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Abstract

In the last three decades, numerous peptides isolated from scorpion venom have

been identified as members of the KTx, or potassium channel-blocking group of

toxins. This chapter provides an overview of the four families of KTx, named α,
β, γ, and κ, discussing characteristic structural features and K+ channel selectiv-

ity of these peptides. Methods of KTx peptide identification and isolation, as

well as techniques for the assessment of the efficacy of potassium channel

blockade, are described. With the advancement of molecular biology, molecular

dynamics simulations, and nuclear magnetic resonance (NMR) techniques,

many details of the toxin-channel interaction have been clarified and models

of different modes of toxin binding have emerged. A table summarizing all

currently known 133 members of the KTx group of peptides is presented,

including their systematic and common names, along with their affinities

for the major target K+ channels, which may be in the low picomolar range.
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These peptides have provided vital information about the topology of the

external pore region of K+ channels highlighting similarities and even minute

differences. In addition to being valuable exploratory molecular tools, peptide

blockers of K+ channels with high affinity and selectivity offer great potential for

therapeutic use in a wide variety of diseases as was illustrated by several

successful trials in animal models.

Introduction

The venom of scorpions contains a rich mixture of various compounds including

many peptide components with a wide range of molecular weights. The biologically

active constituents are often small peptide toxins that modulate the ion channels in

the plasma membrane of a variety of cells. Some of these toxins alter the operation

of Na+-, Cl�-, or ryanodine-sensitive Ca2+ channels, but the largest and best-studied
group consists of toxins that block K+ channels (KTx).

Potassium channels represent the largest and most diverse ion channel type in

the human organism with very wide tissue distribution and functional roles (Shieh

et al. 2000). Peptide toxins that bind to specific K+ channels have proven to be very

valuable for two reasons:

1. They can be used as efficient molecular tools to learn about ion channel structure

and function. The ability to examine how mutations in the toxin and/or channel

affect the interaction offers great flexibility in the use of these peptides. Docking

simulations with toxins of known structure make it possible to pinpoint

minor structural differences in the topology of closely related channels, which

may then explain observed functional differences between them. Blocking a

certain subset of K+ channels by high selectivity toxins can distinguish between

the functions of similar channels expressed by the same cell.

2. Considering the enormous variety of the physiological and pathophysiological

roles of K+ channels and their cell-/tissue-specific expression distribution,

they are attractive pharmacological targets in the therapy of several diseases.

Successful experiments in animal disease models with potassium channel-

blocking toxins have provided proof of concept for the feasibility of these

efforts.

Primary Structure of KTxs

A large number of scorpion toxins have been identified by the isolation of mRNA

from the venom gland. The reverse-transcribed cDNA sequences can be used to

predict the amino acid sequences of the peptides expressed in the venom gland.

These sequences are generally 50–60 amino acid-long precursor sequences

containing signal peptides and other residues that are removed after translation.

Many of such KTx peptides have not been tested on K+ channels yet; however, all
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long-chain peptides have putative or confirmed mature, short-chain derivatives in

the α-KTx group. Other toxins were directly isolated from scorpion venoms and

purified with high-performance liquid chromatography (HPLC) method, and their

amino acid sequences were obtained by Edman degradation or MS/MS. In most of

the cases, the amount of peptide isolated from the venom is not sufficient to

determine the sequence, disulfide pairing, 3D structure, and the receptor specificity

of the toxin. Knowing the amino acid sequences, toxins can be synthesized with

recombinant techniques or chemical synthesis methods which allow the production

of the peptides in large amount.

Secondary and Tertiary Structures and Classification of KTxs

The group of scorpion toxins targeting K+ channels comprises short-chain (23–43

residues) and long-chain (42–84 residues) peptides, whose structure is stabilized by

three or four disulfide bridges. At present, KTx toxins are classified into four

families, α, β, γ, and κ, based on structural similarities and their specificities for

various K+ channels. Except for the κ-KTxs, all members of the other three families

share a characteristic structural motif, called cysteine-stabilized α/β motif (CS-αβ),
in which the α-helix is connected to a strand of the β-sheet (consisting of at least two
strands, i.e., an αββ topology) by two disulfide bridges in Ci–Cj and Ci+4–Cj+2

configuration. Although the CS-αβ-fold is a dominant structural feature among

KTxs, it is not exclusive for this class of molecules, as peptides with different

functions also share this motif (Dimarcq et al. 1998; Thomma et al. 2002; Caldwell

et al. 1998; Zhao et al. 2002). Thus, the K+ channel-blocking property should not be

assumed solely based on the presence of this fold.

A highly conserved pair of residues, dubbed “the functional dyad” in many

KTxs, was found to be important for high-affinity block of various K+ channels. It

consists of a lysine, whose positively charged side chain protrudes into the nega-

tively charged environment of the selectivity filter of the potassium-conducting

pore, and a hydrophobic (often aromatic) residue often situated nine positions

downstream in the sequence, sterically separated by about 7 Å from the lysine.

The dyad is found on the β-sheet side of the toxins. The dyad performs the same

function even in toxins from sea anemone that have folds different from the

signature CS-αβ. Besides the dyad, other residues also play crucial roles in forming

the contact surface with the channel, thus determining selectivity (see below).

Moreover, KTxs without the dyad that still block K+ channels with high affinity

have also been described, suggesting that the dyad is not an essential element for

blockade (Batista et al. 2002).

Members of the KTx group of scorpion toxins that were discovered the earliest

and shared high sequence and structural homology were classified into the α family,

and the nomenclature α-KTxm.n was introduced to denote the nth member of the

mth subfamily among the α-KTx toxins. The toxins included in the original

classification were short (<40 residues) and contained six conserved cysteines.

Since then the α-KTx family has vastly expanded, now including 133 members, and
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ranging from 23 to 43 residues in size. Most of them have 3 disulfide bonds;

however, all members of families 6, 12 (except 12.5 and 12.7), and 23 are stabilized

by 4 disulfide bonds. α-KTx toxins are generally known to block Shaker-type Kv

channels and Ca2+-activated potassium channels.

Toxins of the β-KTx family are longer than the α-KTx toxins (47–84 residues

stabilized by 3 disulfide bonds) and originate from the Buthidae, Caraboctonidae,

and Scorpionidae families. These toxins contain two functionally different

domains: a freely moving, possibly α-helical N-terminal segment, and a more

compact cysteine-rich C-terminal segment that contains the signature CS-αβ struc-
tural motif. The N-terminal segment confers cytolytic activity to the toxin,

while the C-terminal domain is responsible for K+ channel-blocking ability.

These toxins are further divided into three classes based on sequence similarity.

A separate family, γ-KTx, has been devoted to KTx toxins interacting with

K+ channels of the ether-á-go-go-related gene (ERG) family. γ-KTxs are all

stabilized by four disulfide bonds except members 2.1 and 2.2. Their length

ranges from 36 to 47 amino acids. The topography of the outer pore/turret region

of the ERG family of channels is quite different from that of most other

Kv channels; therefore, it is not surprising that a particular toxin is not likely to

block both groups of channels. However, there has been one toxin, BmTx3,

found, which belongs to subfamily α-KTx15 and yet blocks hERG channels

(Huys et al. 2004a). A more detailed study revealed that two basic residues

on the α-helix side of the toxin interact with the hERG channel, most likely

with residues in the turret region, distant from the selectivity filter. On the other

hand, BmTx3 also possesses the Ki-Yi+9 functional dyad on the β-sheet side, via
which it was shown to block A-type K+ currents, and thus was suggested to

have two interaction surfaces, each acting on different channels. Interestingly,

despite the presence of the dyad, the toxin does not block Shaker-type channels.

Some of the γ-KTxs were found to be selective among human and rat ERG1,

ERG2, and ERG3 channels, such as γ-KTx1.1, γ-KTx1.7, γ-KTx1.8, and

γ-KTx2.1, which blocked these channel subtypes with varying affinities and

therefore can be employed for the discrimination of these channels (Restano-

Cassulini et al. 2006, 2008). There are currently 29 toxins that belong in the

γ-KTx family.

The newest family of K+ channel-blocking toxins from scorpion venom is the

κ-KTx family of peptides consisting of 22–28 residues. They originate from

scorpions in the Scorpionidae and Liochelidae families. Unlike members of the

other KTx families, which are based on the CS-αβ scaffold, κ-KTx toxins adopt a

structure that is formed by two parallel α-helices linked by two disulfide bridges.

Although the presence of the functional dyad in hefutoxins, the first κ-KTxs to be

described, and Om-toxins suggested that their targets would be K+ channels, their

affinities were found to be very low on the assayed channels. At present 18 κ-KTxs
are listed in UniProt.

The systemic and common names of all currently known KTx toxins are listed in

Table 1.
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Characterization of Toxin-Channel Interactions,
Mechanism of Block

To test the affinity of a given peptide to its receptors, several methods are available.

At the time of the isolation of the first scorpion toxins (noxiustoxin in 1982

(Carbone et al. 1982)), the availability of cloned ion channel genes was limited.

The first ion channel gene cloned in 1982 was the nicotinic acetylcholine receptor

(nAChR) of the torpedo ray (Noda et al. 1982) followed by the voltage-gated

sodium channel of electric eel in 1984 (Noda et al. 1984). Therefore, the general

way to test the efficiency of a peptide in inhibiting K+ channels was to isolate

excitable cells generally from rat nervous system and measure the effect of the test

substance on the endogenously expressed channels. Toxin-K+ channel interactions

can be tested on the fast-inactivating A-type current of these cells, which is

generated by Kv1.4, Kv3.4, Kv4.1, Kv4.2, and Kv4.3 α-subunits (Vacher

et al. 2004; Song et al. 1998; Song 2002) or on delayed-rectifier currents of

Kv1.1, Kv1.2, Kv1.5, Kv1.6, Kv2.1, Kv3.1, and Kv3.2 channels (Song 2002).

These cells also express Ca2+-activated K+ channels which makes them suitable

to test the inhibitory effect of the toxins on small conductance (SK) channels

(Legros et al. 1996; Jouirou et al. 2004). Other primary cell cultures were also

used for testing, such as bovine aortic endothelial cells (Nieto et al. 1996) or

neurons from snail (Laraba-Djebari et al. 1994) or rabbit (Crest et al. 1992).

After the cloning of individual ion channel genes and the application of heter-

ologous expression systems in Xenopus oocytes, insect, or mammalian cells, more

precise methods became available to determine the receptors of the toxins

(Schwartz et al. 2013; Varga et al. 2012; Lebrun et al. 1997). Measurements can

be done by radiography or with electrophysiological methods. Radiography

methods can be direct or indirect. Direct measurements require the radioactive

labeling (in most of the cases, 125I) of the toxin which may alter the receptor

specificity of the labeled toxin compared to the unlabeled form (Koch

et al. 1997). Indirect assays are based on the competition of the test substance

with a well-characterized radioactive labeled ligand (such as 125I apamin or 125I

noxiustoxin) for the binding site (Legros et al. 1996; Pedarzani et al. 2002). The

disadvantage of such measurements is that they measure the association and

dissociation of the peptides to the targeted receptors at any contact surface. Kd

(dissociation constant) values in such measurements do not necessarily represent

the pore-blocking ability or the dose dependence of the inhibition of the ionic flux

through the channels (IC50). Determination of the radioactive 86Rb+ flux is another

general tool to test the K+ channel inhibiting ability. Cells expressing voltage-gated

K+ channels are loaded with 86Rb+ and then depolarized by high K+-containing

extracellular solution. 86Rb+ flows through open K+ channels and amount of

extracellular 86Rb+ can be determined with scintillation counter. Inhibitors of

potassium channels decrease the 86Rb+ flux in a dose-dependent manner; therefore,

the half-inhibiting concentration (IC50) with such method can be determined

(Bartschat and Blaustein 1985; Koschak et al. 1998). Electrophysiological methods

permit the direct measurement of ionic currents through voltage-clamped
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membranes. For these measurements a variety of different cells or membrane

preparations can be used. Primary cell lines (neurons, lymphocytes, etc.) expressing

specific ion channels endogenously are widely used for the measurements

(Schwartz et al. 2013; Varga et al. 2012; Vacher et al. 2001). Recombinant

techniques allow the expression of specific ion channels in various cell types

(Xenopus oocytes, mammalian cells, etc.) which has the advantage of measuring

specific inhibitory effect of a toxin on a given ion channel with very low probability

of aspecific effect due to the absence of endogenously expressed channels

(Schwartz et al. 2013; Bagdany et al. 2005; Romi-Lebrun et al. 1997a).

The receptor site for KTxs is the K+ channel pore; competition experiments

confirmed that the toxins bind to a region that overlaps with the tetraethy-

lammonium (TEA) binding site at the external entrance of the pore and that only

a single peptide molecule is able to occupy the binding site at a given time (Varga

et al. 2012; Miller 1988).

The relatively small size of KTxs enables them to deeply enter the vestibule of

the channels allowing for multiple contact points and also exposes the majority of

their residues, which results in highly variable interaction surfaces even due to

minor changes in the sequence. These features enable the toxins to bind to channel

surfaces in various orientations. There have been three major modes of interaction

described between K+ channels and KTxs. The most frequently identified and best-

characterized interaction is via the functional dyad described above (Fig. 1a). In

these cases the β-sheet side of the toxin faces the entrance of the channel pore and

the lysine side chain in the selectivity filter, and the hydrophobic interaction of the

other dyad residue mostly accounts for the high-affinity binding.

A different mode of interaction was described between KCa2.x channels and

α-KTx4.2 and members of the α-KTx5 subfamily (Rodriguez de la Vega

et al. 2003) (Fig. 1b). In these instances influential residues were localized on the

α-helix side of the toxins. Two arginines (for TSκ (α-KTx4.2)) and three arginines

(for P05 (α-KTx5.3)) were identified as critical for binding to small conductance

calcium-activated potassium channels that made contacts with channel residues on

the bottom of the vestibule and the turret region. Thus, compared to typical

α-KTx-Kv channel interactions, the contact region is on the opposite side of the

toxins and farther away from the selectivity filter.

Members of the γ-KTx family seem to employ yet another way to bind to hERG

channels. As described above for BmTx3, γ-KTxs most likely bind to extracellular

segments of the extended S5–S6 linker in ERG channels, which may form an extra

amphipathic α-helix (Fig. 1c). As exemplified by ErgTx (Pardo-Lopez et al. 2002),

this mode of block differs in several respects from the typical α-KTx mode of block,

whose characteristics are mainly defined by the critical lysine’s interaction with the

selectivity filter. Due to the deep penetration of the lysine side chain, it not only

interacts with potassium ions in the pore but also senses the electric field, which

makes this mode of block by α-KTX sensitive to external K+ concentration and to

the applied membrane voltage. Since γ-KTxs lack the equivalent of the lysine and

thus do not interact directly with the pore, the block is insensitive to K+
ext, but not

the membrane potential. This was explained by structural rearrangements in the
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S5-P linker brought on by strong depolarization, which destabilizes ErgTx binding.

Although the overlap of the ErgTx binding site with that of TEA places it at the

outer mouth of hERG, the inability of ErgTx to produce total current block suggests

an off-center binding position rather than a complete plugging of the pore as known

for α-KTxs. γ-KTxs are assumed to bind with their α-helix side in an orientation

different from the two previous modes and interact with residues even farther from

the selectivity filter (Rodriguez de la Vega et al. 2003; Pardo-Lopez et al. 2002).

The block mechanism of the KTxs has been studied by several methods, the

earliest ones involving a large number of mutations both in the toxin and channel

sequences. The structure of the toxins was fairly well known from NMR studies

(Bontems et al. 1991, 1992), and based on geometric constraints, useful conclusions

could be drawn about the topology of the outer pore region of the channels. Using

conservative and nonconservative mutations and measuring the binding affinities,

the most influential residues were identified (Goldstein et al. 1994). Most KTxs

carry a high net positive charge and thus are likely to be attracted toward the

negatively charged environment of the selectivity filter by long-range interactions.

This involvement of electrostatic interactions is supported by the ionic strength

dependence of toxin binding (MacKinnon et al. 1989). However, even charge-

neutralizing mutations of toxin residues that drastically affected binding affinity

had little effect on association rates, implying that toxin affinity is mostly deter-

mined by pairwise close contact interactions with channel residues. Residues

forming “close contact” were defined as those whose conservative mutations

resulted in great changes in binding affinity and in which the affinity change mostly

arose from the dissociation rate of the toxin.

A very influential residue, the mutation of which changed binding affinity by

several orders of magnitude, was identified in the “wall” of the vestibule or turret

Fig. 1 (a) Typical blocking scheme of an α-KTx in the pore of a Shaker-related Kv channel. The

interaction surface is on the β-sheet side of the toxin forming several close contacts with the

bottom of the vestibule, and the side chain of the critical lysine protrudes deeply into the selectivity

filter. (b) Block of the KCa2.2 (SK) channel by α-KTx5.3 occurs by an inverted orientation of the

toxin compared to the typical α-KTx mechanism; the main interaction surface is on the α-helical
side of the toxin. Channel residues involved in the interaction are localized in the turret region and

the bottom of the vestibule. Brownian dynamics of the recognition of the scorpion toxin P05 with

small-conductance calcium-activated potassium channels. (c) Interaction of γ-KTx2.1 with the

HERG channel occurs mainly between the α-helix of the toxin and the large turret region of the

channel. The toxin does not enter very deeply and does not fully block permeation
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region of the Shaker channel (F425G mutation), whose role was confirmed for the

corresponding residue in Kv1.3 as well (position 380) (Aiyar et al. 1995). Strik-

ingly, this residue is very far from the cluster of other critical residues surrounding

the entryway of the pore. It was shown that this residue does not contribute to

normal binding of the toxin, but can greatly reduce accessibility to the pore by steric

hindrance if a bulky residue is situated here. This finding underlines the fact that

even residues that are not located on the typical interaction site of the toxin or the

channel can have an effect on the formation of a specific channel-toxin complex,

which may be a determining factor in the channel selectivity of a toxin.

Applying thermodynamic mutant cycle analysis, the closely interacting residue

pairs could be pinpointed with even higher accuracy (Ranganathan et al. 1996). In

this technique residues of the toxin and the channel are mutated individually and

then simultaneously, and based on the binding affinities of the various combina-

tions, a pairwise coupling energy is calculated, which characterizes the tightness of

the interaction of the pair. These early studies established the critical role of the

central (dyad) lysine and recognized that it must interact with residues forming K+

binding sites in the pore based on the external K+ concentration dependence of the

binding. In contrast to the pore-blocking mechanism discussed above, some spider

toxins bind to the voltage sensors and modify channel gating instead of plugging the

conduction pore (hanatoxin). Chimeric toxins constructed of two other toxins active

on different channels were also used to learn about the relevance of various peptide

regions in the binding to different K+ channel subtypes (Regaya et al. 2004). Then,

the calculated and hypothesized interaction topology can be further refined by

docking simulations that use homology models of the target channel based on

known X-ray crystallographic structures of a related channel and typically

NMR-derived structures of the toxins. Comparison of the results of docking calcu-

lations with different channels can provide clues about which channel residues may

allow or prevent high-affinity binding of the toxin.

The identified receptors of KTx toxins can be found in Table 1.

Binding and Selectivity of a-KTxs at the Molecular Level:
Docking Simulations and NMR Structure Determinations
of the Complexes

From the results obtained using a variety of techniques listed above, the picture of a

general blocking mechanism has emerged that is employed by the majority of

confirmed high-affinity K+ channel-blocking toxins. Most toxins carry a high net

positive charge and thus are likely to be attracted toward the negatively charged

environment of the selectivity filter by long-range interactions. This involvement of

electrostatic interactions is supported by the ionic strength dependence of toxin

binding (MacKinnon et al. 1989). As described above, many toxins feature the

conserved functional dyad that superimposes spatially even in toxins of various

lengths and structures (Menez 1998; Dauplais et al.1997) and is a good indicator of

high-affinity K+ channel blockade. However, as sequence comparisons and docking
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simulations reveal, the hydrophobic residue of the dyad may have a major influence

on the selectivity of a toxin such that the often present tyrosine shows preference for

Kv1.2 channels over Kv1.3, while a threonine at that position directs toxin prefer-

ence toward Kv1.3. Recent studies confirmed these expectations with toxins in

which the hydrophobic dyad residue was mutated (Bartok et al. 2013).

A similar strategy was used to convert charybdotoxin (ChTx), which blocks

several Kv channels and KCa3.1 into a more selective toxin (Rauer et al. 2000).

Docking simulations aided by thermodynamic mutant cycle analyses revealed

minor structural differences in the otherwise very similar topology of the external

vestibules of Kv and KCa channels. A cluster of negatively charged residues was

found in the turret of Kv1.3, not present in KCa3.1. A lysine residue of ChTx, which

lies close to this cluster in the bound state, was mutated to negatively charged

residues, which significantly reduced the affinity for Kv1.3 and therefore improved

selectivity for KCa3.1.

Most models of toxin binding assume rigid topological structures for both the

channel and toxin surfaces that must be complementary to a certain extent for the

formation of the contact points that establish tight binding. However, recent NMR

studies challenged this view and suggested that both structures are capable of

flexible rearrangements during the formation of the channel-toxin complex

(Lange et al. 2006). Using solid-state NMR spectroscopy (ssNMR), which is

performed in a medium with limited mobility compared to the classical liquid-

state NMR, the docking of kaliotoxin (KTX, α-KTx3.1) to a KcsA-Kv1.3 chimeric

channel was studied. The pore region of Kv1.3, which contains the binding site for

KTX, was inserted into KcsA, a bacterial K+ channel with known crystal structure

at the time, and structural changes were investigated upon KTX binding.

The authors observed significant ssNMR chemical shift changes for several

KTX residues that are found on one side of the KTX three-dimensional structure

bound to the channel and confirmed the general layout of the interaction surface

from previous models describing KTx-Kv channel complexes. The results indicated

that the structure of the outer and inner helices of KcsA-Kv1.3 was mostly unaf-

fected by KTX binding, but changes were detected in both the pore helix and the

selectivity filter, which were quite significant for the GYG signature selectivity

filter residues. Their data suggests that the critical lysine side chain is inserted more

deeply into the selectivity filter than previous models had assumed and that its

methylene groups replace water molecules in the entry region of the pore. This

insertion induces a new conformational state of the filter with characteristics of both

the conducting and collapsed conformation that was described for KcsA. This

reorientation, along with small changes in the toxin itself, is thought to strengthen

the binding by allowing a more intimate contact between the toxin and the pore.

A follow-up study by the same group further investigated this phenomenon and

found similarities between the structural changes associated with toxin binding and

C-type inactivation, a process which makes Kv channels nonconducting during

prolonged depolarizations via rearrangement of the external pore region (Zachariae

et al. 2008). Using molecular dynamics simulations, ssNMR, and electrophysio-

logical measurements, they showed that upon toxin binding, rotation of external
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pore residues widens the pore and increases the number of contacts with the toxin,

which both contribute to increased affinity. Thus, the original “lock and key” model

of toxin binding was modified to a “hand and glove” or “induced fit” model to

account for the mutual flexibility and adaptation of the two partners.

Therapeutic Applications

Many of the toxins of various venomous species are known to exert their harmful

effects through interactions with the ion channels expressed by the cells of the prey.

With detailed knowledge of the role of an ion channel in a cell’s functions and the

effects of peptide toxins on the channel, the behavior of cells or even organs can be

manipulated in a desired way to achieve therapeutic goals. The high number of

potassium channel genes expressed in the human body and the variety of cellular

functions that they perform present many potential targets for such medical goals.

Although the pharmacological properties of small molecule channel modulators are

generally better suited for therapeutic applications, peptide toxins still have some

advantages that make them attractive as drug candidates. One important aspect of

these is that the greater contact area of the peptides compared to small molecules

with the target channel allows a higher-affinity binding; thus, a lower concentration

of the blocker is required. The other aspect again arises as a result of the higher

number of contact points with the channel, which enables the toxin to differentiate

among channels with similar, but still slightly differing structures. As described in

previous sections, even minute differences in the topology of the interaction

surfaces can lead to great changes in binding affinity. The resulting selectivity is

a critical characteristic of drug molecules as this prevents unwanted side effects by

avoiding interactions with off-target channels.

Several in vivo experiments in animal disease models have proven the efficacy

and applicability of small K+ channel-blocking peptides (Varga et al. 2012; Koshy

et al. 2014). Although some of these experiments were performed with toxins

originating from other species (ShK toxins from Stichodactyla helianthus), the
similar size, structure, and mechanism of action assure that KTxs from scorpions

would be just as effective in these applications (Dauplais et al. 1997).

The best-studied target of therapeutic application is the voltage-gated Kv1.3

channel expressed by lymphocytes. In patients with autoimmune diseases, the

disease-associated autoantigen-specific T cells were identified as co-stimulation-inde-

pendent effector-memory T cells, which express a high number of Kv1.3 channels.

This was confirmed in multiple sclerosis, type 1 diabetes mellitus, and rheumatoid

arthritis patients (Markovic-Plese et al. 2001;Wulff et al. 2003). As the activation and

proliferation of the effector-memory T cells responsible for most of the tissue damage

can be suppressed by selective Kv1.3 blockers, major improvements can be achieved

by the use of such peptides. This concept has been elegantly proven in experiments, in

which disease development or progression was prevented in rat models of multiple

sclerosis, type 1 diabetes mellitus, rheumatoid arthritis, contact dermatitis, and

delayed-type hypersensitivity. An advantage of this approach is that it specifically
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suppresses effector-memory T cell activation without compromising the protective

immune response. Experiments have shown that at therapeutically relevant concen-

trations, the toxins did not cause toxicity in the animals (Beeton et al. 2001, 2006) and

did not suppress the protective immune response to acute viral and bacterial infections.

Several naturally highly Kv1.3-selective KTxs have been identified, for exam-

ple, the recently characterized Vm24 (α-KTx21.1) from the venom of Vaejovis
mexicanus smithi, with very high affinity (Kd ¼ 2.9 pM) and exceptionally high

(>1,500-fold) selectivity over several other ion channels assayed, including the

closest relatives of Kv1.3. It was also shown to reduce delayed-type hypersensitiv-

ity in rats; thus, it promises to be a valuable tool for applications requiring selective

Kv1.3 blockade (Varga et al. 2012).

A Kv1.3-specific peptide was also found effective in counteracting the negative

effects of elevated caloric intake by mice that were fed a diet rich in fat and

fructose. It produced effects similar to the effects of Kv1.3 gene deletion, which

included a reduction of blood levels of cholesterol, sugar, and insulin and enhanced

insulin sensitivity. Overall toxin application resulted in decreased weight gain,

adiposity, and fatty liver (Upadhyay et al. 2013).

Another disease where selective KTxs have potential therapeutic value is myo-

tonic dystrophy type 1 (DM1), because voltage-gated K+ channels are responsible

for myoblast proliferation and differentiation.

Comparison of the functional potassium channel expression in myoblasts from

healthy individuals to myoblasts from patients with DM1 revealed a switch from

KCa1.1 to Kv1 channels. Specifically, Kv1.2 and Kv1.5 channel expression

increased, along with a decrease in KCa1.1 expression in DM1 myoblasts. Phar-

macological block of Kv1 channels in DM1 myoblasts was found to normalize

proliferation and improve other factors of myotube production. In contrast, wound

healing and myotube formation were impaired by selective inhibition of KCa1.1

channels in normal myoblasts. Thus, detrimental effects of the switch in K+ channel

expression associated with the early stage of myogenesis in DM1 may be

counteracted by selective KTxs (Tajhya et al. 2014).

Besides effector-memory T cells in the synovial fluid, resident joint cells known

as fibroblast-like synoviocytes (FLS) are also responsible for many of the pathogenic

features of rheumatoid arthritis (RA). FLS in RA (RA-FLS) become invasive and

cause joint damage by releasing proteases and proangiogenic and proinflammatory

growth factors. RA-FLS were shown to upregulate KCa1.1 channels, which localize

on the leading edge of the plasma membrane. Blockade of KCa1.1 inhibited cellular

migration and invasion, along with the production of pathogenic factors by interfer-

ing with cytoskeletal rearrangements. Pharmacological inhibition of KCa1.1 also

improved the clinical symptoms in rat models of RA (Tanner et al. 2014). As in the

cases above, the use of a selective KTx inhibitor may render general immunosup-

pression unnecessary during RA treatment in the future.

Recent results indicate that K+ channel inhibition may also be a beneficial tool in

enhancing antitumor immunity (Koshy et al. 2013). Blockade of KCa3.1 channels

was found to increase the degranulation and cytotoxicity of adherent natural killer

cells and to increase the ability of these cells to reduce in vivo tumor growth.
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Conclusion and Future Directions

The examples above illustrate the wide spectrum of potential applications, in which

K+ channel-specific scorpion toxins of high affinity and selectivity may be used to

accomplish therapeutic goals.With the number of identifiedKTxs growing by the day

and the expansion of the body of knowledge onK+ channel distributions and functions

along with details of the toxin-channel interactions, this spectrum is likely to broaden

even more, and routine clinical use of these peptides may soon become reality.

Cross-References
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