
Chapter 9
Omega Polynomial in Hyperdiamonds

Mircea V. Diudea, Aleksandar Ilić, and Mihai Medeleanu

Abstract Hyperdiamonds are covalently bonded carbon phases, more or less
related to the diamond network, having a significant amount of sp3 carbon atoms
and similar physical properties. Many of them have yet a hypothetical existence but
a well-theorized description. Among these, the diamond D5 was studied in detail,
as topology, at TOPO GROUP CLUJ, Romania. The theoretical instrument used
was the Omega polynomial, also developed in Cluj. It was computed in several 3D
network domains and analytical formulas have been derived, not only for D5 but
also for the well-known diamond D6 and other known networks.

9.1 Introduction

Diamond D6 (Fig. 9.1), the beautiful classical diamond, with all-hexagonal rings
of sp3 carbon atoms crystallized in a face-centered cubic fcc network (space group
Fd3m), has kept its leading interest among the carbon allotropes, even many “nano”
varieties appeared (Decarli and Jamieson 1961; AleksenskiLı et al. 1997; Osawa
2007, 2008; Williams et al. 2007; Dubrovinskaia et al. 2006). Its mechanical
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Fig. 9.1 Diamond D6: adamantane D6_10 (left), diamantane D6_14 (middle), and diamond D6_52
(a 222 net – right)

Fig. 9.2 Lonsdaleite: L6_12 (left), L6_18 (middle), and L6_48 (a 222 net – right)

characteristics are of great importance, and composites including diamonds may
overpass the resistance of steel or other metal alloys. Synthetic diamonds can be
produced by a variety of methods, including high pressure-high temperature HPHT,
static or detonation procedures, chemical vapor deposition CVD (Lorenz 1995),
ultrasound cavitation (Khachatryan et al. 2008), or mechano-synthesis (Tarasov
et al. 2011), under electronic microscopy.

A relative of the diamond D6, called lonsdaleite L6 (Frondel and Marvin 1967),
with a hexagonal network (space group P63/mmc – Fig. 9.2), was discovered in a
meteorite in the Canyon Diablo, Arizona, in 1967. Several diamond-like networks
have also been proposed (Diudea and Nagy 2007; Diudea et al. 2010a; Hyde
et al. 2008).

Hyperdiamonds are covalently bonded carbon phases, more or less related to the
diamond network, having a significant amount of sp3 carbon atoms. Their physical
properties are close to that of the classical diamond, sometimes with exceeding
hardness and/or endurance.

Design of several hypothetical crystal networks was performed by using our
software programs (Diudea 2010a) CVNET and NANO-STUDIO. Topological data
were provided by NANO-STUDIO, Omega, and PI programs.

This chapter is structured as follows. After the introductory part, the main
networks, diamond D5 and lonsdaleite L5, are presented in detail. Next, two
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other nets, the uninodal net, called rhr, and the hyper boron nitride, are designed.
Two sections with basic definitions in Omega polynomial and in Omega-related
polynomials, respectively, are developed in the following. The topology of the
discussed networks will be presented in the last part. Conclusions and references
will close the chapter.

9.2 Structures Construction

9.2.1 Diamond D5 Network

Diamond D5, recently theorized by Diudea and collaborators (Diudea and Ilić 2011;
Diudea 2010b; Diudea and Nagy 2012; Diudea et al. 2012), is a hyperdiamond,
whose seed is the centrohexaquinane C17 (Fig. 9.3). D5 is the mtn crystal 4,4,4-c
trinodal network, appearing in type II clathrate hydrates; it belongs to the space
group Fd-3m and has point symbol net: f5ˆ5.6g12f5ˆ6g5 (Dutour Sikirić et al. 2010;
Delgado-Friedrichs and O’Keeffe 2006, 2010). The hyper-structures, from ada- to
dia- and a larger net are illustrated in Fig. 9.4, viewed both from C20 (left column)
and C28 (right column) basis, respectively (Diudea et al. 2012).

The hyperdiamond D5_20/28 mainly consists of sp3 carbon atoms building ada-
like repeating units (C20 cages including C28 as hollows). The ratio C-sp3/C-total
trends to 1 in a large enough network. As the content of pentagons R[5] per total
rings trends to 90 % (see Table 9.3, entry 9), this yet hypothetical carbon allotrope
is called the diamond D5.

Energetic data, calculated at various DFT levels (Diudea and Nagy 2012; Diudea
et al. 2012), show a good stability of the start and intermediate structures. Limited
cubic domains of the D5 networks have also been evaluated for stability, data
proving a pertinent stability of D5 diamond.

Fig. 9.3 The seed
of diamond D5: C17
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Fig. 9.4 Hyper-adamantane: ada_20_158 and ada_28_213 (top), diamantane: dia_20_226_222
and dia_28_292_222 (middle), and diamond D5_20_860_333 and D5_28_ 1022_333 co-net
(bottom)

9.2.2 Lonsdaleite L5 Network

By analogy to D5_20/28, a lonsdaleite-like net was proposed (Diudea et al. 2012)
(Fig. 9.5). The hyper-hexagons L5_28_134 (Fig. 9.5, middle and right), whose nodes
represent the C28 fullerene, was used as the monomer (in the chair conformation). Its
corresponding co-net L5_20 was also designed. The lonsdaleite L5_28/20 is partially
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Fig. 9.5 Lonsdaleite: L5_28_250 (side view, left), L5_28_134 (side view, middle), and L5_28_134
(top view, right)

Fig. 9.6 Boron nitride B12N12: truncated octahedron (left), a cubic (3,3,3)_432 domain built up
from truncated octahedra joined by identifying the square faces (middle), and a corner view (right)

superimposed on D5_20/28 net. In crystallography, L5 is known as the 7-nodal mgz-
x-d net, with the point symbol: f5ˆ5.6g12f5ˆ6g5.

9.2.3 Hyper Boron Nitride

Boron nitride is a chemical crystallized basically as the carbon allotropes: graphite
(h-BN), cubic-diamond D6 (c-BN), and lonsdaleite L6 (wurtzite w-BN). Their
physicochemical properties are also similar, with small differences.

Fullerene-like cages have been synthesized and several theoretical structures
have been proposed for these molecules (Soma et al. 1974; Stephan et al. 1998;
Jensen and Toftlund 1993; Mei-Ling Sun et al. 1995; Fowler et al. 1999; Oku et al.
2001; Narita and Oku 2001).

Based on B12N12 unit, with the geometry of truncated octahedron, we modeled
three 3D arrays: a cubic domain, Fig. 9.6; a dual of cuboctahedron domain, Fig. 9.7;
and an octahedral domain, Fig. 9.8.



176 M.V. Diudea et al.

Fig. 9.7 Boron nitride B12N12: dual of cuboctahedron (left), a (3,3,3)_648 dual of cuboctahedron
domain, constructed from truncated octahedra by identifying the square and hexagonal faces,
respectively (middle), and its superposition with the cubic (3,3,3)_432 domain (right)

Fig. 9.8 Boron nitride B12N12: an octahedral (4,4,4)_480 domain: (1,1,0-left), (0,0,1-central), and
(2,1,1-right) constructed from truncated octahedra by identifying the square and hexagonal faces,
respectively

The topology of the above hyperdiamonds will be described by using the net
parameter k, meaning the number of repeat units along the chosen 3D direction, and
by the formalism of several counting polynomials, the largest part being devoted to
Omega polynomial.

9.2.4 rhr Network

A uninodal 4-c net with a point f42.62.82g was named rhr or sqc5544. In topological
terms, its unit cell is a homeomorphic of cuboctahedron, one of the semi-regular
polyhedra (Fig. 9.9). It can be obtained by making the medial operation on the cube
or octahedron (Diudea 2010a). The net can be constructed by identifying the vertices
of degree 2 in two repeating units, thus the resulting net will have all points of
degree 4, as in the classical diamond D6 (but the rings are both six- and eight-
membered ones).
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Fig. 9.9 The rhr unit (top) and network (444_1728, bottom: top view (left) and corner view
(right))

9.3 Omega Polynomial

9.3.1 Relations co and op

Let G D (V(G),E(G)) be a connected graph, with the vertex set V(G) and edge set
E(G). Two edges e D (u,v) and f D (x,y) of G are called co-distant (briefly: e co f ) if
the notation can be selected such that (Diudea 2010a; John et al. 2007; Diudea and
Klavžar 2010)

e co f , d.v; x/ D d.v; y/ C 1 D d.u; x/ C 1 D d.u; y/ (9.1)

where d is the usual shortest-path distance function. Relation co is reflexive, that is,
e co e holds for any edge e of G and it is also symmetric: if e co f, then also f co e.
In general, co is not transitive.
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For an edge e 2 E.G/, let c.e/ WD ff 2 E.G/I f co eg be the set of edges
co-distant to e in G. The set c(e) is called an orthogonal cut (oc for short) of G, with
respect to e. If G is a co-graph then its orthogonal cuts C.G/ D c1; c2; : : : ; ck form
a partition:

E.G/ D c1 [ c2 [ � � � [ ck; ci \ cj D ;; i ¤ j

A subgraph H � G is called isometric if dH .u; v/ D dG.u; v/, for any .u; v/ 2
H ; it is convex if any shortest path in G between vertices of H belongs to H. The
n-cube Qn is the graph whose vertices are all binary strings of length n, two strings
being adjacent if they differ in exactly one position (Harary 1969). A graph G is
called a partial cube if there exists an integer n such that G is an isometric subgraph
of Qn.

For any edge e D (u,v) of a connected graph G, let nuv denote the set of vertices
lying closer to u than to v: nuv D fw 2 V.G/jd.w; u/ < d.w; v/g. By definition, it
follows that nuv D fw 2 V.G/jd.w; v/ D d.w; u/ C 1g. The sets (and subgraphs)
induced by these vertices, nuv and nvu, are called semicubes of G; these semicubes
are opposite and disjoint (Diudea and Klavžar 2010; Diudea et al. 2008; Diudea
2010c).

A graph G is bipartite if and only if, for any edge of G, the opposite semicubes
define a partition of G: nuv C nvu D v D jV.G/j.

The relation co is related to the � (Djoković 1973) and ‚ (Winkler 1984)
relations:

e ‚ f , d.u; x/ C d.v; y/ ¤ d.u; y/ C d.v; x/ (9.2)

Lemma 9.1 In any connected graph, co D �.
In general graphs, we have �� ‚ and in bipartite graphs �D ‚. From this and

the above lemma, it follows (Diudea and Klavžar 2010)

Proposition 9.1 In a connected graph, co D �; if G is also bipartite,
thenco D � D ‚.

Theorem 9.1 In a bipartite graph, the following statements are equivalent (Diudea
and Klavžar 2010):

(i) G is a co-graph.
(ii) G is a partial cube.

(iii) All semicubes of G are convex.
(iv) Relation ‚ is transitive.

Equivalence between (i) and (ii) was observed in Klavžar (2008), equivalence
between (ii) and (iii) is due to Djoković (1973), while the equivalence between (ii)
and (iv) was proved by Winkler (1984).

Two edges e and f of a plane graph G are in relation opposite, e op f, if they
are opposite edges of an inner face of G. Then e co f holds by assuming the faces



9 Omega Polynomial in Hyperdiamonds 179

are isometric. Note that relation co involves distances in the whole graph while op is
defined only locally (it relates face-opposite edges). A partial cube is also a co-graph
but the reciprocal is not always true. There are co-graphs which are non-bipartite
(Diudea 2010d), thus being non-partial cubes.

Relation op partitions the edge set of G into opposite edge strips ops: any two
subsequent edges of an ops are in op-relation, and any three subsequent edges of
such a strip belong to adjacent faces.

Lemma 9.2 If G is a co-graph, then its opposite edge strips ops fskg superimpose
over the orthogonal cuts ocs fckg.

Proof Recall the co-relation is defined on parallel equidistant edges relation (9.1).
The same is true for the op-relation, with the only difference (9.1) is limited to a
single face. Suppose e1and e2 are two consecutive edges of ops; by definition, they
are topologically parallel and also co-distant (i.e., belong to ocs). By induction, any
newly added edge of ops will be parallel to the previous one and also co-distant.
Because, in co-graphs, co-relation is transitive, all the edges of ops will be co-
distant, thus ops and ocs will coincide.

Corollary 9.1 In a co-graph, all the edges of an ops are topologically parallel.
Observe that the relation co is a particular case of the edge equidistance eqd

relation. The equidistance of two edges e D (uv) and f D (xy) of a connected graph
G includes conditions for both (i) topologically parallel edges (relation (9.1)) and (ii)
topologically perpendicular edges (in the Tetrahedron and its extensions – relation
(9.3)) (Diudea et al. 2008; Ashrafi et al. 2008a):

e eqd f .ii/ , d.u; x/ D d.u; y/ D d.v; x/ D d.v; y/ (9.3)

The ops strips can be either cycles (if they start/end in the edges eeven of the same
even face feven) or paths (if they start/end in the edges eodd of the same or different
odd faces fodd).

Proposition 9.2 Let G be a planar graph representing a polyhedron with the odd
faces insulated from each other. The set of ops strips S.G/ D fs1; s2; : : : ; skg con-
tains a number of op paths opp which is exactly half of the number of odd face edges
eodd/2.

Proof of Proposition 9.2 was given in Diudea and Ilić (2009).

Corollary 9.2 In a planar bipartite graph, representing a polyhedron, all ops strips
are cycles.

The ops is maximum possible, irrespective of the starting edge. The choice is
about the maximum size of face/ring searched, and mode of face/ring counting,
which will decide the length of the strip.

Definitions 9.1 Let G be an arbitrary connected graph and s1; s2; : : : ; sk be its op
strips. Then ops form a partition of E(G) and the �-polynomial (Diudea 2006) of G
is defined as
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�.x/ D
kX

iD1

xjsi j (9.4)

Let us now consider the set of edges co-distant to edge e in G, c(e).
A ‚-polynomial (Diudea et al. 2008), counting the edges equidistant to every
edge e, is written as

‚.x/ D
X

e2E.G/

xjc.e/j (9.5)

Suppose now G is a co-graph, when jckj D jskj, then (Diudea and Klavžar 2010)

‚.x/ D
X

e2E.G/

xjc.e/j D
kX

iD1

X

e2Si

xjc.e/j D
X

e

jc.e/jxjc.e/j D
kX

iD1

jsi jxjsi j (9.6)

Let us simplify a little the above notations: note by m(s) or simply m the number
of ops of length s D jskj and rewrite the Omega polynomial as (Diudea 2010a;
Ashrafi et al. 2008b; Khadikar et al. 2002; Diudea et al. 2010b)

�.x/ D
X

s

m � xs (9.7)

Next we can write Theta and other two related polynomials, as follows:

‚.x/ D
X

s

ms � xs (9.8)

….x/ D
X

s

ms � xe�s (9.9)

Sd.x/ D
X

s

m � xe�s (9.10)

The polynomial ‚(x) counts equidistant edges while …(x) counts non-equidistant
edges. The Sadhana polynomial, proposed by Ashrafi et al. (2008b) in relation with
the Sadhana index Sd(G) proposed by Khadikar et al. (2002), counts non-opposite
edges in G. Their first derivative (in x D 1) provides single-number topological
descriptors also termed topological indices (Diudea 2010a):

�0.1/ D
X

s

m � s D e D jE.G/j (9.11)

‚0.1/ D
X

s

m � s2 D �.G/ (9.12)

…0.1/ D
X

s

ms � .e � s/ D ….G/ (9.13)
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Sd0.1/ D
X

s

m � .e � s/ D e.Sd.1/ � 1/ D Sd.G/ (9.14)

Note Sd.1/ D �.1/, then the first derivative given in (9.14) is the product of the
number of edges e D jE(G)j and the number of strips �.1/ less one.

On Omega polynomial, the Cluj-Ilmenau index (Ashrafi et al. 2008a) CI D CI(G)
was defined as

CI.G/ D
n
Œ�0.1/�

2 � Œ�0.1/ C �00.1/�
o

(9.15)

A polynomial related to …(x) was defined by Ashrafi et al. (2008b) as

PIe.x/ D
X

e2E.G/

xn.e;u/Cn.e;v/ (9.16)

where n(e,u) is the number of edges lying closer to the vertex u than to the v vertex.
Its first derivative (in x D 1) provides the PIe(G) index proposed by Khadikar (2000)
and developed by Ashrafi et al. (2006).

Proposition 9.3 In any bipartite graph, ….G/ D PIe.G/.

Proof Ashrafi defined the equidistance of edges by considering the distance from
a vertex z to the edge e D uv as the minimum distance between the given point and
the two endpoints of that edge (Ashrafi et al. 2006, 2008a):

d.z; e/ D minfd.z; u/; d.z; v/g (9.17)

Then, for two edges e D (uv) and f D (xy) of G,

e eqd f .iii/ , d.x; e/ D d.y; e/ and d.u; f / D d.v; f / (9.18)

In bipartite graphs, relations (9.1) and (9.3) superimpose over relations (9.17) and
(9.18), then in such graphs, ….G/ D PIe.G/. In general graphs, this is, however,
not true.

Proposition 9.4 In co-graphs, the equality CI.G/ D ….G/ holds.

Proof By definition, one calculates

CI.G/ D
 

kX

iD1

jsi j
!2

�
 

kX

iD1

jsi j C
kX

iD1

jsi j.jsi j � 1/

!

D jE.G/j2 �
kX

iD1

.jsi j/2 D …0.G; 1/ D ….G/ (9.19)
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Relation (9.19) is valid only when assuming jckj D jskj, k D 1,2, : : : , thus
providing the same value for the exponents of Omega and Theta polynomials; this
is precisely achieved in co-graphs. In general graphs, however, jsi j ¤ jckj and as a
consequence, CI.G/ ¤ ….G/ (Diudea 2010a).

In partial cubes, which are also bipartite, the above equality can be expanded to
the triple one:

CI.G/ D ….G/ D PIe.G/ (9.20)

a relation which is not obeyed in all co-graphs (e.g., in non-bipartite ones).
There is also a vertex-version of PI index, defined as (Nadjafi-Arani et al. 2009;

Ilić 2010)

PIv.G/ D PI0
v.1/ D

X

eDuv

nu;v C nv;u D jV j � jEj �
X

eDuv

mu;v (9.21)

where nu,v, nv,u count the non-equidistant vertices with respect to the endpoints of
the edge e D (u,v) while m(u,v) is the number of equidistant vertices vs u and v.
However, it is known that, in bipartite graphs, there are no equidistant vertices vs.
any edge, so that the last term in (9.21) will miss. The value of PIv(G) is thus
maximal in bipartite graphs, among all graphs on the same number of vertices;
this result can be used as a criterion for checking whether the graph is bipartite
(Diudea 2010a).

9.3.2 Omega Polynomial of Diamond D6 and Lonsdaleite L6

Topology of the classical diamond D6 and lonsdaleite L6 is listed in Table 9.1
(Diudea et al. 2011). Along with Omega polynomial, formulas to calculate the
number of atoms in a cuboid of dimensions (k,k,k) are given. Above, k is the number
of repeating units along the edge of such a cubic domain. One can see that the
ratio C(sp3)/v(G) approaches the unity; this means that in a large enough net almost
all atoms are tetra-connected, a basic condition for a structure to be diamondoid.
Examples of calculus are given in Table 9.2.

9.3.3 Omega Polynomial of Diamond D5 and Lonsdaleite L5

Topology of diamond D5 and lonsdaleite L5, in a cubic (k,k,k) domain, is presented
in Tables 9.3, 9.4, 9.5, 9.6, 9.7, and 9.8 (Diudea et al. 2011). Formulas to calculate
Omega polynomial, number of atoms, number of rings, and the limits (to infinity)
for the ratio of sp3 C atoms over total number of atoms and also the ratio R[5] over
the total number of rings as well as numerical examples are given.
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Table 9.1 Omega polynomial in diamond D6 and lonsdaleite L6 nets, function of the
number of repeating units along the edge of a cubic (k,k,k) domain

Network

A Omega(D6); R[6]

1 �.D6_kodd; x/ D
 

kX

i�1

2x
.iC1/.iC2/

2

!
C
0

@
.k�1/=2X

i�1

2x
.kC1/.kC2/

2 C

k�k�1
4 �i.i�1/

1

A

C3kx.kC1/2

2 �.D6_keven; x/ D
 

kX

i�1

2x
.iC1/.iC2/

2

!
C
0

@
k=2X

i�1

2x
.kC1/.kC2/

2 C

k�k
4 �.i�1/.i�1/

1

A

� x
.kC1/.kC2/

2 C

k�k
4 C 3kx.kC1/2

3 �0.1/ D e.G/ D �1 C 6k C 9k2 C 4k3

4 CI.G/ D 2 � 187k=10 � k2=4 C 305k3=4 C 457k4=4 C 1; 369k5=20 C 16k6

5 v.G/ D 6k C 6k2 C 2k3

6 Atoms.sp3/ D �2 C 6k C 2k3

7 RŒ6� D 3k2 C 4k3

8 limk!1

"
Atoms.sp3/

v.G/
D �2 C 6k C 2k3

6k C 6k2 C 2k3

#
D 1

B Omega(L6); R[6]
1 �.L6; x/ D k � xk.kC2/ C x.kC1/.3k2

C4k�1/

2 �0.1/ D e.G/ D �1 C 3k C 9k2 C 4k3

3 CI.G/ D k2.k C 2/.7k3 C 15k2 C 4k � 2/

4 v.G/ D 2k.k C 1/.k C 2/ D 4k C 6k2 C 2k3

5 Atoms.sp3/ D 2.k � 1/ � k � .k C 1/ D 2k.k2 � 1/

6 RŒ6� D �2k C 3k2 C 4k3

7 limk!1

�
Atoms.sp3/

v.G/
D 2k.k2 � 1/

4k C 6k2 C 2k3

�
D 1

9.3.4 Omega Polynomial of Boron Nitride Nets

Topology of boron nitride nets is treated similarly to that of D5 and L5 and is
presented in Tables 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.17, and 9.18
(Diudea et al. 2011). Formulas to calculate Omega polynomial, number of atoms,
number of rings, and the limits (to infinity) for the ratio of sp3 C atoms over total
number of atoms are given, along with numerical examples. Formulas for Omega
polynomial are taken as the basis to calculate the above four related polynomials in
these bipartite networks. Formulas are derived here not only for a cubic domain
(in case of c_B12N12) but also for a dual of cuboctahedron domain (case of
COD_B12N12) and for an octahedral domain (case of Oct_B12N12).
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Table 9.2 Examples, Omega polynomial in diamond D6 and lonsdaleite L6 nets

Polynomial (Net)

k Omega(D6); R[6] Atoms sp3 atoms (%) Bonds CI(G) R[6]

1 2x3 C 3x4 (diamantane) 14 – 18 258 7

2 2x3 C 2x6 C 1x7 C 6x9 52 26 (50.00) 79 5;616 44

3 2x3 C 2x6 C 2x10 C 2x12 C 9x16 126 70 (55.56) 206 39;554 135

4 2x3 C 2x6 C 2x10 C 2x15 C 2x18

C 1x19 C 12x25
248 150 (60.48) 423 169;680 304

5 2x3 C 2x6 C 2x10 C 2x15 C 2x21

C 2x25 C 2x27 C 15x36
430 278 (64.65) 754 544;746 575

6 2x3 C 2x6 C 2x10 C 2x15 C 2x21

C 2x28 C 2x33 C 2x36 C 1x37

C 18x49

684 466 (68.13) 1;223 1;443;182 972

Omega(L6); R[6]
1 1x3 C x12 12 – 15 72 5

2 2x8 C x57 48 12 (25.00) 73 1;952 40

3 3x15 C x152 120 48 (40.00) 197 15;030 129

4 4x24 C x315 240 120 (50.00) 411 67;392 296

5 5x35 C x564 420 240 (57.14) 739 221;900 565

6 6x48 C x917 672 420 (62.50) 1;205 597; 312 960

Table 9.3 Omega polynomial in diamond D5_20 net function of k D no. ada_20 units along the
edge of a cubic (k,k,k) domain

Omega(D5_20a); R[6]: formulas

1 �.D5_20a; x/ D .32 � 54k C 36k2 C 44k3/ � x C .�3 C 18k � 27k2 C 12k3/ � x2

2 �0.1/ D e.G/ D �38 � 18k � 18k2 C 68k3

3 CI.G/ D 1; 488 C 1; 350k C 1; 764k2 � 4; 612k3 � 2; 124k4 � 2; 448k5 C 4; 624k6

4 v.D5_20a/ D �22 � 12k C 34k3

5 Atoms.sp3/ D �10 � 36k2 C 34k3

6 RŒ5� D �18 � 6k � 18k2 C 36k3

7 RŒ6� D �1 C 6k � 9k2 C 4k3

8 RŒ5� C RŒ6� D �19 � 27k2 C 40k3

9 lim
k!1

RŒ5�

RŒ6�
D 9; lim

k!1

RŒ5�

RŒ5� C RŒ6�
D 9

10

10 lim
k!1

�
Atoms.sp3/

v.G/
D �10 � 36k2 C 34k3

�22 � 12k C 34k3
D �.10=k3/ � .36=k/ C 34

�.22=k3/ � .12=k2/ C 34

�
D 1

Table 9.4 Examples, Omega polynomial in D5_20 net

k Omega(D5_20a); R[6] Atoms sp3 atoms (%) Bonds CI R[5] R[6]

2 356 x1 C 21 x2 226 118 (52.21) 398 157;964 186 7

3 1,318 x1 C 132 x2 860 584 (67.91) 1;582 2;500;878 774 44

4 3,144 x1 C 405 x2 2;106 1,590 (75.50) 3;954 15;629;352 1;974 135

5 6,098 x1 C 912 x2 4;168 3,340 (80.13) 7;922 62;748;338 4;002 304

6 10,444 x1 C 1,725 x2 7;250 6,038 (83.28) 13;894 193;025;892 7;074 575

7 16,446 x1 C 2,916 x2 11;556 9,888 (85.57) 22;278 496;281;174 11;406 972
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Table 9.5 Omega polynomial in D5_28 co-net function of k D no. ada_20 units along the edge of
a cubic (k,k,k) domain

Omega (D5_28a); R[6]; formulas

1 �.D5_28a; x/ D .�26 � 12k � 6k2 C 44k3/ � x C .�18 C 9k2 C 12k3/ � x2

2 �0.1/ D e.G/ D �62 � 12k C 12k2 C 68k3

3 CI.G/ D 3; 942 C 1; 500k � 1; 374k2 � 8; 812k3 � 1; 488k4 C 1; 632k5 C 4; 624k6

4 v.D5_28a/ D �40 � 6k C 18k2 C 34k3

5 Atoms.sp3/ D �4 � 6k � 30k2 C 34k3

6 RŒ5� D �18 � 18k2 C 36k3

7 RŒ6� D �1 C 6k � 9k2 C 4k3

8 lim
k!1

�
Atoms.sp3/

v.G/
D �4 � 6k � 30k2 C 34k3

�40 � 6k C 18k2 C 34k3

�
D 1

Table 9.6 Examples, Omega polynomial in D5_28 co-net

k Omega(D5_28a); R[6] Atoms sp3 atoms (%) Bonds CI R[5] R[6]

2 278 x1 C 114 x2 292 136 (46.58) 506 255;302 198 38

3 1,072 x1 C 387 x2 1;022 626 (61.25) 1;846 3;405;096 792 129

4 2,646 x1 C 894 x2 2;400 1,668 (69.50) 4;434 19;654;134 1;998 298

5 5,264 x1 C 1,707 x2 4;630 3,466 (74.86) 8;678 75;295;592 4;032 569

6 9,190 x1 C 2,898 x2 7;916 6,224 (78.63) 14;986 224;559;414 7;110 966

7 14,688 x1 C 4,539 x2 12;462 10,146 (81.41) 23;766 564;789;912 11;448 1;513

Table 9.7 Omega polynomial in Lonsdaleite-like L5_28 and L5_20 nets function of k D no.
repeating units along the edge of a cubic (k,k,k) domain

Formulas

1 v.c_B12N12/ D 4k2
�
6 C 3.�1 C k/

�

2 e.G/ D 12k2.1 C 2k/

3 ‚.c_B12N12; x/ D 6 � k.4k C 2/ � xk.4kC2/ C 12
k�1P
iD1

i.4k C 2/ � xi.4kC2/

4 ‚0.1/ D 6 � �k.4k C 2/
�2 C 12

k�1P
iD1

�
i.4k C 2/

�2 D 8k.2k2 C 1/.2k C 1/2

5 ….c_B12N12; x/ D 6 � k.4kC2/ � x12k2.2kC1/�k.4kC2/C12
k�1P
iD1

i.4kC2/�x12k2.2kC1/�i.4kC2/

6 …0.1/ D 6 � �k.4k C 2/
��

12k2.2k C 1/ � k.4k C 2/
�

C 12

k�1X

iD1

�
i.4kC2/

��
12k2.2kC1/ � i.4kC2/

� D 8k.18k3 � 2k2 � 1/.2kC1/2

7 Sd.c_B12N12; x/ D 6 � x12k2.2kC1/�k.4kC2/ C 12
k�1P
iD1

x12k2.2kC1/�i.4kC2/

8 Sd0.1/ D 6 � �12k2.2k C 1/ � k.4k C 2/
�

C 12

k�1X

iD1

�
12k2.2k C 1/ � i.4k C 2/

� D 12k2.12k � 7/.2k C 1/

9 PIv D e � xv

10 PIv
0.1/ D e � v D .12k2/

2
.2k C 1/.k C 1/ D 144k4 C 432k5 C 288k6
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Table 9.8 Examples, Omega polynomial in L5_28 and L5_20 nets

k Polynomial (Net)

A Omega(L5_28); R[6] Atoms sp3 atoms (%) Bonds CI(G) R[5] R[6]

1 232 x C 99 x2 250 110 (44.00) 430 184;272 165 33

2 1,284 x C 468 x2 1;224 768 (62.75) 2;220 4;925;244 957 156

3 3,684 x C 1,251 x2 3;330 2,382 (71.53) 6;186 38;257;908 2;809 417

4 7,960 x C 2,592 x2 6;976 5,360 (76.83) 13;144 172;746;408 6;153 864

5 14,640 x C 4,635 x2 12;570 10,110 (80.43) 23;910 571;654;920 11;421 1;545

6 24,252 x C 7,524 x2 20;520 17,040 (83.04) 39;300 1;544;435;652 19;045 2;508

B Omega(L5_20); R[6]
2 356 x C 21 x2 226 118 (52.21) 398 157;964 186 7

3 1,303 x C 132 x2 852 578 (67.84) 1;567 2;453;658 766 44

4 3,114 x C 405 x2 2;090 1,578 (75.50) 3;924 15;393;042 1;958 135

5 6,053 x C 912 x2 4;144 3,322 (80.16) 7;877 62;037;428 3;978 304

6 10,384 x C 1,725 x2 7;218 6,014 (83.32) 13;834 191;362;272 7;042 575

Table 9.9 Omega
polynomial in c_B12N12 net,
(designed by Le(Cn)_all)
function of k D no. repeating
units along the edge of a
cubic (k,k,k) domain

Omega (c_B12N12); R[4,6]; formulas

1 �.c_B12N12; x/ D 6 � xk.4kC2/ C 12
k�1P
iD1

xi.4kC2/

2 �0.1/ D e.G/ D 12k2.1 C 2k/

3 CI.G/ D � 8k � 32k2 � 48k3 C 80k4 C 512k5 C 576k6

D � 8k.1 C 2k/2.1 C 2k2 � 18k3/

4 v.c_B12N12/ D 4k2Œ6 C 3.�1 C k/�

5 Atoms.sp3/ D 12k2.�1 C k/

6 RŒ4� D 3.1 � k C 2k2/

7 RŒ6� D 8k3

8 m.c_B12N12/ D k3; m D no. monomer

9 lim
k!1

�
Atoms.sp3/

v.G/
D 12k2.�1 C k/

4k2Œ6 C 3.�1 C k/�

�
D 1

Table 9.10 Examples, Omega polynomial in c_B12N12 cubic (k,k,k) net

k Omega(c_B12N12) R[4,6] Atoms sp3 Atoms (%) Bonds CI(G) R[4] R[6]

1 6x6 24 110 (44.00) 36 1;080 6 8

2 12x10 C 6x20 144 768 (62.75) 240 54;000 42 64

3 12x14 C 12x28 C 6x42 432 2,382 (71.53) 756 549;192 144 216

4 12x18 C 12x36 C 12x54 C 6x72 960 5,360 (76.83) 1;728 2;900;448 348 512

5 12x22 C 12x44 C 12x66 C 12x88

C 6x110
1;800 10,110 (80.43) 3;300 10;643;160 690 1;000

6 1226 C 12x52 C 12x78 C 12x104

C 12x130 C 6x156
3;024 17,040 (83.04) 5;616 30;947;280 1;206 1;728
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Table 9.11 Theta ‚, Pi …, Sadhana Sd, and PIv polynomials in c_B12N12 cubic (k,k,k) net

Formulas

1 v.c_B12N12/ D 4k2Œ6 C 3.�1 C k/�

2 e.G/ D 12k2.1 C 2k/

3 ‚.c_B12N12; x/ D 6 � k.4k C 2/ � xk.4kC2/ C 12
k�1P
iD1

i.4k C 2/ � xi.4kC2/

4 ‚0.1/ D 6 � Œk.4k C 2/�2 C 12
k�1P
iD1

Œi.4k C 2/�2 D 8k.2k2 C 1/.2k C 1/2

5 ….c_B12N12; x/ D 6 � k.4kC2/ � x12k2.2kC1/�k.4kC2/C12
k�1P
iD1

i.4kC2/�x12k2.2kC1/�i.4kC2/

6 …0.1/ D 6 � Œk.4k C 2/�Œ12k2.2k C 1/ � k.4k C 2/�

C 12

k�1X

iD1

Œi.4kC2/�Œ12k2.2kC1/ � i.4kC2/� D 8k.18k3 � 2k2 � 1/.2kC1/2

7 Sd.c_B12N12; x/ D 6 � x12k2.2kC1/�k.4kC2/ C 12
k�1P
iD1

x12k2.2kC1/�i.4kC2/

8 Sd0.1/ D 6 � Œ12k2.2k C 1/ � k.4k C 2/�

C 12

k�1X

iD1

Œ12k2.2k C 1/ � i.4k C 2/� D 12k2.12k � 7/.2k C 1/

9 PIv D e � xv

10 PI0

v.1/ D e � v D .12k2/
2
.2k C 1/.k C 1/ D 144k4 C 432k5 C 288k6

Table 9.12 Examples, Theta ‚, Pi …, Sadhana Sd, and PIv indices in c_B12N12

cubic (k,k,k) net

k ‚0.1/ …0.1/ Sd0(1) PI0

v.1/ �0.1/De.G/ v(G)

4 85,536 2,900,448 70,848 1,658,880 1,728 960
5 246,840 10,643,160 174,900 5,940,000 3,300 1,800
6 592,176 30,947,280 365,040 16,982,784 5,616 3,024

Table 9.13 Omega
polynomial in B12N12 net
function of k D no. repeating
units along the edge of a
Du(Med(Cube)) COD (k_all)
domain

Omega(COD_B12N12); R[4,6]; formulas

1 �.COD_B12N12; x/ D 12
k�2P
iD0

xŒ2k.kC2/C4ki� C 6x6k2

2 �0.1/ D e.G/ D 12k2.4k � 1/

3 CI.G/ D 8k3.2k � 1/.144k2 � 13k C 4/

D 2; 304k6 � 1; 360k5 C 168k4 � 32k3

4 v.COD_B12N12/ D 24k3

5 Atoms.sp3/ D 24k2.k � 1/ D 24k3 � 24k2

6 RŒ4� D �6k2 C 12k3

7 RŒ6� D 4k � 12k2 C 16k3

8 lim
k!1

�
Atoms.sp3/

v.G/
D 24k2.k � 1/

24k3

�
D 1
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Table 9.14 Examples, Omega polynomial in COD_B12N12 (k_all) net

k Omega(COD_B12N12) R[4,6] Atoms sp3 atoms (%) Bonds CI(G) R[4] R[6]

2 12x16 C 6x24 192 96 (50.00) 336 106;368 72 88

3 12x30 C 12x42 C 6x54 648 432 (66.67) 1;188 1;361;880 270 336

4 12x48 C 12x64 C 12x80 C 6x96 1;536 1,152 (75.00) 2;880 8;085;504 672 848

5 12x70 C 12x90 C 12x110 C 12x130

C 6x150
3;000 2,400 (80.00) 5;700 31;851;000 1;350 1;720

6 12x96 C 12x120 C 12x144 C 12x168

C 12x192 C 6x216
5;184 4,320 (83.33) 9;936 97;130;880 2;376 3;048

Table 9.15 Theta, Pi, Sadhana, and PIv polynomials in COD_B12N12 (k_all) net

Formulas

1 v.COD_B12N12/ D 24k3

2 �0.1/ D e.G/ D 12k2.4k � 1/

3 ‚.COD_B12N12; x/ D 12
k�2P
iD0

Œ2k.k C 2/ C 4ki� � xŒ2k.kC2/C4ki� C 36k2x6k2

4 ‚0.1/ D 12
k�2P
iD0

Œ2k.k C 2/ C 4ki�2 C 63k4 D 32k3 � 24k4 C 208k5

5 ….COD_B12N12; x/ D 12

k�2X

iD0

Œ2k.k C 2/ C 4ki� � x12k2.4k�1/�Œ2k.kC2/C4ki�

C 36k2x12k2.4k�1/�6k2

6 …0.1/ D 12

k�2X

iD0

Œ2k.k C 2/ C 4ki� � Œ12k2.4k � 1/ � Œ2k.k C 2/ C 4ki��

C 36k2Œ12k2.4k � 1/ � 6k2� D �32k3 C 168k4 � 1; 360k5 C 2; 304k6

7 Sd.COD_B12N12; x/ D 12
k�2P
iD0

x12k2.4k�1/�Œ2k.kC2/C4ki� C 6x12k2.4k�1/�6k2

8 Sd.1/ D 12

k�2X

iD0

12k2.4k � 1/ � Œ2k.k C 2/ C 4ki� C 6Œ12k2.4k � 1/ � 6k2�

D 12k2.4k � 1/.12k � 7/ D 84k2 � 480k3 C 576k4

9 PIv D e � xv

10 PI0

v.1/ D e � v D 288k5.4k � 1/

Table 9.16 Examples, Theta, Pi, Sadhana, and PIv polynomials in COD_B12N12

(k_all) net

k ‚0.1/ …0.1/ Sd0(1) PI0

v.1/ �0.1/ D e.G/ v(G)

4 208,896 8,085,504 118,080 4,423,680 2,880 1,536
5 639,000 31,851,000 302,100 17,100,000 5,700 3,000
6 1,593,216 97,130,880 645,840 51,508,224 9,936 5,184

9.3.5 Omega Polynomial of rhr Network

Formulas for Omega polynomial are derived here for a cubic domain (k,k,k) of the
rhr network. The results are listed in Table. 9.19.
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Table 9.17 Omega polynomial in B12N12 net function of k D no. repeating
units along the edge of an octahedral Oct (k_all) domain

Omega(Oct_B12N12); R[4,6]; formulas

1 �.Oct_B12N12; x; keven/ D
k�1X

iD1

4x2i.iC2/ C
k=2X

iD1

8x1C2i�2i2
C3k.kC2/=2

C 2x2k.kC2/

2 �.Oct_B12N12; x; kodd/ D
k�1X

iD1

4x2i.iC2/ C
.k�1/=2X

iD1

8x3=2�2i2
C3k.kC2/=2

C 4x3=2C3k.kC2/=2 C 2x2k.kC2/

3 �0.1/ D e.G/ D 4k.k C 2/.2k C 1/

4 CI.G/ D 64k6 C 1; 548k5=5 C 480k4 C 240k3 C 8k2 � 108k=5

5 v.Oct_B12N12/ D 8k C 12k2 C 4k3

6 Atoms.sp3/ D �8k C 4k2 C 4k3

7 RŒ4� D 1 � k C 4k2 C 2k3

8 RŒ6� D 4k=3 C 4k2 C 8k3=3

9 lim
k!1

"
Atoms.sp3/

v.G/
D �8k C 4k2 C 4k3

8k C 12k2 C 4k3

#
D 1

Table 9.18 Examples, Omega polynomial in Oct_B12N12 (k_all) net

k Omega(Oct_B12N12) R[4,6] Atoms sp3 (%) Bonds CI(G) R[4] R[6]

2 4x6 C 8x13 C 2x16 96 32 (33.33) 160 23;592 31 40

3 4x6 C 4x16 C 8x22 C 4x24 C 2x30 240 120 (50.00) 420 167;256 88 112

4 4x6 C 4x16 C 4x30 C 8x33 C 8x37

C 2x48
480 288 (60.00) 864 717;456 189 240

5 4x6 C 4x16 C 4x30 C 8x46 C 4x48

C 8x52 C 4x54 C 2x70
840 560 (66.67) 1;540 2;297;592 346 440

6 4x6 C 4x16 C 4x30 C 4x48 C 8x61

C 8x69 C 4x70 C 8x73 C 2x96
1;344 960 (71.43) 2;496 6;067;512 571 728

Table 9.19 Omega polynomial in the rhr net function of k

Omega (x, rhr); Rmax D 6

�.x/ D 24k
k�1P
iD0

x.4iC2/

CI D 32k2.72k4 � 4k2 C 1/

e D jE.G/j D 48k3

v D jV .G/j D 12k2.2k C 1/

Examples
k Omega polynomial; Rmax D 6 CI e v r4 r6
1 24x2 2,208 48 36 – 8
2 48x2 C 48x6 145,536 384 240 48 64
3 72x2 C 72x6 C 72x10 1,669,536 1,296 756 216 216
4 96x2 C 96x6 C 96x10 C 96x14 9,404,928 3,072 1,728 576 512
5 120x2 C 120x6 C 120x10

C 120x14 C 120x18
35,920,800 6,000 3,300 1,200 1,000
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9.4 Conclusions

Design of several hypothetical crystal networks was performed by using original
software programs CVNET and NANO-STUDIO, developed at TOPO GROUP
CLUJ. The topology of the networks was described in terms of the net parameters
by several counting polynomials, calculated by our NANO-STUDIO, Omega and
PI software programs.

Hyperdiamonds are structures related to the classical diamond, having a signifi-
cant amount of sp3 carbon atoms and covalent forces to join the consisting fullerenes
in crystals. Design of several hypothetical crystal networks was performed by using
original software programs CVNET and NANO-STUDIO, developed at TOPO
GROUP CLUJ. The topology of the networks was described in terms of the net
parameters and several counting polynomials, calculated by our NANO-STUDIO,
Omega, and PI software programs.

Acknowledgments Authors acknowledge Professor Davide Proserpio for crystallographic data.
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