF and DFT levels of theory) and HOMO-
LUMO gap, are at least as stable as the reference molecule. The strain of heptagon
triple motif is one order of magnitude lower than that of hexagon triple one and two
orders of magnitude lower than that of the reference fullerene, also reflected in the
values of TE/C. In view of a possible identification among nano-materials, IR and
RAMAN spectra have been simulated (Szefler and Diudea 2013). Polybenzenes can
also be embedded in the P-type surface (Fig. 8.10).
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Fig. 8.4 Dendrimers by
monomers with coronene
(left) and sumanene (right)
motifs, at st generation

Fig. 8.6 Linear evolution of the monomers with coronene (left column) and sumanene (right
column) motifs

D-type surface can also embed a polybenzene structure (Fig. 8.11). This last net
shows the topology of D¢-diamond: a face-centered cube f.-structure, belonging
to the space group Pn3m (Szefler and Diudea 2012).

Calculations have been performed at HF/6-31 G(d, p) and B3LYP/6-311
+ G(d, p) level of theory, respectively, on Gaussian 09 software package (2009).

Stability of the monomers and the corresponding dimmers with respect to the
reference Cgp fullerene can be compared from data in Table 8.3. Note the three
types of dimers originating in BTA_48, function of the identified face/ring and
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28

Fig. 8.7 Polybenzene dendrimer (left) and its “intercalated” dimer (right)
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Fig. 8.8 P-type surface embedding of monomers in Fig. 8.3: Sum_CA_216 (left), Sum_CZ_192
(middle), and Sum_OctS,LeX_168 (right)

Fig. 8.9 Top row:
C_3HexZ_104 (v =104;

e =144; fc =36; g = 3) and
its p-type crystal-like net
(v(3,3,3) = 2,808); bottom
row: C_3HepA_104 (v = 104;
e=132; f; =24; g=3) and
its p-type crystal-like net
(junctions designed by map
operation sequences
Op14(52(C)) and Op($1(C)),
respectively)
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Table 8.2 Energies (total energy per carbon atom TE/C, in Hartree H; HOMO-LUMO gap, HL
gap, in electron volts; POAV strain energy per carbon atom S/C, kcal/mol) of the optimized
structures at HF and DFT level of theory

Molecule Carbon atoms TE/C (H) HL gap (eV) POAV/C (kcal/mol)
HF
1 C_3HexZ_104 104 —37.999 5.342 2.329
2 C_3HepA_104 104 —38.127 6.942 0.240
Ceo 60 —37.864 7.418 8.256
DFT
4 C_3HexZ_104 104 —38.244 1.658 2.352
5 C_3HepA_104 104 —38.376 1.354 0.192
6 Cego 60 —38.110 2.724 8.256

Fig. 8.10 Polybenzenes
embedded in the P-type
surface: p-BCZ_48 (top) and
p-BCA_96 (bottom) and the
corresponding units (right
column)

conformation: (BTA_48)2_84_dendrim (R),, intercalate, Table 8.3, entry 2, and
Fig. 8.7, right), (BTA_48)2_88_ f.c (Rg, Table 8.3, entry 3, and Fig. 8.11, right),
and (BTA_48)2_90_MT (R, eclipsed, Table 8.3, entry 4, and Fig. 8.12, bottom,
left) (Szefler et al. 2012b).

One can see that the strain in polybenzenes, as calculated by POAV theory, is
far less than that in Cgp, and the overall stability is at least as that of the reference
fullerene. Infrared and Raman spectra have been simulated (Szefler et al. 2012b)
in view of possible use in laboratory identifying such structures, tessellated with
the simplest benzene ring motif. The high values of HOMA index of aromaticity
(Krygowski and Ciesielski 1995, 1996), in the last column of Table 8.3, suggest
that the benzene ring geometry is not too much modified in comparison to the
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Fig. 8.11 Polybenzene
embedded in the D-type
surface: f..-BTA_48 and
its fo.-dimer (right)

Table 8.3 Total energy Eiy per atom (kcal/mol) and HOMO-LUMO gap, at Hartree-Fock HF
level of theory, strain by POAV theory and HOMA index in benzene-patched units and their
dimers and Cg reference structure, as well

No. Ei/atom HL gap POAV/C HOMA

Structure units  Ey/(au) (au) V) (kcal/mol) (R[6])
1 BTA_48 1 —1,831.484 —38.156 11.285 0.083 0.951
2 (BTA_48)2_84_dendrim 2 —3,201.679 —38.115 10.895 0.061 0.975
3 (BTA_48)2_88_f. 2 —3,355.431 —38.130 10.970 0.074 0.972
4 (BTA_48)2_.90_MT 2 —3,428.847 —38.098 10.085 0.220 0.957
5 BCZ.48 1 —1,831.097 —38.148 8.134  3.395 0.989
6 (BCZ.48)2.96 2 —3,657.417 —38.098 7.043  2.842 0.114
7 BCA96 1 —3,662.991 —38.156 10.253 0.124 0.939
8 (BCA96)2_184 2 —7,013.828 —38.119 9.805 0.180 0.936
9 Cygo 1 —2,271.830 —37.864 7.418  8.256 0.493

free benzene molecule (HOMA value = 1), while the hexagonal rings in Cgy are
much more affected (HOMA =0.493) by the presence of pentagons (see also
Cysewski and Szefler 2010). The HOMA value is even dropped in case of dimer
(BCZ_48)2.96 (Table 8.3, entry 6) because the units bound directly at the benzene
ring. The loss in pi-electron resonance is partly compensated by the loss in strain
energy, visible when compared with the BCZ_48 unit (Table 8.3, entry 5). However,
in an infinite network, the strain will drop even more (Szefler et al. 2012b), and the
geometry approaches to that of the unit-free molecule.

8.5 Quasicrystal Nanostructures

Multi-tori are designed by using “eclipsed” dimers (Diudea and Nagy 2007), as
shown in Fig. 8.12, bottom row. The dimer BMTA2_90 was included in Table 8.3
(as (BTA_48)2.90_MT, entry 4). The unit BTZ_24, due to its simplicity, can form
only the dimer BMTZ2_48, leading to multi-tori. The multi-tori bearing the benzene
patch will have B as a prefix in their name. Next, because theopening faces show
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Fig. 8.12 Left column:
BTA_48 (top) formed by
spanning the cage
Le(P4(T))-48 (by deleting the
blue bonds — middle) and its
multi-torus BMTA2_90 dimer
((BTA_48)2_90_MT in

Table 8.3, entry 4). Right
column: BTZ_24 (top)
originating in S»(T)-28 = Cyg
(the four blue points located
at the center of pentagon
triples to be deleted — middle)
and its multi-torus
BMTZ2_48 dimer

Fig. 8.13 Left column: BMTZ17.408 and its hyper-pentagon MMTZCy5_120. Right column:
BMTA34_1332 and its hyper-pentagon BMTACy5_210

either “zigzag” or “armchair” endings, “Z” or “A” will be added as a suffix to their
name. The number of repeating units and/or number of atoms will be added after
the letters.

The BMTX2 dimers, because of their “eclipsed” conformation, will form
pentagonal hyper-rings BMTXCyS5 (Fig. 8.13, bottom) in a self-assembly process.
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Fig. 8.14 Top row:
multi-torus BMTA20_1_780
(left) and its core
(—f5(Le22(Do)), right);
bottom row: multi-torus
BMTZ20-1_480 (left) and its
core (—ds(S,(Ico), right))

These can further evolve to the multi-torus BMTX17 (X = Z, Fig. 8.3, left), of which
reduced graph is just Cy7, the structure proposed by Diudea (2010d) as the seed
for the diamond Ds. By analogy to Ds, a hyper-dimer BMTX34 can be designed
(X' = A, Fig. 8.3, right). We mention that its reduced graph is Czq4, the repeating unit
of the triple periodic structure of Ds. Recall that Ds is an mt#n triple periodic 3-nodal
net, named ZSM-39 (a structure found in clathrates of type II), of point symbol net:
{5°.6}12{5%}5 and 2[5'] + [5'2.6*] tiling. It is also known as the fcc_Czq4 structure
(Blase et al. 2010; Diudea et al. 2011), because of its face-centered cubic lattice that
belongs to the space group Fd3m. Thus, we can expect a 3D network derived from
these benzene-patched units, similar to Ds.

A spherical multi-torus BMTX20 (Fig. 8.14, left column) can be constructed and
is a g =21 multi-torus, with a well-defined core: Core(BMTA20)_180 = —f5(Le2»
(Do)) while Core (BMTZ20)_120 = —ds(S>(Ico). In the above, —fs means deletion
of all pentagonal faces in the Leapfrog (2,2) transform of the dodecahedron Do, and
—ds is deletion of vertices of degree d = 5, in the transform of Icosahedron = Ico by
the septupling S, operation. Also, —d5(S»>(Ico)) = Op(Le(Ico)). Recall that g is the
genus of the surface that embeds a structural graph and accounts for the number of
simple tori of which consists that graph (Diudea and Szefler 2012).

A linear array BMTX20k, k=1,2,... with the repeating unit formed by two
units superimposing one pentagonal hyper-face (i.e., BMTXCy5), rotated to each
other by an angle of pi/5 as in the “dimer” BMTA20.2 (Fig. 8.15, top, left). Next,
the structure can evolve with a one-dimensional periodicity, as shown in BMTA20_4
(Fig. 8.15, top, right) or in the hyper-cycle BMTZCy20.5 (Fig. 8.15, bottom, left).
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Fig. 8.15 Top row: the repeat unit BMTA20-2_1350 (left) and a rodlike BMTA20_4_2490 (right);
bottom row: multi-tori BMTZCy20_5-1800 (left) and BMTZSp20_-12_3120 (twofold symmetry)

Twelve units of BMTX20 can form a spherical array (of icosahedral symmetry), as
in case of BMTZSp20.12 (Fig. 8.15, bottom, right), of which core is just BMTZ20
(a 13th unit).

Theorem 8.1 In multi-tori built up from open tetrahedral units, the genus of
structure equals the number of its units plus one, irrespective of the unit tessellation.

Demonstration comes out from construction and is illustrated on the multi-tori
BMTXCy5 (Fig. 8.13, bottom row): there are five units open to be inserted in
exactly five simple tori and one more torus that join all the above five units, thus
demonstrating the first part of the theorem (Diudea and Szefler 2012).

For the second part, we apply the Euler’s theorem (1758):

ve—e+ f=x=2(1—g) (8.6)

where v = |V(G)| is the number of vertices/atoms, e = | E(G)| is the number of
edges/bonds, and f is the number of faces of the graph/molecule. In the above, g
is the genus of the (orientable) surface S on which a molecular graph is embedded.
The genus is related to the Gaussian curvature of the surface S by means of Euler’s
characteristic y of S (Gauss-Bonnet 1853) theorem as for g =0 (case of sphere)
x > 0 (positive curvature); for g = 1 (case of torus) y = 0, while for g > 1 (surfaces
of high genera), y < 0, S will show a negative curvature. More about surfaces of
negative curvature the reader can find in Diudea and Nagy (2007).

To complete the demonstration, we will use the data in Table 8.4 providing the
values of g in several BMTX multi-tori, tessellation differing as X = A or Z.

The number of tetrahedral units BMTXI1 in the linear array of BMTX20.k
(Table 8.4, entries 3-6) is u=20k—5(k—1)=15k+5, according to the
construction mode. The term —5(k— 1) accounts for the superimposed hyper-
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Table 8.4 Euler formula calculation in multi-tori BMTX

BMTX v e fe s frot 2(l—g) g u u-formula
1 BMTACy5 210 285 35 30 65 —10 6 5 fyl6
2 BMTZCy5 120 165 20 15 35 —10 6 5 fel4
3 BMTA20_1 780 1,110 170 120 290 —40 21 20 f3l6
4 BMTZ20_.1 480 690 80 90 170 —40 21 20 fe/d
5 BMTA20.5 3,060 4,410 710 480 1,190 —160 81 80 f3/6
6 BMTZ20.5 1,920 2,790 320 390 710 —160 81 80 feld
7 BMTZCy20.5 1,800 2,625 300 375 675 —150 76 75 feld
8 BMTZ20.12 4,440 6,465 740 915 1,655 —370 186 185 f¢/4
9 BMTZSp20_12 3,120 4,590 520 690 1,210 —260 131 130 fe/4

rings, BMTXCyS5. In case of BMTZCy20.5 (Table 8.4, entry 7), the formula is
u=20k—5k=15k, k=35, the last hyper-ring unit being omitted because of the
cyclic structure. Thus, the drop in g is of 5 units for each fivefold hyper-cycle
(compare Table 8.4, entries 6 and 7).

In case of the spherical array BMTZSp20_12 (Table 8.4, entry 9), u=20k—2
[5(k—1)], k= 12. Remark the twice subtraction of the term 5(k — 1), in case of the
spherical array, which accounts for the difference in g to the linear array of k = 12
(Table 8.4, entries 8 and 9): 186 — 131 =55 =5(12—1). This drop in g, in case of the
spherical array, seems to parallel the well-known result that sphere is the minimal
surface among all known solid objects. The number u is also related to the number
of simple faces/rings as follows: u = f3/6 in case BMTA and u = fs/4 in case
BMTZ.

On the ground of Theorem 8.1, the spherical array BMTZSp20_12 seems to be
the minimum g (lower bound) while BMTZ20_k the maximum g (upper bound)
among all the studied structures (Diudea and Szefler 2012). We just demonstrated
the following:

Theorem 8.2 The genus in multi-tori shows the lower-bound value in structures of
icosahedral symmetry, while the upper-bound value is shown in linear structures
provided the same number of (open) tetrahedral units.

Note these icosahedral multi-tori represent quasicrystal nanostructures; qua-
sicrystals have been Nobel prized in 2011.

Carbon atom orbit analysis in BMTZSp20_12 revealed a 6.8> massive class
(2,580 atoms, about 83 %), located inside, of the same signature as in polybenzene,
and two smaller classes, of signature 6.8 (360 atoms), and 6 (180 atoms), disposed
outside of the spherical structure. Compare with % of 6.8% in the linear array
BMTZ20_k (about 74 % at k = 12) and in BMTA20_k (about 26 %, at k = 9). Know-
ing the (calculated by O’Keeffe et al. 1992) stability of polybenzene, consisting of
only 6.82 atoms (in the infinite triple periodic net), the orbit analysis provides a
“topological” proof of stability of the spherical array BMTZSp20-12 (Diudea and
Szefler 2012).
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8.6 Omega Polynomial in Polybenzenes

In a connected graph G(V, E), with the vertex set V(G) and edge set E(G), two
edges e =uv and f =xy of G are called codistant e co f if they obey the relation
(John et al. 2007)

dv,x)=dv,y)+1=du,x)+1=d(u,y) (8.7)

which is reflexive, that is, e co e holds for any edge e of G, and symmetric, if e co f,
then f co e. In general, relation co is not transitive; if “co” is also transitive, thus it
is an equivalence relation, then G is called a co-graph, and the set of edges C(e) :=
{f € E(G); f co e} is called an orthogonal cut oc of G, E(G) being the union
of disjoint orthogonal cuts: E(G) =CiUC, U...UCy, C;NC; =0,i # j.
Klavzar (2008) has shown that relation co is a theta Djokovi¢ (1973)-Winkler
(1984) relation.

We say that edges e and f of a plane graph G are in relation opposite, e op f, if they
are opposite edges of an inner face of G. Note that the relation co is defined in the
whole graph while op is defined only in faces. Using the relation op, we can partition
the edge set of G into opposite edge strips, ops. An ops is a quasi-orthogonal cut
qoc, since ops is not transitive.

Let G be a connected graph and Sy, S, ..., Sk be the ops strips of G. Then,
the ops strips form a partition of E(G). The length of ops is taken as maximum. It
depends on the size of the maximum-fold face/ring Fp.x/Rmax considered so that
any result on Omega polynomial will have this specification.

Denote by m(G,s) the number of ops of length s and define the Omega polynomial
as (Diudea 2006; Diudea et al. 2006b, 2008, 2009; Ashrafi et al. 2008; Diudea and
Klavzar 2010; Vizitiu et al. 2007)

QG.x) =) m(G.s) x* (8.8)

Its first derivative (in x = 1) equals the number of edges in the graph:

QG.1)=) m(G.s) s =e=|EG) (8.9)

On Omega polynomial, the Cluj-Ilmenau index (John et al. 2007), CI = CI(G) was
defined:

CI(G) = {[Q/(G, 1)]2 - [Q'(G,1) + Q"(G, )]} (8.10)
Formulas to calculate Omega polynomial and CI index in three infinite networks,

fec-BTA_48 (Fig. 8.11), p-BCZ.48 (Fig. 8.10, top), and p-BCA_96 (Fig. 8.10,
bottom), are listed in Table 8.5. Formulas were derived from the numerical data
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Table 8.5 Omega polynomial and net parameters in polybenzene networks

Net Omega polynomial
BTA 48  Rpu(8)
k—1
Q(BTA48) = 18k2X> + 6k(k — 1) X% + 6k X** + > 12k X*
s=1
Q'(1) = 12k2(3k + 2) = |E(G)| = edges
CI(G) = 8k2(162k* + 216k> + 61k> + 3k — 13)
atoms = 24k%(k + 1) = |V(G)
R = 4k3; Ry = 6k> — 3k + 3k
Rinax (12)
k—1
Q(BTA48) = 6XKCk+D 4 3x W2 k+D 57 1o x25Ck+D
s=1
Q'(1) = 12k2(3k + 2) = |E(G)| = edges
CI(G) = 8k(6k? + 2k — 1)(26k> + 24k> + 6k + 1)
R]z = 4k%
Examples R (8)
k =5; Q(G) = 450X% + 60X* + 60X® + 120X + 60X '> + 60X ' 4+ 30X%;
CI = 25,955,400; atoms = 3,600; edges = 5,100; R¢ = 500; Rg = 690
k=6; Q(G) = 648X + 72X* + 72X + 252X "2 + 72X'° + 72X% 4 36X,
CI = 74,536,992; atoms = 6,048; edges = 8,640; R, = 864; Rg= 1,206
Rinax (12)
k=5; 12X2 4+ 12X* + 12X + 12X8 + 6x110 4 35600,
CI = 246,831,60; R, = 500
k=65 12X°0 +12X7 + 12X 4+ 12X "% + 12X "0 4 6X1°0 4 3x19%;
CI = 71,009,232; R;, = 864
BCZA48  Rmax(8)
k—1
Q(BCZ.48) = 12kX + 12k(k + 1)X2 4 3k(k — 1)(2k — )X* + Y 24k X OF4)
s=1
Q'(1) = 12k?(6k — 1) = |E(G)| = edges
CI(G) = 4k(1,296k> — 432k* + 4k3 — 24k? + 32k — 3)
atoms = 48k> = |V(G)|
Re = (2k)*; Rg = 12k%(k — 1)
Rinax(12)
Q(BCZ.48) = (6k — 3)X@)* 4 6x 0’
Q'(1) = 12k?(6k — 1) = |E(G)| = edges
CI(G) = 96k* (50k> — 19k + 2)
Ryy = 6k (2k* — 2k + 1)
Examples R (8)

k=15; 60X + 360X> + 540X* + 120X°® + 120X'0 + 120X'* + 120X'8
CI=175,601,140; atoms = 6,000; edges = 8,700; Rg = 1,000; Rg = 1,200.
k=6; 72X + 504X% + 990X* + 144X° + 144X'0 + 144%™ + 144X'8 + 144X7?
CI =1228,432,312; atoms = 10,368; edges = 15,120; Rg = 1,728; Rg = 2,160.
Rimnax(12)

k=75;27X'90 + 6109 CT = 69,420,000; R;» = 1,230.

k=6;33X"% + 6X'7%8; C1 =210,014,208; R, = 2,196.

(continued)
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Table 8.5 (continued)

Net Omega polynomial

BCA96  Rpyux(8)
Q(BCA_96) =36k X2 + 12k(k — )X> 4+ 3(k — )(k*> — k + 8)X*

k—3
+24(k — DX 4+ 122X % + 3 " 24(k — 5 —2)(X'0F6 4 x4
s=0
Q'(1) = 12k%(% + 1) = |E(G)| = edges
CI(G) = 12k(972k5 + 216k* — 16k> — 4k2 + 3k + 1)
atoms = 24k>(3k + 1) = |V(G)|
R¢ = 4k(5k —3), Rg = 12]{3; Rp = 6k(k — 1)2
Examples Rp.x(8)
k=135; Q(G) = 180X2 + 240X> + 336X* + 96X8 + 72X'0 4 72X'4 4 48x10
+ 348X20+4 24X?% + 24X2°
CI = 190,224,960; atoms = 9,600; edges = 13,800; Rs = 2,200; Rg = 1,500.
k=6; Q(G) =216X> + 360X> + 570X* + 120X8 4+ 96X'° + 96X'* 4 72X16
+ 72X20 4 48X%2 +432X%* + 48X%0 + 24X78 4 24%3?
CI =564,093,144; atoms = 16,416; edges = 23,760; Rs = 3,888; Ry = 2,592

calculated on cuboids of (k, k, k) dimensions by the Nano Studio software (Nagy
and Diudea 2009). Omega polynomial was calculated at Ryax(8) and Rpmx(12),
respectively; examples are given in view of an easy verification of the general
formulas. Also, formulas for the number of atoms, edges, and rings (R¢, Rg and
R)») are included in this table (Szefler and Diudea 2012).

Formulas to calculate Omega polynomial and CI index in the two infinite
networks BMTA20k and BMTZ20k, designed on the ground of BMTA1_48 and
BMTZ1.24 units, are presented in Tables 8.6 and 8.7. Formulas were derived
from the numerical data calculated on rods consisting of k units BMTX20. Omega
polynomial was calculated at Ry,.x = Rg. Formulas for the number of atoms, edges,
and rings (Rg, Rg, and R;s, the last one being the simple ring of the hyper-ring
BMTACYS) are included in Tables 8.6 and 8.7. Numerical examples are also given
(Diudea and Szefler 2012).

Omega polynomial description can be looked as an alternative to the crystallo-
graphic description, helping in understanding the topology of these networks.

8.7 Conclusions

Spanning fullerenes can be obtained by deleting some atoms or bonds from the
graph of closed fullerenes, thus resulting in open structures which can further join
to atoms of the same or different repeating units in construction of crystal- or
quasicrystal-like networks. A variety of spanning fullerenes, designed either by cage
opening or by sequences of map operations, has been used to build nano-dendrimers
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Table 8.6 Formulas for Omega polynomial and net parameters in linear periodic BMTA20_k
network

BMTA20k  Rpax(8);
Q(BMTA20_k _Rg) =10(k+2) X3+ 5(k — ) X*+(11k+1) X+ 20(k+3) X ®

F+10(k—D) X O+ 15k — 1) X 24+ (11k+ 1) X P+ 10X 2CF+D
Q/(1) = 825k + 285 = |E(G)| = edges;
CI(G) = 15(45,351k? + 30,715k + 5,332);
atoms = 10(57k 4 21) = |V(G)|;
Re =5Q7k +7); Rs =303k +1); Ris =11k +1
ugg = 20k — 5(k — 1) = 5(3k + 1) = Rg/6;
g=1+uss

Examples k=135;
CI=19,390,230; atoms = 3,060; edges = 4,410; Rg = 710; Ry = 480; R;5 = 56;

U4sg = 80; 8= 81.

k=06;

CI=127,333,870; atoms = 3,630; edges = 5,235; Rg = 845; Ry = 570; R|5 = 67,
U4sg = 95; 8= 96.

Table 8.7 Formulas for Omega polynomial and net parameters in linear periodic BMTZ20_k
network

BMTZ20k  Rpax(8)
Q(BMTZ20_k _Rg) =10(k + 2)X> + 30k X> + (11k + 1)X° + 10(k + 5)X°©

+ 10tk — )X® +10(k — )X '° + 6k X?°
Q’(1) = 525k + 165 = |E(G)| = edges
CI(G) = 5(55, 125k* + 33,653k + 5,392)
atoms = 1203k + 1) = |V(G)| = 24up4 = 6Rg
Rs =203k + 1) = |V(G)|/6; Rg=15(5k +1); R;s= 11k +1
g = 20k —5(k — 1) = 53k + 1) = R¢/4;
g=1+4uxy

Examples k=5;70X* + 150X> 4+ 56X° + 100X° + 40X3 + 40X'* + 30X2°
CI=17,758,910; atoms = 1,920; edges = 2,790; R¢ = 320; Rg = 390; R;5 = 56;
Upg = 80; 8= 81
k=6; 80X> + 180X° + 67X° + 110X° + 50X® 4 50X'° + 36X2°
CI =10,959,050; atoms = 2,280; edges = 3,315; R = 380; Ry = 465; R;5 = 67,
Upg = 95; 8= 96

and crystal- and quasicrystal-like structures. Energetics of some open fullerenes
has been calculated on optimized structures at Hartree-Fock and/or DFT level of
theory. All of the discussed open fullerenes have shown less strained structures in
comparison to Cg reference fullerene, while the overall stability, as suggested by the
total energy and HOMO-LUMO gap, is comparable or even better to the reference
fullerene, thus being candidates to the status of real molecules. Omega polynomial
was used to describe the topology of some periodic networks, designed by using
benzene as the simplest patch.
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