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10.1  Introduction

Functional foods have been defined by the Food and Nutrition Board (FNB) of the 
National Academy of Sciences, USA as “any modified food or food ingredient that 
may provide a health benefit beyond that of the traditional nutrients it contains”. Japan 
was the first country to promote the concept of functional foods as Food for Specific 
Health Use (FOSHU) endorsed by the Japanese Ministry of Health (Arai 1996). With 
the increase in public awareness about nutrition and health, functional foods or “foods 
with a purpose” have gained increased popularity (Verbeke et al. 2009).

Fruits, nuts, berries and vegetables are the most widely known sources of bio-
active compounds, whereas cereals, with an annual consumption of 332 kg/
person (estimation for 2015, FAO Corporate Documentary Repository, 
http://www.fao.org/docrep/005/Y4252E/y4252e05.htm, accessed on May 16, 2012), 
have often been marginalized as functional foods. Recent findings about the health 
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benefits of whole-grain cereals and cereal products (Behall et al. 2006; Fardet et al. 
2008; He et al. 2010) have renewed interest in the potential of cereals as functional 
foods. Whole grain cereals have greater nutritional value than the refined or polished 
cereals, because the bran and germ portion have high fiber content and the majority 
of bioactive compounds (Champ 2008; Fardet et al. 2008; He et al. 2010). Cereal-
based foods have functional food properties due to their carbohydrate constituents 
(β-glucans, arabinoxylans, inulin), and bioactive compounds such as phenolics (fla-
vones, chalcones, alkylresorcinols, ferulic acid, anthocyanins), carotenoids (β-carotene, 
xanthophylls), and vitamin E. The physical location of functional components present 
in the various parts of grains of common cereals is summarized in Table 10.1.

Cereals can be a good source of both probiotic and prebiotic foods because of 
their diverse carbohydrate composition (Charalampoulos et al. 2002). Probiotic 
foods contain microorganisms that benefit the consumer’s health by improving their 
intestinal microbial balance (Fuller 1989). Prebiotic food on the other hand, is not 
digested in the upper gastrointestinal tract but beneficially affects the host health 
by selectively stimulating the growth and/or activity of useful bacteria in the colon 
(Gibson and Roberfroid 1995). Table 10.2 summarizes the content of carbohydrate-
based functional components in common cereals. Bioactive compounds present in 
cereals, like phenolic acids, flavonoids, carotenoids, and tocopherols have useful 
antioxidant properties. They help reduce oxidative stress in the cells and quench the 
damaging free-radicals, thereby protecting cells from ageing, degeneration, and car-
cinogenesis (Astorg 1997; He et al. 2010). In fact, bioactive compounds like tocot-
rienols even reduce the bad cholesterol levels in blood thereby playing protective 
role against cardiovascular diseases (Das et al. 2008).

The genome sequencing and gene annotation of cereals such as rice (http://rice.plant
biology.msu.edu/), maize (http://magi.plantgenomics.iastate.edu/), barley (International 
Barley Sequencing Consortium, 2012) and sorghum (Paterson et al. 2009), and the 
ongoing genome sequencing of wheat (http://www.wheatgenome.org/), have provided 
a wealth of information about the genes related to bioactive components. Genetic vari-
ation studies indicated high heritability for arabinoxylan fiber, carotenoids, and other 
bioactive compounds, but, significant genotype x environment interactions make it 
difficult to identify breeding lines with consistently high bioactive compounds across 
environments and years (Shewry et al. 2010). Here we summarize recent advances in 
the genomics of various functional food components of common cereals based on their 
carbohydrate components (Class I) and bioactive components (Class II).

10.2  Carbohydrate-Based Functional Food Components 
(Class I)

10.2.1  Beta Glucans

The cell walls of grasses are characterized by the presence of (1,3: 1,4)-β-D-
glucans composed of unsubstituted, unbranched polysaccharide containing 

http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/
http://magi.plantgenomics.iastate.edu/
http://www.wheatgenome.org/
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β-D-glucopyranosoyl monomers linked through C(O)3 and C(O)4 atoms with the 
(1,4)-linkage being more abundant (Burton and Fincher 2009; Burton et al. 2010). 
Generally, the degree of polymerization (DP) of (1,3: 1,4)-β-D-glucans may vary 
up to 1,000-fold or more in most grasses (Fincher 2009). Among the cereals, bar-
ley has the highest content of (1,3: 1,4)-β-d-glucan (2.5–11.3 %), followed by oat 
(2.2–7.8 %), rye (1.2–2 %) and wheat (0.4–1.4 %) (Izydorczyk and Dexter 2008). 
Beta-glucans have been reported to lower serum cholesterol, improve lipid metabo-
lism, reduce glycemic index and even reduce the risk of colorectal cancer (Keegstra 
and Walton 2006; Pennisi 2009). Beta-glucans are excellent prebiotic components of 
functional foods because they selectively promote the growth of lactobacilli and bifi-
dobacteria in vivo (Snart et al. 2006) and in vitro (Jaskari et al. 1993).

Genetic and environmental variation of β-glucan content in barley has been 
investigated by various workers (Stuart et al. 1988; Kenn et al. 1993; Fastnaught 
et al. 1996). Although the genetic variation exists for breeding high β-glucan bar-
ley lines, environmental variation strongly impacts the β-glucan content and hence 
breeding for consistently high β-glucan content (Shewry 2008). Manickavelu et al. 
(2011) mapped four quantitative trait loci (QTL) on chromosomes 3A, 1B, 5B and 
6D in a wheat recombinant inbred population contributing up to 43 % of variation 
in β-glucan content.

The synthesis of (1,3: 1,4)-β-D-glucan is mediated by cellulose synthase-like 
(Csl) genes that share a superfamily with cellulose synthase (CesA) genes. The Csl 
proteins are predicted to be integral membrane proteins having a “DDDQXXRW” 
motif (Hazen et al. 2002). Thirty-seven Csl genes are known in rice which belong 
to six families, CslA, CslC, CslD, CslE, CslF, and CslH, having 10, 9, 4, 5, 8 and 
2 genes, respectively.

Burton et al. (2006) used a comparative genomics approach to clone the CslF 
group of genes on rice chromosome 7 that correspond to a highly significant QTL 
on barley chromosome 2H affecting (1,3: 1,4)-β-D-glucan content in mature bar-
ley grain (Han et al. 1995). Burton et al. (2006) identified six genes (OsCslF1, 
OsCslF2, OsCslF3, OsCslF4, OsCslF8 and OsCslF9) located on a 118 kb interval 
on chromosome 7 in rice. These genes when mobilized into Arabidopsis resulted 
in (1,3: 1,4)-β-D-glucan synthesis in cell walls, which is lacking in wild type 
plants. The other two genes of this family, OsCslF6 and OsCslF7, are located on 
rice chromosomes 8 and 10, respectively (Burton et al. 2006).

Burton et al. (2008) identified and mapped seven genes of the HvCslF fam-
ily in barley. Of these seven genes, HvCslF3, HvCslF4, HvCslF8 and HvCslF10 
were located in the centromeric region of chromosome 2H; HvCslF6 near the cen-
tromere on 7H; HvCslF7 on 5H long arm and HvCslF9 on 1H short arm near the 
centromere. Transcript profiles of the HvCslF family members showed individual 
patterns of abundance in different tissues, with the exception of HvCslF6, which 
showed consistently higher expression in many of the tissues examined (Burton 
et al. 2008). Later, Burton et al. (2010) reported that over-expression of barley 
HvCslF6 under the control of endosperm specific oat globulin promoter resulted 
in more than 80 % increase in (1,3: 1,4)-β-D-glucan content in transgenic barley 
grains.
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Nemeth et al. (2010) used microarray analysis to identify potential candidate 
genes involved in (1,3: 1,4)-β-D-glucan synthesis in wheat using cDNA isolated 
from whole caryopses and fractions enriched with starchy endosperm tissue, dur-
ing various stages of development. They found that TaCslF6, an ortholog of barley 
gene HvCslF6, had high expression in wheat endosperm and, moreover, its down 
regulation by RNAi resulted in decreased (1,3: 1,4)-β-D-glucan content in the 
endosperm. In oat, Chawade et al. (2010) used Targeting induced Local Lesions 
in Genome (TILLING) to identify mutants in the AsCslF6 gene that affected (1,3: 
1,4)-β-D-glucan content. Comparative genomics, expression profiling, mutant 
selection and gene knockouts are providing better understanding of the enzymes 
and genes regulating cell wall synthesis and it will be possible to manipulate cell 
wall composition of cereal grains in the near future to meet the dietary and indus-
trial requirements.

10.2.2  Arabinoxylans

Arabinoxylans are linear chain backbone consisting of β-D-xylopyranosyl (Xylp) 
residues linked through (1 → 4) glycosidic linkages. Some of the Xylp residues 
have α-L-arabinofuranosyl (Araf) residues attached to them, leading to four struc-
tural elements in the molecules of arabinoxylans viz., monosubstituted Xylp at 
O-2 or O-3, di-substituted Xylp at O-3, and unsubsituted Xylp. The relative ratios 
of these structural elements vary across species (Izydorczyk and Dexter 2008). 
Arabinoxylans (AX) improve gut health, by promoting growth of useful bifido-
bacteria (Glei et al. 2006; Neyrinck et al. 2011). Neyrinck et al. 2012 found that 
wheat-derived arabinoxylans increased satietogenic gut peptides and reduced 
metabolic endotoxemia in diet-induced obese mice. The genes for the assem-
bly of arabinoxylans are not well characterized, although the genes of cellulose 
synthase-like (Csl) and Glycosyl trasferases (GT) families have been reported to 
play important roles in synthesis and feruloylation of arabinoxylans (Urahara et al. 
2004; Mitchell et al. 2007). Mitchell et al. (2007) used a bioinformatics approach 
with differential expression of orthologous genes between Arabidopsis and rice, 
to identify genes involved in AX synthesis and feruloylation, assuming that AX 
synthesis genes will be expressed more in grasses than in dicots. Genes of fami-
lies GT43, GT47 and GT61 and proteins containing the PF02458 domain, which 
are expressed at higher levels in grasses and are integral membrane proteins, 
were reported to be the candidates for AX synthesis (Mitchell et al. 2007). They 
reported that genes in GT43 family coded β, 1 → 4 xylan synthase, GT47 fam-
ily encoded xylan α-1,2 or α-1,3 arabinosyl transferases and genes in GT61 fam-
ily encoded feruloyl-AX-β-1,2 Xylosyl transferases. Oikawa et al. (2010), using 
plant protein family information-based predictor for endomembrane (PFANTOM) 
reported that GT43 and GT47 family genes play important role in xylan synthesis 
in rice. Bosch et al. (2011) while studying cell wall biogenesis in maize elongat-
ing and non-elongating internodes found maize ortholgoues of rice GT61, GT43 
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and GT47 to be the most promising candidates for xylan synthesis. More studies 
are needed to develop better understanding of cell wall biosynthesis in cereals to 
manipulate the levels of AX to be nutritionally beneficial (Bosch et al. 2011).

10.2.3  Resistant Starch

Starch is composed of two structural components, amylose and amylopectin. 
Amylose is a long, essentially linear, polymer of glucose monomers with α-1,4 link-
ages whereas amylopectin is more complex with α-1,6 branching in addition to the 
α-1,4 bonds. Generally reserve starches contain amylose and amylopectin in the 
ratio of about 1:3 (Rahman et al. 2007). High amylose content is associated with 
starch resistant to digestion by the amylolytic enzymes present in the upper digestive 
tract and acts as a substrate for fermentation by the microflora inhabiting the large 
intestine (Bird and Topping 2001; Ito et al. 1999). Short-chain fatty acids produced 
as a result have been reported to benefit gut health (Topping and Clifton 2001). 
Figure 10.1 shows the amylose biosynthesis pathway in cereals. Enzymes signifi-
cantly affecting amylose content in cereals are Granule Bound Starch Synthase-I 
(GBSS-I), Starch Synthase (SS) I–IV and Starch Branching Enzymes (SBE) I-II.

GBSS-I (Wx) is essential for amylose biosynthesis in wheat, rice and maize, 
and the absence of GBSS-I leads to waxy endosperm with no amylose (Shannon 
and Garwood 1984; Kirubuchi-Otobe et al. 1997). Nakamura et al. (1995) com-
bined the null alleles of GBSS-I homoeoloci of wheat to produce waxy or amyl-
ose-free wheat. Slade et al. (2005) used TILLING to identify mutations in all the 
three homoeoloci of GBSS-I in hexaploid and tetraploid wheat cultivars and com-
bined all the mutant homoeoalleles to produce a waxy phenotype with a signifi-
cantly reduced level of amylose content. Amylopectin branching or content does 
not appear to be affected by the absence of GBSS-I (Rahman et al. 2007). Itoh et 
al. (2003) showed overexpression of Wx to increase amylose content in rice, but 
more studies are needed to propose this as a method of choice.

Yamamori et al. (2000) demonstrated SSIIa to be more important in determin-
ing the structure of amylopectin. Mutation in this gene in wheat resulted in shorter 
chain starch molecules and about 35 % higher amylose content over wild type 
(Yamamori et al. 2000). The amount of resistant starch in the high amylose SSIIa 
mutant increased by more than 10-fold after autoclaving as compared to wild type 
wheat in the native state (Yamamori et al. 2006). In barley, mutation in SSIIa leads to 
even higher increase (65 %) in amylose content compared to the wild type (Morell et 
al. 2003). In maize, Zhang et al. (2004) demonstrated that an insertion in SSIIa leads 
to a sugary-2 mutation with a simultaneous increase of 26–40 % in amylose content. 
SSIa mutants did not affect amylose content in rice (Fujita et al. 2006). Mutants for 
the SSIa gene have not been reported in other cereals (Rahman et al. 2007).

OsSSIIIa may play an important role in generating long chains of starch mol-
ecules in rice (Ryoo et al. 2007). Null mutants of rice SSIIIa, generated by T-DNA 
insertions, had smaller and rounder starch granules that were loosely packed in 



254 N. Rawat et al.

the endosperm. Hence, the Oryza sativa SSIIIa (OsSSIIIa) mutations were named 
white-core floury endosperm 5–1 (flo5–1) and flo5–2 and had reduced content of 
long chains having DP 30 or above. The loss in SSIII of maize led to the dull-I 
phenotype (Gao et al. 2001) and only moderate increase in amylose content.

SBE induces 1,6 branching in starch and thus is important for amylopectin for-
mation. SBE-I, SBE-IIa and SBE-IIb are the three isoforms of the enzyme. Loss 
of SBE activity leads to an increased level of amylose. In maize, loss of SBEIIa 
leads to nearly 80 % higher amylose content and has been commercially exploited 
as amylose extender to produce Hi-maize (Brown 2004). A similar mutation in 
rice led to an increase in amylose content of only 25–35 % (Nishi et al. 2001). In 
wheat, down-regulation of SBEIIa and SBEIIb by RNAi increased amylose con-
tent by 80 % (Regina et al. 2006). The high amylose wheat lines in rat feeding 
trials showed the benefits of resistant starch on gut health (Regina et al. 2006). 
Likewise, in durum wheat silencing of SBEIIa by RNAi led to an increase of 
amylose content up by 75 % (Sestili et al. 2010). However, a similar approach 
with SBEIIb did not increase amylose content. In barley, simultaneous down-
regulation of both SBEIIa and SBEIIb by RNAi by more than 80 % produced a 
high amylose phenotype (>70 %) whereas a reduction in the expression of either 

Fig. 10.1  Starch synthesis in cereals and the role of various enzymes in different steps of starch 
synthesis. Modified from Tian et al. (2009)
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of these isoforms alone had only a minor impact on amylose content (Regina et 
al. 2010). Thus, increasing the expression of GBSS and decreasing SSII and SBEII 
activities have been successfully used to increase resistant starch in cereal grains.

10.2.4  Inulin

Inulin is a member of fructan group of polysaccharides having chains of β (2–1) 
linked fructose units (Degree of polymerization, DP: 2–60) attached to a sucrose 
molecule. It is highly water soluble alternative storage form of carbohydrate and 
occurs in the cell vacuoles of about 15 % of the species of the flowering plants 
(Hellwege et al. 2000). The most common dietary sources of inulin are wheat, onion, 
garlic, banana and leek. Because of the β-configuration of the anomeric C2 in its 
fructose monomers, inulin resists hydrolysis by the human small intestine digestive 
enzymes which specifically hydrolyze α-glycosidic bonds (Roberfroid 2007). In 
the colon, inulin supports growth of useful bacteria that are beneficial in prevent-
ing colon cancer (Reddy et al. 1997; Poulsen et al. 2002). As an ideal dietary fiber, 
inulin increases fecal biomass and regularizes bowel habits (Gibson et al. 1995; 
Kleessen et al. 1997). It is also known to enhance bioavailability of minerals in the 
diet (Abrams et al. 2007) and to improve body defense mechanisms (Guarner 2005).

The inulin biosynthesis model was first proposed by Edelman and Jefford (1968) 
in Helianthus tuberosus. Of the two enzymes, sucrose: sucrose 1-fructosyltrans-
ferase (1-SST) and fructan: fructan 1-fructosyltransferase (1-FFT), 1-SST cata-
lyzes the synthesis of the trisaccharide 1-kestose from two molecules of sucrose. 
Subsequently, 1-FFT transfers fructosyl residues reversibly from one fructan to 
another, producing a mixture of fructans with variable chain lengths. Some modi-
fications have been reported in this generalized model (Duchateau et al. 1995). In 
vitro synthesis of inulin using 1-SST from H. tuberosus (Lüscher et al. 1996) and 
1-FFT from Chicorium intybus (Van den Ende and Laere 1996) yielded fructans 
with DP less than 25. In the modified model, enzyme 6-fructosyltransferase (6-FST) 
introduces new fructosyl units in the elongating fructan chain (Nagaraj et al. 2004). 
Furthermore, enzymes such as fructan exohydrolases (FEHs) can modify the struc-
ture of synthesized fructan by specific trimming of fructosyl chains.

Sprenger et al. (1995) were the first to clone a gene for a plant enzyme for fructan 
biosynthesis, 6-FST, from barley. Transformation of Nicotiana plumbaginifolia, 
lacking fructans, with barley 6-FST led to fructan production (Sprenger et al. 1995). 
Kawakami and Yoshida (2002) cloned 6-FST and 1-SST from wheat. Functional 
characterization was done in the methylotrophic yeast Pichia pastoris, which 
showed fructosyltransferase activity upon transformation. Kawakami and Yoshida 
(2005) cloned 1-FFT gene from wheat and studied its function by overexpressing 
it in P. pastoris. Their results indicated that 1-FFT is essential for biosynthesis of 
fructans accumulating in frost-tolerant wheat. Fructan accumulates in wheat stems 
during growth and anthesis, from where it is mobilized to grains by fructan 1-exohy-
drolase (1-FEH) activity during grain filling. Van den Ende et al. (2003) cloned two 
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isoforms of 1-FEH in wheat and showed that they play important role in trimming 
fructans not only during grain filling but also during active fructan synthesis. Van 
Riet et al. (2006) cloned fructan 6-exohydrolase (6-FEH) from wheat and found that 
it plays an important role in the trimming of the fructans in conjunction with 1-FEH.

Huynh et al. (2008) mapped five QTL for fructan accumulation on wheat chro-
mosomes 2B, 3B, 5A, 6D and 7A. The QTL on 6D and 7A contributed to the largest 
phenotypic variance of 17 and 27 %, respectively. Zhang et al. (2008) determined 
the intron–exon structure of 1-FEH genes in wheat, mapped them on chromosomes 
6A, 6B and 6D and verified their postulated role in fructan accumulation in grains.

Long-chain inulin molecules are desirable for foodstuffs such as ice-cream, 
milkshakes, yogurt, cookies, cakes, pudding, breakfast cereal, and as a neutral 
base in cosmetic applications and pharmaceuticals. Jenkins et al. (2011) reported 
recently that long-chain inulin molecules (with DP>15) beneficially modulate 
microbial growth in the gut that yield healthy short chain fatty acids (SCFAs). The 
processes for accumulating long chain inulin molecules rather than crude mixtures 
of long and short chain inulin molecules in root extracts of artichoke have been 
developed (Hellwege et al. 2008). Manipulating the trimming enzymes of the inu-
lin biosynthesis pathway (FEH) may be a feasible approach to accumulate long-
chain inulin molecules, preferentially in the cereal grains. Bird et al. (2004a, b) 
reported a mutant (M292) in in a hull-less barley variety ‘Himalaya’ that lowered 
plasma cholesterol and enhanced short-chain fatty acids in the guts of rats and 
pigs. Clarke et al. (2008) reported that M292 had a mutation in Starch synthase 
(SSIIa) gene which, in addition to enhancing free sugars, β-glucans and arabinoxy-
lans also increased inulin content by 42-fold compared to the wild type variety. 
The wild type variety ‘Himalaya’ had 0.1 mg/kg inulin in the grains, whereas the 
mutant M292 had 4.2 mg/kg grain inulin content (Clarke et al. 2008). More stud-
ies are needed to validate the role of SSIIa in increasing grain inulin content.

10.3  Bioactive Compounds (Class II)

10.3.1  Polyphenols

Polyphenols are compounds bearing one or more aromatic rings with one or more 
hydroxyl groups (Liu 2007). Though termed secondary metabolites, polyphe-
nols play an essential role in protecting plants from UV radiation (Stalikas 2007), 
inhibiting pathogens (Abdel-Aal et al. 2001) and providing structural integrity to 
the cell wall (Klepacka and Fornal 2006). Cereals contain high levels of polyphe-
nols that contribute in the prevention of degenerative diseases such as cancer and 
cardiovascular diseases (Liu 2007; He et al. 2010). The health effects of phenolic 
compounds depend on the amount consumed and on their bioavailability (Manach 
et al. 2004).

Cereals contain a variety of polyphenols including phenolic acids, fla-
vonoids (flavonols, flavones, flavonones, isoflavones and anthocyanins), 
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proanthocyanidins, condensed tannins, catechins and lignans. The majority 
of phenolics in cereals are present in the bran fraction as insoluble and bound 
compounds in the form of ester and ether linkages with polysaccharides such 
as arabinoxylan and lignin in the cell wall (Liyana-Pathirana and Shahidi 2006; 
Fernandez-Orozco et al. 2010).

Genetic variation for polyphenol accumulation and composition has been docu-
mented among different cereals (Adom et al. 2003; Menga et al. 2010; Shewry et 
al. 2010). Significant correlations between the contents of bioactive components 
and environmental factors were found and even highly heritable components dif-
fered in amount over different years and sites (Fernandez-Orozco et al. 2010; 
Shewry et al. 2010). Bound phenolics, which comprise the greatest proportion 
of the total phenolics, resulted in the most heritable compounds compared to the 
free and conjugated forms (Fernandez-Orozco et al. 2010). Higher levels of total 
phenolics, ferulic acid and flavonoids were detected in Emmer wheat compared to 
Einkorn and bread wheat species (Li et al. 2008; Serpen et al. 2008), but further 
studies are needed on a larger sample of wheats with various ploidy levels.

The biosynthesis of phenolics is initiated by the shikimic acid pathway (Heldt 
2005) which produces phenylalanine, the first substrate of the phenyl propanoid 
pathway and proceeds with the synthesis of different classes of compounds, 
including phenolic acids and flavonoids (Fig. 10.2). The pathway is known to 
be strongly affected by various stimuli including light, pathogens and wounding 

Fig. 10.2  Schematic representation of the general phenylpropanoid pathway in plants, leading 
to the synthesis of phenolic acids, lignin, different classes of flavonoids and proanthocyanidins. 
Modified from Deluc et al. (2006)
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(Weaver and Herrmann 1997). Possible strategies to enhance the biosynthesis of 
specific phenolics include over-expression of structural genes involved in rate-lim-
iting steps, and the manipulation of transcription factors that simultaneously acti-
vate several genes in one pathway (Grotewold 2008).

Phenolic Acids

Phenolic acids represent the most common form of phenolic compounds found in 
whole grains. Among these, the most abundant are derivatives of hydroxycinnamic 
acids (Sosulski et al. 1982). The biosynthesis of hydroxycinnamic acids begins 
with the deamination of phenylalanine to produce cinnamic acid by the enzyme 
phenylalanine ammonia-lyase (Fig. 10.2). Further enzymatic reactions include 
hydroxylation of the aromatic ring, methylation of selected phenolic hydroxyl 
groups, activation of the cinnamic acids to cinnamoyl-CoA esters, and reduction 
of these esters to cinnamaldehydes and cinnamyl alcohols.

In most plants, the enzyme phenylalanine ammonia-lyase (PAL) is encoded 
by a small gene family (Wanner et al. 1995; Zhu et al. 1995). In monocotyle-
dons, genes involved in the synthesis of PAL were isolated from DNA libraries 
in rice (Minami and Tanaka 1993; Zhu et al. 1995) and wheat (Li and Liao 2003). 
Kervinen et al. (1998) isolated five different genes in barley encoding PAL from a 
root cDNA library that were highly similar to the wheat and rice PAL sequences. 
Similar approaches were used to clone other key genes involved in the biosynthe-
sis of phenolic acids in maize (Collazo et al. 1992), wheat (Ma et al. 2002) and 
rice (Yang et al. 2005).

Only a few attempts have been made to specifically increase the content of phe-
nolic acids in cereal crops. Dias and Grotewold (2003) reported higher content of 
ferulic, chlorogenic and other phenolic acids in cultured maize cells transformed 
by the transcription factor ZmMyb-IF35. Mao et al. (2007) studied secondary 
metabolism in maize lines transformed with the wheat oxalate oxidase (OxO) 
gene. In leaves of the OxO maize lines, the amount of phenolic acids significantly 
increased while synthesis of DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxa-
zin-3-one), a naturally occurring hydroxamic acid insecticide was reduced. Ferulic 
acid exhibited the largest increase and accounted for 80.4 % of the total soluble 
phenolics. These results depend on a diversion in the shikimate pathway leading to 
production of phenolic and hydroxamic acids. More studies are needed to manipu-
late phenolic acid synthesis pathway in a nutritionally applicable way.

Flavonoids

Flavonoids represent a large family of low-molecular-weight phenolics involved 
in a wide range of functions (Dixon and Paiva 1995). In cereals, dozens of dif-
ferent flavonoids have been identified mostly conjugated to various sugar moie-
ties (Dykes and Rooney 2007). Variation in flavonoid synthesis depends upon the 
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enzymatic function/activity of genes in either the core or side branches of the fla-
vonoid pathway (Fig. 10.2). Multiple copies of genes and specific regulatory fac-
tors are responsible for the variation in flavonoids in different tissues and organs of 
plants (Dias and Grotewold 2003; Zhou et al. 2010).

The biosynthesis of flavonoids is initiated by the step catalysed by the enzyme 
chalcone synthase (CHS) which produces the aglycone flavonoid naringenin chal-
cone from malonyl-CoA and coumaroyl-CoA precursors (Heller and Forkmann 
1994). In maize, CHS is encoded by a duplicated genetic locus (Wienand et al. 
1986; Franken et al. 1991). In the majority of plants including cereals, chalcones 
are not the end-products. The pathway proceeds with several enzymatic steps to 
flavanones, dihydroflavonols and, finally, to the anthocyanins, the major water 
soluble pigments in flowers and fruits (Grotewold and Peterson 1994; Deboo et 
al. 1995). The synthesis of isoflavones, aurones, flavones, proanthocyanidins and 
flavonols is well documented in maize and more than 20 structural and regulatory 
genes have been identified (Mol et al. 1998; Grotewold 2006). However, little is 
known about the final transfer of anthocyanins into the vacuole (Marrs et al. 1995; 
Alfenito et al. 1998).

Most of the structural genes involved in the flavonoid pathway have been iden-
tified, characterized and mapped in wheat (Munkvold et al. 2004; Himi and Noda 
2004, 2005; Himi et al. 2011). Khlestkina et al. (2008a) identified four distinct 
copies of Flavanone 3-hydroxylase (F3H) gene in bread wheat by PCR-based 
cloning. In barley, a cDNA library screened with a probe from Antirrhinum majus 
was used to clone the gene encoding flavanone-3-hydroxylase (Meldgaard 1992). 
Some of the genes involved in the synthesis of flavonoids in cereals have also been 
mapped. In wheat, CHS was found to map to chromosomes of homoeologous 
groups 1 and 2 (Li et al. 1999), CHI to homoeologous group 5 and 7D (Li et al. 
1999), F3H and DFR to homoeologous groups 2 (Khlestkina et al. 2008b) and 3 
(Himi and Noda 2004), respectively.

The regulation of flavonoid metabolism is achieved mainly through transcrip-
tional regulation of genes involved in biosynthetic pathway (Martin et al. 2001; 
Davies and Schwinn 2003). A number of regulatory genes required for anthocya-
nin regulation have been identified, cloned, and characterized in several species. 
These transcription factors belong to two classes, MYB superfamily and basic-
Helix-Loop-Helix (bHLH), and together with a WD40 protein, are thought to reg-
ulate the anthocyanin biosynthetic genes co-operatively (Koes et al. 2005).

Regulatory genes controlling the tissue specificity of structural genes were 
identified by mutant analysis in maize (Paz-Ares et al. 1986; Cone et al. 1993a, 
b; Pilu et al. 2003), Arabidopsis (Paz-Ares et al. 1987; Vom Endt et al. 2002), 
Antirhinum (snapdragon; Martin et al. 1991), Petunia (Quattrocchio et al. 1993), 
Vitis vinifera (grape; Deluc et al. 2008) and wheat (Himi et al. 2011). Two types 
of transcription factors grouped as the R/B family (basic helix–loop–helix, bHLH-
type) and the C1/Pl family (Myb-type) were shown to upregulate the structural 
genes required for the production of anthocyanin (Consonni et al. 1993; Pilu et al. 
2003). In addition, transcription factors P, TT2, TT8 and Del also regulate part of 
the flavonoid biosynthesis (Martin et al 1991; Vom Endt et al. 2002).
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The enzymes that direct the splitting of flavonoid synthesis pathway from the 
phenylpropanoid pathway are critical for the increased production of various fla-
vonoids. Shin et al. (2006) obtained the novel synthesis of several classes of fla-
vonoids in the endosperm of rice by expressing two maize regulatory genes (C1 
and R-S) using an endosperm-specific promoter. C1, when transferred to wheat 
induced anthocyanin pigmentation in otherwise non-pigmented wheat coleoptiles 
(Ahmed et al. 2003). In addition, the R and Rc-1 genes were shown to upregu-
late key genes of the flavonoid pathway in wheat (Hartmann et al. 2005; Himi and 
Noda 2005; Himi et al. 2011).

10.3.2  Carotenoids

Carotenoids are pigments conferring the characteristic yellow to red color to 
fruits and flowers. Structurally, they are isoprenoid compounds having gener-
ally eight isoprene units and long polyene chains with 3–15 conjugated double 
bonds (Weedon and Moss 1995). More than 600 carotenoids have been identified 
in plants including α-carotene, β-carotene, lycopene, lutein, zeaxanthin, cryptox-
anthin, citroxanthin and violaxanthin, etc., (Kahlon and Keagy 2003). The most 
famous member of the carotenoids is β-carotene, which is a precursor of vitamin 
A; its deficiency leads to xerophthalmia and also cataracts and macular degenera-
tion with ageing. Carotenoids may also have protective effects in cardiovascular 
diseases and cancer (Kohlmeier and Hastings 1995; Astorg 1997).

Carotenoid synthesis starts in the plastids of higher plants by the action of IPP 
isomerase and GGPP synthase converting four molecules of isopentyl diphosphate 
(IPP), to geranyl geranyl diphosphate (GGPP) (Giuliano et al. 2008). Phytoene 
synthase subsequently condenses two molecules of GGPP to form 15-cis-phy-
toene, which is the first dedicated step in the carotenoid biosynthesis (Beyer et al. 
1985). Figure 10.3 gives a schematic representation of the carotenoid biosynthesis 
pathway in plants.

Ye et al. (2000) produced golden rice with increased β-carotene content by 
introducing the phytoene synthase (psy) gene from daffodil together with a bacte-
rial phytoene desaturase (crtI) gene from Erwinia uredovora placed under control 
of the endosperm-specific glutelin (Gt1) and the constitutive cauliflower mosaic 
virus (CaMV) 35S promoters, respectively. Paine et al. (2005) developed golden 
rice-2 with 23-fold higher total carotenoid accumulation by introducing the maize 
psy gene compared to the original golden rice (Ye et al. 2000). Giuliano et al. 
(2008) estimated that 100 % of the recommended dietary allowance (RDA) of 
vitamin A for children and 38 % for adults can be obtained with 60 g/day con-
sumption of golden rice-2.

Wong et al. (2004) reported QTL mapping of β-carotene synthesis pathway 
genes in maize. The β-carotene biosynthetic pathway in maize was also studied 
using loss-of-function mutants (Buckner et al. 1990, 1996; Li et al. 2007; Zhu 
et al. 2008). A mutant of phytoene synthase (y1) of maize has white endosperm 
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and very low carotenoid levels. Phytoene desaturase is the second enzyme and is 
responsible for a two-step desaturation of phytoene to ζ (Zeta)- carotene which 
is then further desaturated to other forms of carotenoids such as lycopene and 
β-carotene. Yan et al. (2010) reported cloning of gene β-carotene hydroxylase-1 
(crtRB1) in maize and further demonstrated a rare genetic variation in crtRB1 to 
enhance β-carotene levels in maize.

Hexaploid bread wheat (T. aestivum) has low carotenoid levels (1.94 μg/g), 
whereas diploid einkorn wheat and tetraploid emmer wheat have relatively higher 
carotenoid content (9.62 and 6.27 μg/g, respectively), which is however, lower 
than that of corn (35.11 μg/g) (Panfili et al. 2004; Abdel-Aal et al. 2002, 2007). 
Lutein is the predominant carotenoid in wheat and comprises 80–90 % of the total 
carotenoid content, the remaining being zeaxanthin, β-carotene, and lutein esters 
(Abdel-Aal et al. 2002). Lutein content has been reported to be higher in the flour 
than the bran portion in all the wheat species analyzed (Abdel-Aal et al. 2002). 
Zhang et al. (2005) transferred yellow pigment gene (Y) from Lophopyrum pon-
ticum to wheat cultivars. They proposed Y gene to be either an efficient enzyme 
in early steps of carotenoid biosynthetic pathway or a regulatory factor that 
affects several steps of the carotenoid biosynthetic pathway (Zhang et al. 2005). 

Fig. 10.3  Carotenoid biosynthesis pathway in plants. Modified from Giuliano et al. (2008)
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Pozniak et al. (2007) mapped genes psy1 and psy2 on group-7 and -5 chromo-
somes, respectively, in durum wheat, of which psy1 had a strong association with 
yellow pigment content of endosperm (Pozniak et al. 2007; Singh et al. 2009). A 
similar association is known in maize endosperm yellow pigment and maize psy1 
gene (Gallagher et al. 2004). Zhang and Dubcovsky (2008) isolated the psy1-A 
and psy1-B1 genes from two durum cultivars, which was followed by the develop-
ment of functional markers for flour color in wheat by He et al. (2009). Wang et 
al. (2009) cloned and made a phylogenetic analysis of the psy1 gene in common 
wheat and related species. All the genes had six exons and five introns. Sequence 
divergence due to single nucleotide polymorphisms (SNPs) and insertion dele-
tions (InDels) were present among the different clusters. Cong et al. (2010) cloned 
cDNA and made an expression analysis of the wheat phytoene desaturase (PDS) 
and ζ-carotene desaturase (ZDS) genes and found them to have high homology 
with those of other higher plant species.

10.3.3  Tocopherols and Tocotrienols (Vitamin E)

Vitamin E is a family of fat-soluble antioxidants consisting of α-, β-, γ-, and δ- 
tocopherols and the corresponding α-, β-, γ-, and δ- tocotrienols. Alpha-tocopherol 
is the form of vitamin E that is preferentially absorbed and accumulated in humans 
(Rigotti 2007). Compared to tocopherols, tocotrienols have been less investigated, 
although they show higher antioxidant potential (Sen et al. 2006). This is due to 
widespread occurrence of tocopherols in plants as the principal vitamin E compo-
nents of leaves and seeds in most dicot species (Padley et al. 1994). On the other 
hand, tocotrienols typically account for the majority of the total vitamin E con-
tent in the seeds of monocots, such as rice, wheat and oats (Peterson and Qureshi 
1993; Padley et al. 1994). From the human health point of view, tocotrienols have 
been shown to have specialized roles in protecting neurons from damage (Sen et 
al. 2006) and in cholesterol reduction (Das et al. 2008). Tocopherol compounds, in 
both durum and bread wheat are mostly present in the germ fraction (Panfili et al. 
2003; Borrelli et al. 2008). Table 10.3 summarizes the content of various compo-
nents of vitamin E in the grains of common cereals.

The tocopherol biosynthetic pathway in plants has been extensively studied 
for over 30 years (Whistance and Threlfall 1970; Grusak and DellaPenna 1999) 
and the enzymes and genes of the pathway have been isolated (DellaPenna 2005). 
With the exception of Vitamin-E-defective (VTE3) (Cheng et al. 2003), tocopherol 
biosynthetic enzymes share significant homology between plants and cyanobacte-
ria, underscoring the evolutionary relationship between these organisms.

The first step in tocopherol synthesis involves the production of the aromatic 
head group, homogentisic acid (HGA), from p-hydroxyphenylpyruvic acid (HPP) 
by the enzyme p-hydroxyphenylpyruvic acid dioxygenase (HPPD), as reviewed by 
DellaPenna (2005). Cahoon et al. (2003) isolated HPT from tocotrienol-accumu-
lating seeds of barley, wheat and rice and expressed barley HPT in tobacco calli 
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using the CaMV 35S promoter. Barley HGGT was expressed in Arabidopsis thali-
ana leaves, which accumulated large amounts of tocotrienols upon transformation. 
High tocotrienol corn was designed by expressing barley HGGT in maize, under 
the control of embryo specific promoter for corn oleosin gene, showing that a sin-
gle metabolic step was sufficient to enhance the effective level of vitamin E six-
fold (Cahoon et al. 2003).

10.4  Future Perspectives

Functional food components vary across the cereal crops and within different tis-
sues of the grain. Knowledge of the genetics, biochemistry and genomics of func-
tional food components also differs among crop plants and is more advanced in rice 
and corn than in wheat, barley and oats. Moreover, large genome size of wheat, 
barley and oats, together with polyploidy in wheat and oats further complicate 
genetic and genomic analysis. High-quality sequences of wheat genome and genes 
are urgently needed and will greatly accelerate functional food component research.

The next challenge will be to elucidate metabolic pathways and structural 
and regulatory genes for functional food components. As the reviewed literature 
reveals, this work is already in progress and needs to be continued at an accel-
erated pace. Comparative genomics and bioinformatics-based approaches will be 
useful in leveraging information from model organisms, rice and maize to other 
cereal crops. However, many genes are crop-specific, so that functional genom-
ics tools must be developed in each cereal crop plant. In this regard, TILLING 
appears to be a versatile tool for crops such as wheat and barley where other func-
tional tools are not that well developed. TILLING will be useful for mining novel 
alleles of genes of metabolic pathways, increasing diversity in the trait of inter-
est, as demonstrated by the directed search of specific mutants for high amylose 
starch. However, TILLING may not be feasible for multigene families where tech-
niques such as RNAi may be more appropriate for knocking down specific gene 
activity. A transgenic approach was used to produce golden rice but public accept-
ance has been problematic. TILLING is a promising strategy for the targeted 
breeding for genes of interest with no biosafety issues because it is an entirely 
non-transgenic approach. Genetics, breeding and transgenic approaches have been 
and can be used to design cereal crops with optimum expression of functional 
food compounds such as β-glucan, amylose, inulin, phenolics, flavonoids, carot-
enoids, and vitamin E.

Wild germplasm is another untapped resource of useful genetic variation in the 
functional food compounds. In the past, related wild species have been used as 
sources of many useful genes for resistance against biotic and abiotic stresses, but 
they have not been used so far in improvement of cereals for their use as func-
tional foods. Evaluating natural variation in the wild relatives of crop plants for 
functional food components and molecular breeding of those traits for increasing 
the functional food value of cereal crops should be fully explored.
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10.5 Summary and Outlook

Cereals are major components of the human diet, and the content of compounds 
that are beneficial to human health has become a fascinating and important subject 
of research. With increasing knowledge of the biosynthetic pathways of functional 
food components, the exact roles played by the various genes involved and the fac-
tors affecting the end product, it is becoming increasingly possible to design cereal 
crops as functional foods, with nutritional role beyond use as a source of calories.
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