Chapter 13
The Edge-Wiener Index and Its Computation
for Some Nanostructures

Ali Iranmanesh

Abstract The first and the second edge versions of Wiener index, which were based
on the distance between two edges in a connected graph G, were introduced by
Iranmanesh et al. in (MATCH Commun Math Comput Chem 61:663, 2009).

In this chapter, at first we obtain the explicit relation between different versions
of Wiener number and due to this relation, the edge-Wiener numbers of some graph
have been computed. Then we find the first edge-Wiener index of the composition
and sum of graphs. As an application of our results, we find the first and the second
edge-Wiener indices of some nanostructures.

13.1 Introduction

Topological indices are numerical descriptors derived from the associate graphs of
chemical compounds. Some indices based on the distances in graph are widely
used in establishing relationships between the structure of molecules and their
physico-chemical properties. Usage of topological indices in chemistry began in
1947 when the chemist Harold Wiener introduced Wiener index to demonstrate
correlations between physicochemical properties of organic compounds and the
index of their molecular graphs (Wiener 1947). Wiener originally defined his index
(W) on trees and studied its use for correlations of physicochemical properties
of alkanes, alcohols, amines and analogous compounds (Khadikar and Karmarkar
2002). Starting from the middle of the 1970s, the Wiener index gained much
popularity and, since then, new results related to it are constantly being reported.
For a review, historical details and further bibliography on the chemical applications
of the Wiener index see, Gutman et al. (1993, 1997) and Nikoli’c et al. (1995).
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Let G be a connected graph. The vertex set and edge set of G denoted by V(G)
and E(G), respectively. The distance between the vertices u and v, d(u, v), in a graph
is the number of edges in a shortest path connecting them. Two graph vertices are
adjacent if they are joined by a graph edge. The degree of a vertex i € V(G) is the
number of vertices joining to i and denoted by §;.

The Wiener index of G is

WG)=Wi(G) = Y  dixy) (13.1)
{x.y}SV(G)

The edge versions of Wiener index which were based on the distance between
edges introduced by Iranmanesh et al. (2009). These versions have been introduced
for a connected graph G as the first and second edge-Wiener, that is, the first edge-
Wiener number was introduced as follows:

Weo(G)= ) dole, f) (13.2)

{e.f}SE(G)

where dy(e, f) = dl(e’g) tle 7é§ and dy(e, f) = min{d(x,u),d(x,v),
e =
d(y,u),d(y,v)} suchthate = xy and f = wuv. This version satisfies in W,o(G) =
WL(L(G))).
The second edge-Wiener index was introduced as follows:

Wea(G) = )  dile.f) (13.3)

{e.fISE(G)

where da(e, f) = dz(fg /) Z i ; and ds (e, f)=max {d(x,u),d(x,v),d(y,u),

d(y,v)} such thate = xy and f = uv.

In this chapter, at first we obtain the explicit relation between different versions
of Wiener number and due to this relation, the edge-Wiener numbers of some graph
have been computed and then we compute the first and the second edge-Wiener
indices of zigzag nanotube and TUC4Cg(R) and TUC,4C3(S) nanotubes.

In Sects. 13.3 and 13.4, we find the first edge-Wiener index of the composition
and sum of graphs, respectively. As an application of our results, we find the first
and the second edge-Wiener indices of C4-nanotubes and C4-nanotori.

13.2 Explicit Relation Between Vertex and Edge-Wiener
Numbers

In this section, we restate some definitions and then we give an explicit relation
between vertex and edge-Wiener indices. All of the results in the first part of this
section have been published in [ranmanesh and Khormali (2011).
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Fig. 13.1 The edges of e and uev

f are not adjacent
redges —>{
Xfy

We recall the conditions of the distances. d is the distance on set X if it satisfies
in the following conditions:

(@ Yu,ve X; d(u,v)>0

®) Yu,ve X; u=v<du,v)=0

(©) Yu,ve X; du,v) =d,u)

(d) Yu,vyiwe X; du,v) +dv,w) > d(u,w)

At first, we restate the first edge-Wiener number according to the distances
between vertices.

Definition 13.2.1 Let ¢ = uv, f = xy be the edges of connected graph G.
Then, we define d’' (e, f) = d("'x)+d(”’y)1'd("’x)+d(v‘y) and d’(e, f) =

d[,d(’e@];)ffi gﬁ i g ,where C = {{e, f} € E(G)|ife =uvand f=xy;
d"(e, f)e ;éf.

{du,x) =d(u,y) =dv,x) =dv,x)} and ds(e, f) 0 e= f

Also, d’ and d” do not satisfy the condition (b), hence, they are not a distance
and are like distance.

Claim d3 = d().
Proof We have to show forany e, f € E(G), ds (e, f) = do (e, f).
(i) Ife= f € E(G),thend;s (e, f) =dy (e, f) = 0.
(ii) Ife, f € E(G) are adjacent edges, then,
do(e, f)=di(e, f)+1=04+1=1and ds(e, [) = da(e, f)

_[1+1+2

7 —‘ = 1. Therfore, d3(e, ) = do(e, f).

(iii) Ife, f € E(G) are not adjacent such as Fig. 13.1, then:

1. If {e, f} ¢ C, then do(e, f) = di(e, f)+ 1 = r + 1 and ds(e, f) =
d"(e, f) = ’7r+(r+l)+(2+l)+(r+2)—| = r+1. Therefore, ds(e, ) = do(e, f).

2. If {e, f} € C,thendy(e, f) = di(e, f) +1 = r + 1 and ds(e, f) =
d"(e, f) = W + 1 = r + 1. Therefore, d3(e, ) = dy(e, f). -
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Table 13.1 Examples for sets which have been defined above

Set C Ay As Az Ay
Example - v u € v u e u € vy u € v
E Qv E
X y X y

d’ 1 2 7 6 >

4 4 4
d} = d() 2 2 2 2 2
Corollary 13.2.2

Wa(G) = Y dsle. /)
{e.f}SE(G)

Proof Since d; = dy, we obtain the desired result. -

Before stating the explicit relations,

as follow:

we define several sets due to the distance d;

A = {{e. /Y S EG) | ds(e. f) = d'(e. )},

A

%{e,f}EE(G)

A3

{{e, £} < E@)

Ay = {{e,f} C EG)

dye. f) = d'(e. ) + %}
, 2
ds(e. f) = d <e,f>+z},

die. ) = d'e. f) + 3}

We denote all of the two element subsets of E£(G) with S and therefore |S| =

(lE(zG)l)' Also, we have: S = A; U 4> U A3 U Ay U C (Table 13.1).

Due to Definition 13.2.1 and Corollary 13.2.2, the relation between vertex and
first edge versions of Wiener index has been defined.

Theorem 13.2.3 Suppose G is a graph with m edges and A, A, A3, A4 and C are
the sets which have been defined as above. Then, the first version of edge-Wiener
number according to the distance between vertices of graph G is
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Wa(G) =5 Y Y dea(x) x dea(y) x d(x. )~ 5+

x€V(G) yeV(G)

> G)Jr > (%)4— > G)+|C|. (13.4)

{e.f}€4; {e.f}€A2 {e.f}eAy

Proof By Definition 13.2.1 and Corollary 13.2.2, we have

Weo(G) = Z di(e, f)

{e.fYSE(G)
. Z ”d(u,x)—}—d(u,y)—i—d(v,x)—i—d(v,y)—‘
{e.fYSE(G) 4
if e=uv, f=xy
Z dw,x)+dw,y)+dv,x)+dv,y)
{e.f}eA 4
if e=uv, f=xy
(d(u,x) +du,y)+dv,x)+dv,y) n l)
4 2
{E f}eAs
if e=uv,f=xy
(d(u,x)+d(u,y)+d(v,x)+d(v,y) 1)
+ -
4 4
{6’ f}GAz
if e=uv,f=xy
(d(u,x) +du.y)+dv.x)+dv.y) N §)
4 4
}eA4
1fe uv, f=xy
N Z (d(u,x)+d(u,y)+d(v,x)+d(v,y) +1)
4
{e,f}eC
if e=uv,f=xy
. Z du,x)+dw,y)+dv,x)+d,y)
{e.f}SE(G) 4
if e=uv, f=xy
D050 5 0
2 4 4
{e.f}e4; {e.f}€A {e.f}eAy

For each pair of vertices u, x € V(G) such that u # x which are not adjacent,
the distance d(u, x) in like distance d’ is repeated deg(u) x deg(x) times. And if
every pair of vertices u, x € V(G), u # x, is adjacent, distance d(u, x) is repeated
deg(u) x deg(x) — 1 times. Therefore,
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1 m
Weo(G) =5 3 ) deg(x) xdeg(y) xd(x,y) = T+
x€V(G) yeV(G)

1 1 3
Y () X (3 x (5)e
{e.f}€4; {e.f}eA {e.f}€A4

Now, because of the fact that the first edge-Wiener number has been written
by distances between vertices, we repeat this trend for second edge version with
definition of new distance.

Definition 13.2.4 Ife, f € E(G), we define

" _fTd'e, /)T e f} ¢ A _jd"e. fre# f
d" (e, f) = d'e. )+ 1. de. f1 e A and ds(e, ) = 0 e=f

The mathematical quantity d’” is not distance because it does not satisfy the
condition (b). Then, we say d’” is likedistance.

Claim ds; = d,.
Proof We have to show for any e, f € E(G), ds(e, f) = da(e, f).

(1) Ife = f € E(G),thends(e, f) = ds(e, f) =0.
(ii) Ife, f € E(G) are adjacent edges, then:
dy(e, f) =dy(e, f) =2andsince {e, [} € Ay, ds(e, f) =ds (e, f) +
1= Li“ + 1 = 2. Therefore, d5 (e, f) = d4 (e, ) ..
(iii) Ife, f € E(G) are not adjacent, then we have two sub-cases:

1. If {e, f} € A; such as Fig. 13.1, then
dile, f) = dale,f) = r +2andds(e f) = ds(e.f) +1 =
rtCANTOENCED) 4 | =y 4 2. Therefore, ds (¢, f) = di (e, ).
2. If {e, f} ¢ Ay, then
Ifds(e, f) = dy(e, f) = r, then max {d(x,u),d(x,v),d(y,u),d(y,v)}is
r and r is repeated at least two times in d (4, x) +d(u, y) + d (v, x) + d(v, y) for
d’. Hence,
d(i,j), i = u,v and j = x,y, takes r or (r — 1), then ds (e, f) =

ds (e, f) = "d(u,x)+d(u,y)1-d(v,x)+d(v.,y)—‘ = r. Therefore, ds (e, f) = da (e, f).

Corollary 13.2.5 W4(G)= Y. ds(e, f).

{e.fISE(G)
Theorem 13.2.6 Suppose G is a graph with m edges and A, Ay, A3, A4 and C are
the sets which have been defined in Definition 13.2.1 and Corollary 13.2.2. Then,
we can repeat the second version of edge-Wiener number according to the distance
between vertices of graph G as follows:
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1 m
Wa(G) =g D D deg(x) xdeg(y) x d(x,y) = -+
X€V(G) yeV(G)

1 1 3
Z (5) + Z (Z) + Z (Z) + |4, (13.5)
{e.f}€4; {e.f}€A {e.f}€4,

Proof Due to the definition of W,4(G) and Definition 13.2.4 and Corollary 13.2.5,
we have

Wa(G)= Y dse./)= Y. d"( f)=

{e.fISE(G) {e.fISE(G)

Yoode.H+ > L > 2, > 2 4]

: ’ — 4 — 4 — 4
{e.f}SE(G) {e.f}edr {e.f}e4s {e.f}eds

For each pair of vertices u and x such that u # x which is not adjacent, the
distance d(u, x) in like-distance d’ is repeated deg(u) x deg(x) times. And if every
pair of vertices u and x, u # x, which is adjacent, distance d(u, x) is repeated
deg(u) x deg(x) — 1 times. Therefore,

1 m
Wa(G) =g D ) deg(x) xdeg(y) x d(x,y) = o+
X€V(G) yeV(G)

Yot X i+ Y T4l

{e.f}€4, {e.f}€43 {e.f}€4,4

Corollary 13.2.7 The explicit relation between edge versions of Wiener index is
Wea(G) = Weo(G) + |Ai]| = [C]. (13.6)

Proof According to the relations 13.4 and 13.5, we can get above relation easily. =

In the following table, we bring some examples for relation 13.6 (Table 13.2):
Now, we compute the first edge-Wiener number of cycles according to our
relation as follows:

Corollary 13.2.8 The first edge-Wiener index and its vertex version are equal for
cycles.
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Table 13.2 Some examples due to relation 13.6

Graph (G) Weo(G) |4 IC|  We(G)

P, %n(n —)(n —2) (”gl) = W 0 %(n—l)(n—Z)(n-‘r})
S, %(n—l)(n—Z) ( ) ) (n— 1)(” D o w=DhHn-2)

C,. nis odd %n (n—1) (’2’) = ”(” 3) 0 %n (n® + 4n — 13)
C,. nis even %n3 (Z) % = n(n—2) 0 %n (n> +4n —3)

Proof The relation 13.3 can be stated for cycles as follows:

1
> (—), if n is even
{e./ Yeds 2
Weo(G) = Z Yo dlxy) =g e

1
er(G) yeV(G) 3 (—), if n is odd
{e.f}eA;
ife=uv, f=xy
m 1
W,.(G) — — + > (—), if n is even
4 fesyeds 2
_ ife=uv, f=xy
o m Iy .. .
W,.(G) — — + > (—), if n is odd
4 fesyen 4
ife=uv, f=xy

The numbers of elements of A3 in even cycles is 5 and in odd cycles is m. Then,

the first edge-Wiener number is equal to its vertex version for cycles. -
Now, we say the explicit relation of zigzag nanotube in pursue.

Theorem 13.2.9 The explicit relation between vertex Wiener number and the first
edge-Wiener number for zigzag nanotubes which have been consisted of vertices
with degrees 3 and 2 is

9 3
WaolG) = W@ +2 > D dx.y)
X€V(G) yeV(G)
deg(x)=2deg(y)=3

—g D d(x,y)—%—f— 3 % (13.7)

x€V(G) yeV(G) {e.f}e4;
deg(x)=2deg(y)=2

Proof We can get this result with replacing the degree of vertices in relation 13.4
and the fact that the sets A,, A4 and C are empty. -
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Fig. 13.2 (n,0) zigzag p=2
polyhex SWNTs
level 0

qg-1=3

The vertex version of Wiener number of zigzag nanotube is computed in John
and Diudea (2004). They have focused on (n,0) zigzag polyhex SWNTs which
have p hexagons in a row and ¢ hexagons in column. Because of their computation
and relation (13.7), we state the first edge-Wiener number of zigzag nanotube such
that p is even integer and ¢ is odd integer.

They have colored the vertices with two colors white and black as shown in
Fig. 13.2.

The white vertices in level O denote the vertices with degree 2 and the black
vertices in last level denote the vertices with degree 2.

Lemma 13.2.10 (John and Diudea 2004) The sum of distances of one white vertex
of level O to all vertices of level k, for k = 0,1,...,q — 1, is given as:

2p 2p 2
+k)+ko<k<
Wy = Zd (x02, Xgr) = Zd (o4, Xer) = { (]; (4k)+ 1) ’ ;7 =k .

r=1 r=1

Lemma 13.2.11 ) > d(x,y) =
xeV(G) yeV(G)
deg(x)=2deg(y)=2

q—1

P
2 2
2p 23 2i—p4+2Y Q¢+1)+2

i=1 i=1

DS

43

2
> 2q+2i-1),g<p
i=1

i i
2p<222i—p+22(2q+1) . P=<gq

i=1 i=1

Proof Due to Fig. 13.2, we can get this result easily. -

Lemma 13.2.12 > d(x,y) is equal to
x€V(G) yeV(G)
deg(x)=2deg(y)=3



434 A. Iranmanesh

! ; o s
wp +2> 2i—1)=2 Rg+1)—=2 > @Qq+i)g<p
k=1 i=1 i=1 i=1
2]7 x q—1 % %
Sowe+23Q2i—1) -2 (29 + 1), P=q
k=1 i=1 i=1

q—1
Proof Y wy is the sum of distances between x,, and all of vertices in levels
k=1
k =1,...,q — 1. Then, we must reduce the distance between x,; and vertices in
last level with degree 2 and add the distances between vertex x,, and vertices in

level 0 with degree 3. Then, we can obtain the above relation. -

Theorem 13.2.13 (John and Diudea 2004) The vertex-Wiener number of zigzag
nanotubeG which has p hexagons in a row and q hexagons in column such that p is
even integer and q is odd integer is

p—;[6p2q+(4p+q)(qz—1)], 0<qg<p
W.(G) = e

7[ 249+ p)+q(8¢*—6)+pl.p<q

Theorem 13.2.14 The edge-Wiener number of zigzag nanotube G which has p
hexagons in a row and q hexagons in column such that p is even integer and q
is odd integer is

Weo (G)
9 .3, 3 3.11 3,3 1,1
rq (qu TR P P T g At P AT 4 _Z)_
29 , 15 55
= p(EP_T _E)’ q<p

3 siapgr 2 3 e d ] 31, 1 -
P\ 5P +3p0* = ptopatoty | e\ gt gt ) p =4

Proof In molecular graph of zigzag nanotube, we have two types of edges. The
first type is the oblique edges and the second type is vertical edges. The number

of pair oblique edges which belongs to Az is 2p (q —; 1), and the number of

vertical edges which belongs to A3 is g (12) ) Therefore, according to relation 13.7,

Lemmas 13.3.4 and 13.3.5, Theorem 13.3.6, and the number of elements of A, the
above relations are computed easily. -

The explicit relation between first edge version and vertex version of Wiener
number of nanotubes with vertex of degrees 3 and 2 has been declared in Theorem
13.2.9.
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Corollary 13.2.15 According to the relations13.6 and 13.7, the explicit relation
between vertex and the second edge-Wiener number for zigzag nanotubes which
consists of vertices with degrees 3 and 2 is obtained directly:

9 3
Wes(G) = W@+ > ) dx.y)

x€V(G) yeV(G)

deg(x)=2
m 1
_ d(x,y) — — — Ayl . 13.8
Y 2 day g+ Y S +l4l (13.8)
x€V(G) yeV(G) {e.f}eAs

deg(x)=2deg(y)=2

Theorem 13.2.16 The second edge-Wiener number of zigzag nanotubeG which has
p hexagons in a row and q hexagons in column such that p is even integer and q is
odd integer is

We4(G)
Oy 3y 35 3. M3, 3 1, ]
P\ g4p"+ 40P — g Pl —qed TPt grat 47—
B b, 3 3pg+2p\ 24> +4p>+ pq o<p
16 4 16 2 2 '
- 3, 27 3 q 1 3 1 11
23 4 3pa2_ 2L 2 4, 2)_ 24 _ 1.2, 10
pq(2p+pq 4p+2pq+2+4) p(gp Pttt
3pg+2p\ _ 2pq> +4ap*+ pq B
2 2 p=1

Proof The number of edges of zigzag nanotube with p hexagons in a row and ¢
hexagons in column is 3pg + 2p. In molecular graph of this nanotube, we have

E(G) = A; U 4s, and 45| = w. Therefore, according to |A4;| =

(3]96];- 217) - w, W.4(G) is computed easily by relation 13.6. -

In this part, as the application of the above results, we compute the first edge-
Wiener indices of TUC4Cg(R) nanotube which has been published in Mahmiani,
et al. (2010a).

Corollary 13.2.17 Since there are not any odd cycles in TUC4Cg(R) nanotube,
Ay is empty. Hence for TUC4Cg(R) nanotube, we have

WG+ Y Y )

WeO(G) =

4 X€V(G) yeV(G)
deg(x)=2
m 1
_ d i — 13.
YooY dwn-T+ Y. 5 (139
xeV(G) yeV(G) {e.f}€43

deg(x)=2 deg(y)=2
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Xoo Xo1 Xoa X KXoy Xog os

Fig. 13.3 A T(p,q) lattice withp="7 and ¢ =4

Abbas Heydari and Bijan Taeri in (2007a) computed the vertex-Wiener index
W,(G)and Y > od(x, ).

xe€V(G) yeV(G)
deg(x)=2

We mention only the quantity of them in this part and omit details.

We denote TUC4Cg(R) nanotube with T(p,q) where p is the number of squares
in a row and ¢ is the number of squares in a column. Also, we assumed P; = [pTH]
and opted below coordinate label for vertices of T'(p, ¢) as shown in Fig. 13.3.

Lemma 13.2.18 (Heydari and Taeri 2007a) Y > od(x,y)=2pSy(g—1),
xeV(G) yeV(G)

deg(x)=2
where
83 2 2
gZ +Q2p+8)1°+ (3p*+2p) I+
19 1+ (=1)? 1+ (=1)7?
! (?+%)l+3p2+1+#,l<ﬂ
S(l) = Z Ty (k) = N ) 1—(=1)?
pr 6pl +(p +10p—T)l+
1, , 11 1—(=1)?
- —p—+—, I>P
31? +p+ 31? + ) > I
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3p? + 4kp + 8k + 8k — 1+

1+ (=1)?
3%, 0<k <P
and T) =\ o Doy 4 ap— 14 '
1+ (=1)?
#, k> P,

Theorem 13.2.19 (Heydari and Taeri 2007a) The Wiener index of T(p,q) is given
by the following equation:

Pq (g 3 2 2 I+(=Dr)
+ (80 +8pq7 + (1892 =5+ 355 ) g —8p). g < Py
1—(=1)”

% (—p4 +8qp* + (12(]2 +1- %) pz) +
Wolp.q) =\ 2 X

3 (48¢°> — (14 +3(1 + (—1)") q) +

1+ (=17 (3 5
1——— ) [ = —124%), > P
( 2 )(2 1 =n

Lemma 13.2.20 Summation ) > d(x,y)isequalto in T(p,q):
xeV(G) yeV(G)
deg(x)=2 deg(y)=2
If p is even:

Y Y dey) = %7q2—7q+4pq+p2—2p+1,q < Py
) - 2 _ _

x€V(G) yeV(G) 3pg+p 2p —3q + 1, q=>P

deg(x)=2deg(y)=2

If p is odd:

79> +q+4pqg+p*—p—2,9g<P
2 2 d(x’y):%3iq+12—l;q+3z—zp /= n
xeV(G) yeV(G) ’ =4
deg(x)=2deg(y)=2

Proof There exist two types of vertices with degree 2. One of them is in the first
row and another is in the last row (Fig. 13.3).

Since the situation of all vertices with degree 2 is the same, we can suppose a fix
vertex x in first row. Then, we have for the first type

E
2
22131' — 37”, p is even
Yoo dxy) =4 ‘D
2

yeV(T(p.q) ;
y is in the first row 2 ! 3i ’
deg(y)=2 i=1

p is odd
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And we have for the second type:

(a) piseven:

-1

22(3q—1+l)+22(4q—1+z)—
=0

Z d(x,y) = (4q+ﬁ—1) qg<PpP
y?V(Tap,;})) 51
y is in the last row _ — L
o the 2 122) Bg—1+i)—(Bg+5-1), q>P
(b) pisodd:
1 ey
22(3q—1+1)+2 Z (4g—1+1i),q <P
> A =4 5 =
2
;ElsvlflTlglz iid)s)lrow 2 Z (3(] -1+ l), q = Pl
deg(y)=2 i=0

Therefore, we can obtain the desired results.

Observation 13.2.21 The number of elements of A4; is equal to: (g — 1) (‘12) ) +

() (%)

By the above lemmas, Theorem 13.2.19, Observation 13.2.21 and the fact that
the number of edges in T(p,q) are 6pg — p, the following theorem can be proved:

Theorem 13.2.22 The first version of edge-Wiener index of T(p,q) is equal to:
1. If p is even:

39 9
-5 p+ 2pq* + 6p%q* + gpqz(—l)’”r

3 27
gPa(=D7 + 7173612 + 6pq°+
81 15, 115 , 37,

A ey L By Al

9 3
Zp3q —2p° + Epzqz, g <P

_ 3 27 3 9
Weo (T(p.q)) = _Ep__q2+§pq(_l)p+§p3q2+
21

9
—pqg+=p+ pq( IDLaRES

8 2

27 3 1 9
__1p+1 s 2.5, - Z 2
(=1 TR +4p + P4
85 3., 29 3
- - == 1H?
8pq+4pq 1619 +16p( )+

9
18p%q> + 274> (—1)” + 7P 97, q>P
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2. Ifpisodd:
27 9

-5 P+ 2pq* + 6p%q* + gpqz(—l)‘”r
3 27
gPa(=1" + 7173612 + 6pq°—
47 7, 115 , 37,
gpq + ZP - ?Pq - TP q+
9 3
Zp3q —2p° + Epzqz, q <P
9 27 3 9
3P~ 54"+ 5pa(=D" + 2pg’=

Weo (T(p.q)) = 75 3 5 9 5 "
gPat 5Pt gpa=DT
27 27 3 1
E(—l)”“ t 16~ §P5 + ZP4+
9 , 8 , 3, 29,
QP4 =g P At - et
3
Ep3(—1)1’ + 18p%¢® + 27¢*(—1)P+
9
SP gz P

Now, we computed the first and the second edge-Wiener indices of TUC4Cs(S)
nanotube.

All of the following results have been published in Mahmiani, et al. (2010b).

Due to the fact that, there are no odd cycles in TUC4Cg(S) nanotube, A, is empty.
Then, we have for TUC4Cg(S) nanotube, the relation 13.9.

Corollary 13.2.23 According to the relations 13.6 and 13.7, the explicit relation
between vertex and first edge-Wiener number for TUC4Cg(S) nanotubes which
consists of vertices with degrees 3 and 2 is

WG+ Y Y dn

X€V(G) yeV(G)

Wea(G) =

deg(x)=2
m 1
-y ¥ d(x.y) =7 + > 5+l (310
X€V(G) y€eV(G) {e.f}€4;

deg(x)=2 deg(y)=2
The explicit relation between edge versions of Wiener index is:
Wes(G) = Weo(G) + | A1] — |C| (13.11)

In TUC4Cs(S) nanotube, p is the number of square in a row and ¢ is the number
of rows which is shown in Fig. 13.4.
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X0 RO Xo2 Xp3 Xpg Xos Xos Xo7
Yo7 Yoo Yo1 Yoz yo3  Yo4 Yos Yog
k=0 e—
v Vv 1] ] V 1] 1] i)
k=1 .'1? J10 ] '}Il yi2 i 13 Vid ) ‘}15 V16 ] )
X10 X 12 Xy X4 X 16 Y17

k=4 o—

k=5 o——
Fig. 13.4 A TUC4Cg(S) lattice withp =4 and ¢ =06

In Heydari and Taeri (2007b), some notations are defined as follows. For all
0<r<gand0 <t < 2p,leta, € {x,,y~} and let d,,, (k) denote the sum
of distances between a,, and vertices on k-th row of the graph. By symmetry of the
graph for all 0 < ¢ < 2p, d,,, (k) equal. So we may compute this summation for
Xop in the Oth row of the graph, which is denoted by d, (k).

Lemma 13.2.24 (Heydari and Taeri 2007b) Let 0 < k < g, then dy(k) =
4p*+4kp+2(k*+ k). k<p
2p% + 8kp + 2p, k>p’
Therefore, according to the Lemma 13.2.24, we can obtain > > d(x, ).

x€V(G) yeV(G)
deg(x)=2

Lemma 13.2.25

Yo Y day =

x€V(G) yeV(G)
deg(x)=2
8 2 2
3P4 (60 +3pa=3p+4¢’=1).q = p
8p%q (p+2q— 1), q>p
Proof Due to the Lemma 13.2.24, d,,, (k) denotes the sum of distances between

Xop and vertices on k-th row of the graph. There are 4p vertices such as xg, in the
first row. Therefore,
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q—1
YD dxy)=4p)y dik) =
k=0

x€V(G) yeV(G)

deg(x)=2
8
3P4 (607 +3pg—3p+4¢’—1). 4= p |
8p%q (p +2q —1), q>p

The vertex-Wiener index of TUC4Cg(S) is computed in Heydari and Taeri
(2007b). We state only the main result as a theorem asfollows:

Theorem 13.2.26 (Heydari and Taeri 2007b) The Wiener index of TUC4Cg(S) =
G is given by the following equation:
W(G) =

pq
7(2q3+8pq(3p+q)—2q—8p), q<p

2
% (—2p° +8¢p* + (124> +2) p + 16¢> — 12¢q) +, g > p

Lemma 13.2.27 LetTUC4Cs(S) = G. Then,
If p is even:

Yo Y dxy) =

X€V(G) yeV(G)
deg(x)=2deg(y)=2

2p—2q +1
4pg +3p>—2p —1, qg>p

If pis odd:

YooY dxy=

x€V(G) yeV(G)
deg(x)=2deg(y)=2

q2+2q+2pq+4p2—p—2—2[

2p—2q+1
4

2 2 P P7?

q°+q+2pg+2p —3p+85 +8§ -2
2

4pq+p2—2p+8[§]+8[§], q>p

i|,QEP

Proof There exist two groups of vertices which have degree 2. One group is vertices
in the first row and another is the vertices in the last row.

Due to the fact that the situation of all vertices with degree 2 is the same, we
suppose the fix vertex x is in first row. Then, we have for the first group:
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Y, dxy) =

yeV(T(p.q))
y is in first row
deg(y)=2

p—2

=
> (16k+16) | —(4p+ 1), piseven
k=0

[22]

2

> (16k + 16), p is odd
k=0

And we have for the second group:
(a) piseven:

Y, dxy) =

YEV(T(p.q))

y is in last row

deg(y)=2
3g—1 ) 2p+q—1 ) 2]7 _ 2q -3
> e+ X (l)—2([f} + 1) —4.9=p
i=2q i=3¢g—1
2g+p—1 )
> @)-p, q>p
i=2q
(b) pisodd:
Y dxy) =
yeV(T(p.q))
y is in last row
deg(y)=2
3g—1 ) 2p+q—1 ) 2p _ 26] —4
e+ Y (l)—Z[T} —2p—2¢—3,9<p
i=2q i=3g—1
2q+p—1 )
Z (2l) - D, q>p
i=2q

Therefore, we can get results with the above summations.

Observation 13.2.28 The number of elements of A; is equal to: 4p (q) +

2
2p
—1 .
w-n ()
Due to the fact that the number of edges in TUC4Cs(S) is 6 pg — 2 p, we state the
first edge-Wiener index of TUC4Cs(S).
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Theorem 13.2.29 The first version of edge-Wiener index of TUC4Cs(S) = G is

equal to:

1. If p is even:

VV(J,O (T(p7 q)) =

pq*

2p—2q +1
q2—2q—5p2+2p+2+2[&],

4

2 2
3p—|—pq2+1,

2. If pis odd:

Weo (T(p.q)) =

2
w5 [2] (2]

3
zpq“ +18p°q> + 6p°q> — - - 8p*q +6p°q +3p’q> — 6pq + pg’—

15 3p3
—p>+6ptq + L 12p%¢ — 11p%q + 3p3q + 6p*q> —T1pq — 4p*+

3 g’
qu4 +18p3¢* + 6p%¢> — = - 8p%q + 6p3q + 3p%q> — 6pg + pg’—
2p—2g +1 p p1?
2 2
—g-3pr 2| L s [ 2] s 2]
4 1 Pt |: 4 ] 2 2

15 3p3
—p> +6p*g+ % + 12p%¢% — 11p%q 4+ 3p3q + 6p*¢* — Tpq — 2p*+

q=p

q>p

q=p

q>p

Proof According to Lemmas 13.2.25 and 13.2.27, Theorem 13.2.26 and observa-

tion 13.2.28, we can conclude these results easily.

Now, In this part, we compute the second edge-Wiener index of TUC4Cg(S).

Theorem 13.2.30 The second version of edge-Wiener index of TUC4Cs(S) =
G where p is the number of squares in a row and q is the number of rows is

equal to:

1. If p is even, then

Weo (T(p.q)) =

pq?
2

2p—2q +1
2pq2—q2—2q—p2+2p+2+2[i]

)

2 2
3p—pq2+ 1,

3
~pq* +18p°q% + 6p%q® — S 22p%q + 6p°q + 21p*q* — 6pq + pg*—

15 3p3
205 4 6ptq + 225 1120203 — 25p%q + 3p%q + 24p%% — Tpg+

g=p

q>p
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Fig. 13.5 T (6, 4) nanotube
with 1 < j < 4 periods

2. If p is odd, then

Weo (T(p.q)) =

3 pq?
5Pt +18p°¢% +6p%q° — = - —22p%q + 6p°q + 219’47 — 6pq + pq’~
2p—2q +1 2
2> —q+pP 2| LT —8[2]—8[3], q<p
4 2 2
15 3p3
> P° + 60+ % 120263 —25p% + 3p%q + 24p%¢> — Tpq + 2p>+
p Ak
s o[22 >
p—rq 5 5 q>p

Proof The number of edges of TUC4Cg(S) nanotube with p squares in a row and ¢
rows is 6pg — 2 p. In molecular graph of this nanotube, we have E(G) = A; U A;

and
ast=4r () +@-n(7).

Therefore, according to reference Heydari and Taeri (2007a, b) and |4| =
18p%q* — 14p%q + 4p* — 2pg?, W,4(G) is computed easily. -

In the above, we computed the first edge-Wiener index of TUC4Cg (S) nanotube
by the result obtained in Iranmanesh and Khormali (2011). But, in [ranmanesh and
Kafrani (2009), we computed this index with a different method. The base of this
method is according to the definition of eight sets as follows:

Let T (p,q) = TUC4Cs (S) where p is denoted the number of octagonal in
rows and ¢ is the number of octagons in columns. We consider j periods, where
1 < j < g, for this nanotube that each period has an upper row and a lower row.
For example in Fig. 13.5, we show T (6, 4) nanotube.
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Suppose e € E(G). Set

q
A, = U {e € E(G) | e is anedge over octagones in upperrow of j — th period}
j=1

q
Ag = U {e € E(G) |eisanedge over squares in lower row of j — th period }
j=1

q
B, = U {e € E(G) | eisanedge under octagonesin upperrow of j — th period}
j=1
q
B, = U {e € E(G) | eisanedge under squares in lower row of j — th period }
j=1

q
C, = U {e € E(G) |eisanobliqueedgein upperrow of j — th period }
j=1

q
Ci= U {e € E(G) |eisanobliqueedgeinlowerrow of j — th period}
j=1
q
D = U {e € E(G) eisavertical edge that located between upper and lower rows}
j=1
q—1
E = U {e € E(G)|eis vertical edge that located between j — th period and
j=1
Jj + 1 — thperiod}
So we have

Weo(G) = Weo (Au, G) + Weo (Ad, G) + Weo (B, G) + Weo (By, G) + Weo
(Cu, G) + Wy (Cq, G) + Woo (D, G) + Weo (E, G)

For compute the first edge index of T'U C4Cs(S) nanotube, we obtained this
index in three cases: ¢ < [4]+ 1,9 = [4] + 1, and ¢ > [£] + 1 any by six
theorems we could obtain the first edge-Wiener index of 7' U C4Cg(S) nanotube.

13.3 Computation of the First Edge-Wiener Index
of the Composition of Graphs

In this section, we find the first edge-Wiener index of the composition of graphs. All
of the results in this section have been published in Azari et al. (2010).
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We denote by [u, v] the edge connecting the vertices u, v of G, and the degree of
a vertex u is the number of edges incident to u and denoted by deg (u |G ).

The Zagreb indices have been defined more than 30 years ago by Gutman and
Trinajestic (1972):

Definition 13.3.1 The first Zagreb index of G is defined as M;(G) =

> deg(uG)>.
ueV(G)

Let us recall the definition of the composition of two graphs.

Definition 13.3.2 Let G; = (V (G1), E (G1)) and G, = (V (G2) , E (Gy)) be two
connected graphs. We denote the composition of G, and G, by G [G»], that is a
graph with the vertex set V (G [G2]) = V (G1) x V (G») and two vertices (u;, ua)
and (v1,vy) of Gy [G,] are adjacent if and only if: [u; = vy and [u, 2] € E (G3)]
or [ul,vl] eE (Gl)

By definition of the composition, the distance between every pair of distinct

vertices u = (uy, up) and v = (vq,v2) of G| [G2] is equal to

d (Ml,Vl |G1) ifM1 75 Vi
du,v|Gi[Gy]) =41 if ug = vy, [us, 2] € E (Ga)
2 if u; = vy, v, is not adjacent to u, in G,

Consider the sets £ and E, as follows:

E1 = {[(Ml,uz) s (M],Vz)] e E (Gl [Gz]) Uy € %4 (Gl) s [I/lz,VZ] e E (Gz)}
Ey = {[(u1,u2) , (vi, )] € E(G[G2]) : [u1,vi] € E(Gy), uz,v2 € V (G2)}
By definition of the composition, £y U E, = E (G [G2]) and obviously, E; N

Ey = ¢, |Ei| = |V (G| |E (Gy)| and | Ez| = |V (G2)|* |E (G)].
Set

A=e, fLCE(GI[G]):e# f e f€E}
B={{e, [} CE(G[G]):e# [ e, [ €E}
C={e.f}CE(G[G)]):e€E\ [ € E}

It is easy to see that each pair of the above sets is disjoint and the union of
them is the set of all two element subsets of E (G| [G3]). Also we have |[A| =

(|E1|) _ (IV(Gl)I |E(G2)|) B| = (|E2|) _ (lV(Gz)|2|E(Gl)|)
2 2 ’ 2 2 ’
ICl = |E)| |Esl = [V (G| [V (G)P|E (G| |E (G
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Consider four subsets A, A,, A3 and A4 of the set A as follows:

Ar=He, fred:e=[(u,u), ()], f=[(u1,u2), (u1,22)], u1 € V(Gy),
ur,v2,22 € V(Ga)}

A =He, fred:e=[(u,u),(u, )], f =[(u,22), . n)], u €V (G),
uy,v2,22,12 € V(Gy), both z; and ¢, are adjacent neither to u, nor to v,
in Gy}

As={{e, f} € Are=[(u,uw2), (ur, )], f =[(u1,22) , (1, )], ur € V(Gy),
ur,vo € V(Ga), 22,1 € V(Gy) —{uz, v2}} — As

As={{e, f} € At e=[(u1,u2), (1, )], f=[(v1,22), V1, 2)], u1,vi€V (G1),
VI # Ui, Uz, V2,22, € V(Ga)}

4
It is clear that every pair of the above sets is disjointand 4 = | J 4;.

i=1
In the next proposition, we characterize dy (e, f |G [G2]) for all {e, f} € A.
Proposition 13.3.3 Let {e, f} € A.

() If e, f} € A, thendy (e, f |Gy [G2]) = 1
(i) If {e, [} € Ay, then dy (e, f |G [G2]) =3
(iii) If {e, f} € A3, thend (e, [ |G [G2]) =2
(v) If {e, f} € As, thendy (e, f |Gy [G2]) =1+ d (ur,v1|Gy),
where e = [(MlvMZ) > (Lt],Vz)] s f = [(VleZ) s (V],Zz)]
Proof

(1) Let{e, f} € Ay and e = [(u1,uz), (u1,v2)], f = [(u1,u2), (11, 22)]- Due to
the distance between two vertices in G| [G,] and by definition of dj (e, f), we
have

do (e, f1G1[G2]) = 1 + min{d ((u1,u2), (u1,u2) |Gy [G2]) ,
d ((u1,u2), (u1,22) |G [G2]),
d ((u1,v2), (u1,u2) |Gy [Ga]) . d ((u1,v2) , (u1,22) |G1 [G2])}
=14+ min{0,1,1,d (v2,220]G2)} =14+0=1.
(i) Let {e, f} € Ay and e = [(uj,u2),(u;,w)], f = [(u1,22), (u1,5)]. By

definition of the set A,, z, is adjacent neither to u, nor to v, in G, and this
is also true for ;. Therefore,
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do (e, f1G1[G2]) = 1 + min{d ((u1,u2) , (u1,22) |G1[G2]),
d ((Mls Ltz) s (Ltl, Z‘2) IGl [GZ])v
d ((u1,v2), (u1,22) |G1 [G2]) , d (w1, v2) , (w1, 12) |Gy [G2] )}
— 1+ min{2,2,2,2} = 3.
(iii) Let {e, f} € A3 and e = [(u1,u2), (w1, v2)], f = [(w1,22).(u1,1)]. By

definition of the set Az, zo ¢ {uz,v2}, t» ¢ {uz,v2}. On the other hand
{e, f} & A, so at least one of the following situations occurs:

[uz,22] € E(G2), [uz.t2] € E(Ga), [v2,22] € E(G3) or [v2,52] € E(G2).

This means that at least one of the distances d ((u;, u2), (u1,22) |G1[G2]) ,
d ((ur,u2) , (w1, 1) |G1[Ga]), d ((w1,v2), (w1,22) |G1[Ga]) or d ((u1,v2),

(u1, 1) |G1[G3]) is equal to 1. Therefore,
do (e, f1G1[G2]) = 1+ min{d ((u1,u2) , (u1,22) |G1 [G2]),
d ((uls Ltz) P (Ltl, t2) |Gl [GZ])v
d ((u1,v2), (u1,22) |G1[G2]) . d ((u1,v2), (u1, 1) |G1 [G2])} =14+ 1=2.

(iv) Let {e, f} € Agand e = [(u1,u2), (u1,v2)], f = [(vi,22), (vi,12)]. Thus
v # up and
do (e, f1G1[G2]) = 1 + min{d ((u1,u2) , (v1.22) |G [G2])
d ((u1,u2) , (v1,12) |G1 [G2])
d ((u1,v2), (v1,22) |G [G2]) . d ((u1,v2) . (v1.12) |Gy [G2])} =
1+ min{d (u1,v|G1).d (u1,v1 |Gy) ., d (u1,v1 |Gy),
d(u,vi|G)} =1+d (u,v|Gi),

so the proof is completed. -
In the following, we define five subsets B;, B,, B3, B4 and Bs of the set B.

Bi={{e.f} € B:e=[(ur.u2), (vi,»)], f = [(ur,u2) , (v, 22)],
ui,vi € V(G1),u2,v2,22 € V(G2)}

By={le.f} € B:e=[u,uz),vi.v)]. [ = [(u1.22) . (v1,12)],
u,vi € V(G ,u2,v2, 20,12 € V(G2), 22 # ua, tr # va}

By ={{e.f} € B:e= [ uz),vi.)]. f = [(u1,u2) . (z1.22)],
up,vi,21 € V(G1) ,u2,v2,22 € V(G2), 71 #vi}
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By={e. fleB:e=[unu),(vi,n)]. f=[.0). (@ 2)].
ui,vi,z21 € V(G1),uz,va, 10,220 € V(Ga), 21 # vi, b # o}

Bs ={{e. f} € B:e=[(u1,u2), vi.»)]. f = [(z1.22), (t1. 12)] .
up,vi € V(G) . 21,11 € V(G1) —{ur,vi}, uz,va. 22,1 € V (G2)}

5
It is clear that each pair of the above sets is disjointand B = | J B;.
i=1
The next proposition characterizes dy (e, f |G [G2]) for all {e, f} € B.
Proposition 13.3.4 Let {e, f} € B.

(i) If {e, [} € By, thend, (e, f |Gy [G2]) = 1

(i) If {e, f} € By, then dy (e, [ |Gy [Ga]) =2

(iii) If {e, f'} € B3, thendy (e, f |G [Ga]) = do ([u1,v1], [ur1, 1] |G1),
where e = [(MlvMZ) P (vlsVZ)] B f = [(”lv MZ) P (ZleZ)]

(iv) If {e, f} € Ba,then dy (e, [ |Gy [Ga]) = do ([u1,v1], [u1,z1] |G1) + 1,
where e = [(MlvMZ) P (vlsVZ)] B f = [(Mlth) P (leZZ)]

(v) If {e, [} € Bs,thendy (e, f |Gy [G2]) = do ([ur,v1], [z21,11] |G1),
where e = [(MlvMZ) P (vlsVZ)] B f = [(leZZ) s (Zlth)]

Proof

(i) Let{e, f} € Byand e = [(ur,uz), (vi,v2)], f = [(u1,u2), (v1,22)].
Using the definition of dj (e, f), we have:
do (e, f|G1[G2]) = 1 + min{d ((u1,u2) , (u1,u2) |Gy [G2]) ,
d ((ur,u2), (v1,22) |G1 [G2]) ,
d ((vi,v2), (u1,u2) |Gy [Ga]) . d ((vi,v2) ., (V1. 22) |G1 [G2])}
=14 min{0,1,1,d ((vi,v2),(v1,22) |G1[G2])} =1+ 0= 1.

(11) Let {6, f} S B2 and e = [(uls Ltz) s (Vlvv2)] P f = [(ulsz) s (vlth)]' By
definition of B, z2 # uz, t # vp. So due to the distance between
two vertices in G [G,], the distances d ((u1,u2), (u1,22)|G1[G2]) and
d ((vi,v2), (v1, 1) |G [G]) are either 1 or 2. Therefore,

do (e, f|G1[G2]) = 1 + min{d ((u1,u2), (u1,22) |G1[G2]),
d (w1, u2), (v, 1) |G [G2]) s

d ((vi,v2), (u1,22) |G1[G2]) . d ((vi,v2) , (1, 12) |G1 [G2] )} =

1 +min{d ((u1,u2), (u1,22) |G1[G2]), 1, 1,d ((vi,v2), (v1,12) |G1 [G2] )}
=1+1=2.
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(111) Let {e,f} € B3 and e = [(Ml,uz),(vl,\/2)] ,f = ((Ml,uz),(zl,Z2)). By
definition of B3, z; # v;. Hence,

do (e, f1G1[G2]) = 14+ min{d ((u1,u2), (u1,u2) |G1 [G2])
d ((u1,u2) . (21,22) [G1 [G2])

d ((vi,v2), (1, u2) |G1 [G2]) . d ((v1,v2) . (z1.22) |G1 [G2] )} =

1+ min{d (ui,u; |G1)d (u1,21 |G1) ,d (vi,u1|G1),d (v1,21 |G1)}
= do ([ur, v1] . [ur,21]1G1)

(iv) Let {e, f} € By and e = [(u,uz),(vi,v2)], f = [(u1,%2),(z1.22)]. By
definition of B4, z; # vi, and & # wuy. So d (vi,z1|G;) > 1 and
d ((u1,up) , (1, 12) |G [G2]) > 1. Therefore,

do (e, f1G1[G2]) = 1+ min{d ((u1,u2), (u1,12) |G1[G2])
d ((ur,u2) . (21,22) |G1[G2])

d ((vi.v2), (u1,12) [G1 [G2]) . d ((v1,v2) . (21,22) |G1 [G2])} =

1 4+ min{d ((u1,uz), (u1,2) |G1[G2]),1,1,d (v1,21|G1)}
=14+ 1=dy(u,v1],[u1,z1]|G1) + 1.

(v) Let {e, f} € Bs and e = [(Ml,uz) S (Vl,V2)] s f = [(Zl,Zz) S (ll,lz)]. By
definition of Bs, 71 # u1, 21 # vi, 11 # uy, and t; # vy. So the edges [u;, vi]
and [z;, t1] of Gy are distinct. Therefore,

do(e. 161 [G2]) =1+ min{d ((u1,u2) . (z1.22) |G1[G2])
d ((u1,u2) . (11, 12) |G1 [G2])

d ((vi.v2) . (21,22) [G1[G2]) . d ((vi,v2) , (11.12) |Gy [G2])} =

1+ min{d (u1,21 |Gy).d (u1,t;|Gy),d (vi,21|G1) . d (v1,11|Gy)}
= do (w1, 1] [z1.11]1G1)

and the proof is completed. -

Now, we consider three subsets C;, C, and Cs of the set C as follows:

Ci=e fieC:e=[(u,u), )], f = [(u,u),(z1,22)],
u,z1 € V(Gy),uz,v2,22 € V (Gy)}
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G=e f1eC:re=[uu), (. )], f =[(u.1).(z1.22)],
ui,z1 € V(G),uz2,va, 12,220 € V(Ga), ta # ua, tr 7# v2}
G={e fleC:e=[uu), (. n)], f=I[0viv), (@ 2)],
up,vi,z1 € V(G ,uz,t2,v2,220 € V(G2), vi # u1, 21 7 ui}

3
Clearly, every pair of the above sets is disjoint and C = | J C;.
i=1
In the following proposition, we find dy (e, f |G [G2]) forall {e, f} € C.
Proposition 13.3.5 Let {e, f} € C.

(1) If {e,f} (S} Cl, then d() (@, f |G1 [Gz]) =1
(i) If {e, f} € Cy, then dy (e, f |G [G2]) =2
(i) If {e,f} € G5, then do(e, f|G1[G2]) = 1 + min{d (u1,v1|G1),
d (u1,21|G1)}, where e = [(u1, u2) , (w1, )], f = [(vi,v2), (21, 22)]

Proof
() Let{e, f} € Crande = [(u1,u2), (u1,v2)], f = [(u1,u2) , (21, 22)]-
By definition of dj (e, f), we have
do (e, f|G1[G2]) = 1 + min{d ((u1,u2), (u1,u2) |G1 [G2]) ,
d ((ur,u2),(z1,22) |G1 [Ga]) s
d ((u1,v2) , (u1,u2) |G [G2]) . d ((u1,v2) , (z21,22) |Gy [G2]) }
=1+min{0,1,1,1}=1+0=1.

(i) Let {e, f} € Cy and e = [(u1,u2),(u1,w)], f = [(u1,t), (z1,22)]- By
definition of Cy, t, # u, t # v,. Thus, due to the distance between
two vertices in G [G;], the distances d ((uy,uz), (u1,1) |Gy [G2]) and
d ((uy,v2), (u1, 1) |G1 [G3]) are either 1 or 2. So

do (e, f|G1[G2]) = 1 + min{d ((u1,u2) , (u1,12) |G1 [G2]),
d ((ur,u2),(z1,22) |G1 [G2]) s

d ((u1,v2), (u1,1) |G1[G2]) , d ((u1,v2) , (z1,22) |G1 [G2] )} =

1 +min{d ((u1,u2) , (u1,2) |G1[G2]), 1,d ((u1,v2) , (u1,12) |G1 [G2]) , 1}
=14+1=2.

(iii) Let {e, f} € Cs and e = [(u.u2).(u1.1)]. f = [(vi.v2).(z1.22)]. By
definition of C3, v # u;, z1 # u;. Therefore,
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do (e, f1G1[G2]) = 1 + min{d ((u1,u2) , (vi,v2) |Gy [G2]) .
d ((u1,u2) , (z21,22) |G1 [G2]),
d ((u1,12), (vi.v2)|G1[G2]) . d (w1, 12) . (21.22) |G [G2] )} =
I+ min{d (u1,v1|G1),d (u1,211G1),d (u,vi |Gy),d (u1,21|G1)} =
1 + min{d (u1,v1|G1),d (u1,z1|G1)}.

and the proof is completed. -
Definition 13.3.6 Let G = (V(G), E(G)) be a graph.

(i) Letu € V(G). Set A, = {z € V(G) : [z,u] € E(G)}. In fact, A, is the set of
all vertices of G, which are adjacent to u. Suppose that §, is the number of all
vertices of G, which are adjacent to u. Clearly, §, = |A,| = deg(u|G).

(ii) For each pair of distinct vertices u,v € V(G), let §,,) be the number of
all vertices of G, which are adjacent both to u and v. Obviously, §u,,) =
[Ay N A,

(iii) Let u, v, and z be three vertices of G, which every pair of them is distinct.

Assume that §,, ) denotes the number of all vertices of G which are

adjacent to vertices u, v and z. It is easy to see that §(,,, ;) = |A, N A, N A,].

(iv) Suppose that u, v and z be three vertices of graph G, which every pair of them
is distinct. Denote by N(, 7 5) the number of all vertices of G, which are adjacent
to z, but neither to u nor to v. By the definition of N(,;7), we have

N(zﬁ,ﬁ) = IAz — (AU AV)I = |Az| - |Az N (A, U Av)|
=[A = [(A:NA)UA NAY| =
|AZ| - (|Az N Au| + |AZ N Avl - |Az N Au n Avl)

=8, — S(z,u) - 5(”) + S(z,u,v)‘

Lemma 13.3.7
> dote 16116 = £ G (O wan)
{e.f}eA
LIV (Gl @M, (G~ N (6.
where, N (G,) = Z Z N(zz,ﬂz,ﬁz)‘

lu2,12]€ E(G2) 2p€V (G2)—(Auy UAy, )

Proof At first, we need to find |A,| and |4, U Aj). It is easy to see that
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1 1
Ao =21V (Gl Y > Newmw =7V GDIN (G,

[12.92]€E(G2) €V (G2)—(Auy UA,)

1
A UA| =21V Gl Y (E@G)| =G +8,—1) =

[u2,12]€E(G2)

%IV(GI)I( Yo EGI- Y Gutd)t 1):

[u2,v2]€E(G2) [u2,2]€E(G2) [u2,2]€E(G2)

SV @I (1B @) +1E (Go)] ~ My (G).

4
Recall that, each pair of the sets 4; (1 <i <4) is disjoint and A = | 4;,
i=1

then by
Proposition 13.3.3, we have

Y dole, f1G Gz])—Z Y dole. f1G1[Ga])

{e.f}eA i=1{e,f}e4;
= |A1] + 3 |42] +2|43] +

Y ol +d |G e, [} € Aue = [(ur, ), ()],
[ =101.22). 01T} = [A1] + 3] As] + 2| 43| + [Aa] +

Y 4d v ]Gy) e, f} € Age=[(ur.up) . (i v2)], f =[(1.22) . (v1. )]} =
4

Yol + (Ao + A3 + [ Ao| + [E (G D" d (i |Gr) =
i=1 {uv1}SV(Gy)

4
i=1

+1EGPW (G) =

(IV(G1)| IE(Gz)I)
2

Ai| + |42 U A3] + |A2] + |E (G2)PW (Gy) = |A| + |42 U A3 + | A5

1
+3 IV (G (JEGI + E(Go)] = M (G2)
£ 11V GIN (6 + E G)PW (Gy) =

3 (IV GOPIE @GP =1V (6] E G +1V G [E @GP

+IV(GD] [E(G2)]) -
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SV GOIM(Go) + IV (GDIN (o) + [E (G (G) =

|E (Ga)| ((IV (G| + 1) + W (Gl)) - % |V (G1)] M, (G2) — N (G2)).

2
Lemma 13.3.8 { % do (e, £ 1G1[Ga]) = |V(Gz)|2(|V(2GZ)|)M1 (Gy) +
e, f}EB

[V (G)|*W,, (G1)

Proof For the proof of this lemma, we need to obtain | By |, | B»|, and | B4|. It is easy
to see that:

2
a1 =21 Gl @l (1§ mi=21E 6o (ME).

|Bsl =V (G2 (V (Ga)[ = 1) Y (5;1)=|V<G2>|2(

u1€V(Gy)
(M, (G1) =2[E (G1)]).

Afterwards, we find > do (e, f |G1[G3]). By Proposition 13.3.3, we
{e,f}€B3UB4UB;5

V(G2)I )
2

have

Y. dole. £1G1[Ga]) = D ddo (i), [ur, 2] |Gy )

{e.f}€Bs3
{e, f} € Bs,e = [(ur1,uz), Vi, v2)], f = [(u1, u2) , (21, 22)]} =}
VG Y > do (1. ). [ur1. 211 1Gr)

w €V(G) {lwy v1],[ur, 211} S E(Gy)

=G Y Y ol ka6,

[u1.v1]€E(G) z1€{uy v},
[z1,11]€E(G1)

3" doe. f1Gi[Ga]) = Y {do (fur. 1] [ur. 21]| G) + 1 : {e. £} € Ba,
{e,f}EBy

e = [(u,u2), vi,w)], f = [(w1,0), (z1,22)]} =

(v @-v Gl 3 > do(wl[ur.2i]|G)+ Bl =

1€V (G) {luy v 1.[u1,z11}S E(Gy)

(V@I - @rF) Y Y dolmvilfnallG) + B

[u1.v1]€E(GY) z1€{ur.v1},
[z1,1]€E(GY)
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Y. dole. f1GIIG]) = D tdo (fur, ] [e1, 1] [G1) -

{e.f}€Bs

{e. f} € Bs,e = [(u1,u2) , (vi. )], f =[(z1,22) . (1, )]} =
G Y Y denlknallG).

[u1,v1]€E(GY) [z1,1]€E(GY),
1. E{u v}

Based on the above computations and since each pair of B;(1 < i < 5)is
disjoint, we have

5
Y doefIGiG =) Y dole. f1G1[G]) =

{e,f}€B3UB4UBs5 i=3{e.f}€B;

WGE Y Y el knallGn+

[u1 v1]€E(Gy) z1€4ur . v1},
[z1,1]€E(Gy)

(V@I'-v©Gar) ¥ Y downl nnlIGO+ Byl +

[u1 vi]€E(Gy) z1€{u1,v1},
[z1.1]€E(Gy)

@ Y Y el kel (6 =

[u1,v1]€E(GY) [z1,1]€EE(G)),

N -

21t E{ur v}
1
SV @Gt Y Yo do(mw] [z, 0]1Gy) + | By +
[u1,v1]€E(G1) z1€{ur.v1},
[z1.1]€E(Gy)

G Y Y dunlkeallG) =

[u1 ,v1]€E(Gy) [z1.1]€E(GY),
21 E{ur v}

Bl + 51V Gl QW (G) = 1Bil + 1V (G ey (G

5
Now, since B = | J B;, we have
i=1

Y. dole, fIGI[Ga]) = Y dole, fGi[Ga])+
{e.f}eB {e.f}eB

Yo dole fIGIGD+ Y doe. f1G1[G)) =

{e.f}€B, {e.f}€B3UB4UBs
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1 2 4 2 () 1
|Bi| + 2 |Ba| + | Bal + |V(G2)[* W, (G)

=215 Gl ("G (v Gare2 (V) - o) +

V(G|
2

|W@d )Mmmwmemo

=HN®W(WfM)Mﬂ&%HmeW%Gﬂ

Lemma 13.3.9 { 2}: do (e, f1G1[G2]) = |E (G| |E (G| |V (G2)[(|V (G)|
e.f}eC
[V (G2)| 42|V (G2)| = 4) + |E (G2)| |V (G2)["Min (Gy)
where, Min (G|) = ) > min {d (u1,v|G,).d (u1,z1 |G1)}

w €V(G1) vi,21]€E(G1)

Proof First, we find |C3] and Y dy (e, f |Gy [G2]). Itis easy to see that
{e.f}eCs

|Co| = [V (G (IV (G2)| = 2) |E (G2)]

XY 8y =21E(G)|E (G| |V (G| (IV (Go)| - 2).
u1€V(Gy)

and by Proposition 13.3.5, we have

Z do (e, f|1G1[G2])

{e.f}€C3
= > {1+ min{d (. v |G1).d (u.21]G1) :
x {e, [} € Cy,e = [(ur,u2) , (ur, )], f = [(vi,v2), (21, 22)]}

= [GI+HE GV (G Y > min{d (.G ). d (u.21]G1)}
u1 €V (G1)Iv1,211€E(Gy)
VIF21.27F U]

SIGIHE GV (G Y. Y min{d w.wvi|G,).d (ur.z1 |Gy}

w €V(G1) v1,21]€E(Gr)

=|Cs| + |E (G2)| [V (G2)"Min (G)).

3
Since each pair of the sets C; (1 <i < 3) is disjointand C = | J C;, we have

i=l1
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Y do(e. fIGIGD = Y dofe, f1Gi[Ga])

{e.f}eC {e,f}eCIUC,

+ Z do (e, f1G1[G2])

{e.f}€Cs

= [C1] +21Co| + G5 + [E(Go)| |V (G2)"Min (G1)
3

D_ICil +1Ca| + | E (o) [V (G2)['Min (G1)

i=l
3
i=1

= [C| +|Ca| + |E (G2)| [V (G2)|*Min (G1)

Ci| +1Co| + |E (Go)| |V (G2)Min (G1)

= |V (G| IV (G’ |E (G |E (G)|

+2|E (G [E (G| V (G| (|V (G2)|-2)

+ |E (G| |V (G2)["Min (G))

= [E(GDI|E (G| |V (G| (IV (G |V (G2)| + 2|V (G2)| — 4)
+ |E (G| |V (G2)[*Min (Gy).

Now, as the main purpose of this section, we express Theorem 13.3.10, which
characterizes the first edge Wiener index of the composition of two graphs.

Theorem 13.3.10 LetGy = (V (G1), E (G1)) and G» = (V (G»), E (G»)) be two

simple undirected connected finite graphs, then
V(G 1
e G (62D = 1 G (V)T
+ IE(GDIE (G)[ [V (G (IV (G [V (G)| + 2|V (G2)| = 4)

+1E (G)I'W (G1) + [V (Go)['We, (G1) + |V (Go)? (W(gz)l)

M, (G)) + |E (G)| |V (G2)"Min (G) — % V(G| (2M; (G2) — N (G2)).

where Min (Gy) = ) > min {d (u1,vi1|G,),d (u1,z1|G1)} and
w €V(Gy) [vi.z1]€E(Gr)

N (Gy) = Z Z Nz iy 5)-
[2.2]€E(G2) 7€V (G2)—(Duy UA, )
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Proof Remember that each pair of the sets A, B, and C is disjoint, and union of
them is the set of all two element subsets of E (G [G2]). Now, using the definition
of the first edge-Wiener index, we obtain that

We Gi[Ga) = D" dole. f1Gi[Gal) = ) dole, fG1[Ga])

{e.fISE(GI[G2)) {e.f}ed
+ Y do(e. fIGI[GD) + Y dole, f1Gi[Ga)).
{e.f}eB {e.f}eC
Now, by the above lemmas, the proof is completed. -

13.4 Computation of the Edge Wiener Indices
of the Sum of Graphs

In this section, we find the edge-Wiener indices of the sum of graphs. Then as
an application of our results, we find the edge-Wiener indices of graphene, C; -
nanotubes and C4 — nanotori. All of the results in this section have been published
in Azari and Iranmanesh (2011).

At first, we give the definition of sum of two graphs.

Definition 13.4.1 Let G; = (V (Gy),E(Gy)) and G, = (V (Gy), E (Gy))
be connected graphs. The sum of G; and G, is denoted by G| + G», that
is, a graph with the vertex set V(G;) x V(G,) and two vertices (u;,u;) and
(v1,v2) of G| + G, are adjacent if and only if [u; = v; and [up,v,] € E (G,)] or
[ua = vy and [us,v1] € E (G1)].

Theorem 13.4.2 (Stevanovic 2001) Let G=(V (Gy), E(Gy)) and G, =
(V(Gy), E(Gy)) be two connected graphs. The distance between two
vertices(uy, up) and (vi,v2) of G1+Gs is equal to d ((uy, u2) , (vi,v2) |G1 + G2) =
d (u1,v11Gy) + d (uz,v2|G2).

In order to find the edge-Wiener indices of G| 4+ G, first we define the sets A
and B as follows:

A =A{[(u1,u2), (u1,v2)] € E(G1 + G2) : u1 € V(Gy), [uz,v2] € E(G2)}
B = {[(u1,u2), vi,w)] € E(Gi1 + G2) 1 up € V (Ga), [u1,v1] € E (G1)}

It is easy to see that A U B = E(Gi+Gy), ANB = ¢, |[A] =
V(G| |E (G2)| and

|Bl = |E (G| [V (G2)].
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Set

Ar={e, f} S A:e# fe=[(u,u),(u,n)], f =[a1,u), (a1, )],
up, a1 € V(Gy),uz,v2 € V(G2)}

Ay ={{e, f} S A:ie# fe=[(u,u),(u,n)], f =[(a1,a2), (a1, b2)],
u,ap € V(G1),u2,v2,a2,b2 € V(Ga), [uz,v2] # a2, b}

Bi={e. f} S B:e# fie =[(u,u), vi,wd)], f = [(u1,a2) , (v1,a2)],
up,vi € V(G1),uz2,a2 € V(G2)}

By={e. f} S B:e# fie =[(u,u2), v, w)], f = [(a1,a2), (b1, a2)],
uy,ar € V(Gz) ,ur,vi,ar,by € V.(G1), [ur,v1] # [ar, b1]}

Obviously, A] N A, = BiN By = ¢ and A; U A, B; U B, are the sets of all two
element subsets of A and B, respectively. Also,

= (") iz @t = (VG £ G,

In the first proposition, we find dy (e, f |G1+ G2) and d4(e, f |G+ G>) for all
le. f1 € A

Proposition 13.4.3 Let{e, f} C Aande # f.
() If {e. f} € Avand e = [(u1,u2) , (u1,v2)], f = [(a1,u2) , (a1, v2)], then
do(e, f |G+ Gz) = dy (e, f1G1+ G2) = d (u1,a1|Gy) + 1
(i) If {e. f} € Ay and e = [(ur,uz),(u,v2)], f = [(a1,a2),(a1.by)], then
fori €{0,4},d; (e, f |G+ G2) = d; ([u2,v2], [a2, 2] |G2) + d (uy,a1|Gy)
Proof

(1) Let{e, f} € A; and e = [(u1,u2), (u1,v2)], f = [(a1,u2), (a1, v2)]. Using
the definition of dy (e, f), d4 (e, f) and the formula of the distance between
two vertices of G; + G,, we have

do(e, f|1G1+ Gy) =14+ min{d ((u1,u2), (ar,u2) |Gy + G2),
xd ((u1,u2) , (a1,v2) |G + G2)
d ((u1,v2) (@1, u2) |Gy + G2) ,d ((u1,v2) , (a1,v2) [G1 + G2)}
=1+ min{d (u1,a,|Gy) +
d (uz,u2|G2) . d (ur, a1 |Gy) + d (u2.v21G2) . d (ur, a1 |Gy)
+d (v2,u21G2) . d (uy,a11Gy) +
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d (v2,v2|G2)} = 1 + min{d (uz,u2 |G2) . d (u2,v2|G2) ., d (v2,u2 |G2),
x d (v2,v2]G2)} +
d (u1,a11G1)=1+min{0,1,1,0} + d (uy,a; |G1)=d (u1,a, |G1) + 1 and
da(e, f1G1 + Ga) =max{d ((u1,u2) , (a1,u2) |G1 + G2),
xd ((u1,u2), (a1,v2) |G1 + G2) ,
d ((u1,v2) (@1, u2) |Gy + G2) ,d ((u1,v2) , (a1,v2) |G1 + G2)}
= max {d (ui,a; |Gi) +
d (u2,u2|G2) . d (ur, a1 |Gr) + d (u2,v21G2) . d (ur,a1|Gy)
+d (va,u2|G2) ,d (uy,a,1Gy) +
d (vi,v2]G2)} = max{d (u2,u2|G2) . d (u2,v2 |G2) , d (v2,u2|G2)

xd (va,v2 |G2)} +
d (uy,a |G1) = max{O, 1, 1,0} +d (u1,ay |G1) =d (u,a, |G1) + 1.

Therefore dy (e, f |G1+ G2) = dy4(e, f|G1+ G2) = d (u1,a,|Gy) + 1

and the equality in part (i) of Proposition 13.2.1 holds.
(ii) Let{e, f} € Ay and e = [(u1,u2), (w1, m)], f = [(a1,a2), (a1, b2)]. In this

case [ua, v2] # [az, by] and we have
do(e, f1G1 + G2) = 1 + min{d ((u1,u2) , (a1,a2) |G1 + G2),
xd ((u1,u2) , (a1,b2) |G1 + G2),
d ((u1,v2),(a1,a2) |G + G2) . d ((u1,v2) . (a1.b2) [G1 + G2)}
x =1+ min{d (u1,a,|Gy) +
d (u2,a2|G2).d (ur.a,|Gy) +d (u2,b2|G2) . d (u1,a,|Gy)
+d (v2,a21G2) . d (u1, a1 |Gy) +
d (v2,02|G2)} = 1 + min{d (2, a2 [G2) . d (u2,021G>) . d (v2, a2 |G2),
xd (v2,021G2)} +
d (u1,a11Gy) = do ([uz,v2] , [az, b2]|G2) + d (u1,a1 |G1) and
di(e, f1G1 + G2) = max{d ((u1,u2) , (a1, a2) |G1 + G2),
xd ((u1,u2) , (a1,b2) |G1 + G2),
d ((u1,v2), (a1,a2) |G1 + G2) . d ((u1,v2) , (a1, b2) |G1 + G2)}
=max{d (u1,a,|G1) +d (v2,02|G2)} =
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d (uz.a2|G2) . d (wy,a1|Gy) +d (u2,021G2) . d (ur, a1 |Gy)
+d (v2,a21G2) . d (u1, a1 |Gy) +
max{d (u2,a2|G2),d (u2,02|G2) ,d (v2.a2G2) . d (v2,b2|G2)}
+d (u,a1[G1) = dy([u2,v2] . [a2, b2]|G2) + d (ur, a1 |Gy) .
Therefore, for i € {0,4}, d; (e, f |G1+ G2) = d; ([uz,v2] . [az, b3] |G2) +
d (u1,a1|Gy),

which completes the proof. -

In the next proposition, we find dy (e, f |G+ G2)and d4 (e, f |G+ G) for all
le.f} S B.

Proposition 13.4.4 Let{e, f} S Bande # f.
(@) If{e, f} € Biande = [(u1,u2) , (vi,u2)], f = [(u1,a2) . (v1,a2)], then

do(e, f |G+ Gz) = dy (e, f1G1+ G2) = d (u2,a2|Gy) + 1

(i) If {e, f} € Byand e = [(u1,uz), (vi,u2)], f = [(a1,az2), (b1, az)], then for
i €{0,4},

di (e, f |G+ G2) =d; ([ur,v1], [a1,b1]1G1) d (u2, a5 |G2).

Proof The proof is similar to the proof of Proposition 13.4.3. m

In the next proposition, we find dy (e, f |G+ G2)and d4 (e, f |G+ G) for all
ec A, feB.

Proposition 13.4.5 Let e € A and [ € B, such that e = [(u1,uz), (ur,v2)] and
f =1[(a1,az), (b1,a2)], then

) do(e, £ |G + Gy) = 1 +min{d (u1,a; |Gy),d (u1,b1|G1)} +
min{d (u2,a,|G>),d (v2,a2|G>)}

(ii) ds (e, [ |G1 + Gy) = max {d (u1,a|G1),d (u1,b1|G1)} +
max {d (u2,a|G) .d (v2,a2|G2)}
Proof Let e € A and f € B, such that e = [(u1,u2), (u;,v2)] and f =
[(a1,a2), (b1,a2)], then
@) do(e, |G+ G2) = 1 + min{d ((u1,u2), (a1,a2) |G1 + G»),
xd ((u1,u2) , (b1,a2) |G1 + Ga), d ((u1,v2), (a1,a2) |Gy + Gy),
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d ((u1,v2), (b1,a2) |G1 + G2)} = 1 + min{d (u1,a1|G1) + d (u2,a2|G2),
xd (u1,b1|Gy) +
d (u2,a2|G2).d (ur.a,|Gy) +d (v2,a2|G2) . d (u1. b1 |Gy)
+d (v2,a2|G2)}
=1+ min{min{d (u1,a, |G1) +d (u1,b1|G1)} + d (u2,a2 |G2),
min{d (u1,a1 |G1) + (u1,b1|G1)} + d (v2,a2|G2)}
=1+ min{d (uy,a,|G1),d (u;,by|G1)} +
min {d (uz,a,|G2) ,d (v2,a2|G>)
and part (i) of Proposition 13.4.5, holds.
(i)  dale, f|G1+ G2) = max{d ((u1,u2) . (a1,a2) |G + G2),
d ((u1,u2) , (b1,a2) |G1 + G2) . d ((u1,v2) . (a1,a2) |G1 + G2),
d((u1,v2), (b1,a2) |Gy + G2)} = max{d (u1,a1|Gy) + d (u1,a2|G>),
d (u1,b11Gy) +d (uz,a1G2) ,d (u1,a1 |Gy)
+d (v3,a21G2), d (u1,b11Gy) + d (v2,a21G3)}
= max {max {d (u1,a1|G1) +d (u1, b1 |G1)} + d (uz,a,|Gz),
max {d (uj,a; |Gi) +d (u1,b1|G1)} + d (v2,a2|G2)}
= max{d (u1,a; |G1),d (u1,b,|Gy)}
+ max {d (uz,a,1G2),d (v2,a,|G2)},

so part (ii) of Proposition 13.4.5 holds. -
Using Proposition 13.4.3, we conclude two following lemmas:
Lemma 13.4.6 Z do(e, f |G+ Gy) = Z dy(e, f |G+ Gy)
{e.f}eA {e.f}eA

V(G
—1e@w G+ (") 12 @)
Proof By part (i) of Proposition 13.4.3, we have

Y do(e. f1GI+G) = Y dile. f|Gi+Ga)
{e.f}eA {e.fleA

= Z{d (u1,a11Gy) +1:{e, f} € A1,e = [(u1,uz) , (u,v2)],
x f=[(ar,u2), (a1, v2)]}

=) {d . ar|G) e, f} € Ar, e = [(wr,u2), (w1, m2)],
S =a,u), (@, v2)]} + |41
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—1EG) Y dwalon+ (VG iEG

{u1.a1}CSV(G1)

—1E@w G+ (TN £ @,

Lemma 1347 For i € {0,4}, we have: > di(e, f1G1 + Gy)
{e.f} €A
|E(G)|

= |V (G)[*W, (Gz)+2( ¢

)W(Gl).

Proof By part (ii) of Proposition 13.4.3, for i € {0, 4}, we have

Z di (e, [ 1G1 + G2)
{e.f}eA

=Y {di (2. v2] . [a2.52] |G2) + d (ur.a1 |G1): {e. f} € A,
x e = [(u,uz2), (1, )], f = [(a1,a2) . (a1, 02)]}
= Y {di (2, v2]  [a2,52] | G2)
le, f} € Az e = [(u1,u2) (w1, )], f = [(a1,a2) . (a1, b2)]}
+) {d (w,a1|Gi):{e, [} € A,
e = [(w,w), (v, f =la1,a), (@1, b)]} = |V (G|
> ([uz,v2] , [a2, b2] |G2) +

{luz.val.[a2.b2]} S E(G2)

EG
2(1ECN) X dwal6) = WGP, G
{u1.a1}CV(Gy)

+2 ('E(ZGM) W (Gy).

By Lemmas 13.4.6 and 13.4.7, we have the following result:
Corollary 13.4.8 Fori € {0, 4}, we have

> die.£1Gi + G2) = |E (G W (Gy) + |V (G)I*We, (Ga)
fe.f31c4

(9 1 G
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Proof Since dj and d4 are distances, so for every e € E (G| + G3), we have
do(e,e|Gy + Gy) = dy(e,e|Gy + G2) = 0. Now by Lemmas 13.4.6 and 4.7,
fori € {0, 4}, we have

Y dile. fIGi+G)= Y dife fIGi+G)
{e.f3c4 {e.fICAe#f

= Y die.fIGi+G) + Y die, fIGi+G2)=|E (G)| W (G))

{e.f}eA; {e.f}€A

4 ('V(Gl)') |E ()| + |V (G W, (G2) +2(

|E(G)]
2 2

)W(Gl)

V(G|

= |E (G)’'W (G1) + |V (G) W, (Go) + ( 5

) |E(G2)].

Using Proposition 13.4.4, we conclude two next lemmas.

Lemma 13.4.9

Y do(e. f1GI+G) = Y dile. f|Gi+Ga)
{e.f}eB {e.f}eB

V(G|

- |E(Gl)|W(Gz)+( ¢

)|E(Gl)|

Lemma 13.4.10 For i € {0,4}, we have Y, d;(e, f|Gi+ Gy)
{e.f}€B
|E(Gy)|

= |V (G)|*W, (Gl)+z( ¢

) W (G2)

Lemmas 13.4.9 and 13.4.10, indicate the following corollary:
Corollary 13.4.11 Fori € {0, 4}, we have

> di(e. £1Gi +Ga) = |E(G)PW (Go) + |V (G W, (G)
{e.f3cB

(M) 1l

Proof Similar to the proof of Corollary 13.4.8, we can obtain the desired
result. -
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Here, we introduce two topological indices of a graph G as follows:

Min(G)= Y Y min{d w.a|G).d u.b|G)}

u€V(G) [a.h|€E(G)

Max(G)= Y > max{d (w.a|G).d (u.b|G)}

u€V(G) [a.h|€E(G)

Using Proposition 13.4.5, we have the following lemma:

Lemma 13.4.12

(@) Y. dole, f1G1+ Ga) =V (G| |V (Go)] |E (G1)| |E (Go)|
e€A, feB
+ [V (G| |E (G2)[Min (Gy) + [V (G |E (G1)|Min (G),
(ii) Y dile. [ G+ Ga) = [V(Gy)| |E (G2)|Max (Gy) + |V (Gy)]
e€A, fEB
|E (G1)|Max (G2)
Proof

(i) By part (i) of Proposition 13.4.5, we have

Y dole. f1GI+Gy) =) {1 +min{d (ur,a11G1).d (u,b1|G1)}

e€A,feB
+min{d (u2,a,|G>),
d(v2,a21Gr)} e € A, f € B, e =[(u1,u2), (u1,v2)],
=l a).(br.a)l}=|A||B| + ) _{min{d (ur.a,|G1) .d (u1.by |G1)}
ce€ A, feB,e=[(u,u), u,vm),
f =M@, @), (br,a)l} + ) _ {min{d (u2,a2(G) . d (2,42 |G2)} :
ec€ A, feB,

e = [(u,u2), (ur, )], f =(a1,a2), (b1, ax)]} = |V (G| |V (G2)|
|E (G| |E (Go)]
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HIVGIEG) Y. Y. min{d (u.ai|Gi).d (u.bi|G1)}

w €V(Gy) la1,b1]€E(Gy)

+[V(GOIIEG)] ) Y. min{d (u2,a2]G2) ., d (v2,a2|G2)}

a2€V(G2) [ua,2]€E(G2)
=V (G| V(G| E(GDI|E (G2)| + [V (G2)] |E (G2)| Min (G1)
+ [V (G |E (G1)| Min (Gy).

(i1) By part (ii) of Proposition 13.4.5, we have

Z d4 (@, f |G1 + Gz) = Z{max{d (ul,al |G1),d (ul,bl |G1)}

e€A, fEB
+ max {d (u2.a2|G2) . d (v2,a2|G2)} :

e€ A, feB,e=[u,u),,n)],f =(aa), (b a)l}
=Y {max{d (u1.a1|Gy).d (u1.by |Gy)} :

ec A, feB,e=[u,u), wu,m),

f=la1.a). (br.a)l} + Y {max {d (u2.a2|G2) .d (v2.a2|G2)} :
ec A, feB,e=|[(u,u),u,vm),

f =1a1,a2), (b, a2)]} = |V (G2)| |E (G2)|

Z Z max {d(uy,a |Gy),d(ui, b1 |G1)} +

w €V(Gy) la1,b1]€E(Gy)

VGOIEG) Y. Y max{d (u2,a2|Gz),d (v2,42]G2)}

a2€V(G2) [u2,»]€E(Gy)

= [V (G| |E (G2)|Max (G1) + [V (G)[|E (G1)| Max (G2).

Finally, as the main purpose of this part, we express Theorem 13.4.13, which
characterizes the edge Wiener indices of the sum of two graphs.

Theorem 13.4.13 Let G, = (V (Gy). E (G1)) and Gy = (V (Gs) . E (G»)) be two

simple undirected connected finite graphs, then

@) Wo(G1+ G)=1E @)W G +IE GOIW (G)+1V (G W, (G1)
v @pwy e+ (V) iz (ME) 1 Gl

+ IV (GDIV (G)IE (G)IE (G2)| + |V (G2)[|E (G2)| Min (Gy)
+ [V (GDI|E (G1)|Min (G)
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(i) Wer (Gi4+Go)=[E (G’ W (G)+IE (G)IW (Ga) + |V (G2)|*We, (G1)
@GP+ (M CN) i@+ (M) i 6
IV (G 1E (G2 Max (G) + IV (G| |E (Gl Max (G2)

Proof Since E (G} + G,) = AU B, AN B = ¢, fori € {0,4}, we have

We (Gi+G)= > di(e.fIGi+G)= > dile.f |G +Go)+
{e.fICE(G1+G2) {e.f}cA

Y die.fIG+G)+ Y dife.f|G + G

{e.f}CB ecA.fEB

Now by Corollaries 13.4.8 and 13.4.11 and Lemma 13.4.12, the proof is clear. =

Corollary 13.4.14 For every two simple undirected connected finite graphs
G = (V(G1), E(Gy)) and G, = (V (G2), E (Gr)), we have

We, (Gi + G2) = Wey (G1 + Ga) = |V (Go)|* (We, (G1) — Wy (G1))
+ V(G Wey (G2) — Wey (G)) +

[V(G)| |E (Gy)| Max (Gy) —Min (G))) + |V (G| |E (G1)| (Max (Ga)
—Min (G2)) — |V (G| |V (G| |E (G| |E (G)|

The Wiener index and edge-Wiener indices of these graphs have been computed
previously (Iranmanesh et al. 2009; Sagan et al. 1996). So, we have the following
tables (Tables 13.3 and 13.4):

Carbon nanotubes, carbon nanotori and graphene are three important types of
carbon structures. See Figs. 13.6, 13.7 and 13.8, respectively. Carbon nanotubes
(CNTs) are allotropes of carbon with molecular structures that are tubular in shape,
having diameters on the order of a few nanometers and lengths that can be as much
as several millimeters.

Nanotubes are categorized as single-walled (SWNTs) and multi-walled
(MWNTSs) nanotubes. If a nanotube is bent so that its ends meet, a nanotorus is
produced. These types of carbon structures, form the strongest and stiffest materials
yet discovered on Earth. Their novel properties make them potentially useful in
many applications in materials science, nanotechnology, electronics, optics and
architecture.

Graphene is a one-atom-thick planer sheet of carbon atoms that are densely
packed in a two-dimensional (2D) honeycomb crystal lattice and is a basic building
block for graphitic materials of all other dimensionalities. It can be wrapped up into
0D fullerenes, rolled into 1D nanotubes, or stacked into 3D graphite (Fig. 13.9).
The term graphene was coined as a combination of graphite and the suffix -ene by
Hannes-Peter Boehm, who described single-layer carbon foils in 1962.
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Table 13.3 Some topological indices of P, and C,

A. Iranmanesh

Graph (G) C,n is odd C,nis even
V(G| n n
|E(G)] n n
3
n n
W(G —(n2—1 -
©) g (=) 8
n n
Wey (G) g =1 3
3
W.,(G) ”;r 2 (n? +4n —13) %(n2+4n—8)

Table 13.4 Some

topological indices of S,, K,,,

and K,

Fig. 13.6 A Cj-nanotori

Fig. 13.7 A Cj-nanotube

Graph (G) S, K, Kap
[V(G)| n n a+b
|E(G)] n—1 (;) ab
W6) (n—1)? () (@ +b)*—ab
2 —a—b
o (5) () Somes
W,,(G) 2 (";1) 3 (":rl) ab(ab —1)
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Fig. 13.8 Graphene

graphene sheet SWNT

Fig. 13.9 Graphene sheet can be rolled in to a single walled nanotube

According to the tables, Theorem 13.4.13 and Corollary 13.4.14, we can
easily obtain the edge-Wiener indices of the sum of each pair of the above-
mentioned graphs. Specially, we can obtain the edge-Wiener indices of graphene,
C4-nanotubes, and Cy4 -nanotori as P, + P, P, + C,, and C,, + C,,, respectively.

Example 13.4.15 Suppose that G = P, + P,,, where n and m are not necessarily
equal. The edge Wiener indices of G, are as follows:

m’ 2 M 2
WeO(Pn+Pm)=?(2n—1) +?(4n —12n” + 8n —3)

—g(2n3—4n2+2n—1)+%(n2—3n+2),

m’ 2, m g m. 3 2
Wey (P + Pp) = =20 —1) +?(4n —7n+3)—€(4n + 7n* —2n —2)

+ 2 (17 +3n+2)
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Example 13.4.16 Suppose that G = P, + C,, where n and m are not necessarily
equal, then G = T U C4[m, n] is a C4-nanotube (John and Diudea 2004). The edge-
Wiener indices of G are as follows:

Case 1. If mis odd, then
We, (P, +Cm)—%(2n—1) +Z 6 (4n —6n’+5n—3) + 5 2 (4n? —8n + 3)

W,, (Py + Cp) = ’%(2;1—1) + 7 - (4n +on?— 10n+3)—§(16n —3)

Case 2. If mis even, then

Wi, (P + Co) = —(Zn—l) +"; (4n> — 6n® + 51 — 3) + —(n—1)2
2
We4(P,,+Cm)=’%(2n—1)2+’%(4n3+6n2—10n+3)—%(n2+2n—1)

Example 13.4.17 Suppose that G = C, + C,,, where n and m are not necessarily
equal, then G = T C4[m,n] is a C4 -nanotorus (Diudea and John 2001). The first
edge-Wiener index of G is equal to W,, (C, + C,,) = ’"73712 + mTzn (n2 + 1) +
Fn(n—2)

The second edge-Wiener index of G is as follows:

Case 1. If m and n are odd, then
m3 m2
We, (Cy + Cp) = 7)1 + 7}1(}1 +4n—4)—mn(2n+ 1)
Case 2. If m and n are even, then
m* , m* m
W, (Cy + Cp) = S +7n(n +4n—1)—5n(n+2)
Case 3. If nis odd and m is even, then
m3 m?

m
We, (Cy + Cp) = 711 —i-?n(n +4n—4)—3n(n+2)
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