
Chapter 15
Topological Study of (3,6)– and (4,6)–Fullerenes

Ali Reza Ashrafi and Zeinab Mehranian

Abstract A (3,6)–fullerene is a cubic plane graph whose faces (including the
outer face) have sizes 3 or 6. (4,6)–Fullerene graphs are defined analogously
by interchanging triangles with quadrangles. (3,6)–Fullerenes have exactly four
triangles and (4,6)–fullerenes have exactly 6 quadrangles. The (4,6)–fullerenes are
also called boron fullerenes. In this chapter some infinite families of (3,6)–and
(4,6)–fullerenes are presented. The modeling of these fullerenes by considering
some topological indices is the main part of this chapter. Finally, some open
questions are presented.

15.1 Introduction and Preliminaries

A polytope P is a tessellation of a given manifold M. If M has dimension n, then it
is convenient to name P as n-polytope. A polygon is a 2-polytope and a polyhedron
is a 3-polytope. Suppose P is a d-dimensional polytope. Then a Schlegel diagram
of P is a projection of P into Rd�1. The Schlegel diagrams are an important tool for
studying combinatorial and topological properties of polytopes (Goodey 1977).

A simple graph is a graph without directed and multiple edges and without loops.
If G is such a graph, then the vertex and edge sets of G are represented by V(G) and
E(G), respectively. Let M be a molecule. The molecular graph of M is a simple
graph in which atoms of M are its vertices and two atoms are adjacent if there is a
bond between them.
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A (k,6)–fullerene is a cubic plane graph whose faces have sizes k and 6. The
only values of k for which a (k,6)–fullerene exists are 3, 4, and 5. A (5,6)–fullerene
is simply called a fullerene. They are molecules in the form of polyhedral closed
cages made up entirely of n carbon atoms that are bonded in a nearly spherically
symmetric configuration. The most important fullerene is buckyball. This is a
molecule containing 60 carbon atoms, each of which is bonded to three adjacent
carbon atoms in a sphere form that’s about 1 nm in diameter (Kroto et al. 1985,
1993). The mathematical properties of ordinary fullerenes are studied in Fowler and
Manolopoulos (1995) and Kostant (1995).

After successful history of fullerenes, it was natural to consider (3,6)– and (4,6)–
fullerenes into account. The (3,6)–fullerenes have received recent attention from
chemists due to their similarity to ordinary fullerenes (Yang and Zhang 2012; DeVos
et al. 2009). The Euler’s formula implies that an n–vertex (3,6)–fullerene has exactly
four faces of size 3 and n/2 � 2 hexagons. A (3,6)–fullerene is called ITR if its
triangles have no common edge. Recently some chemists have been attracted to the
(4,6)–fullerenes or boron fullerenes (Wang et al. 2010). If six quadrangles of these
new types of fullerenes don’t have common edge, then we will briefly name them
ISR fullerenes.

In this chapter, we will describe the mathematical properties of some families of
(3,6)– and (4,6)–fullerenes which are built from a given (3,6)– or (4,6)–fullerenes
by adding edges in such a way that the resulting graph is cubic. Here, we will show
how to construct bigger cages with similar structural characteristics to those found
in the smaller one.

Throughout this chapter all graphs considered are simple. Our notation is
standard and taken mainly from the standard graph theory textbooks such as
(Trinajstić 1992). The aim of this chapter is to investigate (3,6)– and (4,6)–
fullerenes under five topological indices, eccentric connectivity, Szeged, revised
Szeged, vertex PI, and Wiener index, which will be studied with details in Sects. 15.2
and 15.3.

15.2 Basic Definitions

Suppose u and v are vertices of a graph G. The distance d(u, v) is defined as
the length of a shortest path connecting them. The eccentricity "(u) is the largest
distance between u and any other vertex x of G. The maximum eccentricity over
all vertices of G is called the diameter of G and denoted by D(G), and the
minimum eccentricity among the vertices of G is called radius of G and denoted
by R(G).

The Wiener index is the first distance-based topological index that introduced by
chemist Harold Wiener (Wiener 1947). The Wiener defined his index as the sum of
all distances between any two carbon atoms in the molecule, in terms of carbon–
carbon bonds. The Wiener index is principally defined for trees. It was in 1972
that Hosoya (1971, 1988) described its calculation using the distance matrix and
proposed the name “Wiener index.”
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The eccentric connectivity index �c(G) of G is defined as �c(G) D †u2V(G)deg(u)
"(u), where for a given vertex u of V(G), its eccentricity, "(u), is the largest distance
between u and any other vertex v of G (Sharma et al. 1997). The maximum
eccentricity over all vertices of G is called the diameter of G and denoted by D(G).
We encourage the reader to consult papers (Dureja and Madan 2007; Kumar et al.
2004; Sardana and Madan 2001; Gupta et al. 2002; Zhou and Du 2010) for more
information on mathematical properties and chemical meaning of this topological
index and (Ashrafi et al. 2011a, b; Saheli et al. 2010a, b; Ashrafi and Saheli 2010;
Saheli and Ashrafi 2010a, b) for some applications in nanoscience.

The Szeged index is another distance-based topological index that was introduced
by Ivan Gutman (1994). It is defined as Sz(G) D P

eDuvnu(e)nv(e), where nu(e) is the
number of vertices closer to u than v and nv(e) is defined analogously. We encourage
the reader to consult paper for more information about Szeged index (Gutman and
Dobrynin 1998).

The vertex PI index is a recently proposed topological index defined as
PIv(G) D P

e D uv[nu(e) C nv(e)] (Khalifeh et al. 2008). This topological index was
introduced in an attempt to obtain exact expression for the edge version of this
index under Cartesian product of graphs. It is worth mentioning that there is an
edge version of this topological index proposed by Padmakar Khadikar (2000). In
Ashrafi and Loghman (2006a, b, c) this edge version is calculated for some classes
of nanostructures.

A graph G is called bipartite if its vertex set can be partitioned into two subsets
A and B such that each edge of G connects a vertex in A to a vertex in B. It is well
known that a graph G is bipartite if and only if it does not have odd cycle. It is
possible to characterize bipartite graphs by vertex PI index. A graph G is bipartite
if and only if its vertex PI index is equal to jV(G)j � jE(G)j. So, the vertex PI does
not have good correlation with physicochemical properties of chemical compounds,
when the molecular graph is bipartite.

The revised Szeged index Sz*(G) of G is a molecular structure descriptor equal
to the sum of products Œnu.e/ C n0.e/=2� � Œnv.e/ C n0.e/=2� over all edges e D uv
of the molecular graph G, where n0.e/ is the number of vertices equidistant from u
and v. This topological index was introduced by Milan Randić (2002). Nowadays the
scientists prefer the name revised Szeged index for this distance-based topological
index. It is easy to prove that a graph G is bipartite if and only if the Szeged and
revised Szeged indices of G are the same. The interested readers can consult papers
(Pisanski and Randić 2010; Pisanski and Žerovnik 2009; Xing and Zhou 2011;
Aouchiche and Hansen 2010) for mathematical properties and chemical meaning
of this new topological index.

15.3 (3,6)–Fullerenes

The (3,6)–fullerenes that sometimes called (3,6)-cages have received recent atten-
tion from chemists due to their similarity to ordinary fullerenes. With the best of
our knowledge, there is no classification of these cubic graphs. So, it is natural to
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Fig. 15.1 G[8n], n is even

construct more and more (3,6)–fullerenes to find such a classification. In this section
seven infinite classes of (3,6)–fullerenes are constructed, and then the eccentric
connectivity, Szeged, revised Szeged, vertex PI, and Wiener index of them are
computed.

Suppose F is the molecular graph of an arbitrary n–vertex (3,6)– or (4,6)–
fullerenes. The adjacency matrix of F is an n � n matrix A D [aij] defined by aij D 1,
if vertices i and j are connected by an edge and aij D 0 otherwise. It is easy to prove
the adjacency matrix will determine the fullerene graph up to isomorphism. An
n � n matrix A D [ai,j] is called symmetric if aj, i D ai ,j and centrosymmetric when
its entries satisfy ai, j D an � i C 1an � j � 1, for 1 � i, j � n. Recently it is proved that
the adjacency matrix of some classes of fullerenes is centrosymmetric. This caused
to find exact formula for the Wiener index of these fullerenes in general (Graovac
et al. 2011).

The distance matrix D D [dij] of F is another n � n matrix in which dij is the
length of a minimal path connecting vertices i and j, i ¤ j, and zero otherwise.
Clearly, the summation of all entries in distance matrix of a fullerene F is equal to
2W(F). To compute the Szeged, revised Szeged, vertex PI, eccentric connectivity, or
Wiener indices of F, we first draw F by HyperChem (2002) and then apply TopoCluj
software (Diudea et al. 2002) of Diudea and his team to compute the adjacency
and distance matrices of this fullerene graph. Finally, we provide a GAP program
(Schönert et al. 1995) to calculate these topological indices for F.

Our first class of (3,6)–fullerenes is depicted in Figs. 15.1, 15.2, and 15.3. These
fullerenes have exactly 8n vertices and their Schlegel diagrams show that they
are ITR.

Our second class of (3,6)–fullerenes is again ITR with exactly 8n C 4 vertices
depicted in Figs. 15.4 and 15.5.

The third class of (3,6)–fullerenes that is studied in this section is not ITR. The
Schlegel diagram of an arbitrary member of this class is depicted in Fig. 15.6. The
3D perception of the first member I[16] of this class, Fig. 15.7, and the algorithm
for construction of other members of the class from the first one shows that the
elements of this class are different from the first two classes of (3,6)–fullerenes.
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Fig. 15.2 G[8n], n is odd

Fig. 15.3 The 3D perception
of G[16]

Fig. 15.4 The Schlegel
diagram of H[8n C 4]

One of the pioneers of fullerene chemistry, P.W. Fowler, believed that a fullerene
has to be 3-connected and so I[16] is not a fullerene. Notice that, we don’t consider
3-connectivity in our definition for a fullerene.

Our fourth class of (3,6)–fullerenes is not ITR. The Schlegel diagram of an
arbitrary element of this class, together with the 3D perception of the first, J[24], is
depicted in Figs. 15.8 and 15.9, respectively. It is not so difficult to prove that the
members of this class are essentially different from the first three presented classes
of (3,6)–fullerenes.
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Fig. 15.5 The 3D perception
of H[20]

Fig. 15.6 The Schlegel
diagram of I[4n], n � 2

Fig. 15.7 The 3D perception
of I[16]

The molecular graph of our fifth class of (3,6)–fullerenes is depicted in
Fig. 15.10. These (3,6)–fullerenes have exactly 16n � 32 vertices and all of them are
ITR. In Fig. 15.11, the 3D perception of the first member of this class is depicted.

The sixth class of (3,6)–fullerenes is again ITR which contains 16n C 48 vertices,
n � 1. The Schlegel diagram and 3D perception of one member of this class are
depicted in Figs. 15.12 and 15.13, respectively.

The seventh and our final class of (3,6)–fullerenes has exactly 12n C 4 vertices,
and the molecular graph is ITR; see Figs. 15.14 and 15.15.

Since (3,6)–fullerenes are cubic, it is easy to see that the molecular graphs of
G[8n], H[8n C 4], I[4n], J[24n], K[16n � 32], L[16n C 48], and M[12n C 4] have
exactly 12n, 12n C 6, 6n, 36n, 24n � 48, 24n C 72, and 18n C 6 edges, respectively.
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Fig. 15.8 The Schlegel
diagram of J[24n]

Fig. 15.9 The 3D perception
of J[24]

Fig. 15.10 The Schlegel
diagram of K[16n � 32],
n � 5

15.3.1 Wiener and Eccentric Connectivity Indices
of (3,6)–Fullerenes

In this section the Wiener and eccentric connectivity indices of G[8n], H[8n C 4],
I[4n], J[24n], K[16n � 32], L[16n C 48], and M[12n C 4] are computed. By an easy
calculation, one can see that W(G[16]) D 294, �c(G[16]) D 192, �c(G[24]) D 348,
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Fig. 15.11 The 3D
perception of K[48]

Fig. 15.12 The Schlegel
diagram of L[16n C 48],
n � 1

�c(G[32]) D 600, �c(G[40]) D 888, and �c(G[48]) D 1,248. On the other hand, for
n � 7, we can partition the vertex set of G[8n] into n parts, each of which contains
eight vertices in such a way that the eccentricity of each vertex in the first part is n,
the eccentricity of each vertex in the second part is n C 1, : : : , and the eccentricity
of each vertex in the nth part is equal to 2n � 1. In Fig. 15.16, the black vertices
have the maximum eccentricity and red vertices have second maximum eccentricity
in G[8n], n � 7.

Our calculations show the following:

Result 15.1 For n � 3; W .G Œ8n�/ D .64=3/ n3 C .464=3/ n � 206; and for
n � 7; �c .G Œ8n�/ D 36n2 � 12n:
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Fig. 15.13 The 3D
perception of L[64]

Fig. 15.14 The Schlegel diagram of M[12n C 4], n � 1

Fig. 15.15 The 3D
perception of M[40]
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Fig. 15.16 The maximum
(black) and second maximum
(red) eccentricities in G[n]

Fig. 15.17 The maximum
(black) and second maximum
(red) eccentricities in
H[8n C 4]

We now consider the class H[8n C 4] of (3,6)–fullerenes. We can partition the
set of vertices of H[8n C 4] into n � 1 parts in which one of them has size 12 and
any other parts having size eight. The eccentricity of the vertices of the first part is
2n C 1, the second part is the set of vertices having eccentricity n C 2, the third part
is the set of all vertices having eccentricity n C 3, : : : , and the nth part is the set of
vertices having eccentricity 2n. In Fig. 15.17, the black vertices have the maximum
eccentricity and red vertices have the second maximum of eccentricity between
vertices of H[8n C 4]. From these calculations, we have the following result:

Result 15.2 For n � 1; W .H Œ8n C 4�/ D .64=3/ n3 C 64n2 C .152=3/ n C
2 and �c .H Œ8n C 4�/ D 36n2 C 60n C 12:

Consider the (3,6)–fullerene I[4n]. An easy calculation shows that �c(I[8]) D 72.
On the other hand, we can partition V(I[4n]) into n parts, each of which having size
four in such a way that the vertices of the first part have eccentricity n, the vertices
of the second part have eccentricity n C 1, : : : , and the vertices of the nth part have
eccentricity 2n � 1. In Fig. 15.18, the black vertices have the maximum eccentricity
and red vertices have the second maximum of eccentricity between vertices of I[4n].

From the calculations given above, one can prove the following:

Result 15.3 For n � 2; W .I Œ4n�/ D .16=3/ n3 C .20=3/ n � 6; and for
n � 3; �c .I Œ4n�/ D 18n2 � 6n:
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Fig. 15.18 The maximum
(black) and second maximum
(red) eccentricities in I[4n]

Fig. 15.19 The maximum
(black) and second maximum
(red) eccentricities in J[24n]

By an easy calculation, one can see that W(J[24]) D 864, W(J[48]) D 4,824,
�c(J[24]) D 396, �c(J[48]) D 1,140, �c(J[72]) D 2,064, �c(J[96]) D 3,420, and
�c(J[120]) D 5,256. On the other hand, for n � 6, we can partition the vertex set of
J[24n] into 2n parts, each of which contains four vertices in such a way that the
eccentricity of each vertex in the first part is 2n, the eccentricity of each vertex in
the second part is 2n C 1, : : : , and the eccentricity of each vertex in the 2nth part
is equal to 4n � 1. In Fig. 15.19, the black vertices have the maximum eccentricity
and red vertices have second maximum eccentricity in J[24n], n � 6.
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Fig. 15.20 The maximum (black) and second maximum (red) eccentricities in K[16n � 32]

The following result is a direct consequence of our calculations:

Result 15.4 For n � 3; W .J Œ24n�/ D 384n3 C 1; 656n � 1; 594; and for
n � 6; �c .J Œ24n�/ D 216n2 � 36n:

We now consider the (3,6)–fullerene K[16n � 32]. An easy calculation shows
that �c(K[48]) D 1,008 and �c(K[64]) D 1,632. On the other hand, we can partition
V(K[16n � 32]) into n � 3 parts such that one of them have size 32 and any other
parts have size 16. Also, the vertices of the part of size 32 have eccentricity 2n � 3,
and vertices of other parts have eccentricities n C 1, n C 2, : : : , 2n � 4, respectively.
In Fig. 15.20, the black vertices have the maximum eccentricity and red vertices
have the second maximum of eccentricity between vertices of K[16n � 32].

Our given calculations lead us to the following result:

Result 15.5 For n � 5; W.KŒ16n � 32�/ D .256=3/ n3 � 256n2 C .608=3/ n �
492; and for n � 7; �c .K Œ16n � 32�/ D 72n2 � 168n:

By an easy calculation by our GAP program, we can see that W(L[64]) D 9,968,
W(L[80]) D 17,432, W(L[96]) D 27,724, Ÿc(L[64]) D 1,692, �c(L[80]) D 2,340,
�c(L[96]) D 3,168, �c(L[112]) D 3,972, �c(L[128]) D 4,968, �c(L[144]) D 6,024,
�c(16n–32L[160]) D 7,260, �c(L[176]) D 8,652, �c(L[192]) D 10,224, �c(L[208])
D 11,952, �c(L[224]) D 13,824, �c(L[240]) D 15,840, �c(L[256]) D 18,048, and
�c(L[272]) D 22,896.

On the other hand, for n � 15, we can partition the vertex set of L[16n C 48] into
n C 3 parts, each of which contains 16 vertices in such a way that the eccentricity
of each vertex in the first part is n C 3, the eccentricity of each vertex in the
second part is n C 4, : : : , and the eccentricity of each vertex in the (n C 3)th part
is equal to 2n C 5. In Fig. 15.21, the black vertices have the maximum eccentricity
and red vertices have second maximum eccentricity in L[16n C 48], n � 15. These
calculations suggest the following result:

Result 15.6 For n � 4, W(L[16n C 48]) D (256/3)n3 C 768n2C(14,912/3)nC5,340,
and for n � 15, �c(L[16n C 48]) D 72n2 C 408n C 576.
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Fig. 15.21 The maximum
(black) and second maximum
(red) eccentricities in
L[16n C 48]

Fig. 15.22 The maximum (black) and second maximum (red) eccentricities in M[12n C 4]

In the end of this section, the Wiener and eccentric connectivity indices of
(3,6)–fullerene M[12n C 4] is computed. Using our GAP program, we can see
that W(M[16]) D 296, �c(M[16]) D 204, �c(M[28]) D 420, �c(M[40]) D 804, and
�c(M[52]) D 1,248. On the other hand, we can partition V(M[12n C 4]) into n parts
such that one of them has size eight, another of size 20, and any other parts
have size 12 in such a way that the elements of these classes have the same
eccentricity. The eccentricities of a representative of the first two classes are n C 2
and 2n C 1, respectively. On the other hand, the representatives of other parts have
eccentricities n C 3, n C 4, : : : , 2n, respectively. In Fig. 15.22, the black vertices
have the maximum eccentricity and red vertices have the second maximum of
eccentricity between vertices of M[12n C 4].

From these calculations, we have the following:

Result 15.7 For n � 2; W .M Œ12n C 4�/ D 48n3 C 144n2 C 192n �
126; and for n � 5; �c .M Œ12n C 4�/ D 54n2 C 90n:
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Table 15.1 The values of nu(e), nv(e), and n0(e) for a given edge
e D uv in G[8n]

Edges The values of nu(e), nv(e), and n0(e) No

1 6, 6, 8n � 12 4

2 8n � 9, 8, 1 4

3 8n � 8, 8, 0 4

4 8n � 16, 10, 6 8

5 8n � 12, 10, 2 8

6 8n � 16, 16, 0 8

7 8n � 17, 15, 2 8

8 8n � 15, 14, 1 8

9 8n � 22, 21, 1 16

10 8n � 24 � 4i, 24 C 4i, 0; n D 6 C i, i D 0, 2, 4, : : : 4

8n � 24 � 4i, 24 C 4i, 0; n D 6 C i, i D 1, 3, 5, : : : 8

11 8n � 24 � 4i, 24 C 4i, 0; n � 7 C i, i D 0, 2, 4, : : : 8

8n � 24 � 4i, 24 C 4i, 0; n � 7 C i, i D1, 3, 5, : : : 16

15.3.2 Vertex PI, Szeged, and Revised Szeged Indices
of (3,6)–Fullerenes

Consider the (3,6)–fullerene G[8n] depicted in Figs. 15.1 and 15.2. Apply our
method described in the third paragraph of this section for some small numbers of n.
Using our program we obtain four exceptional cases that n D 2, 3, 4, and 5. Then an
easy calculation shows that PI(G[16]) D 300, Sz(G[16]) D 972, Sz(G[24]) D 3,418,
Sz(G[32]) D 8,944, Sz(G[40]) D 17,840, Sz*(G[16]) D 1,533, Sz*(G[24]) D 5,010,
Sz*(G[32]) D 11,445, Sz*(G[40]) D 21,357.

From calculations given in Table 15.1 and Figs. 15.23 and 15.24, we have the
following result:

Result 15.8 For n � 6; Sz* .G Œ8n�/ D 128n3 C 64n2 C 1648n �
4; 519; Sz .G Œ8n�/ D 128n3 C 1; 216n � 4; 280; and for n � 3; PIv .G Œ8n�/ D
96n2 � 32n � 60:

We now consider our second class H[8n C 4] of (3,6)–fullerenes. An easy
calculation by our program shows that Sz(H[12]) D 34 and Sz*(H[12]) D 648.

By our calculations given in Table 15.2 and Figs. 15.25 and 15.26, we have the
following result:

Result 15.9 For n � 2; Sz* .H Œ8n C 4�/ D .448=3/ n3 C 320n2 C .656=3/ n �
42; Sz .H Œ8n C 4�/ D .448=3/ n3 C 192n2 C .188=3/ n � 66; and for
n � 1; P Iv .H Œ8n C 4�/ D 96n2 C 56n C 4:
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Type 1 Type 2 Type 3

Type 4 Type 5 Type 6

Type 7 Type 8 Type 9

Type 10 Type 11

Fig. 15.23 The 11 types of edges in G[8n]
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1 2 3

4 5 6

7 8 9

Fig. 15.24 The vertices equidistant from u to v

Table 15.2 The values of nu(e), nv(e), and n0(e) for a given edge
e D uv in H[8n C 4]

Edges The values of nu(e), nv(e), and n0(e) No

1 4n, 4, 4n 8
2 4n, 4n, 4 4
3 8n � 3, 6, 1 8
4 4n C 2, 4n C 2, 0 4
5 4n C 1, 4n C 1, 2 4n � 2
6 8n � 6 � 4i, 10 C 4i, 0; n � 3 C i, i D 0, 1, 2, : : : 8

15.4 (4,6)–Fullerenes

In this section two infinite families A[8n] and B[12n C 6] of (4,6)–fullerenes are
constructed, Figs. 15.27, 15.28, 15.29, and 15.30. Since A[8n] and B[12n C 6] are
bipartite, Sz(A[8n]) D Sz*(A[8n]), Sz(B[12n C 6]) D Sz*(B[12n C 6]), PIv(A[8n]) D
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Type 1 Type 2

Type 3 Type 4

Type 5 Type 6

Fig. 15.25 The six types of edges in H[8n C 4]

Fig. 15.26 The vertices equidistant from u to v
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Fig. 15.27 The Schlegel diagram of the (4,6)–fullerene A[8n], n � 2

Fig. 15.28 The 3D
perception of A[24]

Fig. 15.29 The Schlegel
diagram of the (4,6)–fullerene
B[12n C 6], n � 2

8n � 12n D 96n2, and PIv(B[12n C 6]) D (12n C 6)�(18n C 9) D 216n2 C 216nC54.
So, it is enough to compute the Wiener, eccentric connectivity, and Szeged indices
of these families of fullerenes. We begin by computing these quantities for (4,6)–
fullerene A[8n].
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Fig. 15.30 The 3D
perception of B[30]

Type 1 Type 2

Type 3

Fig. 15.31 The three types of edges in A[8n]

From Fig. 15.31, one can see that there are three types of edges in A[8n]. These
together with quantities nu and nv are recorded in Table 15.3.

We can partition V(A[8n]) into n parts such that each part has size eight in such
a way that the elements of each part have the same eccentricity. Also, a represen-
tative of distinct parts has eccentricities n C 2, n C 3, : : : , 2n C 1, respectively. In
Fig. 15.32, the black vertices have the maximum eccentricity and red vertices have
the second maximum of eccentricity between vertices of A[8n].
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Table 15.3 The values of
nu(e) and nv(e) for a given
edge e D uv in A[8n]

Edges The values of nu(e) and nv(e) in A[8n] No

1 4n, 4n 4n C 8
2 8n � 6, 6 8
3 8n � 4i C 4, 4i � 4, n � i, i D 3, 4, : : : 8

Fig. 15.32 The maximum (black) and second maximum (red) eccentricities in A[8n]

Fig. 15.33 The maximum
(black) and second maximum
(red) eccentricities in
B[12n C 6]

By above calculations and our calculations given in Table 15.3, we have the
following result:

Result 15.10 For n � 2; W .A Œ8n�/ D .64=3/ n3 C 32n2 C .32=3/ n �
16; Sz .A Œ8n�/ D Sz* .A Œ8n�/ D .448=3/ n3 C 64n2 C .320=3/ n �
160; and �c .A Œ8n�/ D 36n2 C 36n:

In the end of this section, we consider the (4,6)–fullerene graph B[12n C 6] into
account. It is clear that �c(B[30]) D 576. We partition again V(B[12n C 6]), n � 3,
into n C 1 parts such that one of these parts has size six and any other parts have
size 12. The vertices of each part have the same eccentricity, and a representative
of the part of size six has eccentricity n C 3. The eccentricities of a representative
of other parts are n C 4, n C 5, : : : , 2n C 3, respectively. In Fig. 15.32, the black
vertices have the maximum eccentricity and red vertices have the second maximum
of eccentricity between vertices of B[12n C 6] (Figs. 15.33 and 15.34).

From our discussion and calculations given in Table 15.4, one can prove the
following result:



15 Topological Study of (3,6)– and (4,6)–Fullerenes 507

Type 1 Type 2

Type 3 Type 4

Fig. 15.34 The four types of edges in B[12n C 6]

Table 15.4 The values of
nu(e) and nv(e) for a given
edge e D uv in B[12n C 6]

Edges The values of nu(e) and nv(e) in B[12n C 6] No

1 6n C 3, 6n C 3 6n C 9
2 12n � 6, 12 12
3 12n � 8, 14 12
4 12n � 6i C 6, 6i, n � i, i D 3, 4, : : : 12

Result 15.11 For n � 2; W .B Œ12n C 6�/ D 48n3 C 180n2 C 228n �
45; Sz .B Œ12n C 6�/ D Sz* .B Œ12n C 6�/ D 504n3 C 972n2 C 1; 674n �
1; 263; and for n � 3; �c .B Œ12n C 6�/ D 54n2 C 144n C 54:

15.5 Concluding Remarks

Since there are no classification of (3,6)– and (4,6)–fullerenes, it is natural to con-
struct more and more of such molecular graphs. In this chapter, some constructions
of these fullerene graphs are presented, and our calculations suggest the following
conjectures:
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Conjecture 1: The Wiener, Szeged, and revised Szeged indices of a (k,6)–fullerene
with exactly n carbon atoms are a polynomial of degree 3.

Conjecture 2: The vertex PI and eccentric connectivity indices of a (k,6)–fullerene
with exactly n carbon atoms are a polynomial of degree 2.

Appendix 1 Some GAP Programs

Here, two GAP programs are presented which is useful for calculations presented
in this chapter. The first program is for computing Wiener index and the second is
for eccentric connectivity index. Notice that these GAP programs have to combine
with calculations by TopoCluj described in the Sect. 15.1.

A Gap Program for Computing Wiener Index of Fullerenes

f:Dfunction(M)
local l,i,j,id,k,t,max,a,s,w,d,g;
l:DLength(M);id:D0;t:D[];s:D[];w:D0;d:D[];g:D0;

for k in [1..l]do
id:D1;

for i in [1..l-1]do
for j in [iC1..l] do

if M[k][j]>M[k][id] then
id:Dj;

fi;
od;

od;
Add(t,M[k][id]);

od;
max:Dt[1];

for a in [2..Length(t)] do
if t[a] > max then

max:Dt[a];
fi;

od;
for a in [1..max] do

for i in [2..l] do
for j in [1..i-1] do

if M[i][j]Da then
g:DgC1;
fi;

od;
od;

Add(d,g);
g:D0;
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od;
for i in [2..l] do

for j in [1..i-1] do
w:DwCM[i][j];

od;
od;
Print("DistansD",d,"nn");
Print("Wiener indexD",w,"nn");
Print("****************","nn");
end;

A Gap Program for Computing Eccentric Connectivity Index of Fullerenes

f:Dfunction(M)
local l,i,j,k,t,id,ii,jj,s,a,iii,w,ww;
t:D[];l:DLength(M);id:D0;s:D0;a:D[];w:D0;ww:D0;
for k in [1..l]do

id:D1;
for i in [1..l-1]do

for j in [iC1..l] do
if M[k][j]>M[k][id] then
id:Dj;

fi;
od;

od;
Add(t,M[k][id]);
od; ####ecentricity vertices of G
for ii in [1..l]do

for jj in [1..l]do
if M[ii][jj]D1 then

s:DsC1;
fi;

od;
Add(a,s);
s:D0;

od;####degree vertices of G
for iii in [1..Length(t)] do

w:Dt[iii]*a[iii];
ww:DwwCw;
w:D0;

od;######ecentricity connectivity index of G
Print("ecentricityD",t,"nn");

Print("degreeD",a,"nn");
Print("ecentricity connectivity indexD",ww,"nn");

Print("**********************","nn");
end;
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