
Chapter 16
Enumeration of Hetero-molecules by Using
Pólya Theorem

Modjtaba Ghorbani

Abstract A fullerene is any molecule composed entirely of carbon, in the form of
a hollow sphere, ellipsoid, or tube. Spherical fullerenes are also called buckyballs
and cylindrical ones are called carbon nanotubes or buckytubes. Fullerenes are
similar in structure to graphite, which is composed of stacked graphene sheets of
linked hexagonal rings; but they may also contain pentagonal rings. Enumeration
of chemical compounds has been accomplished by various methods. The Polya-
Redfield theorem has been a standard method for combinatorial enumerations
of graphs, polyhedra, chemical compounds, and so forth. Hetero-fullerenes are
fullerene molecules in which one or more carbon atoms are replaced by heteroatoms
such as boron or nitrogen. In this chapter, by using the Pólya’s theorem, we compute
the number of permutational isomers of some fullerene graphs.

16.1 Introduction

In this chapter, we introduce some notations which will be kept throughout. A graph
is a collection of points and lines connecting them. The points and lines of a graph
are also called vertices and edges, respectively. If e is an edge of � , connecting
the vertices u and v, then we write e D uv and say “u and v are adjacent.” A
connected graph is a graph such that there exists a path between all pairs of vertices.
A molecular graph is a simple graph such that its vertices correspond to the atoms
and the edges to the bonds. Note that hydrogen atoms are often omitted.

Group is a set of elements which satisfy the following properties (Trinajstić
1992):
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1. There is an identity element, e, so that a�e D a for any a belonging to the group.
2. The product of two elements is also member of the group, that is, if a and b

belong to the group, then a�b will also be a member of the group. It means the
group is closed under the given operation.

3. Every element has its inverse as the member of the group, that is, if a belongs to
the group, then a�1 also belongs to the group. If a�b D e, it means a is the inverse
of b and vise versa.

4. Group members obey the associative law, that is, a(b�c) D (a�b)c.

The order of a group is defined as the member of elements present in the
group. The element of a group can be several things as you define them. It can be
integers, vectors, matrices, symmetry operations (elements), etc. One has to define
the operation which goes on in the group which can be several things like addition,
multiplication, and symmetry operations. They are smaller groups present in the
group. They obey all the rules of a group. Their order must divide the order of
the group. That is, if you have a group of order seven, then you cannot have any
subgroup except a subgroup of order 1 that contains identity only. Similarly, if
you have a group of order 12, you should not waste your time in looking for a
subgroup of order 5, 7, 8, 9, 10, and 11. Remember there is always a subgroup of
order 1. An Abelian group is a group in which every element commutes with every
other element, that is, a�b D b�a for every a and b. Cyclic group is a group which
is generated by a single element called generator. In other words, if G be a cyclic
group, then there is an element g in G where, G D fg, g2, : : : , gn D 1g. The order of
this group is n.

A group can be divided in several classes, also called conjugacy classes. The
importance of classes will be clear in our later studies. It is time consuming to
find out all classes. Choose any element, and perform the so-called similarity
transformation, that is, compute x�1ax, where x and a belong to the group. For each
a, perform this computation with x being all members of the group.

Symmetry plays a central role in the analysis of the structure, bonding, and spec-
troscopy of molecules. Chemists classify molecules according to their symmetry.
The collection of symmetry elements present in a molecule forms a group, typically
called a point group. Since all the symmetry elements (points, lines, and planes) will
intersect at a single point, so we name it as point group. The symmetry properties
of objects (and molecules) may be described in terms of the presence of certain
symmetry elements and their associated symmetry operations. Symmetry elements
are properties which are related to the structure of the molecule. They include
mirror planes, axes of rotation, centers of inversion, and improper axes of rotation
(an improper axis of rotation is a rotation followed by a reflection perpendicular
to the rotational axis). Symmetry operations are actions which places the molecule
in an orientation which appears to be identical to its initial orientation. Symmetry
operations include rotation, reflection, inversion, rotation followed by reflection, and
identity. The identity operation simply leaves the molecule where it is. All molecules
have the identity operation. Certain physical properties of molecules are clearly
linked to molecular symmetry. Molecules which are symmetrically bonded to the
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same elements will not be polar, due to the canceling dipole moments. Likewise,
chirality (left or right handedness) is clearly a symmetry property. Chirality can only
be present in molecules which lack an improper axis or rotation. Molecules with a
center of inversion or a mirror plane cannot be chiral. The symmetry properties of
molecules are tabulated on character tables. A character table lists the symmetry
elements of the point group, along with characters which are consistent with the
different symmetry operations of the group. The table characterizes how various
atomic properties (the symmetry of atomic orbitals, rotations about axes, etc.) are
transformed by the symmetry operations of the group.

Character of a symmetry element will be defined as the sum of the diagonal
elements in the matrix representing the element. Mathematically, it turns out that
representations of a group can be expressed in terms of these characters.

Detecting symmetry of molecules is a well-studied problem with applications
in a large number of areas. Randić (1974, 1976) and then Balasubramanian (1980)
considered the Euclidean matrix of a chemical graph to find its symmetry. Here the
Euclidean matrix of a molecular graph � is a matrix D(�) D [dij], where for i ¤ j, dij

is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as
zero if all the nuclei are equivalent. Otherwise, one may introduce different weights
for different nuclei.

Suppose � is a permutation on n atoms of the molecule under consideration.
Then the permutation matrix P� is defined as P� D [xij], where xij D 1 if i D �(j) and
0 otherwise. It is easy to see that P� P� D P�� , for any two permutations � and �

on n objects, and so, the set of all n � n permutation matrices is a group isomorphic
to the symmetric group Sn on n symbols. It is a well-known fact that a permutation
� of the vertices of a graph � belongs to its automorphism group if it satisfies
P¢

tAP� D A, where A is the adjacency matrix of � . So, for computing the symmetry
of a molecule, it is sufficient to solve the matrix equation PtEP D E, where E is the
Euclidean matrix of the molecule under consideration and P varies on the set of all
permutation matrices with the same dimension as E.

16.2 Main Results and Discussion

Groups are often used to describe symmetries of objects. This is formalized by the
notion of a group action. Let G be a group and X a nonempty set. An action of G
on X is denoted by GX and X is called a G-set. It induces a group homomorphism '

from G into the symmetric group SX on X, where '(g)x D gx for all x 2 X. The orbit
of x will be denoted by Gx and defines as the set of all '(g)x, g 2 G. The set of all
G-orbits will be denoted by GnnX: D fGx j x 2 Xg. Suppose g is a permutation of
n symbols with exactly �1 orbits of size 1, �2 orbits of size 2, : : : , and �n orbits of
size n. Then the cycle type of g is defined as 1�12�2 ; : : : ; n�n :

A mathematician, namely, Arthur Cayley, has been studying the combinatorial
enumeration of rooted trees as models. Pólya’s theorem has been widely applied
to chemical combinatorics to enumerate objects. In this chapter we will show how
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Fig. 16.1 Two
indistinguishable colorings

Fig. 16.2 The six distinguishable colorings

Pólya theory can be used in counting objects, which is often the design basis for
statistical tests. In other words, Pólya theory determines the number of distinct
equivalence classes of objects. It can also give counts for specific types of patterns
within equivalence classes.

Example 16.1 As an example, let us consider the number of ways of assigning one
of the colors red or white to each corner of a square. Since there are two colors and
four corners, there are basically 24 D 16 possibilities. But when we take account of
the symmetry of the square, we see that some of the possibilities are essentially the
same. For example, the first coloring as in Fig. 16.1 is the same as the second one
after rotation through 180ı.

From above, we regard two colorings as being indistinguishable if one is
transformed into the other by symmetry of the square. It is easy to find the
distinguishable colorings (in this example) by trial and error: there are just six of
them, as shown in the Fig. 16.2.

Now consider an n bead necklace. Let each corner of it be colored red or blue.
How many different colorings are there? One could argue for 2n. For example, if
n D 4 and the corners are numbered 0,1,2,3 in clockwise order around the necklace,
then there are only 6 ways of coloring the necklace RRRR, BBBB, RRRB, RBBB,
RRBB, and RBRB; see Fig. 16.3.

16.2.1 Pólya’s Theorem

We now introduce the notion of cycle index. Let G be a permutation group.
The cycle index of G acting on X is the polynomial Z(G, X) over Q
in terms of indeterminates x1, x2, : : : ,xt, t D jXj, defined by Z .G; X/ D
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Fig. 16.3 Distinguish
colorings of four bead
necklace

.1=jGj/ P
p2G

Qt
iD1 x

ci .p/
i in which (c1(p), : : : ,ct(p)) is the cycle type of

the permutation p 2 G. The generalized character cycle index is defined as
P

�
G .x1; x2; : : : ; xt / D .1=jGj/ P

p2G

Qt
iD1 �.p/x

ci .p/
i , where �(g) is the linear

character of the irreducible representation of G. In this chapter, we use two special
cases: one is the antisymmetric representation, that is,

�.g/ D
�

1 if g is a proper rotation
�1 if g is an improper rotation

;

and the other when � is 1 for all g. Since, all elements of a conjugacy class of a
permutation group have the same cycle type, so the cycle index and the generalized
character cycle index can be rephrased in the following way:

Z .G; x1; : : : ; xt / D 1

jGj
X

C 2Conj.G/

jC j
tY

iD1

x
ci .gC /

i

P
�
G .x1; : : : ; xt / D 1

jGj
X

C 2Conj.G/

jC j
tY

iD1

� .gc/ x
ci .gC /

i :

Denote by Cm,n the set of all functions f : f1, 2, : : : , mg ! fx1, x2, : : : , xng. The
action of p 2 Sm induced on Cm,n is defined by Op.f / D fop�1, f 2 Cm,n. Treating
the colors x1, x2, : : : , xn that comprise the range of f 2 Cm,n as independent variables,
the weight of f is W.f / D Qm

iD1 f .i/. Evidently, W(f ) is a monomial of (total)
degree m. Suppose G is a permutation group of degree m, OG D f Op W p 2 Gg, Op is
as defined above. Let p1, p2, : : : , pt be representatives of the distinct orbits of OG.
The weight of pi is the common value of W(f ), f 2 pi. The sum of the weights of the
orbits is the pattern inventory WG .x1; x2; : : : ; xn/ D Pt

iD1 W.pi/.
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Theorem 16.2 (Pólya’s theorem (Pólya and Read 1987)) If G is a subgroup of
Sm, the symmetry group on m symbols, then the pattern inventory for the orbits
of Cm,n modula OG is

WG .x1; x2; : : : ; xn/ D 1

jGj
X

p2G

M
C1.p/
1 M

C2.p/
2 : : : M Cm.p/

m ;

where Mk D x1
k C x2

k C : : : C xn
k is the kth power sum of the x’s.

Theorem 16.3 (Generalization of Pólya’s theorem (Zhang et al. 1998)) Substitut-
ing Mi for xi and in the generalized character cycle index, i D 1, 2, : : : , t, we get the
chiral generating function CGF D P

�
G .M1; : : : ; Mk/.

16.2.2 Fullerene Graphs

In the past years, nanostructures involving carbon have been the focus of an intense
research activity which is driven to a large extent by the quest for new materials
with specific applications. Fullerene is one of the main objects of nanostructures.
A fullerene is any molecule composed entirely of carbon, in the form of a hollow
sphere, ellipsoid, or tube. Spherical fullerenes are also called buckyballs and
cylindrical ones are called carbon nanotubes or buckytubes. Fullerenes are similar
in structure to graphite, which is composed of stacked graphene sheets of linked
hexagonal rings; but they may also contain pentagonal rings. The fullerene era was
started in 1985 with the discovery of a stable C60 cluster and its interpretation as a
cage structure with the familiar shape of a soccer ball, by Kroto and his coauthors
(Kroto et al. 1985, 1993). The well-known fullerene, the C60 molecule, is a closed-
cage carbon molecule with three-coordinate carbon atoms tiling the spherical
or nearly spherical surface with a truncated icosahedral structure formed by 20
hexagonal and 12 pentagonal rings. Let p, h, n, and m be the number of pentagons,
hexagons, carbon atoms, and bonds between them, in a given fullerene F. Since
each atom lies in exactly three faces and each edge lies in two faces, the number of
atoms is n D (5p C 6 h)/3, the number of edges is m D (5p C 6 h)/2 D 3/2n, and the
number of faces is f D p C h. By the Euler’s formula n � m C f D 2, one can deduce
that (5p C 6 h)/3 – (5p C 6 h)/2 C p C h D 2, and therefore, p D 12, v D 2 h C 20, and
e D 3 h C 30. This implies that such molecules made up entirely of n carbon atoms
and are having 12 pentagonal and (n/2 � 10) hexagonal faces, where n ¤ 22 is
a natural number equal or greater than 20; see Fig. 16.4. Hetero-fullerenes are
fullerene molecules in which one or more carbon atoms are replaced by heteroatoms
such as boron or nitrogen, whose formation is a kind of “on-ball” doping of the
fullerene cage; see Fig. 16.5.

To enumerate all possibilities of the hetero-fullerene structures, we have to
consider the rotation group of the fullerene and its whole automorphism group to
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Fig. 16.4 3-D graph of
fullerene C20

Fig. 16.5 3-D graph of
hetero-fullerene C16Br4

enumerate the number of chiral isomers. Fripertinger (Fripertinger 1996) computed
the symmetry of some fullerenes and then applied SYMMETRICA to calculate the
number of C60HkCl60�k molecules, and Balasubramanian computed the number of
C60H36 isomers. (Zhang et al. 1998), for calculating the possibilities of different
positional isomers, used the Pólya’s counting theorem. He also applied the general-
ization of the Pólya’s theorem to compute the number of chiral isomers.

Balasubramanian (1981, 1984, 1995a, b, 2004a, b) has done a lot of work on
methods for isomer counting of hetero-fullerenes and of poly-substituted fullerenes,
especially, using the generalized character cycle index. Mathematically the isomer
counting of poly-substituted fullerene is essentially the same as that of hetero-
fullerene. Shao and Jiang (1995) discussed hydrogenated C60. Furthermore, (Zhang
et al. 1998) also studied the fullerene cages. In Ghorbani et al. (2006a, b, 2009,
2011, 2012), Ashrafi and Ghorbani (2010) and Faghani and Ghorbani (2011), the
number of permutational isomers of some classes of hetero-fullerenes is computed.
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5 61 2 3 4Fig. 16.6 2-D graph of
zigzag nanotube Tz[6, p], for
p D 5 and its Clar structures

Fig. 16.7 Caps B

16.2.3 Construction of Infinite Classes of Fullerenes

In Ghorbani et al. (2011), a method is described to obtain a fullerene graph from
a zigzag or armchair nanotubes. Here by continuing his method, we construct an
infinite class of fullerenes. Denoted by TZ[q, p] means a zigzag nanotube with p
rows and q columns of hexagons; see Fig. 16.6. Combining a nanotube TZ[6, p]
with two copies of caps B (Fig. 16.7) as shown in Fig. 16.8, the resulted graph is a
non-IPR fullerene, which has 12p vertices and 6p – 10 hexagonal faces.

Now, combine a nanotube TZ[5, p] (Fig. 16.9) with two copies of caps C
(Fig. 16.10) as shown in Fig. 16.11. The resulted graph is a non-IPR fullerene, which
has 10p vertices and 5p – 10 hexagonal faces.

Finally, we can construct a fullerene with 12n C 30 vertices (Fig. 16.12), by
combining a TZ[6, p] nanotube and two caps E (see Fig. 16.13) added to its inside
and its outside. In this chapter, we will construct some infinite classes of fullerene
graphs and then compute the number of their chiral isomers.
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Fig. 16.8 Fullerene C12p constructed by combining two copies of caps B and the zigzag nanotube
TZ[6, p]

51 2 3 4Fig. 16.9 2-D graph of
zigzag nanotube Tz[6, p], for
p D 5 and its Clar structures

Fig. 16.10 Caps C

Fig. 16.11 Fullerene C10p constructed by combining two copies of caps C and the zigzag nanotube
TZ[5, p]
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Fig. 16.12 2-D graph of
fullerene C12nC30

Fig. 16.13 Caps E

16.2.4 Leapfrog Fullerenes

A method (Fowler et al. 1986, 1987) has been described on how to construct a
fullerene C3n from a fullerene Cn having the same or even a bigger symmetry
group as Cn. This method is called the Leapfrog principle. If one starts with a
Cn cluster with icosahedral symmetry, all the new clusters will be of the same
symmetry, since this is the biggest symmetry group in 3-dimensional space. In
the first step, an extra vertex has to be put into the center of each face of Cn.
Then, these new vertices have to be connected with all the vertices surrounding
the corresponding face. Then, the dual polyhedron is again a fullerene having 3n
vertices, 12 pentagonal, and (3n/2) – 10 hexagonal faces. From Fig. 16.14, it can be
seen that Le(C20) D C60.
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Fig. 16.14 The fullerene C20 (a) and Le(C20) (b)

16.3 Enumeration of Nanostructures

Enumeration of chemical compounds has been accomplished by various methods.
The Polya-Redfield theorem has been a standard method for combinatorial enu-
merations of graphs, polyhedra, chemical compounds, and so forth. Combinatorial
enumerations have found a wide-ranging application in chemistry, since chemical
structural formulas can be regarded as graphs or three-dimensional objects. The
aim of this section is to enumerate the number of permutational isomers of hetero-
fullerenes, see Appendix 16.B.

16.3.1 Hetero-Fullerenes with Small Number of Vertices

To demonstrate our method, we should compute the number of permutational
isomers of some well-known fullerenes. In this section, we enumerate hetero-
fullerenes Cn�kBk for n D 24, 80, 84, and 150. Consider at first the molecular graph
of the fullerene C24, shown in Fig. 16.15. In Ghorbani et al. (2006b), the symmetry
group of C24 is computed, and it is isomorphic with the group Z2 � S4. So, we have
the following theorem without proof:

Theorem 16.4

Z.C24; X/ D x24
1 C 16x12

2 C 8x8
3 C 12x6

4 C 8x4
6 C 3x8

1x8
2

48
:

Consider now the molecular graph of the fullerene C80, Fig. 16.16. We have the
following theorem:
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Fig. 16.15 3-D graph of
fullerene C24

Fig. 16.16 3-D graph of fullerene C80

Theorem 16.5

Z.C80; X/ D x80
1 C 4x16

5 C 6x40
2 C 4x8

10 C 5x4
1x38

2

20
:
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Fig. 16.17 2-D graph of fullerene C84

Proof By using concept of symmetry, one can see that the generators of fullerene
graph C80 are as follows:

X:D (2,16)(4,14)(5,18)(6,17)(7,20)(8,19)(9,36)(10,35)(11,34)(12,33)(13,49)(15,
51)(21,24)(22,23)(25,37)(26,52)(27,39)(28,50)(29,54)(30,53)(31,56)(32,55)(38,40)
(41,42)(43,44)(45,60)(46,59)(47,58)(48,57)(62,67)(63,66)(65,77)(68,80)(69,73)(70,
79)(71,78)(72,76)(74,75);

Y:D(1,65)(2,66)(3,68)(4,67)(5,48)(6,45)(7,46)(8,47)(9,42)(10,43)(11,44)(12,41)
(13,69)(14,70)(15,72)(16,71)(17,36)(18,33)(19,34)(20,35)(21,30)(22,31)(23,32)(24,
29)(25,73)(26,74)(27,76)(28,75)(37,77)(38,78)(39,80)(40,79)(49,61)(50,62)(51,64)
(52,63)(53,60)(54,57)(55,58)(56,59).

By using GAP (The GAP Team 1995) program, one can see that X2 D Y2 D (XY)10

D 1 and X�1(XY)X D (XY)�1, and so, this symmetry group is isomorphic with a
dihedral group of order 20, namely, D20. Now by using definition of the cycle index,
the proof is completed, see Appendix 16.A.

In continuing consider the molecular graph of fullerene C84, Fig. 16.17. We prove
that the symmetry group of the C84 fullerene is isomorphic to the group S4. To do
this, suppose G is the symmetry group of this fullerene. Then G D hX; Y i, where
X and Y are the following permutations:

X D (1, 2)(3, 4)(5, 8) (6,80) (7,81) (9,18) (10,19) (11,20) (12,78) (14,83) (15,82)
(17,84)(21,54)(22,77)(23,55)(24,79)(25,76)(26,27)(28,59)(29,60)(30,57)(31,58)(32,
66)(33,70)(34,72)(35,67)(36,64)(37,65)(38,74)(39,73)(40,75)(41,56)(42,51)(43,53)
(44,52)(45,48) (46,49)(47,50)(61,71)(62,63)(68,69),
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Fig. 16.18 3-D graph of fullerene C150

Y D (1,76,31,69) (2,59,30,40) (3,79,28,68) (4,58,29,39) (5,51,35,17) (6,84,49,66)
(7,83,48,65) (8,80,41,71) (9,77,42,61) (10,78,43,62) (11,81,44,63) (12,82,45,64)
(13,55,27,33) (14,20,53,36) (15,19,52,37) (16,54,26,34) (18,56,32,38) (21,72,23,70)
(22,74,46,67)(24,73,50,57)(25,75,47,60).

By using GAP software one can see that this group is isomorphic with S4. Thus,
the cycle index of G is as follows:

Theorem16. 6

Z.C84; X/ D .x84
1 C 3x42

2 C 8x28
3 C 6x21

4 C 6x2
1x41

2 /

24
:

Proof By means of group action, one can see that the number of conjugacy classes
of symmetric group S4, on the set of vertices of C84, is 5. The cycle types of its
elements are 184, 242, 328, 421, and 12241, respectively. This completes the proof.

Now consider the molecular graph of the fullerene C150, Fig. 16.18. In Ghorbani
et al. (2006b), the symmetry group of C150 is computed, and it is isomorphic with
dihedral group D20. On the other hand, the 3-dimensional cycle index of C150 is
computed, and so, we have
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Fig. 16.19 The Schlegel diagram of C10n

Theorem 16.7

Z.C150; X/ D
�
x150

1 C 5x75
2 C 4x30

5 C 5x8
1x71

2 C 4x2
5x14

10 C x10
1 x70

2

�

20
:

16.3.2 Enumeration of Infinite Classes of Hetero-fullerenes

In this section, we enumerate the number of infinite families of hetero-fullerenes,
namely, C10n, C12n, C12nC6, C24n, and C40n fullerenes. Many properties of these
classes of fullerenes are studied in Fowler et al. (1995, 2007), Ashrafi et al. (2008a,
b, c, 2009), Ashrafi and Ghorbani (2010), Ghorbani (2011, 2012), Ghorbani and
Naserpour (2011) and Ghorbani and Ashrafi (2012).

16.3.2.1 C10n Fullerene

This class of fullerenes has exactly 10n carbon atoms (n � 2). That’s why we denote
this class of fullerenes by C10n; see Fig. 16.19. The first member of this class
of fullerenes can be obtained by putting n D 2, for example, C20. Our problem is
reduced to the coloring of the corresponding fullerene graph with 10n vertices. By
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considering a labeling of its vertices as we did in Fig. 16.19, it is easy to see that the
generators of this group are

� D .2; 5/.3; 4/.6; 10/.7; 9/.11; 15/.12; 14/ : : : .10n � 4; 10n/.10n � 3; 10n � 1/;

� D .1; 10n � 4; 2; 10n � 3; 3; 10n � 2; 4; 10n � 1; 5; 10n/ : : :

.7; 10n � 6; 9; 10n � 14; 11; 10n � 12; 13; 10n � 10; 15; 10n � 8/;

where � fixes elements 1, 8, 19, 30, : : : , 11i � 3, 11i C 2, : : : , 10n � 2, i D 1,2, : : : ,
n � 1 and � does not have fixed points.

Since �2 D �10 D identity and ��1�� D ��1, the symmetry group G of these
fullerenes is isomorphic to the dihedral group of order 20. In the following table
the cycle types of elements of G are computed:

Fullerene Cycle type #Permutations

C10n 110n# 1#
12n24n# 5#
52n 4#
25n 6#
10n 4

Thus, the cycle index of G is computed as

Z.G; X/ D x10n
1 C 5x2n

1 x4n
2 C 42n

5 C 6x5n
2 C 4xn

10

20
:

16.3.2.2 C12n Fullerene

Now consider the graph of fullerene C12n (n � 2), Fig. 16.20. This class of fullerenes
has exactly 12n carbon atoms, and the first member of this class of fullerenes can
be obtained by putting n D 2, for example, C24. Again our problem is reduced to
the coloring of the corresponding fullerene graph with 12n vertices. By using the
labeling of its vertices, similar to the last example, one can see that the generators
of this group are as follows:

� D .1; 12n � 5/.2; 12n � 4/.3; 12n � 3/ : : : .12n � 24; 12n � 18/

� .12n � 22; 12n � 19/.12n � 21; 12n � 20/;

� D .1; 12n � 5; 2; 12n; 3; 12n � 1; 4; 12n � 2; 5; 12n � 3; 6; 12n � 4/ : : :

� .12n � 29; 12n � 25; 12n � 26; 12n � 18; 12n � 20; 12n � 19; 12n � 22;

� 12n � 21; 12n � 24; 12n � 23; 12n � 28; 12n � 27/:

Since �2 D �10 D identity and ��1�� D ��1, the symmetry group G of these
fullerenes is isomorphic to the dihedral group of order 24. In the following table,
the cycle types of elements of G are computed:
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Fig. 16.20 The Schlegel diagram of C12n

Fullerene Cycle type #Permutations

C12n 120n 1
12n29n 5
210n 6
102n 4
54n 4

Thus, the cycle index of G is

Z.G; X/ D x1
12n C 6x1

2nx2
5n C 2x6

2n C 2x3
4n C 7x2

6n C 4x12
n C 2x4

3n

24
:
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Fig. 16.21 2-D and 3-D graphs of fullerene C12nC6, for n D 3

Fig. 16.22 Labeling of fullerene C30

16.3.2.3 C12nC6 Fullerene

In this section consider a fullerene graph C12nC6 (n � 2) with 12n C 6 carbon atoms,
Fig. 16.21. As we know from the last discussions, our problem is reduced to the
coloring of the corresponding fullerene graph with 12n C 6 vertices. Consider the
labeling of the molecular graph C12n C 6, as depicted in Fig. 16.22. The generators of
its symmetry group will be indicated by a and b, whereas a stands for a reflection.
In the first step, we consider the labeling of vertices of the fullerene C30 (the first
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member of this class) indicated in Fig. 16.12. The permutation representation of
generators of symmetry group acting on the set of vertices is given by

a WD .29; 30/ .9; 14/ .10; 13/ .6; 11/ .5; 12/ .1; 2/ .22; 15/ .21; 16/ .19; 24/ .26; 27/

.20; 23/ .3; 4/ .25; 28/ I
b WD .26; 30/ .10; 23/ .5; 22/ .6; 21/ .7; 17/ .8; 18/ .9; 24/ .11; 16/ .12; 15/ .14; 19/

.13; 20/ .27; 29/ :

The generators satisfy in the following relations:

a2 D b2 D 1 and ab D ba:

This implies that the symmetry group of fullerene C30 is isomorphic with Abelian
group Z2 � Z2. So its cycle index is as follows:

Z .C30; X/ D x30
1 C x6

1x12
2 C x4

1x13
2 C 4x15

2

4
:

By using GAP [37], one can see that the symmetry group of C12nC6 fullerenes
has two generators a, b of order 2, satisfying in the following relations:

a2 D b2 D 1 and ab D ba:

Further, this group is isomorphic to the Abelian group Z2 � Z2 of order 4, and the
cycle types of elements of S are as in the following table:

Fullerene Cycle type #Permutations

C12nC6 112nC6# 1#
1426nC1 1
1626n 1
26nC3 1

Thus, the cycle index of symmetry group is computed as

Z.G; S/ D x12nC6
1 C x4

1x6nC1
2 C x6

1x6n
2 C x6nC3

2

4
:

16.3.2.4 C24n Fullerene

In this section we enumerate the number of hetero-fullerenes C24n (n � 3),
Fig. 16.23. The first member of this family of fullerenes is C72, obtained by putting
n D 3. By considering the molecular graph of the fullerene C24n, one can see that
the generators of its symmetry group will be indicated by a and b, whereas a stands
for a reflection. In the first step, consider the labeling of vertices of the fullerene
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Fig. 16.23 2-D and 3-D graphs of fullerene C24n, for n D 3

Fig. 16.24 Labeling of
fullerene C72

C72 as is indicated in Fig. 16.24, the permutation representation of generators of
symmetry group S acting on the set of vertices is given by

a: D (1,28,31,54,43,64,50,56,39,30,13,25)(2,24,10,44,51,70,59,65,49,37,16,21)
(3,9,32,52,60,69,68,66,48,27,19,17)(4,23,42,61,62,72,67,57,38,22,14,8)(5,34,41,63,
53,71,58,47,20,26,7,18)(6,35,11,45,33,55,40,46,15,36,12,29);

b:D(1,25)(2,18)(3,8)(4,17)(5,21)(6,29)(7,24)(9,14)(10,26)(11,36)(12,35)(13,28)
(15,45)(16,34)(19,23)(20,44)(22,32)(27,42)(30,31)(33,46)(37,41)(38,52)(39,54)(40,
55)(43,56)(47,51)(48,61) (49,63)(50,64)(53,65)(57,60)(58,70)(59,71)(62,66)(67,69)
(68,72).
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The generators satisfy in the following relations:

a12 D b2 D 1 and bab D a11 D a�1:

This implies that the symmetry group of fullerene C72 is isomorphic with dihedral
group D24. However, by using GAP, one can see that the symmetry group of this
family of fullerenes is isomorphic to the dihedral group D24 of order 24, and the
cycle types of elements of S are as in the following table:

Fullerene Cycle type #Permutations

C24n 124n# 1#
14212n�2 6
212n 7
38n 2
46n 2
64n 2
122n 4

Thus, the cycle index of symmetry group S is computed as

Z.G; S/ D x24n
1 C 7x12n

2 C 6x4
1x12n�2

2 C 2x8n
3 C 2x6n

4 C 2x4n
6 C 4x2n

12

24
:

It is easy to see that the generators of the rotational group of fullerene C72 are

a: D (1,2,3,4,5,6)*(7,10,13,16,19,22)*(29,31,33,35,25,27)*(30,32,34,36,26,28)*
(8,11,14,17,20,23)*(62,57,52,47,42,37)*(63,58,53,48,43,38)*(12,15,18,21,24,9)*
(66,61,56,51,46,41)*(65,60,55,50,45,40)*(64,59,54,49,44,39)*(69,70,71,72,67,68);

b: D (68,69)*(47,53)*(40,65)*(39,66)*(62,38)*(41,64)*(37,63)*(9,8)*(29,28)*
(23,12)*(27,30)*(10,22)*(11,24)*(44,61)*(2,6)*(5,3)*(25,32)*(20,15)*(42,58)*(46,
59)*(45,60)*(67,70)*(13,19)*(36,33)*(21,14)*(52,48)*(17,18)*(34,35)*(57,43)*
(49,56)*(50,55)*(51,54)*(72,71)*(26,31).

By using GAP, it is not difficult to see that a6 D b2 D 1 and bab D a5 D a�1.
Hence, this group is isomorphic with dihedral group D12. In general, the cycle types
of elements of rotational group R of C24n are as in the following table:

Fullerene
Cycle type of
rotational subgroup #Permutations

C24n 124n# 1#
212n�2 6
212n 1
64n 2
38n 2
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Fig. 16.25 The Schlegel diagram of C40n

This implies that the cycle index of rotational group R is as follows:

Z.G; R/ D x24n
1 C x12n

2 C 6x4
1x12n�2

2 C 2x8n
3 C 2x4n

6

12
:

16.3.2.5 C40n Fullerene

In this section, we consider an infinite class C40n (n � 2) of fullerene molecules with
40n carbon atoms as shown in Fig. 16.25. To compute the number of isomers of
these fullerenes, we first compute a permutation representation for the symmetry
group of these fullerenes. Consider the graph of fullerene C40n. The generators of
this group are

� D .2; 5/.3; 4/.7; 10/ : : : .10n � 10; 10n � 7/.10n � 4; 10n � 2/.10n � 1; 10n/;

� D .1; 10n � 4; 3; 10n � 1; 5; 10n � 3; 2; 10n; 4; 10n � 2/ : : :

� .10n � 44; 10n � 36; 10n � 41; 10n � 38; 10n � 43; 10n � 39;

� 10n � 40; 10n � 37; 10n � 42; 10n � 32/:
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Since �2 D �10 D identity and ��1�� D ��1, the symmetry group G of these
fullerenes is isomorphic to the dihedral group D20 of order 20. In the following
table, the cycle types of elements of G are computed:

Fullerene Cycle type #Permutations

C40n 140n 1
14n218n 5
220n 6
104n 4
58n 4

Thus, the cycle index of G is computed as

Z.G; X/ D x1
40n C 5x1

4nx2
18n C 6x2

20n C 4x10
4n C 4x5

8n

20
:

16.3.3 Fullerenes Constructed by Leapfrog Operation

Knowing the 3-dimensional cycle index of S(Cn) acting on the sets of vertices,
edges, and faces, it is very easy to compute the cycle index for the induced action of
S(Cn) on the set of vertices of C3n. We just have to identify the vertices of Cn with
the n new hexagonal faces of C3n.

Here, we enumerate the number of hetero-fullerenes of two series of fullerenes
constructed by Leapfrog, for example, C3n�20 and two classes of C3n�34 (n � 0).
From the above discussion our problem is reduced to the coloring of the corre-
sponding fullerene graph with 3n � m vertices (m 2 f20; 34g).

16.3.3.1 C3n�20 Fullerene

Consider the molecular graph of the fullerene C3n�20 as depicted in Fig. 16.26. The
first member of this class is C20, obtained by putting n D 0. It is well-known fact that
the symmetry group of C20 is isomorphic to the non-Abelian group Ih D Z2 � A5 of
order 120. So, according to the Leapfrog principle, the symmetry group G of these
fullerenes is again isomorphic to the group Ih, and the cycle types of elements of G
are as follows:

Fullerene Cycle type #Permutations

C3n�20 13n�20# 1
23n�10 16
13n�1�423n�1�28 15
33n�1�20 20
53n�4 24
63n�1�10 20
103n�2 24
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Fig. 16.26 The Schlegel
diagram of C3n�20, for n D 2

This implies that the cycle index of G can be computed as

Z.G; X/ D
�
x20�3n

1 C 20.x20�3n�1

3 C x10�3n�1

6

�
C 24

�
x4�3n

5 C x2�3n

10

�

C 15x4�3n�1

1 x28�3n�1

2 C 16x10�3n

2 :

But from the cycle indices, one can compute the number of possible positional
isomers, the number of chiral isomers, and the number of orbits under the whole
point group Ih. For the number of orbits under the whole point group Ih, we simply
note that ZIh � P

�
Ih

D P 1
Ih

. We use from this relation and then we obtain the number
of C72�kBk molecules for both symmetry group and rotational group.

16.3.3.2 C3n�34 Fullerene

In this section, we compute the number of permutational isomers of a class of
fullerenes with 3n � 34 vertices (n D 0, 1, : : : ); see Fig. 16.27. The symmetry group
of the first member of this class of fullerenes, namely, C34, is isomorphic with the
non-Abelian group S3 of order 6. From Leapfrog principle, the symmetry group G
of C3n�34 fullerene is isomorphic to S3, and so, the cycle types of elements of G are
as in the following table:

Fullerene Cycle type # Permutations

C3n�34 13n�34# 1
16n217�3n�3n 3
33n�1�34 2
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Fig. 16.27 3-D graph of
fullerene C3n�34, n D 1

Hence, the cycle index of G is computed as [25]

Z.G; X/ D x34�3n

1 C 3x6n
1 x17�3n�3n

2 C 2x34�3n�1

3

6
:

16.3.3.3 F3n�34 Fullerene

Finally, we enumerate the number of hetero-fullerenes in a new series of fullerenes
constructed by Leapfrog. This class of fullerenes has again 3n � 34 vertices, and we
denote this class of fullerenes by F3n�34; see Figs. 16.28 and 16.29. Similar to the
last discussion, our problem is reduced to the coloring of the corresponding fullerene
graph with 3n � 34 vertices. The symmetry group of this fullerene is isomorphic with
cyclic group of order 2, namely, Z2. From Leapfrog principle, one can see that the
symmetry group G of these fullerenes is isomorphic to the group Z2 of order 2, and
the cycle types of elements of G are as in the following table:

Cycle type# Cycle type#

Fullerene n is even n is odd #Permutations

F3n�34 134�3n# 134�3n
# 1

16�3n=2
234�3n�6�3n=2

14�3.n�1/=2
234�3n�4�3.n�1/=2

1

This implies that the cycle index of G is computed as

Z.G; X/ D

8
<̂

:̂

1

2

�
x34�3n

1 C x6�3n=2

1 x17�3n�3�3n=2

2

�
2jn

1

2

�
x34�3n

1 C x4�3.n�1/=2

1 x17�3n�2�3.n�1/=2

2

�
2 6 jn

:
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Fig. 16.28 2-D and 3-D graphs of fullerene C3n�34, n D 1

Fig. 16.29 2-D and 3-D graphs of fullerene C3n�34, n D 2

We can also apply our GAP program to compute the number of hetero-fullerenes
F3n�34�kBk .

16.4 Other Structures

Carbon exists in several forms in nature. One is the so-called nanotube which was
discovered for the first time in 1991. Unlike carbon nanotubes, carbon nanohorns
can be made simply without the use of a catalyst [38, 39]. The tips of these
short nanotubes are capped with pentagonal faces; see Fig. 16.30a. Let p, h, n,
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Fig. 16.30 2-D and 3-D graphs of nanohorn H

and m be the number of pentagons, hexagons, carbon atoms, and bonds between
them, in a given nanohorn H. Then one can see that n D r2 C 22r C 41,
m D 3r2C65rC112

2
(r D 0,1, : : : ), and the number of faces is f D p C h. By the

Euler’s formula n � m C f D 2, one can deduce that p D 5 and h D r2C21rC24
2

,
r D 1, 2, : : : . From the above discussion our problem is reduced to the coloring
of the corresponding nanohorn graph with n D r2 C 22r C 41 vertices. Consider
the molecular graph of the nanohorn H; see Fig. 16.30 for the case of r D 8. By
using GAP software, one can see that the symmetry group H of these fullerenes is
isomorphic to the group C2 of order 2. Thus, the cycle index of H is computed as

Z.H; X/ D

�

xr2C22rC41
1 C x1Cr

1 x
.r2C21rC40/=2

2

�

2
:

But from the cycle indices, one can compute the number of possible positional
isomers and the number of chiral isomers under the symmetry group C2.

In what follows we prepare a GAP program to compute the number of possible
positional isomers for H. We mention here that our computations of symmetry
properties and cycle indices of molecules were carried out with the use of GAP.
In Table 16.14 (Appendix 16.B), we apply this program to compute the number of
possible positional isomers for the case of r D 4, Fig. 16.31.
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Fig. 16.31 Nanohorn H for
the case of r D 4

16.5 USCI Table

The concept of the table of marks of a finite group was introduced by one of the
pioneers of finite groups, William Burnside, in the second edition of his classical
book (Burnside 1897). This table describes a characterization of the permutation
representations of a group G by certain numbers of fixed points and in some detail
the partially ordered set of all conjugacy classes of subgroups of G.

Shinsaku Fujita in some of his leading papers introduced the term markaracter to
discuss marks for permutation representations and characters for linear representa-
tions in a common basis. To explain, we assume that G is a finite group and M is
the mark table of G. By considering the rows and columns of M(G) corresponding
to cyclic subgroups of G, a new table MC(G) is obtained. Fujita named this table as
markaracter table of G (Fujita 1988a, b, c, d, e, 1999a, b, c, 2000, 2001; El-Basil
2002; Ashrafi and Ghorbani 2008). So, it is a modification of the classical notion of
mark table. A dominant markaracter for a cyclic subgroup is defined as a row vector
appearing in the resulting markaracter table.

A permutation representation (PR) of a finite group G is produced when the group
G acts on a finite set X D fx1, x2, : : : , xkg. The PR(PG) is a set of permutations (Pg)
on X, each of which is associated with an element g 2 G. Let H be a subgroup of G.
The set of cosets of H in G provides a partition of G, that is, G D Hg1 C Hg2 C
� � � C Hgm; where g1 D I (identity) and gi 2G. Consider the set of cosets fHg1,
Hg2, : : : , Hgmg. For any g 2 G, the set of permutations of degree m,

.G=H/g D
�

Hg1 Hg2 : : : Hgm

Hg1g Hg2g : : : Hgmg

�

;

constructs a permutation representation of G, which is called a coset representation
(CR) of G by H and notified as G/H. The degree of G/H is m D jGj/jHj, where jGj is
the number of elements in G. Obviously, the coset representation G/H is transitive
and, in other words, has one orbit.

The Burnside’s theorem states that any permutation representation PG of a finite
group G acting on X can be reduced into transitive CRs in accord with equation
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PG D Ps
iD1 ˛i G=Gi; wherein the multiplicity ˛i is a nonnegative integer, where ˛i

is obtained by solving

�j D
sX

iD1

˛i Mij .1 � j � s/ (16.1)

where �j is the number of fixed points of Gj in PG, mark of Gj, and the symbol
Mij denotes the mark of Gj in G/Gi. Following Burnside, the matrix M(G) D [Mij] is
called the table of mark or mark table of G. If we restrict such elements within those
of Gj � G, we have a permutation representation of the subgroup Gj. We call this
permutation representation a subduced representation of G/Gi by Gj and designate
this by the symbol G/Gi#Gj. According to PG D Ps

iD1 ˛i G=Gi ; we arrive at a
definition of the subduced representation, G=Gi # Gj D f�gjg 2 Gj g. Since this
permutation representation is transitive in general, it can be reduced to a sum of CRs
of the group Gj. Then the subduced representation (Fujita 2001) is represented by

G=Gi # Gj D
vjX

kD1

ˇ
.ij /

k G=G
.j /

k ; 1 � i; j � s;

where the ˇ
.ij /

k multiplicity is obtained by solving �
.j /

l D Pvj

kD1 “
.ij /

k m
.j /

kl 1 � l � vj

and �
.j /

l is the mark of Gl
(j) in G/Gi # Gj. A unit-subduced cycle index (USCI) is

defined by

Z.G.=Gi / # Gj I sd / D Z.G=Gi # Gj I sd / D
vjY

kD1

sd jk
ˇk

.ij /;

for each G/Gi#Gj, where the subscript djk is expressed by djk D ˇ
ˇGj

ˇ
ˇ =

ˇ
ˇGk

.j /
ˇ
ˇ :

16.5.1 Markaracter Table

In this section we obtain some results about markaracter table. We also use of these
results in the next section to compute the markaracter table of symmetry group of
icosahedral fullerenes. Suppose the set of fixed points of the subgroup U in the
action of G on X is FixX.U / D fx 2 X W x:u D xI 8u 2 U g . Then the ijth entry of
mark table of G is as follows:

Mij .G/ D jFixG=Gj .Gi /j:

Let also U and V be subgroups of G and vG .V; U / D j fUg W g 2 G; Ug � Vg j;
thus, we have



540 M. Ghorbani

Lemma 16.8 (Pfeiffer 1997)

ˇ
ˇFixG=V .U /

ˇ
ˇ D ŒG W V 	 vG.V; U /=vG.G; U /:

Theorem 16.9 Let G be a finite group and G1, G2, : : : , Gsbe all nonconjugated
subgroups of G in which jG1j � jG2j � � � � � jGsj. Then the matrix M(G) is a lower
triangular matrix and for all 1 � i, j � s, MijjM1j.

Proof For the first claim use definition of markaracter table and for the second part
use Lemma 16.8.

Lemma 16.10 Let G be a finite group and Gi � G be a subgroup. Then

Mii D .NG.Gi / W Gi /:

Proof By using definition of mark table, we have

Mii D jfgGi W 8x 2 Gi ; x:gGi D gGi gj
D jfgGi W 8x 2 Gi ; g�1xgGi D Gi gj
D jfgGi W 8x 2 Gi ; x 2 gGi g

�1gj
D jfgGi W Gi D gGi g

�1gj:

Corollary 16.11 If Gj be a normal subgroup of G (1 � j � s), then

Mij D
� jGj=jGj j Gi � Gj

0 otherwise
:

Proof Similar to proof of Lemma 16.10, it is easy to see that Mij Dˇ
ˇ
˚
gGj W Gi � g�1Gj g

	ˇ
ˇ. Since Gj is normal, then g�1Gjg D Gj. This completes

the proof.

Theorem 16.12 Table of marks of a non-Abelian group of order pq(p > q), where
p and q are prime numbers, is as follows:

Mark table G1 G2 G3 G4

G(/G1) pq 0 0 0
G(/G2) p 1 0 0
G(/G3) q 0 q 0
G(/G4) 1 1 1 1

Proof It is easy to see that all nonconjugated subgroups of G are G1 D (), G2 D Q,
G3 D P, and G4 D G, in which jQj D q and jPj D p. By Sylow theorem, one can
see that P G G. So, by using Lemma 16.10, we have M12 D p, M22 D 1, and
M32 D M42 D 0. On the other hand, Q /G G, because G is non-Abelian; hence,
M23 D M43 D 0 and M13 D M33 D 0.
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Fig. 16.32 The skeleton of
naphthalene

Table 16.1 Mark table of the
point group Z2 � Z2

Mark table G1 G2 G3 G4 G5

G(/G1) 4 0 0 0 0
G(/G2) 2 2 0 0 0
G(/G3) 2 0 2 0 0
G(/G4) 2 0 0 2 0
G(/G5) 1 1 1 1 1

Table 16.2 Markaracter
table of the point group
Z2 � Z2

Mark table G1 G2 G3 G4

G(/G1) 4 0 0 0
G(/G2) 2 2 0 0
G(/G3) 2 0 2 0
G(/G4) 2 0 0 2

16.5.2 Benzenoid Chains

Consider the skeleton of naphthalene, Fig. 16.32. Generators of its symmetry group
are � and !, where � D (1, 9)(2, 10)(3, 7)(4, 8) and ! D (1, 2)(3, 4)(5, 6)(7, 8)(9, 10).
The subgroups of G are G1 D <()>, G2 D <�>, G3 D <!>, G4 D <�!>, and
G5 D G. This group is isomorphic with Z2 � Z2, where Z2 is a group of order 2.
Since every group of order 4 is Abelian and then Z2 �Z2, by using Corollary 16.11,
for any subgroup Gi of Z2 � Z2, Mij D 0 or j Z2 � Z2 j/jGij. But for pure subgroup
H of Z2 � Z2, jHj D 2. This implies that the entries of mark table are 1, 2, and 4.
By Theorem16. 9, M11 D 4 and Mi1 D 0 for 2 � i � 4. Also M4j D 1 for 1 � j � 4.
Since all subgroups in Abelian group are normal, by using Lemma 16.10, we have
M12 D M22 D 2 and M32 D M42 D 0. Using again Lemma 16.10, it is easy to see that
M13 D M33 D 2 and M23 D M43 D 0. In Tables 16.1 and 16.2, the mark table and
markaracter table of this group are computed. On the other hand, the number of (�j)
of fixed points is obtained by a geometrical examination of Eq. (16.1):

.10; 2; 0; 0; 0/ D .˛G1 ; ˛G2 ; ˛G3 ; ˛G4 ; ˛G5 / �

0

B
B
B
B
B
@

4 0 0 0 0

2 2 0 0 0

2 0 2 0 0

2 0 0 2 0

1 1 1 1 1

1

C
C
C
C
C
A

:
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Fig. 16.33 The skeleton of
anthracene

So, ˛G5 D ˛G4 D ˛G3 D 0; ˛G1 D 2;˛G2 D 1, and PG D 2G .=G1/ C G .=G2/.
This implies that sub-orbits of X are

X11 D f1; 2; 9; 10g ; X21 D f5; 6g ; X12 D f3; 4; 7; 8g :

With a similar discussion, the generators of the point group of anthracene
skeleton (Fig. 16.33) are ı and 
 , where


 D .1; 13/.2; 14/.3; 11/.4; 12/.5; 9/.6; 10/;

� D .1; 2/.3; 4/.5; 6/.7; 8/.9; 10/.11; 12/.13; 14/:

The subgroups of G are G1 D< ./ >; G2 D< 
 >; G3 D< � >; G4 D< 
� >,
and G5 D G. Also, the mark table and markaracter table of this group are the same
of naphthalene. The number of (�j) of fixed points is

.10; 2; 0; 0; 0/ D .˛G1 ; ˛G2; ˛G3 ; ˛G4 ; ˛G5 / �

0

B
B
B
B
B
@

4 0 0 0 0

2 2 0 0 0

2 0 2 0 0

2 0 0 2 0

1 1 1 1 1

1

C
C
C
C
C
A

:

Hence, ˛G5 D ˛G4 D ˛G3 D 0; ˛G2 D 1; ˛G1 D 2, and then by the similar
way, one can see that PG D 2G.=G1/ C G.=G2/. Thus, the sub-orbits of X are
X11 D f1,2,13,14g, X21 D f7,8g, X22 D f5,6,9,10g, and X12 D f3,4,11,12g.

In generally, consider the graph of benzenoid chain with exactly n hexagons,
Fig. 16.34. Its point group is isomorphic with group Z2 � Z2 generated by ˛ and ˇ

where

˛ D.1; 3/.2; 4/ � � � .4n � 4; 4n � 2/.4n � 3; 4n � 1/;

ˇ D.1; 2/.3; 4/ � � � .4n � 1; 4n/.4n C 1; 4n C 2/:

This implies the mark table and markaracter table of a benzenoid chain with
exactly n hexagons are similar to anthracene and naphthalene; see Ghorbani et al.
(2012) for more details.
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Fig. 16.34 The skeleton of a benzenoid chain with n hexagons

Fig. 16.35 The fullerene
C3n�20 for n D 2

Now is the time to compute the markaracter table and then USCI table of
fullerenes in a series of fullerenes constructed by Leapfrog. From the above
discussion, the problem is reduced to compute the markaracter table and USCI
table of the corresponding fullerene graph with 20 vertices. Consider the molecular
graph of the fullerene C3n�20, Fig. 16.35. From the Leapfrog principle, it can be
seen that the symmetry group G of these fullerenes is isomorphic to the group
Ih D Z2 � A5 of order 120, where A5 is an alternating group on five symbols.
Consider the fullerene graph C20, depicted in Fig. 16.36, with symmetry group
Z2 � A5. By using computer algebra system GAP, one can see that this group
has exactly 22 conjugacy classes of subgroups and the generators of its symmetry
group aregap > group((2,5,8,12,11)*(4,7,10,14,1)*(18,19,20,16,17)*(6,9,13,15,3),
(6,7)*(5,14)*(6,17)*(2,15)*(13,8)*(1,3)*(9,10)*(4,18));

gap > List(ConjugacyClassesSubgroups(G),x-> Elements(x)); z:DLength(aa);
Hence, this group has eight nonconjugated cyclic subgroups as follows:
G1 D <()>,
G2 D <(1,9)(2,16)(3,10)(4,13)(5,17)(6,14)(7,15)(8,18)(11,20)(12,19)>,
G3 D <(1,3)(2,18)(4,15)(5,17)(6,14)(7,13)(8,16)(9,10)(11,19)(12,20)>,
G4 D <(2,4)(5,6)(7,8)(11,19)(12,20)(13,16)(14,17)(15,18)>,
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Fig. 16.36 The fullerene C20

Table 16.3 Mark table of the symmetry group Z2 � A5

Markaracter table G1 G2 G3 G4 G5 G6 G7 G8

G(/G1) 120 0 0 0 0 0 0 0
G(/G2) 60 60 0 0 0 0 0 0
G(/G3) 60 0 4 0 0 0 0 0
G(/G4) 60 0 0 4 0 0 0 0
G(/G5) 40 0 0 0 4 0 0 0
G(/G6) 24 0 0 0 0 4 0 0
G(/G7) 20 20 0 0 2 0 2 0
G(/G8) 12 12 0 0 0 2 0 2

G5 D <(2,14,19)(3,15,18)(4,11,17)(5,13,20)(6,12,16)(7,8,10)>,
G6 D <(1,2,8,10,17)(3,5,9,16,18)(4,6,7,20,19)(11,12,13,14,15)>,
G7 D <(2,14,19)(3,15,18)(4,11,17)(5,13,20)(6,12,16)(7,8,10),(1,9)(2,16)(3,10)

(4,13)(5,17)(6,14)(7,15)(8,18)(11,20)(12,19)>,
G8 D <(1,2,8,10,17)(3,5,9,16,18)(4,6,7,20,19)(11,12,13,14,15),(1,9)(2,16)(3,10)

(4,13)(5,17)(6,14)(7,15)(8,18)(11,20)(12,19)>
By considering the rows and columns of M.Z2 � A5/ corresponding to cyclic

subgroups of Z2 � A5, the markaracter table is obtained as follows (Table 16.3).
According to Fujita’s theorem for computing the USCI table of group G D Z2 �

A5, it is enough to compute the inverse of markaracter table of every subgroup
H, and then M.G/M �1.H/ results the corresponded column of USCI table. For
example, if H D G2, then the mark table and its inverse are as follows (Table 16.4):
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Table 16.4 Mark table and
its inverse of group Z2

M(G) G1 G2 M�1(G) G1 G2

G(/G1) 2 0 ) G(/G1) 1/2 0
G(/G2) 1 1 G(/G2) �1/2 1

So, the entries of the second column of USCI table are as follows:

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

120 0

60 60

60 0

60 0

40 0

30 0

30 0

30 30

24 0

20 0

20 0

20 20

15 15

12 0

12 0

12 12

10 0

10 10

6 6

5 5

2 0

1 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

�
�

1 =2 0

�1 =2 1

�

D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

S2

60
S1

0

0 60

30 0

30 0

20 0

15 0

15 0

0 30

12 0

10 0

10 0

0 20

0 15

6 0

6 0

0 12

5 0

0 10

0 6

0 5

1 0

0 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

) USCI.G/j

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

S60
2

S60
1

S30
2

S30
2

S20
2

S15
2

S15
2

S30
1

S12
2

S10
2

S10
2

S20
1

S15
1

S6
2

S6
2

S12
1

S5
2

S10
1

S6
1

S5
1

S2

S1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

It should be noted that we use from GAP software to compute the mark table of the
group G D Z2 � A5 by the following function:

gap> Display(TableOfMarks(DirectProduct(CyclicGroup(2),AlternatingGroup
(5)))).

By a similar method, one can compute the whole of USCI table. This table is
reported in the Appendix 16.C.
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Appendices

Appendix 16.A: GAP Programs

This software was constructed by the GAP team in Aachen. GAP is a system for
computational discrete algebra, with particular emphasis on computational group
theory. GAP provides a programming language, a library of thousands of functions
implementing algebraic algorithms written in the GAP language as well as large data
libraries of algebraic objects. GAP is used in research and teaching for studying
groups and their representations, rings, vector spaces, algebras, combinatorial
structures, and more; see The GAP Team (1995).

A GAP Program for Enumerating the Hetero-fullerenes

h:Dfunction (f,g)
local t,i,tt;

Print(“Coefficients of f are:”, “nn”);
t:DCoefficientsofLaurentPolynomial(f);
for i in t[1] do
Print(i,“nn”);
od;
Print(“Coefficients of g are:,” “nn”);

tt:DCoefficientsofLaurentPolynomial(g);
for i in tt[1] do

Print(i,“nn”);
od;
return( );
end;

A Gap Program for Counting the Number of Nanohorn H

f:Dfunction (n)
locals,i,f,x,t;

x:DIndeterminate(Rationals,"x");
f:D((1Cx)ˆ(89)C(1Cx)ˆ5*(1Cxˆ2)ˆ(42))/2;
t:D CoefficientsOfLaurentPolynomial(f);

Print("***************************************************","nn");
Print("nn");
Print("Number of Molecules for Symmetry Group D","nn");

fori in t[1] do
Print(i,"nn");

od;
Print("**************************************************","nn");

return;end;
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Appendix 16.B: Number of Permutational Isomers

Table 16.5 The number of
C20�kBk molecules k, 20 � k

Number of C20�kBk molecules
for symmetry group

0,20 1
1,19 1
2,18 12
3,17 51
4,16 265
5,15 931
6,14 2972
7,13 7365
8,12 15730
9,11 27582
10,10 41544

Table 16.6 Number of C24�kBk molecules

k, 24 � k
Number of C24�kBk molecules
for symmetry group

Number of C24�kBk molecules
for rotational group

0,24 1 1
1,23 2 2
2,22 19 30
3,21 96 170
4,20 489 924
5,19 1826 3542
6,18 5775 11350
7,17 14586 28842
8,16 31034 61578
9,15 54814 108968
10,14 82358 163900
11,13 104468 208012
12,12 113434 225898
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Table 16.7 Number of C30�kBk molecules

k, 30 � k
Number of C30�kBk molecules
for symmetry group

Number of C30�kBk molecules
for rotational group

0,30 1 1
1,29 3 3
2,28 51 33
3,27 406 226
4,26 2793 1467
5,25 14253 7287
6,24 59605 30173
7,23 203580 102468
8,22 585975 294255
9,21 1430715 717299
10,20 3006009 1506051
11,19 5462730 2735358
12,18 8651825 4331275
13,17 11975985 5994081
14,16 14545485 7279821
15,15 15511760 7762876

Table 16.8 Number of
C34�kBk molecules k, 34 � k

Number of C34�kBk molecules
for symmetry group

0,34 1
1,33 6
2,32 102
3,31 1001
4,30 7801
5,29 46376
6,28 224509
7,27 896621
8,26 3027224
9,25 8741931
10,24 21857839
11,23 47682960
12,22 91398638
13,21 154664070
14,20 232005664
15,19 309328074
16,18 367339214
17,17 388934370
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Table 16.9 The number of C60�kBk molecules

k, 60 � k

Number of C60�kBk

molecules for rotational
group

Number of C60�kBk

molecules for symmetry
group

Number of orbits under
whole point group Ih

0,60 1 1 0
1,59 1 1 0
2,58 23 37 14
3,57 303 577 274
4,56 4190 8236 4046
5,55 45718 91030 45312
6,54 418470 835476 417006
7,53 3220218 6436782 3216564
8,52 21330558 42650532 21319974
9,51 123204921 246386091 123181170
10,50 628330629 1256602779 628272150
11,49 2855893755 5711668755 2855775000
12,48 11661527055 23322797475 11661270420
13,47 43057432740 86114390460 43056957720
14,46 144549869700 289098819780 144548950080
15,45 443284859624 886568158468 443283298844
16,44 1246738569480 2493474394140 1246735824660
17,43 3226849468425 6453694644705 3226845176280
18,42 7708584971055 15417163018725 7708578047670
19,41 17040023323785 34080036632565 17040013308780
20,40 34932048763560 69864082608210 34932033844650
21,39 66537224405790 133074428781570 66537204375780
22,38 117952355252550 235904682814710 117952327562160
23,37 194877787472550 389755540347810 194877752875260
24,36 300436595453640 600873146368170 300436550914530
25,35 432628675734195 865257299572455 432628623838260
26,34 582384767014701 1164769471671687 582384704656986
27,33 733373386161407 1466746704458899 733373318297492
28,32 864332935668892 1728665795116244 864332859447352
29,31 953746664302456 1907493251046152 953746586743696
30,30 985538239868528 1971076398255692 985538158387164
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Table 16.10 The number of C72�kBk molecules

k,72 � k
Number of C72�kBk molecules
for rotational group

Number of C72�kBk molecules
for symmetry group

0,72 1 1
1,71 4 8
2,70 127 236
3,69 2522 5044
4,68 43243 86168
5,67 583576 1167152
6,66 6514407 13025244
7,65 61386116 122772232
8,64 498746918 997464358
9,63 3546427742 7092855484
10,62 22342414424 44684640352
11,61 125928884480 251857768960
12,60 640138180164 1280275386294
13,59 2954479373440 5908958746880
14,58 12451019242744 24902034311648
15,57 48143925115958 96287850231916
16,56 171512731027768 343025446924856
17,55 564983065793776 1129966131587552
18,54 1726337142727692 3452674238383744
19,53 4906431753373920 9812863506747840
20,52 13002044149467636 26004088171840416
21,51 32195537606713866 64391075213427732
22,50 74635109937400116 149270219574397584
23,49 162250238419042800 324500476838085600
24,48 331260903551195565 662521806476549181
25,47 636020933801574048 1272041867603148096
26,46 1149730149855983496 2299460298556572192
27,45 1958799512979179380 3917599025958358760
28,44 3148070646470848632 6296141291043543360
29,43 4776383047609873920 9552766095219747840
30,42 6846149035990297176 13692298069196643072
31, 41 9275427723456099744 18550855446912199488
32, 40 11884141772331102516 23768283541008261684
33, 39 14405020327110683172 28810040654221366344
34,38 16523405671536565290 33046811338774382280
35,37 17939697583328247888 35879395166656495776
36,36 18438022518784399786 36876045033031223812
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Table 16.11 The number of
C80�kBk molecules k, 80 � k

Number of C80�kBk molecules
for symmetry group

0,80 1
1,79 5
2,78 181
3,77 4147
4,76 79546
5,75 1202745
6,74 15031147
7,73 158844959
8,72 1449435558
9,71 11595097111
10,70 82325041251
11,69 523884428977
12,68 3012334769066
13,67 15756817617163
14,66 75407624568509
15,65 331793506218077
16,64 1347911111443259
17,63 5074488744913588
18,62 17760710591159316
19,61 57956002543262252
20,60 176765807739834016
21,59 505045163808913156
22,58 1354439302981356268
23,57 3415542587404475164
24,56 8111913645381087112
25,55 18170686559985988028
26,54 38437990801023264444
27,53 76875981591517458868
28,52 145515250872462217832
29,51 260923898098627253308
30,50 443570626773816168644
31,49 715436494770338700580
32,48 1095512132628624165470
33,47 1593472192879288312630
34,46 2202740972528516942390
35,45 2895030992423701444170
36,44 3618788740556990692460
37,43 4303424448183910977070
38,42 4869664507190697241610
39,41 5244254084621907482050
40,40 5375360436777969680320
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Table 16.12 The number of
C84�kBk molecules k, 84 � k

Number of C84�kBk molecules
for symmetry group

0,84 1
1,83 4
2,82 161
3,81 4000
4,80 80724
5,79 1286744
6,78 16941162
7,77 188728904
8,76 1816506426
9,75 15339084436
10,74 115043064318
11,73 773924297744
12,72 4708039172851
13,71 26075285193864
14,70 132238945055628
15,69 617115040987920
16,68 2661308609905260
17,67 10645234310343900
18,66 39623927700233625
19,65 137641011605240660
20,64 447333287699520054
21,63 1363301447106388504
22,62 3903999598530800496
23,61 10523825001987843104
24,60 26748055213518461739
25,59 64195332506438811392
26,58 145674023765218737768
27,57 312929384372799539932
28,56 637034818189367985288
29,55 1230136200620880101792
30,54 2255249701142983248018
31,53 3928499479377611057376
32,52 6506577262729079657604
33,51 10252788413950491335316
34,50 15379182620943916403538
35,49 21970260887002103927160
36,48 29903966207337904208345
37,47 38794334539178147226960
38,46 47982466403762890020840
39,45 56594703963337371170880
40,44 63669041958809577715404
41,43 68327752345967341397280
42,42 69954603592363988835420
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Table 16.13 The number of C150�kBk molecules

k, 150 � k Number of C150�kBk molecules for symmetry group

0,150 1
1,149 10
2,148 608
3,147 27762
4,146 1015132
5,145 29587626
6,144 714908767
7,143 14705679304
8,142 262861756418
9,141 4147359263564
10,140 58477733568550
11,139 744261878846444
12,138 8621033058155532
13,137 91515579793041740
14,136 895545312914462338
15,135 8119610820294861024
16,134 68509216265755052423
17,133 540013822200718017274
18,132 3990102130481989637532
19,131 27720709537206337672482
20,130 181570647467256032286270
21,129 1124008770030069888944122
22,128 6590778696986152507958223
23,127 36679116226676561530421568
24,126 194093656699453439146865712
25,125 978232029765102584306831360
26,124 4703038604639712304854528992
27,123 21599140258344705503374136608
28,122 94881937563441939987580122208
29,121 399158495956546227316507706912
30,120 1609939267024733028272418627950
31,119 6232022969127988937630220494912
32,118 23175335416444696549270781265772
33,117 82869381186074941227257032574344
34,116 285168164669728433394496223305568
35,115 945128774333956983333854159548184
36,114 3019161362455695793849475118633168
37,113 9302280954593224550068789712330120
38,112 27662045996553535806719975891990092
39,111 79439721836256307048558318405485664
40,110 220445228095611251123048465578384610
41,109 591438416841883842130309387714175824
42,108 1534923510375365207042049180063976208
43,107 3855156723733475398082512651736762064
44,106 9375040214533678803733124039197920912
45,105 22083428060901554502735720945545628656

(continued)
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Table 16.13 (continued)

k, 150 � k Number of C150�kBk molecules for symmetry group

46,104 50407824921623113527709622686290336312
47,103 111540718975506463949387235122286925152
48,102 239347792801607620535970453784351147068
49,101 498234180933958720246386671215627247400
50,100 1006433045486596614856890256732735499706
51,99 1973398128405091401582018701627687530440
52,98 3757046436771231706787858155503142213536
53,97 6946991524595862401059693903626311024424
54,96 12478855146033308386976398312593227196124
55,95 21781274436712683729716490061393340262312
56,94 36950376276566159898459691595847481631824
57,93 60935708245565246147909753636832722794208
58,92 97707256324785653305903584594286513690016
59,91 152357077658987798374692146630075734026208
60,90 231074901116131494201332210976565629621470
61,89 340930181974620237345396728498808495051488
62,88 489399777350664534253556972312070143515984
63,87 683606038204102841495979056024525881046720
64,86 929276958183702300158285743952520137280386
65,85 1229504898519975350977406221073619443220268
66,84 1583453278396937952016116475798783021139936
67,83 1985225005751384895063598575468858890976508
68,82 2423142286431837445445179468870345772615144
69,81 2879676340397256094585598969401799560569164
70,80 3332196908173967766592027941721540605994000
71,79 3754588065548132694750220759988813194524464
72,78 4119617460809756706740212819065590964482316
73,77 4401783040317274289392463027500946909902536
74,76 4580233704113920544368502750626698489294984
75,75 4641303486835439484959145718568923895458472

Table 16.14 The number of
H89�kBk molecules k,89 � k

Number of H89�kBk molecules
for symmetry group

0,89 1
1,88 47
2,87 1984
3,86 56892
4,85 1221456
5,84 20756184
6,83 290563644
7,82 3445167312
8,81 35312741949
9,80 317813975539

(continued)
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Table 16.14 (continued)

k,89 � k
Number of H89�kBk molecules
for symmetry group

10,79 2542510116752
11,78 18259840795912
12,77 118688954831096
13,76 703003784422072
14,75 3816306205549832
15,74 19081530912625424
16,73 88252080242700895
17,72 378964814703449873
18,71 1515859257963982160
19,70 5664526699240696204
20,69 19825843444588399064
21,68 65142057027473837360
22,67 201348176258905833868
23,66 586535991698093381120
24,65 1612973977150092969259
25,64 4193732340560438311493
26,63 10323033453643439331136
27,62 24087078058438832974432
28,61 53335672843599223614176
29,60 112188829084695301825888
30,59 224377658169237491264096
31,58 427041349418676753435712
32,57 774012445821111101559914
33,56 1336930588236176461627382
34,55 2202003321800426034874816
35,54 3460290934257434856293432
36,53 5190436401385740907480896
37,52 7434949439822385325514640
38,51 10174141338703878921425976
39,50 13304646365996955576915552
40,49 16630807957495803542747490
41,48 19875843656519036615151870
42,47 22715249893164345209272800
43,46 24828296394853866796169520
44,45 25956855321892585506612240
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#G
22

#G
21

#G
20

#G
19

#G
18

#G
17

#G
16

#G
15

#G
14

#G
13

#G
12

U
SC

I
ta

bl
e

S 1
20

S 6
0

2
S 2

4
5

S 1
2

10
S 1

2
10

S 1
2

10
S 1

0
12

S 1
0

12
S 1

0
12

S 8
15

S 6
20

G
/G

1

S 6
0

S 6
0

S 1
2

5
S 6

10
S 6

10
S 1

2
5

S 5
12

S 1
0

6
S 1

0
6

S 4
15

S 3
20

G
/G

2

S 2
4

S 6
0

S 2
4

2
S 6

S 1
2

4
S 6

2
S 1

2
4
S 6

2
S 1

2
5

S 1
0

6
S 1

0
4
S 5

4
S 1

0
6

S 8
6
S 4

3
S 6

10
G

/G
3

S 2
0

S 1
2

2
S 2

4
2
S 8

S 1
2

4
S 6

2
S 1

2
4
S 6

2
S 1

2
4
S 4

2
S 1

0
6

S 1
0

6
S 1

0
4
S 5

4
S 8

6
S 4

3
S 6

10
G

/G
4

S 1
2

S 1
0

2
S 2

4
S 4

2
S 1

2
3
S 4

S 1
2

3
S 4

S 1
2

2
S 3

4
S 1

0
4

S 1
0

4
S 1

0
4

S 8
5

S 6
6
S 2

2
G

/G
5

S 1
2

S 6
2

S 2
4
S 4

S 1
2
S 6

3
S 1

2
S 6

3
S 1

2
2
S 2

2
S 1

0
3

S 1
0

3
S 5

6
S 8

3
S 2

3
S 6

5
G

/G
6

S 1
0

S 1
2

S 2
4
S 3

S 1
2
S 6

S 6
2

S 1
2
S 6

S 6
2

S 1
2

2
S 4

S 1
0

3
S 1

0
S 5

4
S 1

0
2
S 5

2
S 8

3
S 2

4
S 6

5
G

/G
7

S 1
0

S 1
2

S 1
2

2
S 4

S 6
4
S 3

2
S 6

4
S 3

2
S 1

2
2
S 4

S 5
6

S 1
0

2
S 5

2
S 1

0
2
S 5

2
S 4

6
S 2

3
S 3

10
G

/G
8

S 1
0

S 5
2

S 2
4

S 1
2

2
S 1

2
2

S 1
2

2
S 1

0
2
S 2

2
S 1

0
2
S 2

2
S 1

0
2
S 5

2
S 8

3
S 6

4
G

/G
9

S 8
S 1

0
S 6

S 4
S 1

2
S 6

S 2
S 1

2
S 6

S 2
S 1

2
S 3

2
S 1

0
2

S 5
4

S 1
0

2
S 8

S 4
3

S 6
3
S 2

G
/G

10

S 6
S 4

2
S 8

S 4
S 1

2
S 6

S 2
S 1

2
S 6

S 2
S 4

2
S 3

2
S 1

0
2

S 1
0

2
S 5

4
S 8

S 4
3

S 6
3
S 2

G
/G

11

S 6
S 1

0
S 1

2
S 2

2
S 6

3
S 2

S 6
3
S 2

S 1
2
S 3

2
S 5

4
S 1

0
2

S 1
0

2
S 4

5
S 3

6
S 1

2
G

/G
12

S 6
S 6

S 1
2
S 2

S 6
S 3

3
S 6

S 3
3

S 1
2
S 2

S 5
3

S 5
3

S 5
3

S 4
3
S13

S 3
5

G
/G

13

S 5
S 3

2
S 8

S 6
2

S 6
2

S 4
2

S 1
0
S 2

S 1
0
S 2

S 5
2
S 1

2
S 4

3
S 6

2
G

/G
14

S 4
S 5

S 6
S 6

2
S 6

2
S 1

2
S 1

0
S 2

S 5
2
S 1

2
S 1

0
S 2

S 4
3

S 6
2

G
/G

15

S 4
S 5

S 1
2

S 6
2

S 6
2

S 1
2

S 5
2
S 1

2
S 1

0
S 2

S 1
0
S 2

S 4
3

S 3
4

G
/G

16

S 4
S 2

2
S 4

S 2
S 6

S 4
S 6

S 4
S 3

2
S 1

2
S 1

0
S 1

0
S 5

2
S 8

S 2
S 6

S 2
2

G
/G

17

S 3
S 4

S 2
S 4

S 2
S 6

S 3
S 1

S 6
S 3

S 1
S 4

S 3
S 5

2
S 5

2
S 5

2
S 4

S 2
3

S 3
3
S 1

G
/G

18

S 2
S 3

S 4
S 3

2
S 3

2
S 4

S 5
S 1

S 5
S 1

S 5
S 1

S 2
3

S 3
2

G
/G

19

S 2
S 2

S 2
S 1

S 3
S 2

S 3
S 2

S 3
S 1

S 5
S 5

S 5
S 4

S 1
S 3

S 1
2

G
/G

20

S 2
S 1

2
S 2

S 2
S 2

S 1
2

S 2
S 2

S 1
2

S 2
S 2

G
/G

21

S 1
S 1

S 1
S 1

S 1
S 1

S 1
S 1

S 1
S 1

S 1
G

/G
22



558 M. Ghorbani

References

Ashrafi AR, Ghorbani M (2008) A note on markaracter tables of finite groups. MATCH Commun
Math Comput Chem 59:595–603

Ashrafi AR, Ghorbani M (2010) Enumeration of a class of IPR hetero-fullerenes. J Serb Chem Soc
75:361–368

Ashrafi AR, Jalali M, Ghorbani M, Diudea MV (2008a) Computing PI and omega polynomials of
an infinite family of fullerenes. MATCH Commun Math Comput Chem 60(3):905–916

Ashrafi AR, Ghorbani M, Jalali M (2008b) Detour matrix and detour index of some nanotubes.
Dig J Nanomater Bios 3:245–250

Ashrafi AR, Ghorbani M, Jalali M (2008c) The vertex PI and Szeged indices of an infinite family
of fullerenes. J Theor Comput Chem 7:221–231

Ashrafi AR, Ghorbani M, Jalali M (2009) Study of IPR fullerenes by counting polynomials. J Theor
Comput Chem 8:451–457

Balasubramanian K (1980) The symmetry groups of non-rigid molecules as generalized wreath
products and their representations. J Chem Phys 72:665–677

Balasubramanian K (1981) Generating functions for the nuclear spin statistics of nonrigid
molecules. J Chem Phys 75:4572–4585

Balasubramanian K (1984) Recent applications of group theory to chemical physics in conceptual
quantum chemistry models and applications. Croat Chim Acta 57:1465–1492

Balasubramanian K (1995a) Combinatorics and spectroscopy in chemical group theory techniques
and applications. Gordon & Breach Publications, Amsterdam

Balasubramanian K (1995b) Graph theoretical perception of molecular symmetry. Chem Phys Lett
232:415–423

Balasubramanian K (2004a) Non rigid group theory tunneling splittings and nuclear spin statistics
of water pentamer. J Phys Chem 108:5527–5536

Balasubramanian K (2004b) Nuclear spin statistics of extended aromatic C48N12 azafullerene.
Chem Phys Lett 391:69–74

Burnside W (1897) Theory of groups of finite order. The University Press, Cambridge
El-Basil S (2002) Prolegomenon on theory and applications of tables of marks. MATCH Commun

Math Comput Chem 46:7–23
Faghani M, Ghorbani M (2011) The number of permutational isomers of CL-20 molecule. MATCH

Commun Math Comput Chem 65:21–26
Fowler PW (1986) How unusual is C60? Magic numbers for carbon clusters. Chem Phys Lett

131:444–450
Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Clarendon, Oxford, Reprinted: Dover,

New York, NY (2006)
Fowler PW, Steer JI (1987) The leapfrog principle – a rule for electron counts of carbon clusters.

J Chem Soc Chem Commun 18:1403–1405
Fowler PW, Horspool D, Myirvold W (2007) Vertex spirals in fullerenes and their implications for

nomenclature of fullerene derivatives. Chem A Eur J 13:2208–2217
Fripertinger H (1996) The cycle index of the symmetry group of the fullerene C60. MATCH

Commun Math Comput Chem 33:121–138
Fujita S (1988a) Markaracter tables and Q-conjugacy character tables for cyclic groups an

application to combinatorial enumeration. Bull Chem Soc Jpn 71:1587–1596
Fujita S (1988b) Maturity of finite groups an application to combinatorial enumeration of isomers.

Bull Chem Soc Jpn 71:2071–2080
Fujita S (1988c) Inherent automorphism and Q-conjugacy character tables of finite groups, an

application to combinatorial enumeration of isomers. Bull Chem Soc Jpn 71:2309–2321
Fujita S (1988d) Direct subduction of Q-conjugacy representations to give characteristic monomi-

als for combinatorial enumeration. Theor Chem Acc 99:404–410
Fujita S (1988e) Subduction of Q-conjugacy representations and characteristic monomials for

combinatorial enumeration. Theor Chem Acc 99:224–230



16 Enumeration of Hetero-molecules by Using Pólya Theorem 559
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Trinajstić N (1992) Chemical graph theory. CRC Press, Boca Raton
Zhang F, Li R, Lin G (1998) The enumeration of heterofullerenes. J Mol Struct 453:1–6


	Chapter 16: Enumeration of Hetero-molecules by Using Pólya Theorem
	16.1 Introduction
	16.2 Main Results and Discussion
	16.2.1 Pólya's Theorem
	16.2.2 Fullerene Graphs
	16.2.3 Construction of Infinite Classes of Fullerenes
	16.2.4 Leapfrog Fullerenes

	16.3 Enumeration of Nanostructures
	16.3.1 Hetero-Fullerenes with Small Number of Vertices
	16.3.2 Enumeration of Infinite Classes of Hetero-fullerenes
	16.3.2.1 C10n Fullerene
	16.3.2.2 C12n Fullerene
	16.3.2.3 C12n+6 Fullerene
	16.3.2.4 C24n Fullerene
	16.3.2.5 C40n Fullerene

	16.3.3 Fullerenes Constructed by Leapfrog Operation
	16.3.3.1  C3nx20  Fullerene
	16.3.3.2  C3nx34  Fullerene
	16.3.3.3  F3nx34  Fullerene


	16.4 Other Structures
	16.5 USCI Table
	16.5.1 Markaracter Table
	16.5.2 Benzenoid Chains

	Appendices
	Appendix 16.A: GAP Programs
	Appendix 16.B: Number of Permutational Isomers
	Appendix 16.C

	References


