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A Pariser–Parr–Pople Model Hamiltonian-Based
Approach to the Electronic Structure and
Optical Properties of Graphene Nanostructures
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Abstract The electronic structure of graphene and related nanostructures such
as graphene nanoribbons and quantum dots is frequently described within the �-
electron approaches such as the tight-binding model, which completely ignores the
electron–electron interactions, or the Hubbard model which takes into account only
the on-site part. In theoretical chemistry, Pariser–Parr–Pople (PPP) model Hamilto-
nian, which takes into account the long-range part of the inter-electron Coulomb
interaction, has been employed extensively, and with considerable success, to
study the electronic structure and optical properties of �-conjugated molecules
and polymers. Therefore, with the aim of exploring the influence of long-range
Coulomb interactions on the electronic structure and optical properties of graphene
nanostructures, we have recently developed a numerical approach based upon the
PPP model Hamiltonian and used it to study their band structure, magnetic order,
and the linear optical absorption spectra. In this chapter, we describe our approach
in detail and present its numerous applications ranging from finite systems such as
fullerene C60 and graphene quantum dots to infinitely long quasi-one-dimensional
graphene nanoribbons. Our approach is computationally inexpensive and yields
results in good agreement with the large-scale first-principles calculations reported
by other authors. Furthermore, some of the novel predictions resulting from our
approach are also discussed.
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6.1 Introduction

The electronic structure and optical properties of �-conjugated molecules have
attracted both physicists and chemists alike for a long time (Barford 2005; Barieswyl
et al. 1992; Salem 1966), because of their potential applications in optoelectronic
devices such as light-emitting diodes, field-effect transistors, lasers, and solar cells
etc. (Malliaras and Friend 2005). This field received a further boost with the
synthesis of molecules like C60 (Kroto et al. 1985) and other fullerenes (Andreoni
2000), as also carbon nanotubes (Dresselhaus et al. 2001; Iijima 1991), all of
which have tremendous potential for device applications. However, ever since
the synthesis of graphene (Novoselov et al. 2004) and its nanostructures such as
graphene nanoribbons, and nanodisks, etc. (Geim and Novoselov 2007), interest in
the physics of �-electron systems has grown many folds (Neto et al. 2009). These
systems exhibit exotic transport and electronic properties, leading to the possibility
that in future electronic devices, graphene will be able to replace silicon as the
material of first choice (Geim and Novoselov 2007; Neto et al. 2009; Palacios et al.
2010).

For a theoretician, several possible approaches are available which can describe
the electronic structure of graphene and related nanostructures, as well as other �-
conjugated systems: (a) fully first-principles approaches based upon the mean-field
methods such as the density-functional theory (DFT) (Barone et al. 2006; Prezzi
et al. 2008; Son et al. 2006a; Yang et al. 2007a,b, 2008) or the Hartree-Fock (HF)
method (Kertesz 1982; Pisani and Dovesi 1980; Shukla et al. 1996, 1999, 1998),
(b) methods based upon effective �-electron models such as the one-particle tight-
binding (TB) theory (Ezawa 2006; Fujita et al. 1996; Nakada et al. 1996) and its
electron-correlated extensions such as the Hubbard (Jung and MacDonald 2009;
Voronov 2007; Yazyev 2008) or the extended Hubbard model (Yamashiro et al.
2003), and (c) Dirac-equation-based massless Fermion approach (Neto et al. 2009).
The first-principles methods are normally computationally quite expensive because
they treat all electrons (except the core electrons) explicitly and therefore require the
use of large basis sets to provide a reasonable description of the electronic structure
of such systems. In case of graphene nanoribbons (GNRs) of large widths, large
graphene nanoflakes, and also polymers with big unit cells, the number of degrees
of freedom involved in the problem may impose severe computational constraints
on the problems which can be tackled.

The Dirac-equation-based massless Fermion approach to the graphene and its
nanostructures is quite popular among theoreticians at present (Neto et al. 2009). It
is derived from the TB model for graphene under the effective mass approximation
and is based upon the linearity of the band structure with respect to the k vector in
the vicinity of the so-called Dirac points (Neto et al. 2009). Therefore, its validity is
restricted to a small region of the Brillouin zone (BZ) near the Dirac points, and it
is far less justified to use it for the reduced-dimensional graphene structures such as
the nanoflakes and the nanoribbons.



6 A Pariser–Parr–Pople Model Hamiltonian Based Approach. . . 201

Compared to the first-principles approaches, effective �-electron models offer an
attractive alternative in that they explicitly deal only with the � electrons, thereby
reducing the number of electrons to be taken into account significantly, and, thus
allowing one to simulate systems of much larger sizes. In such models, the effect
of �-electrons is included in an implicit manner in terms of various parameters of
the Hamiltonian such as the hopping matrix elements. Furthermore, they can be
used both for finite and infinite systems. In particular, for infinite periodic systems,
their range of validity extends over the entire BZ, unlike the Dirac-equation-based
approaches, which are applicable only in the neighborhood of the Dirac points.
The disadvantage of such approaches is their semiempirical nature, implying the
presence of parameters in the model which are determined by means other than the
first principles. However, when materials with a large number of atoms need to be
studied, first-principles approaches are computationally often not feasible. For such
systems model Hamiltonians are sometimes the only possible options. The fact that
such models are extremely popular in physics even for smaller systems, testifies to
the insights they offer into the electronic structure of such materials, irrespective of
their size.

Among the semiempirical methods employed most commonly in the studies of
�-conjugated systems, the TB model (called the Hückel model in the chemistry
literature) is conceptually the simplest, but it does not include the effects of
electron–electron (e–e) interactions. One can correct that deficiency by employing
the Hubbard model or its extended versions which include the on-site and the
nearest-neighbor Coulomb interactions, respectively. However, it is well known
in the chemistry literature that in �-electron systems such as aromatic molecules
and conjugated polymers, the long-range part of the e–e interactions plays a very
important role in determining their electronic structure (Barford 2005; Barieswyl
et al. 1992; Salem 1966). In the 1950s, Pariser, Parr, and Pople proposed a
conceptually simple model which incorporates the essential physics of interacting
�-electron systems in an elegant manner (Pariser and Parr 1953) and has come to
be known as the PPP model since then. This model can also be seen as an extension
of the Hubbard model in that, in addition to the on-site repulsion (Hubbard U ),
long range e–e interactions are taken into account by means of suitable Coulomb
parameters. Unlike the extended Hubbard models the PPP model imposes no
restrictions on the range of Coulomb interactions, thereby leading to the inclusion
of interactions between all the sites, irrespective of the distance between them.
Because the PPP model is also a �-electron model, the number of degrees of
freedom remains the same as in the Hubbard model and leads to no significant
increase in the computational effort in spite of inclusion of the long-range Coulomb
interactions. Because of the lack of large-scale computational facilities during the
1950s, such an approach was unavoidable even for relatively small molecules such
as benzene. However, the remarkable fact is that in spite of so many approximations
involved, PPP-model-based calculations were extremely successful in describing the
electronic structure, in general, and the optical properties of �-conjugated systems,
in particular (Salem 1966).
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During last several years, we, along with collaborators elsewhere, have exten-
sively used a PPP-model-based approach, to study the electronic structure and
optical properties of conjugated molecules and oligomers (Ghosh et al. 2000;
Shukla 2002, 2004a,b; Shukla et al. 2001, 2003, 2004; Shukla and Mazumdar
1999; Sony and Shukla 2005a,b,c, 2007, 2009). The underlying theory, along with
the computational approach and the associated computer program developed in
our group for dealing with the finite �-conjugated systems, has been published
recently (Sony and Shukla 2010). The approach developed therein can also be
applied to study graphene fragments, in addition to the aromatic hydrocarbons
and conjugated polymers (Sony and Shukla 2010). We note that numerous other
groups (Barford 2005; Barieswyl et al. 1992; Bursill and Barford 2009; Jug 1990;
Psiachos and Mazumdar 2009; Raghu et al. 2002; Salem 1966; Soos et al. 1993;
Ye et al. 2003) have also used the PPP model to study such systems. Furthermore,
very recently we extended the PPP model approach also to study infinitely long
one-dimensional (1D) periodic �-conjugated systems, with the aim of studying
the electronic structure and the optical properties of GNRs (Gundra and Shukla
2011a,b). The Fortran 90 computer program which we developed for the purpose,
along with the associated theory, has also been published recently (Gundra and
Shukla 2012).

In this work, we review our PPP-model-based electronic-structure methodology
applied to both finite and infinite �-electron systems, with particular emphasis on
systems such as C60, graphene nanodisks, and GNRs. For the finite systems, we
apply the methodology both at the mean-field HF level and at the configuration-
interaction (CI) level, including the influence of electron correlation effects, to study
the electronic structure and optical properties of buckminster fullerene and graphene
nanodisks. As far as infinite 1D systems are concerned, we study the band structure
and optical properties of various GNRs and carbon nanotubes using our mean-field
restricted HF (RHF) and the unrestricted HF (UHF) methodology. In particular,
we probe the edge magnetism, electric-field-driven half-metallicity, linear optical
absorption, and electro-absorption of various GNRs.

The remainder of this chapter is organized as follows. In Sect. 6.2 we briefly
review the theory associated with the PPP model Hamiltonian and present the RHF
equations for both the finite and 1D periodic systems. We present and discuss the
results of various calculations on various finite and infinite systems in Sect. 6.3.
Finally, in Sect. 6.4, we present our conclusions, as well as discuss possible future
directions.

6.2 Theory

In this section, we briefly discuss the PPP model Hamiltonian and its HF implemen-
tations for both the finite and the periodic systems.
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6.2.1 Pariser–Parr–Pople Hamiltonian

The underlying assumption in the PPP model (Pariser and Parr 1953) is that the
electronic structure and optical properties of �-conjugated systems such as planar
hydrocarbons can, to a very good approximation, be described strictly in terms of
the dynamics of its � electrons. In other words, the � (and the core) electrons can be
assumed to be inert as far as the low-lying excitations of such systems are concerned.
The reason behind the success of the �–� separation implicit in the PPP model is
that the energies of the � electrons are so far away from the Fermi level that they are
unaffected when these systems are exposed to external perturbations such as light.
Of course, the influence of the core and � electrons is incorporated implicitly in the
parameters of the effective Hamiltonian. It is further assumed that (a) each carbon
atom of the system contributes one � electron, represented by a pz orbital localized
on that atom (assuming that the system lies in the xy plane), and (b) the pz orbitals
form an orthonormal basis set consistent with the zero-differential overlap (ZDO)
approximation developed by Parr (1952). Thus, the PPP model Hamiltonian can be
expressed in the second-quantized form as

HPPP D
X

i;�
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�
i� ci� �

X

i;j;�

tij .c
�
i� cj� C c

�
j�ci� /
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Vij .ni � 1/.nj � 1/ (6.1)

where �i represents the site energy associated with the i th carbon atom, c�i� creates
an electron of spin � on the pz orbital of atom i , ni� D c

�
i� ci� is the number

of electrons with the spin � , and ni D P
� ni� is the total number of electrons

on atom i . The parameters U and Vij are the on-site and long-range Coulomb
interactions, respectively, while tij is the one-electron hopping matrix element. On
setting Vij D 0 (withU ¤ 0), the Hamiltonian reduces to the Hubbard model, while
on setting both U D 0 and Vij D 0, the TB model is obtained. Choosing for the
long-range Vij , the form

Vij D U
�
1C

�
Rij
r0

�2�1=2 (6.2)

gives the Ohno variant (Ohno 1964) of the PPP model, whereas taking

Vij D Uh
1C

�
Rij
r0

�i (6.3)

gives the Mataga–Nishimoto parametrization (Mataga and Nishimoto 1957). In the
exponential version (Schulten et al. 1975), Vij takes the form
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Vij D U exp

�
�Rij
r0

�
(6.4)

In Eqs. (6.2), (6.3), and (6.4), Rij D jri � rj j is the distance between sites i and j
in Å, while r0 is another parameter in the same units.

In this work, we report calculations based upon the Ohno parametrization of the
PPP model mentioned above (cf. Eq. 6.2). Moreover, to account for the interchain
screening effects, we use a slightly modified form introduced by Chandross and
Mazumdar (1997),

Vij D U=�ij .1C 0:6117R2ij /
1=2, (6.5)

where �ij depicts the dielectric constant of the system which can simulate the
effects of screening and Rij is defined above. In various calculations performed on
phenylene-based conjugated polymers including PDPAs (Ghosh et al. 2000; Shukla
2004a,b; Shukla et al. 2001, 2003, 2004; Shukla and Mazumdar 1999; Sony and
Shukla 2005a), it was noticed that “screened parameters” with U D 8:0 eV and
�i i D 1:0, and �ij D 2:0, otherwise, proposed by Chandross and Mazumdar (1997),
lead to much better agreement with the experiments, as compared to the “standard
parameters” with U D 11:13 eV and �i;j D 1:0, proposed originally by Ohno
(1964). Most of the calculations in this work will be based upon these two sets of
parameters, unless otherwise specified. In our computer programs implementing the
PPP model at the HF level for the finite (Sony and Shukla 2010) and 1D periodic
systems (Gundra and Shukla 2012), we have provided the users with the freedom
to choose these “standard,” “screened” or any other user-defined parameters for the
Coulomb interactions.

In order to calculate static dielectric polarizabilities for finite systems, or the
electronic structure of 1D periodic systems such as the GNRs under the gated
configurations, one can solve the HF equations in the presence of an external static
electric field. Thus, to deal with those situations, we simply modify Eq. (6.1) under
the electric dipole approximation by introducing the corresponding term containing
the uniform electric field E. The overall Hamiltonian of the system is then given by

H efield
PPP D HPPP � �:E D HPPP C jejE � r ; (6.6)

where HPPP is the unperturbed Hamiltonian (cf. Eq. 6.1) which describes the
system in the absence of the external electric field, e represents the electronic charge,
� D �er, is the dipole operator, and r is the position operator.

For finite systems, we can easily go beyond the mean-field approach and
perform CI on the systems concerned. For the purpose, using the Hartree-Fock
molecular orbitals (MOs), one first transforms the PPP model Hamiltonian from
the site representation of Eq. (6.1) to the MO representation, and subsequently CI
calculations of various levels are carried out by performing virtual excitations from
the occupied HF MOs to the unoccupied (virtual) MOs. If a single electron is excited
from the occupied to the unoccupied orbitals, the method is called singles-CI (SCI)
method; if two electrons are excited in this way, it is called the singles-doubles-CI
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(SDCI) method; and so forth. When up to two electrons are virtually excited
with respect to multiple reference configurations, the approach is called the multi-
reference SDCI (MRSDCI) method. The MRSDCI approach is quite powerful
when it comes to dealing with systems with strong electron correlations, as well
as in obtaining accurate representation of the excited states. In our PPP-model-
based calculations of the electronic structure and optical properties of conjugated
polymers, we have made extensive use of the MRSDCI approach (Ghosh et al. 2000;
Shukla 2002, 2004a; Shukla et al. 2001, 2003, 2004; Shukla and Mazumdar 1999;
Sony and Shukla 2005a,b,c, 2007, 2009).

Going beyond the HF approach for periodic infinite systems is more complicated,
and in future, we plan to implement the approaches aimed at achieving that goal.

6.2.2 Hartree-Fock Equations

For the sake of completeness, we present the RHF equations corresponding to
the PPP model, first for the finite systems and then for infinite periodic systems.
Details for the corresponding UHF equations can be found in our earlier publications
(Gundra and Shukla 2012; Sony and Shukla 2010).

6.2.2.1 Finite Systems

The RHF approach is applicable when the system is a closed-shell one, with an
even number of � electrons, so that each molecular orbital (MO) is doubly occupied
with an up- and a down-spin electron. We solve the RHF equations using the linear
combination of atomic orbitals (LCAO) approach, in which each MO is expressed
as a linear combination of a finite-basis set

 � D
X

i

Ci��i ; (6.7)

where  � represents the �th MO of the system, �i ’s represent the pz-orbitals
localized on various carbon atoms, and the determination of the unknown linear
coefficients Ci� amounts to the solution of the RHF equations. As per the ZDO
approximation (Parr 1952), atomic orbitals, �i ’s, are assumed to form an orthonor-
mal basis set. Using the conjecture of Eq. (6.7) in conjunction with the Hamiltonian
above, one obtains the RHF equations in the matrix form

X

j

.Fij � "�/Cj� D 0; (6.8)

where "� is the RHF eigenvalue of the �th MO; Fij is the Fock matrix defined by
the equations
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Fij D tij � 1

2
Pij Vij ; .i ¤ j / (6.9)
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where �i , tij and Vij are defined above (cf. Eq. 6.1); and Pij is the density matrix
element, defined as

Pij D 2

noccX

�D1
C �
i�Cj�; (6.11)

where nocc D Nel=2 denotes the number of occupied orbitals for a system in
which the number of � electrons is Nel. Once the Fock matrix is constructed, one
diagonalizes it to obtain a new set of orbitals and density matrix, and the process is
repeated until self-consistency is achieved.

6.2.2.2 Periodic Systems

The RHF method is applicable to periodic systems with an even number of electrons
per unit cell, so that each band is doubly occupied. In principle, the RHF theory
for periodic systems is identical to that for finite systems, except for the additional
complications due to the Bloch nature of the orbitals. Next, we briefly review the
RHF theory for 1D periodic systems when the PPP model is utilized. The�th doubly
occupied Bloch orbital of the system, corresponding to the crystal momentum k, is
expressed as a linear combination of m basis functions per unit cell,

 �.k/ D
mX

iD1
Ci�.k/�i .k/; (6.12)

where Ci�.k/’s represent the linear expansion coefficients, to be determined at a set
of k-points in the 1D BZ, and the ith Bloch function �i.k/ is given by

�i.k/ D 1p
N

X

l

eikRl �i .r �Rl/; (6.13)

whereN ! 1 is the total number of unit cells in the system and �i .r�Rl/ is the ith
atomic orbital (AO) (pz orbital mentioned in Sect. 6.2.1) located in the l th unit cell
defined by the lattice vector Rl . It is easy to verify that the Bloch basis functions
�i .k/ will form an orthonormal set owing to the orthonormality of the pz basis
functions �i.r �Rl/, leading to the simplified RHF equations in the matrix form

F.k/C�.k/ D "�.k/C�.k/; (6.14)
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where, for a given k value, F.k/ represents the Fock matrix, C�.k/ represents the
corresponding Ci�.k/ coefficients, arranged in the form of a column vector, and
"�.k) denotes the band eigenvalue. The Fock operator is given by

F.k/ D h.k/C .J.k/ � 1

2
K.k// (6.15)

above h.k/, J.k/, andK.k/ are obtained by Fourier transforming the one-electron,
direct, and exchange integrals corresponding to the PPP Hamiltonian (cf. Eq. 6.1),
using the general formula

Oij .k/ D
1X

lD�1
eikRlOij .Rl/; (6.16)

where Oij .Rl/ denotes the matrix elements of a general real-space one-electron
operatorO . In particular, the real-space versions of the Coulomb and the exchange
integrals Jij .Rl / and Kij .Rl / for the PPP model are given by

Jij .Rl / D
mX

pD1
Vi.o/k.Rl/Dpp.o/ıij ; (6.17)

and
Kij .Rl / D Vi.o/j.Rl /Dij .Rl/; (6.18)

where Vi.o/j.Rl / denotes the long-range part of the Coulomb interaction of the PPP
Hamiltonian assuming that the basis function i is located in the reference unit
cell, while j is located in the unit cell labeled by Rl . Therefore, Vi.o/j.Rl / can be
computed using any of the Coulomb parametrization described in Sect. 6.2.1, and
the density matrix elementsDij .Rl/ are given by

Dij .Rl/ D 2

	

Z noccX

�D1
C �
i�.k/Cj�.k/e

ikRl dk; (6.19)

where the integral over k is performed over the 1D BZ of length	 and nocc denotes
the number of occupied Bloch orbitals per unit cell. The total energy per unit cell
of a given system is computed using the real-space expression

Ecel l D
X

l

X

i;j

Dij .Rl/
n
hij .Rl/C Jij .Rl/ � 1

2
Kij .Rl /

o
: (6.20)

The RHF equations of the system, leading to the band structure ("�.k/) and the
corresponding Bloch orbitals, can be solved by iterative diagonalization technique
applied to Eq. (6.14) at a set of k-points, until the total energy per cell of the system
(cf. Eq. 6.20) converges. We have recently numerically implemented the approach
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outlined here to solve both the RHF and the UHF equations for 1D periodic systems,
within the PPP model (Gundra and Shukla 2012). In our program (Gundra and
Shukla 2012), during the self-consistent HF iterations, the integration over the BZ is
performed using the Gauss-Legendre quadrature technique as suggested by André
et al. (1984), with the additional flexibility that the number of points used for the
quadrature can be chosen by the user.

6.3 Applications

In this section, we demonstrate our approach by applying it first to the finite systems
and next to 1D periodic infinite systems.

6.3.1 Finite Systems

As far as finite systems are concerned, in our previous papers, we have applied our
PPP-model-based approach to study the electronic structure and the optical proper-
ties of the oligomers of a number of conjugated polymers such as poly(di)phenyl-
polyacetylene (PDPA) (Ghosh et al. 2000; Shukla 2004b; Shukla et al. 2001;
Shukla and Mazumdar 1999; Sony and Shukla 2005a,b), poly-phenylene-vinylene
(PPV) (Shukla 2002; Shukla et al. 2003, 2004), and polyacenes (Sony and Shukla
2005c, 2007, 2009). In what follows, we demonstrate our approach by applying it
to study the optical properties of two systems: (a) fullerene C60 and (b) graphene
nanodisks.

6.3.1.1 Optical Properties of Fullerene C60

Because of its curved geometry, strictly speaking, fullerene C60 is not a �-electron
system. Nevertheless, we can treat it as an approximate �-electron system given
that each carbon atom possesses an electron which can be called a � electron in a
local sense, described by a p orbital directed perpendicular to the fullerene surface
at that atom. Because of that reason, several authors have used the PPP model,
and the related Hubbard and the extended Hubbard models, to study the electronic
structure, dielectric response, and optical properties of C60, both at the SCF and the
CI levels (Harigaya and Abe 1994; Kim and Su 1994; László and Udvardi 1987,
1989; Ruiz et al. 2001, 1998). Next, we perform SCI calculations, within the PPP
model, to calculate the linear optical absorption spectrum of C60. We also calculate
the energy of the lowest triplet excited state using the same approach and compare
our results to the experiments wherever possible.

As illustrated in Fig. 6.1, we consider the soccer ball configuration of C60,
corresponding to the point group Ih, with hexagons and pentagons on its surface.
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Fig. 6.1 Soccer ball structure
of C60 considered in these
calculations

The nearest-neighbor C–C distances in C60 can be classified as “single bonds” and
“double bonds,” with the single bonds being the sides shared between a pentagon
and a hexagon, while the double bonds are those shared between two hexagons.
In these calculations we took the double bond length to be 1.39 Å, and the single
bond length as 1.45 Å, as obtained by Greer using an ab initio density-functional
theory-based approach (Greer 2000). In these calculations, we included only the
nearest-neighbor hoppings, computed using the relation tij D t0 expŒ�ˇ. rij

a
�

1/
 (Kim and Su 1994), with t0 D �2:4 eV, ˇ D 3:6, a D 1:40 Å, and rij being
the distance between sites i and j . This yields the values of the hopping matrix
elements tD D �2:462 eV and tS D �2:111 eV, for the double bond and the
single bond, respectively. Using these hopping matrix elements and bond lengths,
coupled with the Ohno parametrization of the Coulomb matrix elements using both
the standard and the screened parameters, we first performed the RHF calculations
on C60 to obtain its MOs, which were subsequently used to perform the correlated
SCI calculations on the system, which provides us with a representation of not
just the ground state but also its various excited states. These SCI level excited
states for the spin-singlet states were used to compute the linear optical absorption
spectrum of C60, employing the electric-dipole approximation, and the Lorentzian
line shapes.

Before discussing the optical absorption spectrum of C60, we briefly discuss its
electronic structure. The highest occupied molecular orbital (HOMO) of C60 is five-
fold degenerate and belongs to the irreducible representation (irrep) hu of the point
group Ih. The lowest unoccupied molecular orbital (LUMO), on the other hand, is
threefold degenerate and belongs to the irrep t1u. Because the HOMO and LUMO
have the same symmetry under the inversion operator, electric dipole transitions
are forbidden between them, and no absorption takes place at the HUMO-LUMO
gap. We present our PPP-model-based SCI optical absorption spectrum in Fig. 6.2,
computed using both the standard and the screened Coulomb parameters discussed
earlier in Sect. 6.2.1. From the plots, it is obvious that quantitatively speaking the
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Fig. 6.2 Optical absorption spectra of C60, computed using the SCI approach, within the PPP
model employing the screened parameters (solid line) and the standard parameters (dashed line).
A Lorentzian line shape, along with a line width of 0.1 eV, was used to plot the spectra

standard-parameter-based spectrum is substantially blue-shifted compared to the
screened parameter spectrum. Furthermore, there are some qualitative difference
also between the two calculations in that the relative intensities of the first two peaks
are just reverse of each other. When compared to the optical absorption experiments
on C60 (Ajie et al. 1990; Gasyna et al. 1991; Leach et al. 1992; Lee et al. 1992; Ren
et al. 1991), our screened parameter-based results are in much better agreement
with it, as compared to the standard parameter ones. Therefore, henceforth, we
restrict our discussion only to our screened parameter spectrum which exhibits three
prominent absorption peaks labeled I, II, and III in Fig. 6.2. In its ground state, C60
is a closed-shell system in the 1Ag state; therefore, as per selection rules, it can make
an electric-dipole transition only to excited states belonging to 1T1u irrep. Indeed, all
the three labeled peaks in the plotted spectrum correspond to threefold degenerate
excited states, consistent with the dimension of the T1 irrep. In Fig. 6.2, peaks I, II,
and III are located at 3.67, 4.00, and 5.35 eV, respectively. Relative intensities and
general features of our screened parameter-based spectrum agree quite well with the
measured spectrum of C60 reported by Gasyna et al. (1991), who also reported three
major absorption bands of increasing intensities located at 3.81, 4.91, and 5.97 eV.
Given that our calculations have been performed using the SCI method, which does
not include the electron-correlation effects in a sophisticated manner, the agreement
between the theory and experiments is quite reasonable. At present a large-scale
MRSDCI calculation of the electric-dipole optical transitions in C60, employing the
PPP model, is under way in our group, and the results will be published in future.

Next, we discuss the lowest triplet excited state of C60, the 13T2g state. The wave
function of this state is dominated by the configuration with singly occupied HOMO
and LUMO orbitals, along with triplet spin multiplicity. Our PPP-model-based SCI
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value of 2.42 eV for the excitation energy of this state is in excellent agreement the
value 2.46 eV reported by László and Udvardi (1987), also based upon the PPP-SCI
approach, although using a different set of Coulomb parameters. Experimentally
speaking, the exact value of the excitation energy of this state appears not to be very
certain, although Leach et al. (1992) have reported the onset of triplet absorption
near 1.78 eV.

6.3.1.2 Optical Absorption Spectrum of Graphene Nanodisks

Because of the gapless nature of 2D graphene, its device applications are extremely
limited. That is one of the reasons behind the considerable amount of research
effort in the field of reduced dimensional nanostructures of graphene such as
quasi-1D GNRs (Barone et al. 2006; Palacios et al. 2010; Prezzi et al. 2008; Son
et al. 2006a; Yang et al. 2007a,b, 2008) and 0D graphene nanodisks (Ezawa 2008;
Fernández-Rossier and Palacios 2007; Güclü et al. 2009; Hod et al. 2008; Kinza
et al. 2010; Ridder and Lyding 2009; Schumacher 2011; Wang et al. 2008, 2009;
Yazyev 2010), which are also called graphene quantum dots or graphene nanoflakes.
Graphene nanodisks, which are nothing but finite-sized graphene fragments, can,
in general, be of any shape, regular or irregular. Regular-shaped nanodisks are
characterized by their shapes as well as by the nature of their edges, which can
be of the zigzag type or the armchair type. Some of the regular-shaped graphene
nanodisks which have been studied in the literature are shown in Fig. 6.3. For
example, triangular graphene nanodisks with zigzag edges shown in Fig. 6.3a have
been theoretically predicted to have magnetic ground states (Fernández-Rossier and
Palacios 2007; Güclü et al. 2009; Kinza et al. 2010; Wang et al. 2008, 2009; Yazyev
2010). Optical properties of graphene nanodisks were recently studied theoretically
by Schumacher (Schumacher 2011) using a time-dependent density functional
theory-based approach. Because of their interesting optical and magnetic properties,
graphene nanodisks have potential applications in the field of optoelectronics and
spintronics (Yazyev 2010).

In this work, we present the calculations of the linear optical absorption
spectrum of the nanodisks shown in Fig. 6.3, using our PPP-model-based approach,
employing the screened Coulomb parameters and the SCI method. The aim of this
work is to understand the optical properties of graphene nanodisks and, particularly,
to probe the influence of the shape of the nanodisks on their absorption spectra. We
note that except for the zigzag triangular nanodisk (cf. Fig. 6.3a), which has an odd
number of � electrons, and hence an open shell doublet ground state, the rest of the
nanodisks have an even number of � electrons, and a closed-shell singlet ground
state. Results of our calculations for various nanodisks are presented in Fig. 6.4. On
comparing the absorption spectra of various nanodisks, the following trends emerge:
(a) for the triangular zigzag nanodisk, the absorption starts with a very weak feature
near 4 eV, while the most intense absorption occurs at energies higher than 7 eV;
(b) for the triangular armchair nanodisk, the most intense absorption occurs for
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Fig. 6.3 Structures of a few symmetric graphene nanodisks. (a) Zigzag triangular. (b) Armchair
triangular. (c) Diamond shaped. (d) Bowtie shaped

the first peak of the spectrum located at 4.4 eV, with somewhat weaker features at
higher energies; (c) for the diamond-shaped disk, the first peak which is reasonably
strong occurs at even lower energy close 3.2 eV, with several intense peaks at higher
energies; and (d) in the bowtie-shaped disk, the optical absorption starts at the lowest
energy (�2.6 eV) of all the nanodisks described considered here, with stronger
peaks at higher energies as well. Thus, we see an obvious correlation between the
shapes of the nanodisks, and their absorption spectra. Furthermore, for the triangular
nanodisks, the nature of edges (armchair vs. zigzag) also influences the optical
absorption both qualitatively and quantitatively. Therefore, it is conceivable that one
can determine the shapes and edge structures of graphene nanodisks through optical
absorption spectroscopy.

As far as the nature of excited states contributing to the optical absorption in
various nanodisks is concerned, a common feature emerges. In all the nanodisks,
the first absorption peak is characterized by an excited state which mainly consists
of the configuration obtained by a single-electron excitation from the HOMO to
the LUMO orbital. A more detailed study of the optical absorption in graphene
nanodisks, including higher-level CI treatments and the influence of disorder, will
be published elsewhere in future.
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Fig. 6.4 Linear optical absorption spectra of various graphene nanodisks computed using the PPP-
SCI approach and screened Coulomb parameters. A uniform line width of 0.1 eV was used to plot
all the spectra. (a) Zigzag triangular. (b) Armchair triangular. (c) Diamond shaped. (d) Bowtie
shaped

6.3.2 Infinite 1D Periodic Systems

As far as infinite 1D periodic systems are concerned, we apply our approach to
study the band structure and optical properties of mono- and multilayer-GNRs, and
single-walled carbon nanotubes.

6.3.2.1 Band Structure of Graphene Nanoribbons

GNRs are quasi 1D structures which can be obtained by patterning graphene using
various techniques (Han et al. 2007). Unlike monolayer graphene, GNRs exhibit en-
ergy band gaps (Son et al. 2006a) much needed for device applications. Theoretical
works on GNRs mainly focus on ribbons with armchair edge termination known
as armchair GNRs (AGNRs) and zigzag edge termination know as zigzag GNRs
(ZGNRs). The structures of an AGNR, and a ZGNR, are shown in Figs. 6.5a and b
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Fig. 6.5 The schematic representation of (a) armchair graphene nanoribbon withNA D 9 and (b)
zigzag graphene nanoribbon withNZ D 6. The ribbons are assumed to lie in the xy plane, with the
periodicity in the x-direction. The unit cells of these ribbon are enclosed in the shaded rectangles

Fig. 6.6 The unit cell of a
general GNR with eight
dimer lines across the width

respectively. In the case of AGNRs, NA denotes the number of carbon-carbon dimer
lines across the width (cf. Fig. 6.5a), while in the case of ZGNRs, width NZ denotes
the number of zigzag lines (cf. Fig. 6.5b) across the width.

In addition to the GNRs with well-defined edge terminations such as the AGNRs
and the ZGNRs, we also present calculations on general GNRs, which possess
mixed type of edge terminations, including both the armchair and zigzag edges.
The schematic structure of such a general GNR is presented in Fig. 6.6, in which



6 A Pariser–Parr–Pople Model Hamiltonian Based Approach. . . 215

0 0.5 1

−8

−4

0

4

8

ε k
(e

V
)

0 0.5 1

k(π/a)
0 0.5 1

b caFig. 6.7 Band structure of
(a) AGNR-8 obtained using
PPP-RHF method, (b) general
GNR (cf. Fig. 6.6) obtained
using PPP-RHF method, and
(c) ZGNR-8 obtained using
PPP-UHF method

the atoms at the edges are represented by solid circles. An armchair edge can be
identified by a dimer line connecting two edge atoms, whereas a zigzag edge can be
identified by an edge atom which is connected only with the atoms in the bulk of
the ribbon.

In all the calculations performed on GNRs of any type, the carbon-carbon
nearest-neighbor distance was taken to be 1.42 Å, and all the bond angles were
assumed to be 120ı. In case of multilayer GNRs, the distance between the adjacent
layers was taken to be 3.35 Å. The hopping is restricted only to the nearest
neighbors within each layer, and between the adjacent layers, with the values
t D 2:7 eV (intraplane), and t? D 0:4 eV (inter-plane) respectively. As far as
the Coulomb parameters are concerned, we have used the screened parameters of
Chandross and Mazumdar (Chandross and Mazumdar 1997), with U D 8:0 eV
and �i;j D 2:0 .i ¤ j / and �i;i D 1. The band structures of AGNR-8 (AGNR-NA

denotes an AGNR with width NA), and the general GNR, obtained using the PPP-
RHF method are presented in Figs. 6.7a and b, respectively. It is evident from
Fig. 6.7 that all the GNRs exhibit finite band gaps, and their band structures depend
crucially on their geometry. A band gap of 0.5 eV was observed at k D 0 for AGNR-
8 (cf. Fig. 6.7a). It is worth mentioning that AGNR-8 is metallic at the TB level. In
fact depending on the value of NA, AGNRs are classified into three categories with
NA = 3p, 3p C 1, and 3p C 2, p being an integer. At the TB level, all the AGNRs
with NA D 3p C 2 are predicted to be gapless (Nakada et al. 1996). However,
ab initio DFT calculations predict all types of AGNRs to be gapped (Son et al.
2006a). As far as the PPP-model-based calculations are concerned, the long-range
electron–electron interactions which it incorporates play a crucial role in opening
the band gaps in 3p C 2 class AGNRs (Gundra and Shukla 2011a). In case of the
general GNR, the band gap is direct in nature, with the value 0.49 eV, located at
k D � . Furthermore, as is obvious from Fig. 6.7, band structure of the general GNR
is significantly different from those of both the AGNR and the ZGNR.
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Fig. 6.8 The spin density
distribution of ZGNR-8
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In the case of ZGNRs, the ground state is predicted to be magnetic with
oppositely oriented spins localized on the zigzag edges located on the opposite
sides of the ribbons (Son et al. 2006a). The ZGNRs are gapless at the TB level,
characterized by flat bands near the Fermi energy (EF), leading to a van Hove
singularity at EF, suggesting an instability. And indeed, a symmetry broken state
with magnetic ordering mediated by Coulomb interactions (Son et al. 2006b)
stabilizes the system. We obtain this broken-symmetry ground state exhibiting edge
magnetism on performing the PPP-UHF calculations (Gundra and Shukla 2011a),
which are based upon separate mean-fields for the up- and the down-spin electrons.
On the other hand, the PPP-RHF method, by its very nature, predicts a nonmagnetic
ground state for ZGNRs which has a higher energy per unit cell as compared to that
obtained for the spin-polarized state using the PPP-UHF method. The band structure
of ZGNR-8 (ZGNR-NZ denotes an ZGNR with widthNZ) obtained using PPP-UHF
approach is presented in Fig. 6.7c. A significant band gap of 2.64 eV is opened up at
k D 2�

3
because of the magnetic ordering. The spin density distribution for ZGNR-

8, plotted for the sites across its width, presented in Fig. 6.8 clearly exhibits edge
magnetism. The electrons of different spins are localized at adjacent sites along
the width, indicating an antiferromagnetic order. However, a ferromagnetic order is
observed on a given edge, along its length (Gundra and Shukla 2012).

6.3.2.2 Band Structure of Gated Graphene Nanoribbons

GNRs display interesting electronic properties in the presence of an external gate
bias. For example, ZGNRs exhibit half-metallic behavior in the presence of a lateral
electric field (Ey), i.e., ZGNRs are conducting for the electrons of one spin and
insulating for those of the other spin (Son et al. 2006b). Therefore, gated ZGNRs
have potential device applications in the field of spintronics.

This is illustrated in Fig. 6.9 in which the band structure of ZGNR-12 in the
presence of a lateral electric field of strength 0.2 V/Å is presented. While the bands
of the up (˛) and down (ˇ) spin electrons are degenerate in the absence of the
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field with a band gap of 2.1 eV, the degeneracy is lifted in the presence of external
electric field (Ey) along y-axis, and the band gap for electrons of spin-˛ changes to
1.5 eV, while that for electrons of spin-ˇ reduces drastically to 0.3 eV, indicating the
tendency towards the half-metallic nature. The half-metallic nature of ZGNRs can
be understood from the fact that in the absence of external electric field, oppositely
oriented spin states are localized on the opposite edges of the ribbon. In the presence
of a nonzeroEy , the ZGNR develops a potential difference across its width, thereby
energies of the localized edge states are increased on one edge and decreased on
the other one, leading to different band gaps for the electrons of different spin
orientations (Son et al. 2006b). With the increasing field strength Ey , the band
gaps of spin-ˇ electrons tend to decrease, while those of ˛ electrons exhibit a
slight increase up to a certain field strength, beyond which they also decrease
monotonically. After a critical field strength, the energy gaps for electrons of both
spins attain the same value, and the half-metallic behavior exhibited by the ZGNRs
disappears. To illustrate this point, in Fig. 6.10 we present the variation of band gaps
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the y-axis, for (a) NA D 3p, (b) NA D 3p C 1, and (c) NA D 3p C 2, with p D 2

of spin-˛ and spin-ˇ electrons with Ey for ZGNR-8, calculated using the PPP-UHF
method. The half-metallic nature is observed when 0 � Ey � 0:35V/Å, with band
gaps for electron of spin-˛ and spin-ˇ being well separated, and forEy > 0:35V/Å,
the energy gaps for electrons of both the spins are again identical, with the value of
the band gap being lower than the corresponding value in the absence of Ey . Thus,
the half-metallic behavior disappears for Ey > 0:35V/Å. The first-principles DFT-
based calculations by Kan et al. (2007) also predicted a similar behavior in ZGNRs.

The external electric field has profound effect on the band gaps of AGNRs
as well. We illustrate the variation of band gaps with Ey for AGNRs of width
NA D 3p, 3p C 1 and 3p C 2, for p D 2 in Fig. 6.11. In all the ribbons the
gap decreases initially with increase in the strength of Ey . But beyond a critical
field strength (Ec

y), a reverse trend is observed, where the gap increases with
further increase in the field strength. Even though we have presented the results
corresponding to p D 2, a similar behavior is observed for p > 2 as well. We
observe that in each category of AGNRs, the value of Ec

y decreases with the
increase in their width, e.g., we have obtained Ec

y D 3V/Å for AGNR-6, whereas
the corresponding value for AGNR-9 is 2 V/Å.

6.3.2.3 Optical Properties of Graphene Nanoribbons

As discussed earlier, the geometry of GNRs plays a crucial role in determining their
electronic structure. Therefore, the optical properties of the ribbons will also be
quite sensitive to their geometry, thereby allowing the possibility of determining
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the geometry of GNRs by means of optical measurements. Next, we present results
of our calculations of the optical absorption spectra of various GNRs and CNTs,
for the incident radiation polarized in x (or longitudinal) or y (or transverse)
directions, computed in the form of �xx.!/ and �yy.!/, respectively, where �i i .!/
denotes the imaginary part of the dielectric constant tensor for the i th Cartesian
component and ! denotes the frequency of incident photons. The calculations of
various components of the �i i .!/ were performed using the standard approach
outlined in our previous publications (Gundra and Shukla 2011a,b, 2012). The
optical absorption spectrum of AGNR-8, obtained using the PPP-RHF method, is
displayed in Fig. 6.12. If †mn denotes a peak in the spectrum due to a transition
from mth valence band (counted from top) to the nth conduction band (counted
from bottom), the peak of �xx.!/ at 0.54 eV is †11, and the peak at 4.60 eV is †22.
Whereas, the peak in �yy.!/ at 2.93 eV corresponds to †31. The individual peaks in
the absorption spectrum of AGNR-8 are well separated in energy and correspond to
either x- or y-polarized photons, consistent with the dipole selection rules of D2h

point group symmetry of AGNRs.
In Fig. 6.13a we present the optical absorption spectrum of ZGNR-6 computed

using the PPP-UHF method. Even though the point group of ZGNRs is also D2h,
in contrast to AGNRs, most of the prominent peaks of ZGNR-6 exhibit mixed
polarization characteristics. This is due to the fact that the edge-polarized magnetic
ground state of ZGNRs no longer exhibits D2h symmetry, because the reflection
symmetry about the xz-plane is broken, thereby leading to mixed polarizations in
the optical absorption. Thus, by using optical probes, one can predict whether a
given ribbon is an AGNR or a ZGNR by analyzing the polarization characteristics
of the absorption peaks.

Apart from determining the geometry of GNRs, optical absorption spectra
can also be used to differentiate the monolayer GNRs from the bilayer and the
multilayer GNRs. We illustrate this by comparing the optical absorption spectrum
of monolayer ZGNR-6 with that of its bilayer counterpart. Similar to the case of
monolayer ZGNR-6, most of the prominent peaks of bilayer ZGNR-6 also exhibit
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mixed polarization characteristics (cf. Fig. 6.13b) due to edge magnetism (Castro
et al. 2007). However, it is interesting to note that in the case of monolayer ZGNRs,
the shape of the spectra corresponding to �xx.!/ and �yy.!/ remains similar, though
the magnitude of peaks of �yy.!/ is smaller when compared to those of �xx.!/. This
scenario is completely changed in the case of bilayer ZGNR-8, in which due to the
presence of second layer, many additional peaks are observed in �xx.!/ as compared
to �yy.!/. Therefore, the optical response of monolayer ZGNRs is quite different
from that of the bilayer ZGNRs and can, in principle, be used to distinguish between
them through optical measurements.

6.3.2.4 Band Structure and Optical Properties of Bilayer AGNRs

Bilayer and multilayer AGNRs exhibit interesting electronic and optical properties
which we have investigated in an earlier publication (Gundra and Shukla 2011b).
For example, the intensity of the linear optical absorption in multilayer AGNRs
increases rapidly with the increasing number of layers and depends crucially on the
relative orientation of adjacent layers (Gundra and Shukla 2011b). In this section,
we discuss the band structure and optical properties of bilayer AGNR-8 obtained
using the PPP-RHF method. We assume Bernal stacking for bilayer AGNRs and
consider two types of edge alignments, namely, ˛ alignment and ˇ alignment,
shown schematically in Fig. 6.14 (Gundra and Shukla 2011b). To illustrate the
influence of edge alignment on the electronic structure of bilayer AGNRs, we
present the band structure of bilayer AGNR-8 in ˛ and “ alignments in Figs. 6.15a
and b, respectively. The individual energy bands near Fermi energy are separated by
larger energy in ˛ alignment when compared to ˇ alignment (Gundra and Shukla
2011b). This has important implications on the optical absorption spectra which is
presented in Figs. 6.15c and d, for the two alignments. It is obvious that the optical
absorption spectra for the two alignments are substantially different from each
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Fig. 6.15 Band structure of bilayer ANGR-8, obtained using the PPP-RHF method in (a) ˛
alignment and (b) ˇ alignment. Optical absorption spectra of the same ribbon in (c) ˛ alignment
and (d) ˇ alignment

other so that their experimental measurement, coupled with our theoretical results,
can possibly be used to determine the nature of alignment in multilayer ribbons.
For a comprehensive discussion of the influence of edge alignment on the optical
properties of multilayer AGNRs, we refer the reader to our recent work (Gundra
and Shukla 2011b).

6.3.2.5 Electro-Absorption in Zigzag Graphene Nanoribbons

Electro-absorption (EA), which is nothing but the optical absorption in the presence
of a static external electric field, is a commonly used probe of optical properties of
materials and has been used extensively in the field of �-conjugated polymers (Liess
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Fig. 6.17 The schematic
structure of SWCNT (8,0).
For brevity, carbon atoms
belonging to the first three
unit cells are displayed

et al. 1997). Quantitatively, it is defined as the difference of the optical absorption
spectrum with, and without, an external static electric field. In a recent work (Gundra
and Shukla 2011a), we argued that the EA spectroscopy provides a natural way of
probing the electric-field-driven half-metallicity of ZGNRs. To illustrate this, we
present the EA spectrum of ZGNR-10 in Fig. 6.16, calculated in the presence of
a lateral external electric field of strength 0.2 V/Å, using our PPP-UHF approach.
The linear absorption spectrum of the ribbon without the external field, for its
spin-polarized ground state, is also presented in the same figure. The electric-field-
driven half-metallic nature of ZGNR-10 is clearly evident with the presence of two
energetically split peaks, corresponding to two different †11 transitions, among the
spin-up and spin-down electrons. Therefore, EA spectroscopy can serve as a useful
optical probe to probe both the edge magnetism and related half-metallic nature of
ZGNRs.
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6.3.2.6 Band Structure and Optical Absorption Spectrum
of Carbon Nanotubes

Single-walled carbon nanotubes (SWCNTs) exhibit excellent electronic properties
and have been studied extensively over the last few decades (Dresselhaus et al.
2001). In this work, we present the band structure and optical properties of insulating
SWCNT (8,0) obtained using PPP-RHF method. Even though the PPP model
has been used by other authors to explore the electronic and optical properties
of carbon nanotubes (Wang et al. 2006, 2007; Zhao and Mazumdar 2004, 2007;
Zhao et al. 2006), the calculations are restricted to nanotubes of finite length,
and periodic boundary conditions were not imposed. The schematic structure of
SWCNT (8,0) is presented in Fig. 6.17. In these calculations, carbon-carbon nearest-
neighbor distance was taken to be 1.42 Å, and hopping was restricted to the nearest
neighbors, with the hopping term t D 2:4 eV. Similar to the case of GNRs, we
have used the screened Coulomb parameters of Chandross and Mazumdar (1997),
with U D 8:0 eV and �i;j D 2:0 .i ¤ j / and �i;i D 1. Figure 6.18 displays the
band structure of SWCNT (8,0) obtained using our approach. We note that the band
structure of this SWCNT is similar to that of AGNRs, with a direct band gap of
2.18 eV at k D 0.

The optical absorption spectrum of SWCNT (8,0), computed using the PPP-
RHF approach, is presented in Fig. 6.19. Due to the cylindrical symmetry of CNTs,
their electric-dipole optical transitions are either through longitudinally polarized
photons with polarization direction along the axis of the tube (x-direction), or the
transversely polarized photons, with the polarization in the radial direction, in the
yz plane. In Fig. 6.19, we denote the longitudinally polarized absorption spectrum
as �k.!/ (D �xx.!/), and the transverse one as �?.!/ (D p

�yy.!/2 C �zz.!/2,
with �yy.!/ D �zz.!/). While a detailed investigation of the optical absorption of
SWCNTs will be published elsewhere, we note that the peaks corresponding to two
types of polarizations are well separated in energy, and, therefore, can be identified
in absorption experiments. The peak in �k.!/ corresponds to the †11 transition,
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Fig. 6.19 Optical absorption
spectrum of SWCNT (8,0),
obtained by PPP-RHF
method. The solid black line
represents �k.!/, while the
dotted red line denotes
�?.!/. A line width of
0.05 eV was assumed

located at the direct band gap (2.18 eV), while the peak in �?.!/ at 2.77 eV denotes
†12 transition. These results of ours on SWCNT (8,0) in the infinite length limit
are in good quantitative agreement with the corresponding PPP-HF results reported
by Zhao and Mazumdar (2004), based upon finite fragment calculations.

6.4 Conclusions and Future Directions

In this chapter, we have applied a PPP model Hamiltonian-based approach to study
the electronic structure and optical properties of finite, as well as 1D periodic,
graphene nanostructures such as fullerene C60, graphene nanodisks, graphene
nanoribbons, and single-wall carbon nanotubes. In case of periodic systems,
calculations were performed at the mean-field Hartree-Fock level, whereas for the
finite systems, we went beyond the mean field and included the electron-correlation
effects at the SCI level. We computed the linear optical absorption spectrum of
fullerene C60, and the results obtained with screened Coulomb parameters were
found to be in good agreement with the experiments. We also probed the optical
absorption in graphene nanodisks using our approach and found that their shape,
and the edge structure, influences their absorption spectrum considerably.

For 1D periodic systems, we computed the band structure and optical absorption
spectra of monolayer GNRs of different geometries, and bilayer GNRs in Bernal
stacking, but with different edge alignments. We found that the band structure
and optical absorption spectra of GNRs depend crucially on their geometrical
parameters, thereby allowing the possibility of an all-optical determination of the
nature of their edge termination, as well as number and alignment of different
layers for multilayer GNRs. We also demonstrated the sensitivity of the optical
absorption spectrum of the ZGNRs to the nature of their edge-magnetized ground
state and argued that their EA spectrum provides an efficient way of probing their
electric-field-driven half-metallicity. Furthermore, for the first time, we applied our
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PPP-model-based approach to compute the band structure and optical absorption
spectrum of an insulating SWCNT in the infinite periodic limit.

It is quite remarkable that the PPP model, which was originally developed to
describe the electronic structure of �-conjugated molecules and polymers, also
can be applied successfully to describe the physics of other �-electron systems
such as graphene nanostructures, as also the curved systems such as fullerenes
and carbon nanotubes, for which the �–� separation is no longer valid. In the
future we aim to extend our PPP model-based preliminary calculations on fullerene
C60, and graphene nanodisks, by performing higher-level CI calculations employing
approaches such as the MRSDCI method to study their optical properties and
low-lying excited states. For the case of 1D periodic systems such as GNRs and
CNTs, we intend to include the influence of electron correlation effects on their
band structure. Furthermore, we also plan to incorporate the excitonic effects
in the optical absorption spectra of these systems. It will also be of interest
to extend this PPP-model-based approach to study multi-wall CNTs, as well as
higher-dimensional systems such as graphene, and graphite. The work along these
directions is currently under way in our group, and the results will be presented in
future publications.
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László L, Udvardi L (1989) J Mol Struct (Theochem) 183:271
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