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Abstract Some relevant physical and chemical properties of negatively curved
carbon surfaces like sp2-bonded schwarzites can be predicted or accounted for on
the basis of purely topological arguments. The general features of the vibrational
spectrum of complex sp2-carbon structures depend primarily on the topology of
the bond network and can be estimated, in a first approximation and for systems
with only nearest-neighbor interactions, from the diagonalization of the adjacency
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matrix. Examples are discussed for three- and two-periodic carbon schwarzites,
where a direct comparison with ab initio calculations is possible. The spectral
modifications produced by the insertion of defects can also analyzed on pure
topological grounds. Two-periodic (planar) schwarzites can be viewed as regular
arrays of Y-shaped nanojunctions, which are basic ingredients of carbon-based
nano-circuits. A special class of planar schwarzites is obtained from a modification
of a graphene bilayer where the two sheets are linked by a periodic array of
hyperboloid necks with a negative Gaussian curvature. Ab initio density functional
calculations for some structures among the simplest planar schwarzites – (C18)2,
(C26)2, and (C38)2 – are presented and discussed in light of the structural stability
predictions derived from a topological graph-theory analysis based on the Wiener
index. A quantum-mechanical justification is provided for the effectiveness of
the Wiener index in ranking the structural stability of different sp2-conjugated
structures.

El universo (que otros llaman la Biblioteca)
se compone de un numero indefinido,

y tal vez infinito, de galerı́as hexagonales : : : 1

(Jorge Luis Borges, Ficciones, 1941)

4.1 Introduction

There are atomic surfaces which have no underlying bulk and are free-standing
thanks to their covalent bonding architecture. Their vibrational structure reflects,
in its general features, their topological constitution, thus playing a relevant role in
the growth mechanisms and spectroscopic characterization. The recognition to the
studies on graphene (Novoselov et al. 2004, 2005a, b; Geim and Novoselov 2007;
Castro Neto et al. 2009) has, by extension, revived the interest in the vast zoo of
curved surfaces of carbon which are made possible by sp2 hybridization. Besides
the well-known forms like fullerenes (Kroto et al. 1985), single-walled and multi-
walled nanotubes (Iijima 1991), worth mentioning are the three-dimensional forms
of sp2 carbon, random schwarzites. Figure 4.1a, c shows a transmission electron
microscope (TEM) image of a random carbon schwarzite obtained by supersonic
cluster beam deposition with a deposition energy of 0.1 eV/atom (Barborini et al.
2002; Donadio et al. 1999; Benedek et al. 2003). Raman and near-edge x-ray
absorption fine structure (NEXAFS) spectra indicate a pure sp2-bonding structure,
suggesting a single, highly connected graphene sheet with an average pore diameter
in the range of 100 nm. Although carbon schwarzites have been first synthesized and
characterized more than a decade ago (Barborini et al. 2002; Donadio et al. 1999;

1The universe (that others call the Library) is composed by an undefined, sometimes infinite
number of hexagonal tunnels.



4 Topological Versus Physical and Chemical Properties of Negatively Curved. . . 107

Fig. 4.1 Two transmission electron microscope (TEM) pictures (a, b) of a random carbon
schwarzite as grown by supersonic cluster beam deposition (Reprinted from Benedek et al. 2003,
Copyright (2003), with permission from Elsevier) and two simulations (c, d, respectively) of the
TEM images obtained from analytical approximations of three-periodic minimal surfaces (gyroids)
with a self-affine distortion (Reprinted with permission from Barborini et al. 2002. Copyright
(2002), American Institute of Physics)

Benedek et al. 2003), they did not meet the glamour of the ordered sp2 carbon forms.
Nevertheless, random schwarzites, otherwise termed spongy carbon (Donadio et al.
1999), qualify for their unique properties, such as unconventional magnetism (Rode
et al. 2004; Arčon et al. 2006), and applications in efficient super-capacitors
(Diederich et al. 1999), field emitters (Boscolo et al. 2000; Benedek et al. 2001;
Ferrari et al. 1999), and carbon-based composites (Bongiorno et al. 2005) up to the
recent demonstration of interfacing live cells with nano-carbon substrates (Agarwal
et al. 2010).

Triply periodic minimal surfaces as possible sp2 carbon structures have been
theoretically suggested already in the mid-1980s (McKay 1985) then with more
momentum in the early 1990s, following the nanotube vogue (McKay and Terrones
1991; Terrones and McKay 1993; O’Keeffe et al. 1992; Lenosky et al. 1992;
Townsend et al. 1992; Vanderbilt and Tersoff 1992).
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Fig. 4.2 The tiling with 6 (light gray) and 7 (dark gray) rings of the unit cell of a P-type (a) and
D-type (b) schwarzite, both having 216 atoms per unit cell. The 7 rings are 24 per unit cell in both
cases. The unit cell of the D-type schwarzite is made of two identical but nonequivalent elements,
containing twelve 7 rings each, joined in the staggered position as atoms are in the diamond lattice
(Reprinted from Spagnolatti et al. 2003. Copyright (2003) with kind permission from Springer
Science and Business Media)

They have since termedschwarzites after the name of the mathematician Her-
mann Schwarz (Schwarz 1990) who first investigated that class of surfaces. The
synthesis of random schwarzites was obtained by means of supersonic cluster beam
deposition (SCBD) (Barborini et al. 2002). SCBD experiments demonstrated that
spongy carbon grows in the presence of finely dispersed Mo nano-catalysts, with
porous size decreasing with increasing deposition energy and no tendency to form
triply periodic structures. These aspects, as well as the growth in the form of a
self-affine minimal random surface, have been theoretical elucidated on the basis of
pure topological arguments (Benedek et al. 2003, 2005; Bogana et al. 2001). Many
relevant properties of schwarzites can actually be derived in a first approximation
from a topological analysis. For a thorough discussion of these aspects, the reader
is referred to the previously published chapter (Benedek et al. 2011) in this series of
book. In this chapter, it is shown that also the vibrational spectra of schwarzitic
structures can be estimated from topology, more precisely from the adjacency
matrices. After assessing the method on standard cases as the fullerene C60 and
the simplest three-periodic schwarzite fcc-(C28)2, for which the vibrational spectra
are well established, the novel class of two-periodic schwarzites (Fig. 4.2) shall
be introduced and their vibrational spectra as derived with the adjacency matrix
method discussed. The interest for two-periodic schwarzites, here discussed for the
first time, is related to the possibility of growing them by means of near-to-come
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planar technologies through the direct joining of nanotubes. We will also present the
main result of the first ab initio study about the most interesting planar schwarzite.
This study gives us the opportunity to make a comparison between the stability
of atoms obtained from ab initio calculation and topological arguments involving
the Wiener index. Finally, a quantum-mechanical argument will be exposed and
discussed which justifies the success and outlines the applicability range of the
Wiener index in determining the stability scale of isomeric carbon structures.

4.2 Adjacency Matrix

For a mono-atomic network of N nodes labeled by an index i D 1,2, : : : ,N, the
simplest topological characterization is provided by its adjacency matrix (AM)
A whose elements are defined by

Aij D
�
1 if nodes i; j are linked by a bond
0 otherwise; including i D j

: (4.1)

There are elementary structural and physical properties of atomic networks which
can be qualitatively understood in terms of the AM. For example, the eigenvectors
of A lead to the definition of topological coordinates of three-coordinated carbon
structures like fullerenes (Manolopoulos and Fowler 1992) and nanotubes (Làszlò
et al. 2001). The topological coordinates may be defined as the set of atomic
positions having the highest point symmetry compatible with the adjacencies. The
topological coordinates can be defined also for D-type schwarzites, either referring
to a single element (genus 2) or to a unit cell (genus 3), and provide a straightforward
method to construct a structure with all the same adjacency matrix and point
symmetries of the real structure, which may serve as the starting configuration for a
molecular dynamics minimization procedure.

As shown in more detail elsewhere (D’Alessio, Master thesis, 2007, Unpub-
lished), isomers of a D-type schwarzite element can be enumerated with the
spiraling procedure similar to that introduced for fullerenes (Manolopoulos and
Fowler 1992). As an example, Tables 4.1, 4.2, 4.3, and 4.4 list the isomers of

Table 4.1 Isomers of the D-type schwarzite (C32)2 element classified according the
sequence of 7- and 6-membered rings determined with the spiraling procedure

C32 isomer Sequence Sym Ord N M W �

1 067777777077706770 C2 2 8 8 3,915 1.20239558
2 707767767077707770 D2d 8 3 8 3,884 1.16148325

The four 0s in each sequence represent the four terminations of the element. The other
columns indicate the point group (Sym), the number of symmetry operations (Ord),
the class sequence multiplicity (N) (D’Alessio, Master thesis, 2007, Unpublished), the
maximum topological distance of the element (M), the Wiener index (W), and the
topological efficiency index (�). Here and in the following tables, isomers are listed for
increasing W
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Table 4.2 Same as Table 4.1 for the isomers of the D-type schwarzite (C34)2 element

C34 isomer Sequence Sym Ord N M W �

1 7077777770667707760 C2 2 5 8 4,370 1.19496855
2 7770777077770776660 C3 3 2 8 4,404 1.20426579
3 7776076777707770670 C2v 4 3 9 4,471 1.22258682

Table 4.3 Same as Table 4.1 for the isomers of the D-type schwarzite (C36)2 element. Note
that the spiraling procedure to enumerate isomers is unable to find the highest symmetry
isomer of Td symmetry

C36 isomer Sequence Sym Ord N M W �

1 07776767777707706760 C2v 4 6 8 4,839 1.13912429
2 07766777777076607707 C2 2 7 8 4,846 1.18079922
3 07777667670777707670 D2 4 5 9 4,848 1.17441860
4 07766777667077707770 CS 2 10 9 4,854 1.19674556
5 07767777767706760770 D2d 8 2 8 4,856 1.14962121
6 07777767670676770770 C2 2 3 9 4,875 1.20192308
7 06767777777760770760 C1 1 7 8 4,887 1.21205357
8 07777677670677670770 C1 1 9 9 4,891 1.20586785
9 06777777707670776670 C1 1 11 9 4,897 1.20734714
10 77607777767706760770 D2 4 1 9 4,906 1.21676587
11 07777677760767670770 C2 2 5 9 4,918 1.20539216
12 67777760770677707706 C1 1 7 9 4,954 1.23602794
13 60777777067776770670 C2 2 6 9 4,966 1.22435897
14 60777777067767770760 C1 1 12 9 4,993 1.23834325
15 67777670760777707706 C2 2 6 9 5,020 1.24503968
16 60777776077777670670 D2 4 6 9 5,046 1.25148810
17 60777776077777760760 S4 4 6 9 5,046 1.24408284
18 60677777770777076670 C2 2 5 10 5,049 1.26731928
19 67077077076777676770 Td 24 � 9 5,214 1.17432430
20 07667777077777707606 C2 2 7 11 5,399 1.31554581
21 66707707777777770660 D2d 8 4 11 5,868 1.32162162

the smallest D-type elements C2hC28 with h D 0,2–6. For h D 2–6 only schwarzites
within the restricted class with hexagonal necks joining adjacent elements are
considered. In this class the isolated elements have therefore a 6-membered ring
also at each of the four terminations. The spiral sequences of the 6- and 7-membered
rings and the four terminations (0) are listed for each isomer in the second column
of Tables 4.1, 4.2, 4.3, and 4.4. For each isomer the point group of the element
is also indicated. The smallest D-type schwarzite with h D 0 only contains 7-
membered rings and exists in two isomers, one with hexagonal necks (Fig. 4.3)
and one with dodecagonal necks. Both isomers are chiral and have their own
enantiomer. Examples of topologically equivalent structures constructed by means
of the topological coordinates are illustrated in Figs. 4.3 and 4.4 for the elements of
the D-type schwarzite (C28)2 and of the three isomers of (C34)2, respectively.
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Table 4.4 Same as Table 4.1 for the isomers of the D-type schwarzite (C38)2 element

C38 isomer Sequence Sym Ord N M W �

1 067677777677707706760 Cs 2 4 8 5,382 1.18285714
2 077776776707776607760 C2 2 9 9 5,382 1.20268156
3 077677777766077607706 C2 2 7 9 5,384 1.18983425
4 077667777670677077670 C1 1 5 9 5,396 1.21258427
5 076677777670776607770 C1 1 11 9 5,397 1.20603352
6 077667777760767077670 C1 1 8 9 5,402 1.20044444
7 676076767677077707770 Cs 2 5 9 5,404 1.19425414
8 607767777776707660770 C2 2 5 9 5,414 1.20983240
9 676076777776077760770 C1 1 2 9 5,422 1.23227273
10 077776677706767077670 Cs 2 3 9 5,426 1.21251397
11 707777777067670767660 C1 1 4 9 5,426 1.19911602
12 676067767767077707770 Cs 2 4 10 5,469 1.22212291
13 607777670767776770670 C2 2 9 9 5,470 1.20883978
14 766077776770677076770 C1 1 5 9 5,477 1.22391061
15 076777677067767770670 C1 1 11 9 5,482 1.24590909
16 067777777077706776660 C1 1 3 10 5,494 1.24863636
17 066667777777077706770 C1 1 10 10 5,538 1.25152542
18 067776767076777770670 C1 1 19 10 5,563 1.23622222
19 766077777760777076670 C1 1 5 10 5,603 1.25910112
20 776067707777676670770 C2 2 3 10 5,639 1.27435028
21 066777770766777770760 C1 1 10 10 5,645 1.26145251
22 767067707777766670770 C1 1 2 10 5,768 1.28893855
23 777067760677777707606 C1 1 1 11 5,988 1.31604396
24 677077066777777707606 C1 1 5 11 6,021 1.32329670

Fig. 4.3 The element of the (C28)2 isomer with hexagonal necks (a) and its topological coordinate
model (b). There are three inequivalent bond lengths labeled by a, b, and c (D’Alessio, Master
thesis, 2007, Unpublished)
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Fig. 4.4 Front and side views
of the three topological
coordinate models of (C34)2

isomers classified according
to their point symmetry
groups (see Table 4.2)
(D’Alessio, Master thesis,
2007, Unpublished)

As seen in Table 4.3, the isomer of highest (Td) symmetry (#19) is not the
most stable according to the ranking based on the Wiener index W and topological
efficiency index �. In any case the stability ranking based on the global topological
indices, accounting for the conjugation long-range effects, is in clear conflict
with the ranking based on the transferability of fixed bonding energies assigned
to the three geometrically inequivalent bonds (D’Alessio, Master thesis, 2007,
Unpublished). The former proved to account quite well for the theoretical isomer
ranking of some fullerenes (Vukicevic et al. 2011), and it is suggested that it should
work equally well for schwarzites. However, both approaches agree in explaining
why more compact, though less symmetric isomers are more stable, which favors the
growth of random rather than periodic schwarzites in SCBD experiments (Barborini
et al. 2002).

4.3 Topological Electronic States

A straightforward application of the AM is the calculation of the electronic energies
of a mono-atomic network in the tight-binding (TB) approximation for a band
originated from a single atomic state, for example, the pz band in an sp2 carbon
network. By assuming the same diagonal matrix element ˛ of the Hamiltonian for
all atomic orbitals, the same overlap integral s, and the same Hamiltonian matrix
element (resonance integral) ˇ between the atomic orbitals for all nearest-neighbor
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Fig. 4.5 The topological
energy levels (in eV) of
icosahedral C60 from the
diagonalization of the
adjacency matrix
(˛D �2.60 eV, ˇD 3.01 eV,
s D 0) compared with Hückel
energy levels (in units of ˇ)
(Reprinted with permission
from Bühl and Hirsch 2001.
Copyright (2001) the
American Chemical Society).
Shadowed peaks correspond
to occupied states

pairs, the energy eigenvalues E D Ej and the eigenvectors c D cj providing
the coefficients of atomic orbital combinations are obtained by solving the TB
equation:

.I �s A/�1.ˇA C˛ I/ c D EI c (4.2)

where I is the unitary matrix. The extension of this equation to the periodic
schwarzite lattice would provide the valence band structure. In this way a qualitative
information about the size of the gap between the highest occupied (HOMO) and
the lowest unoccupied (LUMO) molecular orbitals can be obtained as a function
of the topology, here represented by the adjacency matrix, and to infer whether the
periodic schwarzite will be an insulator or a metal.

As previously shown for tetrahedral D-type schwarzites with 6-membered necks
(Gaito et al. 1998; Benedek et al. 2011), the smallest members of the series are
alternatively metallic and insulating. The link of the HOMO and LUMO states to
basic chemical properties such as site reactivity, electronegativity, and chemical
hardness in polyaromatic hydrocarbons (PAH’s) is exploited in the formulation
of the so-called colored molecular topology (Putz et al., Chap. 9). In this way
these properties, though intrinsically dependent on the electronic structure, may
receive a first estimation on purely topological grounds. Figure 4.5 displays a simple
application to the icosahedral C60 molecule, where the energy levels of the 60  -
electrons calculated by solving Eq. (4.2) with ˛D �2.60 eV, ˇD 3.01 eV, s D 0 are
compared with the Hückel energy levels reported by Bühl and Hirsch in units of ˇ
(Bühl and Hirsch 2001). In the approximation where ˇ is the same for all bonds, the
Hückel energy levels scale exactly as the topological eigenvalues.

http://dx.doi.org/10.1007/307785_1_En_9
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4.4 Topological Phonon Structure

With the same formalism, though slightly complicated by the vector nature of the
atomic displacements, one can investigate the vibrational spectra at zero wavevector
of these periodic structures, at least for the part which depends on topology. It
is indeed expected that in systems where atoms are all alike and approximately
bonded in the same way the gross features of the vibrational spectrum are first of all
determined by topology.

It is noted that the vibrational spectra extracted from the adjacency matrix of a
P-type element or a D-type schwarzite unit cell, with each of their six terminations
closed on the opposite one so as to form a three-handle torus, are topologically
equivalent to the spectra at zero wavevector (q D 0) of the corresponding three-
periodic solid with periodic boundary conditions. For a flat surface (graphene), the
vector nature of the phonon displacement field at q D 0 is factorized into a transverse
out-of-plane component, corresponding to a transverse optical mode normal to
the surface (TO? mode) having a frequency !? D 16.3 rad/s, and two orthogonal
in-plane components corresponding to the parallel optical (TOjj) and longitudinal
optical (LO) modes, having the same frequency of !jj D 29.8 rad/s. The degeneracy
of TOjj and LO modes at q D 0 is intrinsically due to the symmetry of the three sp2

bonds forming three angles in plane of 120ı and is only approximately fulfilled for a
heterocyclic nonplanar structure. In general, on curved surfaces the three angles are
distorted and no longer in plane, a fact which is however irrelevant at the topological
level. This level of approximation may be referred to as topological dynamics and
the eigensolutions as topological phonons.

The assumption that each of the orthogonal components of each atomic displace-
ment only couples with the same component of the three adjacent atoms reduces
the dynamical problem to the diagonalization of three independent combinations
of the adjacent matrix. In a simplified nearest-neighbor interaction picture, only
two nearest-neighbor force constants f? and fjj are needed. The eigenvalue equation
providing the angular frequencies ! D !˛� and the components ui D ui˛,� of the
atomic displacements for each phonon � and each polarization ’D ?,jj can be
expressed in terms of the adjacency matrix as

�M!2 ui D f˛
X
j

�
Aij � 3ıij

�
uj ; ˛ D ?; k (4.3)

where M is the carbon atom mass, and the term with the Kronecker delta is implied
by the translational invariance of the system Hamiltonian. The force constants f˛ are
fitted to the respective angular frequencies!? and !jj for graphene given above and
considered to be transferable to other sp2 carbon structures. The angular frequencies
are directly obtained from the eigenvalues �˛� of the adjacency matrix and are
given by

!˛� D
�
f˛

M
.3 � �˛�/

� 1=2
: (4.4)
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Fig. 4.6 Comparison
between the vibrational
spectrum of the icosahedral
fullerene C60 measured with
neutron inelastic scattering
(NIS) (Cappelletti et al. 1991)
(a) and the topological
phonon spectrum calculated
from the adjacency matrix
(b). In the latter spectrum, a
finite line width is attributed
to each phonon peak in order
to obtain a smooth spectrum
with a resolution comparable
to that of experiment (Image
reproduced from De Corato
and Benedek 2012. Copyright
@ 2012 World Scientific,
New York)

4.4.1 Topological Phonons of Fullerenes and Schwarzites

An example of topological phonon spectrum derived from Eq. (4.3) is shown in
Fig. 4.6 for the icosahedral isomer of the fullerene C60. There is a good correspon-
dence between the calculated topological phonon spectrum and the experimental
spectrum derived by inelastic neutron scattering (NIS) (Cappelletti et al. 1991;
Pintschovius 1996). This indicates that the gross features of the C60 vibrational
spectrum are accounted for by its topology, that is, by its bonding network.

A similar calculation has been done for the D-type schwarzite (C28)2 for which a
comparison is possible between ab initio and topological phonon spectra (De Corato
et al. 2012) (Fig. 4.7). While the ab-initio spectrum in Fig. 4.7c carries the
information about the detailed equilibrium structure of the schwarzite element as
depicted in Fig. 4.7a, the topological spectrum only depends on the structure of the
graph shown in Fig. 4.7b. Nevertheless, the comparison of the ab initio eigenvectors
to those of topological phonons permits to associate four spectral regions of the
ab initio spectrum (Fig. 4.7c) to corresponding regions (marked by segments in
Fig. 4.7d) of the topological spectrum.

The topological phonon spectrum may be conveniently used in the calculation
of integral properties such as the vibrational part of thermodynamic functions. As
an example, it is perfectly sufficient to use the topological phonon frequencies for
the calculation of the mean-square atomic displacement relative to the interatomic
distance d, given with the equation

fc � 1

d

˝
u2

˛1=2
T

D 1

d

"X
�

„
2NM!�

�
1

e„!�=kT � 1 C 1

2

�#1=2
(4.5)
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Fig. 4.7 The element C28 of the smallest D-type schwarzite with 6-membered necks (a), the
corresponding planar graph (b) with its topological constants (gray regions represent the four
necks), and the zero-wavevector ab initio vibrational spectrum of its fcc lattice (C28)2 (c) (Reprinted
from Spagnolatti et al. 2003. Copyright (2003) with kind permission from Springer Science and
Business Media). The topological phonon spectrum is shown in (d) for comparison. The analysis
of the eigenvectors allows to associate four spectral regions of the ab initio spectrum (c) to the
marked topological spectral regions in (d). The three modes of zero frequency corresponding to
the free translations are not shown

where T is the absolute temperature. It is possible to estimate the temperature at
which the bonds start breaking, leading to melting by means of the Lindemann
criterion: For carbon materials, this occurs at fc D 0.084 (Gersten and Smith 2001).
A semi-empirical tight-binding molecular dynamics simulation of the topological
connectivity as a function of temperature for the D-type schwarzite (C36)2 (Fig. 4.8a)
(Rosato et al. 1999) shows that a graphitization transition, consequent to a rapid
break of prevalently single bonds, is predicted to occur around 4,000 K. At this
temperature, the ratio fc derived from Eq. (4.5), with the topological phonon
spectrum (Fig. 4.8b) and the graphite interatomic distance d D 1.42 Å, is equal to
0.077. Raising the temperature beyond graphitization, melting of graphite sheets
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Fig. 4.8 (a) The three-dimensional fcc lattice generated by the schwarzite (C36)2 (Image repro-
duced from Rosato et al. 1999, Copyright (1999) by the American Physical Society). (b) The
predicted topological phonon distribution at zero wavevector for a single element of the schwarzite
(C36)2 using adjacency matrix diagonalization

occurs. A simulation for graphene by Zakharchenko et al. (2011) gives a melting
temperature of 4,900 K, which would correspond, on the basis of Eq. (4.5), to
fc D 0.085, in good agreement with the Lindemann criterion for carbon materials.
In view of such a good correspondence for melting, this analysis provides therefore
a criterion for the graphitization transition of schwarzite structures, which can be
confidently fixed at fc D 0.077.

4.4.2 Topological Phonon Spectrum Versus Genus

It is interesting to compare the topological phonon spectrum for three isomeric
structures mapped on closed surfaces of different genus g, for example, a sphere
(g D 0), a one-handle torus (g D 1), and a two-handle torus (g D 2). A very simple
structure is a hypothetical fourfold coordinated molecule X20 with a single nearest-
neighbor force constant (Fig. 4.9). The topological phonon spectra for shear
displacements normal to the surface are shown in Fig. 4.10 for the three surfaces.
The observed trend is a compactification of the spectrum towards the higher
frequencies with increasing genus. Note that the three surfaces represent, in the
case of threefold coordination, the topology of fullerene, nanotubes, and the unit
cell of a squared planar schwarzite, respectively, the latter two with cyclic boundary
conditions.
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Fig. 4.9 Isomeric structures of a hypothetical fourfold coordinated molecule X20 mapped on
closed surfaces of different genus g: a sphere (g D 0), a one-handle torus (g D 1), and a two-handle
torus (g D 2)

Fig. 4.10 The topological phonon spectra for shear displacements normal to the surface for the
fourfold coordinated isomers shown in Fig. 4.9. The increasing genus of the tessellated surface
leads to a compactification of the spectrum towards higher frequencies with increasing genus

4.5 Planar Schwarzites

After the discovery of nanotubes (Iijima 1991), the prediction (Fig. 4.11, Spadoni
et al. 1997) and the experimental realization of X- and Y-shaped nanotube junctions
(Fig. 4.12b, Barborini et al. 2002; Fig. 4.12c, Satishkumar et al. 2000; Deepak et al.
2001) have been the object of an extensive investigation over a decade, with the aim
of fabricating electronic devices on the nanoscale (Bandaru et al. 2005).

A more ambitious goal is the construction of complex structures of potential
interest in nanoelectronics in one (linear schwarzites) and two dimensions (planar
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Fig. 4.11 (a) Illustration of formation of Y-shaped nanojunctions through the welding of a
nanotube at the knee of another nanotube and the replacement of two 5-membered rings
(yellow) with four (two per corner) 7-membered rings (Reproduced by Spadoni et al. 1997
doi:10.1209/epl/i1997-00346-7. Copyright (1997) by IOP Publishing). Y-shaped nanotubes have
been observed in both experiments (b) SCBD (Adapted with permission from Barborini et al.
2002. Copyright (2002), American Institute of Physics) and (c) pyrolysis; see also Satishkumar
et al. (2000) and Deepak et al. (2001)

Fig. 4.12 The plumber art of connecting elbow-shaped nanotubes (a) and T- (b) and Y-shaped (c)
nanotube junctions allows for the fabrication of complex 0-D (d), 1-D (b, e), and 2-D networks
(c) of potential use in nanoelectronics; 4-branched schwarzite elements (f) may be used for
the construction of either planar or D-type 3-D networks (Adapted from Chernozatonskii 1993.
Copyright (1993), with permission from Elsevier)

schwarzites) through the connection of nanotube segments, as envisaged in the
early works by Chernozatonskii (1993) and Spadoni et al. (1997) and following
experimental achievements by Terrones et al. (2002) and Romo-Herrera et al. (2007)
(Fig. 4.13).

On pure geometrical grounds, these architectures could in principle be obtained
also through a transformation of a graphene bilayer, where covalent bonds between
the two graphene sheets are formed so as to join them through a periodic array
of throats, in the manner illustrated in Fig. 4.14. The toll to be paid to topology

http://dx.doi.org/10.1209/epl/i1997-00346-7
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Fig. 4.13 The welding of nanotubes (a) (Adapted with permission from Romo-Herrera et al. 2007.
Copyright (2007) American Chemical Society) (From Terrones et al. 2002. © 2002 The American
Physical Society) allows in principle to engineer periodic 2-D schwarzitic networks (b) suitable
for nanoelectronics

Fig. 4.14 The transformation of a graphene bilayer into a planar schwarzite (C38)2: A ring of six
hexagons in the lower graphene sheet is transformed into a ring of six heptagons by inserting six
new (red) bonds. In this way a throat is formed with six new (red) hexagons and dangling bonds to
be saturated by the equivalent bonds of the specular upper portion. The smallest hexagonal array
of such connections has a unit cell (gray area) made of 19 � 2 atoms (green dots) (Reproduced
from De Corato et al. 2012, (https://www.novapublishers.com/catalog/product info.php?products
id=33851. Copyright (2012) by Nova Science Publishers))

is the formation of a suitable number of 7-membered rings – 12 per throat. The
smallest unit cell of this kind of planar graphite-like (G-type) schwarzites contains
just 12 heptagons with no hexagonal ring and has the formula (C14)2 (Fig. 4.15).

https://www.novapublishers.com/catalog/product_info.php?products_id=33851
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Fig. 4.15 Elements of the smallest G-type planar schwarzite (C14)2 exclusively made of 7-
membered rings. Two elements (A C B) form the unit cell of the periodic graphite-like lattice
(Reproduced from De Corato and Benedek 2012. Copyright @ 2012 World Scientific, New York)

The threefold symmetric C14 elements can be connected in various ways by nano-
tubular throats as, for example, in the planar schwarzites (C18)2 and (C26)2 depicted
in Fig. 4.16.

It should be noted that planar G-type schwarzites are all topologically equivalent,
independently of the length of the nanotube connectors, with the same number (12)
of 7-membered rings per unit cell. Due to the potential interest of planar schwarzites
in devices, the characterization of possible defective structures by means of
vibrational spectroscopies is rather important. The defect-induced modification of
the vibrational spectrum represents another convenient example of the application
of the topological phonon concept.
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Fig. 4.16 Graphs representing the planar schwarzites (C18)2 with one tubular neck per element and
(C26)2 with three necks per element. A similar planar schwarzite with two such necks per element
(not shown) has the formula (C22)2 (Reproduced from De Corato and Benedek 2012. Copyright
@ 2012 World Scientific, New York)

4.5.1 Vibrational Characterization of Perfect and Defective
Planar Schwarzites

Since infrared absorption and Raman vibrational spectroscopies only involve long-
wave phonons, the calculation of the zero-wavevector (Q D 0) topological phonons
for ideal and defective planar schwarzites should be sufficient for the characteriza-
tion of their general features. As regards the defects, the following configurations
have been considered: (a) the ideal planar schwarzite, (b) a single bond broken, (c) a
single bond stiffened, (c) the stiffening of all the three bonds of an atom, (d) a mass
defect, and (e) a vacancy. The calculated topological phonon spectra are shown in
Figs. 4.17, 4.18, and 4.19 for (C14)2, (C18)2, and (C26)2 and the five above defect
configurations.

The main vibrational spectral features of schwarzite surfaces depend on the
topological structure more than on their two-dimensional nature. In this respect the
calculation of the defect perturbation of the phonon density of states (DOS) based
on adjacency matrix approximation is sufficiently reliable as long as the general
features are concerned. A reason for this prevalence of the topological effects is
that the spectral perturbation mostly depends on the Hilbert transform of the bulk
densities projected onto the defect sites, that is, on the real parts of the projected
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Fig. 4.17 The topological vibrational spectra at zero wavevector of the smallest G-type planar
schwarzite (C14)2: (a) pure lattice, (b) one bond broken at a central atom, (c) one of the three force
constants connecting a central atom is doubled, (d) all three force constants of a central atom are
doubled, (e) the mass of a central atom is multiplied by 4, and (f) a vacancy at a central atom site
(Reproduced from De Corato and Benedek 2012. Copyright @ 2012 World Scientific, New York)
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Fig. 4.18 Same as in Fig. 4.17 for (C18)2 (Reproduced from De Corato and Benedek 2012.
Copyright @ 2012 World Scientific, New York)

Green’s functions: They are integral functions and essentially depend on the gross
features of the unperturbed spectra. In detail it appears that the stiffening of the
force constants leads to localized modes above the maximum frequency of the
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Fig. 4.19 Same as in Fig. 4.17 for (C26)2 (Reproduced from De Corato and Benedek 2012.
Copyright @ 2012 World Scientific, New York)

unperturbed spectrum (black triangles in Figs. 4.17, 4.18, and 4.19c, d), whereas
the break of bonds and the mass increase produce a general phonon softening, with
the emergence of resonances in the lower part of the spectrum (black triangles in
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Fig. 4.20 (C38)2 planar schwarzite: a top view of the lattice (a) and unit cell (b) (Reproduced from
De Corato et al. 2012, (https://www.novapublishers.com/catalog/productinfo.php?productsid=
33851. Copyright (2012) by Nova Science Publishers))

Figs. 4.17, 4.18e). In all structures there is a narrow gap around 32 THz, separating
the lower phonon band of shear vertical (ZO) modes from the upper longitudinal
(LO) and shear horizontal (SH) phonon bands. In some cases the local perturbation
causes the appearance of a gap mode, as, for example, for a vacancy in (C14)2

(Fig. 4.17f) or a mass increase perturbation in (C18)2 (Fig. 4.18e).
These few examples illustrate the optical vibrational spectra expected for this

class of graphene-like carbon nanostructures and the spectral modifications induced
by defects, or in general by any local structure which may occur, for example, in
functionalized sp2 carbon samples.

4.5.2 The Planar Schwarzite (C38)2

In addition to the proposed structure, we have fully investigated another type
of planar carbon schwarzite which has the standard nanotube connection and so
is the best candidate for experimental growth. Ab initio calculations have been
performed for this particular junction in order to investigate the geometry, the
electronic structure, and its phonon frequency distribution at gamma. The carbon
planar schwarzite like (C38)2 contains 12 hexagons and the canonical 12 heptagons
per element. As argued from the top view of the structure obtained from ab initio
calculations and of its unit cell (Fig. 4.20), there are short nanotubes made of six
hexagons connected by islands made of six heptagons each. These features reflect
in the band structure. The 2-D lattice is hexagonal within the layer group P6/mmm
(80); only five atoms are found to be independent by symmetry.

The calculations are based on Quantum ESPRESSO codes (Giannozzi et al.
2009) within the density functional theory, with a Perdew-Burke-Ernzerhof
exchange-correlation functional (Perdew et al. 1996), a ultrasoft pseudopotential

https://www.novapublishers.com/catalog/productinfo.php?productsid=33851
https://www.novapublishers.com/catalog/productinfo.php?productsid=33851
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Table 4.5 Ab initio cohesive
energy per atom of the planar
schwarzite (C38)2 with
respect to other
three-dimensional D-type
schwarzites and diamond

Structure
Cohesive energy
(eV/atom)

Conduction
properties

Planar (C38)2 7.91 Metal
D-type (C28)2 7.66 Metal
D-type (C36)2 7.71 Insulator
D-type (C40)2 7.92 Metal
D-type (C64)2 7.94 Metal
Diamond 8.36 Insulator

Gaito et al. (1998) and Spagnolatti et al. (2003)

Fig. 4.21 Electronic band structure (a) and density of states (DOS) (b) of the planar schwarzite
(C38)2. The zero energy corresponds to the Fermi level (EF)

(Vanderbilt 1990), a plane-wave expansion of Kohn-Sham orbitals up to the kinetic
cutoff of 30 Ry, and a charge-density cutoff up to 240 Ry. The integration over the
Brillouin Zone (BZ) has been performed over a 2 � 2 � 1 Monkhorst-Pack mesh
(Monkhorst and Pack 1976) corresponding to 2 k-points in the irreducible two-
dimensional wedge. The structure has been optimized by computing its equation
of state at zero temperature (energy per unit area) keeping a vacuum distance of
15 Å within the replicas in order to avoid their interaction. The optimized lattice
parameter turns out to be a D 10.82 Å. The calculated cohesive energy with respect
to that of diamond (Table 4.5) is consistent with previous calculations for three-
dimensional schwarzites (Gaito et al. 1998; Spagnolatti et al. 2003).

The planar schwarzite (C38)2, as appears from the calculated band structure along
high symmetry directions (Fig. 4.21a), is metallic. The band structure shows a
large number of flat bands due to the presence of heptagonal rings which break
conjugation. This peculiarity, similar to that of 3-D schwarzites (Spagnolatti et al.
2003), yields sharp peaks in the electronic density of states (Fig. 4.21b).
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Table 4.6 The five local
(first-order) Wiener indices
w
.1/
i of (C38)2 compared with

the respective bond lengths
from an ab initio calculation

Atom w.1/i

Average bond
length (Å) d1 (Å) d2 (Å) d3 (Å)

A 345 1.408 1.37 1.42 1.42
B 346 1.415 1.46 1.36 1.42
C 348 1.494 1.52 1.48 1.48
D 349 1.455 1.46 1.48 1.42
E 352 1.522 1.52 1.52 1.52

Topology, in particular graph theory, also allows predicting the relative stability
of isomers and single atoms. As explained in the next section, for sp2-bonded
structures, this goal can be achieved by using the Wiener index (Wiener 1947).
This topological index provides a stability hierarchy of various isomers in the sense
that, to a good approximation, the minimum value of the Wiener indices for various
isomeric structures indicates the most stable one. This topological approach has
been proven successful in the prediction, for example, of the most stable isomers of
the fullerene C66 (Vukicevic et al. 2011).

Also the stability hierarchy of single atoms can be established by the ordering
of local Wiener indices. Each independent atom has its particular local Wiener
index according to its topological position in the graph, and the best connected
atom is shown to give the minimum local Wiener index. On the contrary, the least
connected atom will provide the maximum local Wiener index. Due to symmetry,
only a limited number of independent atoms have different local Wiener indices. In
the case of (C38)2, there are only five independent atoms in the unit cell, indicated
by the letters A to E in Fig. 4.20b. The corresponding local Wiener indices are
reported in Table 4.6 and compared with the medium bond length obtained from
DFT calculations.

It appears from Table 4.6 that the most stable atom (A), having the shortest
average bond length, also has the minimum local Wiener index. Similarly the least
stable (E) atom with the longest bond lengths has the maximum local Wiener index.
The correspondence is however not so precise for the intermediate values. As seen in
the next section, the Wiener index is the simplest among various topological indices.
Better performances with respect to stability can be obtained with other indices like
higher-order Wiener and efficiency. In practice, the stability of single atoms is also
related to their chemical reactivity.

4.6 A Physical Basis for the Wiener Index

The physical meaning of the Wiener index for a conjugated sp2 carbon network
and its role in providing a stability hierarchy of isomers can be derived from a
tight-binding model for the   electron band structure. Although in the tight-binding
picture only nearest-neighbor (nn) matrix elements of the Hamiltonian and overlap
integrals between pz atomic orbitals are considered, conjugation effects are felt at
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large topological distances and contribute a long-range potential energy term which
depends on the isomer topology. The wavefunctions of the   electronic band are
written as linear combination of atomic orbitals:

 k.r/ D N�1=2
k

X
m

ekm'.r � rm/; (4.6)

where k labels the electronic states, m the atoms of the network at positions rm, and
ekm are the projections of the wavefunctions  k on the atomic orbitals '.r � rm/.
Normalization requires that

Nk �
X
l l 0

e�

klekl 0sl l 0 D 1C
X
lnl

	
e�

kleknl slnl C e�

knl
eklsnl l



; (4.7)

where

smm0 �
Z
d3r '�.r � rm/'.r � rm0/ D

8<
:
1 m0 D m

smnm m
0 D nn of m � nm

0 m0 ¤ m; nm

I (4.8)

index nm labels the three closest atoms of atom m. The contribution of the electron in
the state k to the expectation value of the energy Um(r) of an atom at a conventional
origin (m D 0) is written as

hU0ik D N�1
k

X
mm0

e�

kmekm0

Z
d3r '�.r � rm/U0.r/ '.r � rm0/: (4.9)

Although the matrix element in Eq. (4.9) is nonvanishing only for m0, m D 0, n0,
the above expression is a function of the atom positions at any distance rm from the
origin via the normalization factor. Its derivative with respect to rm for m ¤ 0, n0,
after some algebraic manipulation, is found to be

@hU0ik
@rm

D � N�1
k hU0ik

X
l l 0

e�

klekl 0.ıl 0m � ılm/”l l 0

C 2N�1
k Re

X
l

e�
kmekl

Z
d3r U0 .r/ � .r � rl /

@

@r
�� .r � rm/

� Fk;m0: (4.10)

where

”ll0 D �”�

l 0l D
8<
:

R
d3r

@'�.r � rl /
@r

'.r � rl 0/; l 0 D nl ;

0; l 0 ¤ nl ;
(4.11)



130 M. De Corato et al.

The vectors ”l 0l are nonvanishing only when l and l0 are nearest neighbor and are
directed along the ll0 bond. Consistently with the tight-binding approximation, the
integral term in Eq. (4.10) is hereafter neglected, since m ¤ 0,n0. Equation (4.10)
defines a nonvanishing long-range force Fk,m0 between atoms 0 and m acting due to
an electron in the k-th state of the  -band. The sum over all band states, †kFk,m0,
is null due to the completeness of coefficients ekl, but the sum restricted to the
occupied states of an unfilled band, like that required by conjugation, generally
yields a nonvanishing force, which we call conjugation force. On the other hand,
it is easily seen that the sum over the conjugation forces exerted by all atoms m on
atom 0 vanishes,†mFk,m0 D 0, as required by equilibrium.

We now search a potential for the conjugation forces. After neglecting the
integral term in Eq. (4.10), the latter can be rewritten as

@

@rm
ln hU0ik D � 2N�1

k Re
X
l

e�

kl ekm ”lm

D � 2N�1
k Re

"
e�

km

X
nm

eknm ”mnm

#
� �’kIm: (4.12)

For hU0ik a central potential, vector ’k;m, expressing the inverse of the conju-
gation potential range, points in the same direction as rm, as one can argue from a
careful inspection of Eqs. (4.10) and (4.11) when the wavefunctions '(r) refer to
pz states. However, it does not depend explicitly on the position of the atom m but
on the phase changes of the k-th wavefunction, associated to the products e�

kmeknm ,
between atom site m and its nearest neighbors nm. For a double bond between m and
one of its neighbors, e�

kmeknm is positive, whereas the other two single bonds starting
from m give a negative e�

kmeknm . Thus, the inverse-range vector ’k;m is in general
nonvanishing; it is however of order N�1, with N the number of atoms, due to the
normalization to unity of the coefficients ekm. It should be noted, however, that these
arguments are valid for threefold coordination and could fail, for example, for atoms
on the contour of the network. We assume that the contour effects are either removed
by periodic boundary conditions or neglected by considering a large number N of
atoms.

It is now convenient to consider the network of N atoms as made of s atomic
shells, each shell including the sj atoms which have the same topological distance
j from the origin atom (j D 0). Since the maximum topological distance normally
depends on the choice of the origin atom, s is defined as the maximum topological
distance in the given network. With these definitions, a sum over the atom index m
from 0 to N � 1 is replaced by a sum over the sj atoms belonging to the j-th shell
times the sum over the s C 1 shells (including the origin, j D 0, s0 D 1), that is, by a
sum over the indices (i,j):

N�1X
lD0

!
sX

jD0

sjX
iD1

: (4.13)
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With the prescription of a constant Nk referred to the equilibrium configuration, the
conjugation force Fk,m0 can be derived from the potential energy:

U
.c/

k .ri;j / DUk exp
��’kIi;j � .ri;j � ri;j�1/ � .j � 1/ˇkIi;j a

�
DUk exp

��jˇkIi;j a
�
; (4.14)

where index i has been conventionally used for the atom on each shell belonging to
the shortest topological path from atom 0 to atom m D (i,j). We have defined a as
the average interatomic distance and

ˇkI i;j � ’kI i;j � ri;j � ri;j�1
a

(4.15)

as the projections of the inverse-range vectors onto the bonds connecting atom
(i,j � 1) to atom (i,j). Uk is an integration constant which eventually needs to be
derived from ad hoc ab initio calculations and is expected to be negative (attractive),
similarly to tight-binding resonance integrals between nearest neighbors. A dimen-
sional argument requires Uk D o(N�2).

The total conjugation potential energy U0,N of atom 0 in an sp2 network of N
atoms is calculated by summing over all occupied electron states of the  -band and
all atoms m D (i,j):
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� Ň2

k

��

DU1 � w.1/0

0
@a

.occ/X
k

Uk Ň
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1
A � � � � ; (4.16)

where in the third row of Eq. (4.16), the inverse-range constants have been
substituted by their average Ň

k . It is this important approximation which allows
expressing the conjugation potential energy in terms of the local Wiener index of
order 1 for site 0

w.1/0 �
sX

jD0
j sj ; (4.17)
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of the local Wiener index of order 2 for site 0,

w.2/0 � 1

2

sX
jD0

j 2sj ; (4.18)

etc. Actually, the expansion to all orders of the exponent in Eq. (4.10) involves the
local Wiener index of order n for site 0

w.n/0 � 1

nŠ

sX
jD0

j nsj : (4.19)

One may also consider the exponential local Wiener index for site 0

w.exp/
0 �

X
n

.�1/nw.n/0 D
sX

jD0
sj e

�j : (4.20)

As regards the dependence on the network size, that is, on atom number N,
the sum

P.occ/
k Uk over the occupied states k is of order N�1 and the first term

in Eq. (4.16) tends to a constant U1 for N ! 1 which is independent of the
site. The Wiener index w.1/0 for a single site grows with the number of atoms as

N3/2, so that the term in Eq. (4.10) proportional to w.1/0 is of order N�1/2. Similarly

w.n/0 � o
�
N1Cn=2=nŠ

�
and therefore the corresponding term in the expansion of Eq.

(4.16) is of order N�n/2/n!
Since Uk < 0 and Ň

k > 0, Eq. (4.10) tells that, for a sufficiently large N so
that only the Wiener index of order 1 is retained in the expansion, the network
site 0 which gives a minimum of the conjugation potential energy corresponds to a
minimum in the local Wiener indexw.1/0 . For small atom numbers N the local higher-

order Wiener indices may not be negligible and deviations from the minimum-w.1/0
rule may occur. The sum over all sites gives the total conjugation potential energy:
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N D NU1 �W .1/
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where

W .1/ D 1

2

N�1X
hD0

w.1/h ; W .2/ D 1

2

N�1X
hD0

w.2/h ; : : : : (4.22)

are the Wiener indices of order 1, 2, : : : of the network. The factor ½ is needed to
avoid double counting of the interaction terms. In the first-order approximation,
the minimum of the Wiener index of order 1 indicates the most stable isomer.
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Moreover, it is convenient to define the topological efficiency index � as follows
(Ori et al. 2009):

� D W .1/

Nw.1/min

; (4.23)

where w.1/min is the minimum of the local Wiener indices w.1/h . In case all sites are
equivalent (as, e.g., for the icosahedral isomer of C60) so as to give the same local
Wiener index, it is �D 1. In any other isomer with inequivalent sites, that is, with
a lower symmetry, it is �> 1, its departure from unity being a measure of a lower
topological efficiency.

Within this approach also physical properties directly related to the energy U0,N

can in principle be expanded with the respect to the Wiener indices of increasing
order, similarly to Eq. (4.16). Among these properties of fundamental importance
are the electronegativity � and chemical hardness �, which are its first- and second-
order functional derivatives of the total energy with respect to the electron density,
respectively (see Chap. 9). Actually the present approach leads with a novel way
in re-defining the so called intrinsic framework electronegativity (Genechten et al.
1987) and chemical hardness, which can be written as

�W D †kXkW
.k/; (4.24)

�W D †kHkW
.k/; (4.25)

where Xk and Hk are suitable coefficients to be determined from the functional
derivation of the conjugation energy expressed by Eq. (4.16). Similar expressions
can be obtained for the respective local quantities in terms of the local Wiener
indices of increasing order, thus providing an analytical route to the coloring
procedure (see Chap. 9). The minimal properties, illustrated for the Wiener indices
and topological indicators like the topological efficiency index �, reflect also on the
derived properties, providing fruitful routes for assessing stability (e.g., minimum
topological electronegativity �W and maximum topological chemical hardness
�W ) or reactivity (max �W , min �W ). They work as abstract chemical reactivity
principles (Putz 2010, 2011) among various nano-isomers based on topo-chemical
reactivity.

4.7 Conclusions

It has been shown that sp2-bonded extended systems host an infinite-range interac-
tion associated with conjugation. This global property dominates in many respects
over local features so as to make the general topological characteristics of the struc-
ture, such as the genus of the supporting surface, the eigenvalues and eigenvectors

http://dx.doi.org/10.1007/307785_1_En_9
http://dx.doi.org/10.1007/307785_1_En_9
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of the adjacency matrix, the total and local Wiener indices, and the topological
efficiency of the corresponding graph, sufficient to estimate many general physical
properties such as global and local stability. It is shown elsewhere in this book
(Putz et al., Chap. 9) that also local chemical properties such as the chemical
potential, chemical hardness, and reactivity can be referred to local topological
properties. Topological intrinsic defects in sp2-carbon structures can as well be
characterized by topological indices as far as their stability and thermodynamic
probability are concerned. Besides establishing a stability hierarchy of isomers,
which is relevant to the configurational entropy of the structure, the topological
approach also allows to approximately determine the vibrational contribution to the
thermodynamic functions through the diagonalization of the adjacency matrix. The
discussion presented in Sect. 4.5 on physical meaning of the stability criteria based
on topological indices also warns about the limitations of these indices when applied
to small systems. Higher-order Wiener indices may be necessary for a more precise
and predictive analysis of isomer stability. Neither this convergence issue nor the
effectiveness of the local exponential Wiener index has been so far investigated in
comparison with first-principle calculation of the electronic structure. In view of
the enormous potential of the topological approach and its numerical applications
in disentangling relevant physical properties of complex structures, it is hoped that
this chapter will stimulate further studies in this direction.
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