
Chapter 9
Solutions to Particular Two-Dimensional
Boundary Value Problems of Elastostatics

In this chapter a number of two-dimensional boundary value problems for a body
under plane strain conditions or under generalized plane stress conditions are solved.
The problems include: (i) a semispace subject to an internal concentrated body force,
(ii) an elastic wedge subject to a concentrated load at its tip, and (iii) an infinite
elastic strip subject to a discontinuous temperature field. To solve the problems a
two-dimensional version of the Boussinesq-Papkovitch-Neuber solution as well as
an Airy stress function method, are used.

9.1 The Two-Dimensional Version
of Boussinesq-Papkovitch-Neuber
Solution for a Body Under Plane Strain Conditions

An elastic state s = [u,E,S] corresponding to a body under plane strain conditions
is described by the equations [see Eqs. 7.70 and 7.71 in Problem 7.1.]

uα = ψα − 1

4(1 − ν)
(xγ ψγ + ϕ),α (9.1)

where

ψα,γ γ = −bα
μ

(9.2)

and

ϕ,γ γ = xγ bγ
μ

(9.3)

The strains Eαβ and stresses Sαβ , associated with uα , are given, respectively, by
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Eαβ = 1

4(1 − ν)
[2(1 − 2ν)ψ(α,β) − xγ ψγ,αβ − ϕ,αβ ] (9.4)

and

Sαβ = μ

4(1 − ν)
[2(1 − 2ν)ψ(α,β) − xγ ψγ,αβ + 2ν ψγ,γ δαβ − ϕ,αβ ] (9.5)

If a concentrated force P0 normal to the boundary of a semispace |x1| < ∞, x2 ≥ 0
is applied at the point (x1, x2) = (0, 0), and suitable asymptotic conditions are
imposed on s = [u,E,S] at infinity, then a suitable choice of the pair (ϕ, ψα) leads
to the stress tensor Sαβ in the form

S11 = − 2P0

π r4 x2
1 x2, S22 = − 2P0

π r4 x3
2 , S12 = − 2P0

π r4 x1x2
2 (9.6)

where

r = |x| =
√

x2
1 + x2

2 (9.7)

In polar coordinates (r, ϕ) related to the Cartesian coordinates (x1, x2) by

x1 = r cosϕ, x2 = r sin ϕ (9.8)

we obtain

Srr = −2P0

π r
sin ϕ, Sϕϕ = Srϕ = 0 (9.9)

Clearly, it follows from (9.6) and (9.9) that

|S| → 0 as r → ∞ (9.10)

Similarly, if a concentrated force T0 tangent to the boundary of a semispace
|x1| < ∞, x2 ≥ 0 is applied at the point (x1, x2) = (0, 0), and suitable asymp-
totic conditions are imposed on s = [u,E,S] at infinity, then a suitable choice of the
pair (ϕ, ψα) leads to the stress tensor Sαβ in the form

S11 = − 2T0

π r4 x3
1 , S22 = − 2T0

π r4 x1x2
2 , S12 = − 2T0

π r4 x2
1 x2 (9.11)

In polar coordinates (r, ϕ) we obtain

Srr = −2T0

π r
cos ϕ, Sϕϕ = Srϕ = 0 (9.12)

and it follows from Eqs. (9.11) and (9.12) that

|S| → 0 as r → ∞ (9.13)
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9.2 Problems and Solutions Related to Particular
Two-Dimensional Boundary Value Problems
of Elastostatics

Problem 9.1. Find an elastic state s = [u,E,S] corresponding to a concentrated
body force in an interior of a homogeneous and isotropic semispace |x1| < ∞,

x2 ≥ 0, under plane strain conditions, when the boundary of semispace is stress free
and the elastic state satisfies suitable asymptotic conditions at infinity.

Solution. We confine ourselves to the case when the semispace: |x1| < ∞,

x2 ≥ 0 with stress free boundary x2 = 0 is subject to the body force of the form

bα = b0 δα2 δ(x1) δ(x2 − ξ2) (9.14)

where b0 represents intensity of the force and ξ2 > 0. This means that the semispace
is subject to an internal force that is normal to its boundary and concentrated at the
point (0, ξ2).

A solution s = [u,E,S] to the problem is to be found by using a restricted form
of Boussinesq–Papkowitch–Neuber solution [see Eqs. (9.1)–(9.5) in which we let
ψ1 = 0, ψ2 = ψ, ϕ = ϕ]

u1 = − 1

4(1 − ν)
(x2ψ,1 +ϕ,1 ) (9.15)

u2 = 1

4(1 − ν)
[(3 − 4ν) ψ − x2ψ,2 −ϕ,2 ] (9.16)

where ψ = ψ(x1, x2) and ϕ = ϕ(x1, x2) satisfy Poisson’s equations

ψ,rr = − 1

μ
b2 (9.17)

and

ϕ,rr = 1

μ
x2b2 (9.18)

The strain and stress fields are then given, respectively, by

E11 = 1

4(1 − ν)
[−x2ψ,11 −ϕ,11 ] (9.19)

E22 = 1

4(1 − ν)
[2(1 − 2ν)ψ,2 − x2ψ,22 −ϕ,22 ] (9.20)

E12 = 1

4(1 − ν)
[(1 − 2ν)ψ,1 − x2ψ,12 −ϕ,12 ] (9.21)
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and

S11 = μ

2(1 − ν)
[−x2ψ,11 + 2νψ,2 −ϕ,11 ] (9.22)

S22 = μ

2(1 − ν)
[2(1 − ν)ψ,2 − x2ψ,22 −ϕ,22 ] (9.23)

S12 = μ

2(1 − ν)
[(1 − 2ν)ψ,1 − x2ψ,12 −ϕ,12 ] (9.24)

The boundary conditions take the form

S12(x1, 0) = S22(x1, 0) = 0 for |x1| < ∞ (9.25)

In addition, we assume suitable vanishing conditions at infinity, and suitable restric-
tions on u to obtain a unique solution to the problem.

To this end we look for a solution s = [u,E,S] in the form

s = s(0) + s(1) (9.26)

where s(0) = [u(0),E(0),S(0)] is a solution for an infinite plane |x1| < ∞, |x2| < ∞
subject to the body force (9.14), and s(1) = [u(1),E(1),S(1)] is a solution for a
semispace |x1| < ∞, x2 ≥ 0 subject to the boundary conditions

S(1)12 (x1, 0) = −S(0)12 (x1, 0) (9.27)

and
S(1)22 (x1, 0) = −S(0)22 (x1, 0) (9.28)

This amounts to looking for a pair (ψ, ϕ) in the form

ψ = ψ(0) + ψ(1) (9.29)

and
ϕ = ϕ(0) + ϕ(1) (9.30)

where

∇2ψ(0) = − 1

μ
b2 (9.31)

and

∇2ϕ(0) = 1

μ
x2b2 (9.32)

and
∇2ψ(1) = 0, ∇2ϕ(1) = 0 (9.33)
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Substituting b2 from (9.14) into (9.31) and (9.32), respectively, we obtain

∇2ψ(0) = −b0

μ
δ(x1)δ(x2 − ξ2) (9.34)

and

∇2ϕ(0) = b0ξ2

μ
δ(x1)δ(x2 − ξ2) (9.35)

where we used the identity

x2 δ(x2 − ξ2) = ξ2 δ(x2 − ξ2) (9.36)

Equations (9.34) and (9.35) are to be satisfied for every (x1, x2) ∈ E2 and for a fixed
positive ξ2. The unique solutions to Eqs. (9.34) and (9.35) are then given, respectively,
by

ψ(0) = − b0

2πμ
ln
(r1

L

)
(9.37)

and

ϕ(0) = b0ξ2

2πμ
ln
(r1

L

)
(9.38)

where

r1 =
√

x2
1 + (x2 − ξ2)2 (9.39)

and L is a positive constant of the length dimension. The solution s(0) is obtained
by letting ψ = ψ(0) and ϕ = ϕ(0) into Eqs. (9.15)–(9.16), (9.19)–(9.21), and
(9.22)–(9.24). Therefore, we obtain

u(0)1 = b0

8πμ(1 − ν)
(x2 − ξ2)

∂

∂x1
ln
(r1

L

)
(9.40)

u(0)2 = − b0

8πμ(1 − ν)

[
(3 − 4ν)− (x2 − ξ2)

∂

∂x2

]
ln
(r1

L

)
(9.41)

and

E (0)11 = b0

8πμ(1 − ν)
(x2 − ξ2)

∂2

∂x2
1

ln
(r1

L

)
(9.42)

E (0)22 = − b0

8πμ(1 − ν)

[
2(1 − 2ν)

∂

∂x2
− (x2 − ξ2)

∂2

∂x2
2

]
ln
(r1

L

)
(9.43)

E (0)12 = − b0

8πμ(1 − ν)

[
(1 − 2ν)

∂

∂x1
− (x2 − ξ2)

∂2

∂x1∂x2

]
ln
(r1

L

)
(9.44)
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The stress components S(0)11 , S(0)22 , and S(0)12 are given by

S(0)11 = − b0

4π(1 − ν)

[
2ν

∂

∂x2
− (x2 − ξ2)

∂2

∂x2
1

]
ln
(r1

L

)
(9.45)

S(0)22 = − b0

4π(1 − ν)

[
2(1 − ν)

∂

∂x2
− (x2 − ξ2)

∂2

∂x2
2

]
ln
(r1

L

)
(9.46)

S(0)12 = − b0

4π(1 − ν)

[
(1 − 2ν)

∂

∂x1
− (x2 − ξ2)

∂2

∂x1∂x2

]
ln
(r1

L

)
(9.47)

The solution s(1) is to be found by letting ψ = ψ(1) and ϕ = ϕ(1) into
Eqs.(9.15)–(9.16), (9.19)–(9.21), and (9.22)–(9.24), where ψ(1) and ϕ(1) satisfy
Eqs. (9.33)1 and (9.33)2, respectively, for |x1| < ∞, x2 > 0, subject to suitable
boundary conditions at x2 = 0. A hint as to how ψ(1) and ϕ(1) could be found
comes from the boundary conditions (9.27) and (9.28) written in terms of the pairs
(ψ(0), ϕ(0)) and (ψ(1), ϕ(1)):

[
(1 − 2ν)ψ(1) − ϕ,

(1)
2

]
,1 (x1, 0) = − f (x1) (9.48)

[
(2 − 2ν)ψ(1) − ϕ,

(1)
2

]
,2 (x1, 0) = −g(x1) (9.49)

where
f (x1) =

[
(1 − 2ν)ψ(0) − ϕ,

(0)
2

]
,1 (x1, 0) (9.50)

and
g(x1) =

[
(2 − 2ν)ψ(0) − ϕ,

(0)
2

]
,2 (x1, 0) (9.51)

Since

∂

∂x1
ln
(r1

L

)
=

∞∫

0

e−α|x2−ξ2| sin αx1dα (9.52)

and

∂

∂x2
ln
(r1

L

)
=

∞∫

0

e−α|x2−ξ2| cosαx1dα (9.53)

therefore, because of (9.37) and (9.38) we obtain

ψ,
(0)
1 = − b0

2πμ

∞∫

0

e−α|x2−ξ2| sin αx1dα (9.54)
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and

ϕ,
(0)
2 = b0ξ2

2πμ

∞∫

0

e−α|x2−ξ2| cosαx1dα (9.55)

It follows from (9.55) that

ϕ,
(0)
12 = − b0ξ2

2πμ

∞∫

0

e−α|x2−ξ2|α sin αx1dα (9.56)

and an extension of the RHS of (9.50) to include arbitrary point (x1, x2) reads

[
(1 − 2ν)ψ,(0)1 −ϕ,(0)12

]
(x1, x2)

= − b0

2πμ

∞∫

0

e−α|x2−ξ2| [(1 − 2ν)− αξ2] sin αx1dα (9.57)

Hence

f (x1) = − b0

2πμ

∞∫

0

e−αξ2 [(1 − 2ν)− αξ2] sin αx1dα (9.58)

Similarly, we obtain

ψ,
(0)
2 = − b0

2πμ

∞∫

0

e−α|x2−ξ2| cosαx1dα (9.59)

and

ϕ,
(0)
22 = b0ξ2

2πμ

∂

∂x2

∞∫

0

e−α|x2−ξ2| cosαx1dα (9.60)

For 0 ≤ x2 < ξ2 Eq. (9.60) takes the form

ϕ,
(0)
22 = b0ξ2

2πμ

∞∫

0

e−α(ξ2−x2)α cosαx1dα (9.61)

Hence, using (9.59) and (9.61) we reduce (9.51) to the form
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g(x1) = − b0

2πμ

∞∫

0

e−αξ2 [(2 − 2ν)+ αξ2] cosαx1dα (9.62)

Since
∇2[e−αx2 cosαx1] = 0 (9.63)

an inspection of Eqs. (9.33) and of the boundary conditions (9.48) and (9.49) in
which f and g are given by the integrals (9.58) and (9.62), respectively, leads to the
integral form of ψ(1) and ϕ(1) for |x1| < ∞, x2 > 0:

ψ(1)(x1, x2) =
∞∫

0

A(α)e−αx2 cosαx1dα (9.64)

and

ϕ(1)(x1, x2) =
∞∫

0

B(α)e−αx2 cosαx1dα (9.65)

where A(α) and B(α) are arbitrary functions on [0,∞) to be selected in such a way
that the boundary conditions (9.48) and (9.49) are satisfied. For the partial derivatives
of ψ(1) and ϕ(1) that come into the boundary conditions (9.48) and (9.49) we obtain

ψ,
(1)
1 = −

∞∫

0

A(α)e−αx2α sin αx1dα (9.66)

ϕ,
(1)
2 = −

∞∫

0

B(α)e−αx2α cosαx1dα (9.67)

ϕ,
(1)
21 =

∞∫

0

B(α)e−αx2α2 sin αx1dα (9.68)

ψ,
(1)
2 = −

∞∫

0

A(α)e−αx2α cosαx1dα (9.69)

ϕ,
(1)
22 =

∞∫

0

B(α)e−αx2α2 cosαx1dα (9.70)

Therefore, substituting (9.66) and (9.68) into (9.48), and (9.69) and (9.70) into (9.49),
and using f and g in the forms (9.58) and (9.62), respectively, we find that the
functions A = A(α) and B = B(α) must satisfy the linear algebraic equations
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(1 − 2ν)A + αB = − b0

2πμ
e−αξ2

1

α
[1 − 2ν − αξ2]

(2 − 2ν)A + αB = − b0

2πμ
e−αξ2

1

α
[2 − 2ν + αξ2] (9.71)

and the only solution (A, B) to (9.71) takes the form

A = − b0

2πμ
e−αξ2

(1 + 2αξ2)

α
(9.72)

B = b0ξ2

2πμ
e−αξ2

(3 − 4ν)

α
(9.73)

It follows from Eqs. (9.64)–(9.65) and (9.72)–(9.73) that the integral representations
of ψ(1) and ϕ(1) are divergent, however, all partial derivatives of ψ(1) and ϕ(1) are
represented by the convergent integrals. This implies that the integral representations
of E(1) and S(1) are convergent. In the following we are to obtain first the integral
forms of E(1) and S(1), as well as of u(1)1 and u(1)2,1, and next the integral representa-

tion of u(1)2,1 is used to recover u(1)2 by integration. Note that an alternative form of

Eqs. (9.19)–(9.21) and (9.22)–(9.24), respectively, taken at ψ = ψ(1) and ϕ =
ϕ(1), reads

E (1)11 + E (1)22 = 1 − 2ν

2 − 2ν
ψ,
(1)
2 (9.74)

E (1)11 − E (1)22 = −1 − 2ν

2 − 2ν
ψ,
(1)
2 − 1

4(1 − ν)

[
x2

(
ψ,
(1)
11 −ψ,(1)22

)
+ ϕ,

(1)
11 −ϕ,(1)22

]

(9.75)

E (1)12 = 1 − 2ν

4(1 − ν)
ψ,
(1)
1 − 1

4(1 − ν)

(
x2ψ,

(1)
12 +ϕ,(1)12

)
(9.76)

and
S(1)11 + S(1)22 = μ

1 − ν
ψ,
(1)
2 (9.77)

S(1)11 − S(1)22 = −μ1 − 2ν

1 − ν
ψ,
(1)
2 − μ

2(1 − ν)

[
x2

(
ψ,
(1)
11 −ψ,(1)22

)
+ ϕ,

(1)
11 −ϕ,(1)22

]

(9.78)

S(1)12 = μ(1 − 2ν)

2(1 − ν)
ψ,
(1)
1 − μ

2(1 − ν)

(
x2ψ,

(1)
12 +ϕ,(1)12

)
(9.79)

Also, it follows from (9.15) and (9.16), respectively, taken at ψ = ψ(1) and ϕ =
ϕ(1) that

u(1)1 = − 1

4(1 − ν)

(
x2ψ,

(1)
1 +ϕ,(1)1

)
(9.80)
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and

u(1)2,1 = 1

4(1 − ν)

[
(3 − 4ν)ψ,(1)1 −x2ψ,

(1)
12 −ϕ,(1)12

]
(9.81)

Therefore, substituting ψ(1) and ϕ(1) from (9.64) and (9.65), respectively, where A
and B are given by (9.72) and (9.73), respectively into Eqs. (9.74)–(9.81), we obtain

E (1)11 + E (1)22 = b0

2πμ

1 − 2ν

2 − 2ν

∞∫

0

e−α(x2+ξ2)(1 + 2αξ2) cosαx1dα (9.82)

E (1)11 − E (1)22 = − b0

2πμ

1 − 2ν

2 − 2ν

∞∫

0

e−α(x2+ξ2)(1 + 2αξ2) cosαx1dα

− b0

4πμ(1 − ν)

⎧
⎨
⎩

∞∫

0

e−α(x2+ξ2)α[x2(1 + 2αξ2)− ξ2(3 − 4ν)] cosαx1dα

⎫
⎬
⎭

(9.83)

E (1)12 = b0

2πμ

1 − 2ν

4(1 − ν)

∞∫

0

e−α(x2+ξ2)(1 + 2αξ2) sin αx1dα

+ b0

2πμ

1

4(1 − ν)

∞∫

0

e−α(x2+ξ2)[x2 − (3 − 4ν)ξ2 + 2αξ2x2] × α sin αx1dα

(9.84)

and

S(1)11 + S(1)22 = b0

2π(1 − ν)

∞∫

0

e−α(x2+ξ2)(1 + 2αξ2) cosαx1dα (9.85)

S(1)11 − S(1)22 = −b0(1 − 2ν)

2π(1 − ν)

∞∫

0

e−α(x2+ξ2)(1 + 2αξ2) cosαx1dα

− b0

2π(1 − ν)

∞∫

0

e−α(x2+ξ2)α[x2 − (3 − 4ν)ξ2 + 2αξ2x2] cosαx1dα

(9.86)
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S(1)12 = b0(1 − 2ν)

4π(1 − ν)

∞∫

0

e−α(x2+ξ2)(1 + 2αξ2) sin αx1dα

+ b0

4π(1 − ν)

∞∫

0

e−α(x2+ξ2)[x2 − (3 − 4ν)ξ2 + 2αξ2x2]α sin αx1dα

(9.87)

In addition, Eqs. (9.80) and (9.81), respectively, imply that

u(1)1 = − b0

8πμ(1 − ν)

∞∫

0

e−α(x2+ξ2)[x2 −(3−4ν)ξ2 +2αξ2x2] sin αx1dα (9.88)

and

u(1)2,1 = b0

8πμ(1 − ν)

∞∫

0

e−α(x2+ξ2){3 − 4ν + [(3 − 4ν)ξ2 + x2]α + 2ξ2x2α
2}

× sin αx1dα (9.89)

It follows from Eqs. (9.82)–(9.89), respectively, that E(1),S(1), u(1)1 , and u(1)2,1 are rep-
resented by the convergent integrals for any point of the semispace: |x1|<∞, x2≥ 0.
In addition, by using the formulas [see (9.52) and (9.53)]

∞∫

0

e−αu cosαx1dα = ∂

∂u
ln

(
R

L

)
(9.90)

∞∫

0

e−αu sin αx1dα = ∂

∂x1
ln

(
R

L

)
(9.91)

and the formulas obtained from (9.90) and (9.91) by differentiation

∞∫

0

e−αuα sin αx1dα = − ∂2

∂x1∂u
ln

(
R

L

)
(9.92)

∞∫

0

e−αuα2 sin αx1dα = ∂3

∂x1∂u2

[
ln

(
R

L

)]
(9.93)

∞∫

0

e−αuα cosαx1dα = − ∂2

∂u2

[
ln

(
R

L

)]
(9.94)

∞∫

0

e−αuα2 cosαx1dα = ∂3

∂u3

[
ln

(
R

L

)]
(9.95)
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where

R =
√

x2
1 + u2, u > 0 (9.96)

the fields E(1),S(1), u(1)1 , and u(1)2,1 can be obtained in terms of elementary functions.

For example, by using (9.91) and (9.92), the closed form of u(1)1 is obtained

u(1)1 = − b0

8πμ(1 − ν)

{
[x2 − (3 − 4ν)ξ2] ∂

∂x1

[
ln
(r2

L

)]

−2x2ξ2
∂2

∂x1∂x2

[
ln
(r2

L

)]}
(9.97)

where

r2 =
√

x2
1 + (x2 + ξ2)2 (9.98)

To obtain a closed-form of u(1)2 we integrate (9.89) with respect to x1 over the interval
[0, x1] and obtain

u(1)2 (x1, x2)− u(1)2 (0, x2) = b0

8πμ(1 − ν)

∞∫

0

e−α(x2+ξ2)

× {3 − 4ν + [(3 − 4ν)ξ2 + x2]α + 2ξ2x2α
2}

× 1 − cosαx1

α
dα (9.99)

By letting
u(1)2 (0, x2) = 0 for x2 > 0 (9.100)

Equation (9.99) can be written as

u(1)2 = b0

8πμ(1 − ν)

⎧
⎨
⎩(3 − 4ν)

∞∫

0

e−α(x2+ξ2)
(1 − cosαx1)

α
dα

+ [(3 − 4ν)ξ2 + x2]
∞∫

0

e−α(x2+ξ2)(1 − cosαx1)dα

+ 2ξ2x2

∞∫

0

e−α(x2+ξ2)α(1 − cosαx1)dα

⎫
⎬
⎭ (9.101)

By integrating (9.91) with respect to x1 we obtain
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∞∫

0

e−αu 1 − cosαx1

α
dα = ln

(
R

u

)
(9.102)

Hence ∞∫

0

e−α(x2+ξ2)
1 − cosαx1

α
dα = ln

r2

x2 + ξ2
(9.103)

and by differentiation of (9.103) with respect to x2, we obtain

∞∫

0

e−α(x2+ξ2)(1 − cosαx1)dα = − ∂

∂x2
ln

(
r2

x2 + ξ2

)
(9.104)

and ∞∫

0

e−α(x2+ξ2)α(1 − cosαx1)dα = ∂2

∂x2
2

ln

(
r2

x2 + ξ2

)
(9.105)

Finally, substituting (9.103), (9.104), and (9.105) into (9.101) we obtain u(1)2 in the
form

u(1)2 = b0

8πμ(1 − ν)
{
(3−4ν) ln

(
r2

x2 + ξ2

)
− [(3 − 4ν)ξ2 + x2] ∂

∂x2
ln

(
r2

x2 + ξ2

)

+ 2ξ2x2
∂2

∂x2
2

ln

(
r2

x2 + ξ2

)}
(9.106)

This completes a solution to Problem 9.1 in which the semispace is subject to an
internal force that is normal to its boundary and concentrated at the point (0, ξ2).

In a similar way a solution to Prob. 9.1 in which the semispace is subject to a
force that is parallel to its boundary and concentrated at (0, ξ2), may be obtained.

Let Uα2 and Uα1, respectively, denote the displacement of the semispace corre-
sponding to the unit normal and parallel forces at (0, ξ2), and let l = (l1, l2) be an
arbitrary force concentrated at (0, ξ2). Then the displacement uα corresponding to a
solution to Problem 9.1 in which the semispace is subject to the concentrated force
l at (0, ξ2) takes the form

uα = Uαβlβ (9.107)

This completes a solution to Problem 9.1 in which the semispace with stress free
boundary is subject to a concentrated force l at (0, ξ2).

Problem 9.2. Find an elastic state s = [u,E,S] corresponding to a concentrated
body force in an interior of a homogeneous and isotropic semispace |x1| < ∞,
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x2 ≥ 0, under plane strain conditions, when the boundary of semispace is clamped
and the elastic state vanishes at infinity.

Solution. Let the semispace |x1| < ∞, x2 ≥ 0 with a clamped boundary x2 = 0
be subject to the body force

bα = b0δα2δ(x1)δ(x2 − ξ2) (9.108)

An elastic state s = [u,E,S] corresponding to (9.108) and satisfying the boundary
conditions

u1(x1, 0) = u2(x1, 0) = 0 |x1| < ∞ (9.109)

and suitable vanishing conditions at infinity may be found in a way similar to that of
Problem 9.1. To this end we use Eqs. (9.109)–(9.119) of Problem 9.1 to obtain u, E,
and S, respectively.

In particular, u1 and u2 are to be found from the equations

u1 = − 1

4(1 − ν)
(x2ψ,1 +ϕ,1 ) (9.110)

u2 = 1

4(1 − ν)
[(3 − 4ν)ψ − x2ψ,2 −ϕ,2 ] (9.111)

where ψ and ϕ satisfy Poisson’s equations

∇2ψ = − 1

μ
b2 (9.112)

and

∇2ϕ = 1

μ
x2b2 (9.113)

To find a pair (ψ, ϕ) that generates (u1, u2) by Eqs. (9.110)–(9.111) in such a way
that Eqs. (9.109) are satisfied, we let

ψ = ψ(0) + ψ(1) |x1| < ∞, x2 ≥ 0 (9.114)

and
ϕ = ϕ(0) + ϕ(1) |x1| < ∞, x2 ≥ 0 (9.115)

where

∇2ψ(0) = − 1

μ
b2 |x1| < ∞, x2 ≥ 0 (9.116)

and

∇2ϕ(0) = 1

μ
x2b2 |x1| < ∞, x2 ≥ 0 (9.117)
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and
∇2ψ(1) = 0, ∇2ϕ(1) = 0 (9.118)

and the harmonic functionsψ(1) and ϕ(1) defined for |x1| < ∞, x2 ≥ 0 are selected
in such a way that u1 and u2 vanish at x2 = 0. To obtain a pair (ψ(0), ϕ(0))we extend
Eqs. (9.116)–(9.117) to the whole plane E2 in which a normal force of intensity
b0 is concentrated at (0, ξ2) and a normal force of intensity—b0 is concentrated at
(0,−ξ2). This amounts to solving the equations

∇2ψ(0) = −b0

μ
δ(x1)[δ(x2 − ξ2)− δ(x2 + ξ2)] (9.119)

and

∇2ϕ(0) = 1

μ
b0x2[δ(x2 − ξ2)− δ(x2 + ξ2)] for |x1| < ∞, |x2| < ∞ (9.120)

Note that a restriction of Eqs. (9.119)–(9.120) to the semispace |x1| < ∞, x2 ≥ 0
leads to Eqs. (9.116)–(9.117), and an extension of (ψ(0), ϕ(0)) is denoted in the same
way as its restriction.

Since
x2δ(x2 − ξ2) = ξ2δ(x2 − ξ2) (9.121)

then
− x2δ(x2 − ξ2) = −ξ2δ(x2 − ξ2) (9.122)

and replacing ξ2 by −ξ2 in (9.122) we get

− x2δ(x2 + ξ2) = ξ2δ(x2 + ξ2) (9.123)

Hence, Eq. (9.120) can be written as

∇2ϕ(0) = b0ξ2

μ
[δ(x2 − ξ2)+ δ(x2 + ξ2)] for |x1| < ∞, |x2| < ∞ (9.124)

Proceeding in a way similar to that of solving Eqs. (9.129) and (9.130) of Problem
9.1, from Eqs. (9.119) and (9.124), respectively, we obtain

ψ(0) = − b0

2πμ

[
ln
(r1

L

)
− ln

(r2

L

)]
(9.125)

and

ϕ(0) = b0ξ2

2πμ

[
ln
(r1

L

)
+ ln

(r2

L

)]
(9.126)



234 9 Solutions to Particular Two-Dimensional Boundary Value Problems

where

r1.2 =
√

x2
1 + (x2 ∓ ξ2)2 (9.127)

It follows from (9.125)–(9.127) that

ψ(0)(x1, 0) = 0, |x1| < ∞ (9.128)

and

ϕ(0)(x1, 0) = b0ξ2

πμ
ln
(r0

L

)
, |x1| < ∞ (9.129)

where

r0 =
√

x2
1 + ξ2

2 (9.130)

Also, using (9.110) and (9.111) in which ψ = ψ(0) and ϕ = ϕ(0), and letting x2 = 0
we obtain

u(0)1 (x1, 0) = − b0ξ2

4πμ(1 − ν)

∂

∂x1
ln
(r0

L

)
(9.131)

and
u(0)2 (x1, 0) = 0 (9.132)

The displacements u(1)1 and u(1)2 are represented by

u(1)1 (x1, x2) = − 1

4(1 − ν)

(
x2ψ,

(1)
1 +ϕ,(1)1

)
(9.133)

u(1)2 (x1, x2) = 1

4(1 − ν)

[
(3 − 4ν)ψ(1) − x2ψ,

(1)
2 −ϕ,(1)2

]
(9.134)

where ψ(1) and ϕ(1) are harmonic on the semispace |x1| < ∞, x2 > 0.
It is easy to check that the function ϕ(1) = ϕ(1)(x1, x2) given by

ϕ(1)(x1, x2) = −b0ξ2

πμ
ln
(r2

L

)
(9.135)

satisfies the Laplace’s equation

∇2ϕ(1) = 0 for |x1| < ∞, x2 > 0 (9.136)

and complies with the boundary condition

u1(x1, 0) = u(0)1 (x1, 0)+ u(1)2 (x1, 0) = 0 (9.137)
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To find ψ(1), note that because of (9.132) and (9.134), ψ(1) must satisfy the Laplace
equation for |x1| < ∞, x2 > 0 subject to the boundary condition

(3 − 4ν)ψ(1)(x1, 0) = ϕ,
(1)
2 (x1, 0) = −b0ξ2

πμ

∂

∂x2
ln
(r2

L

)∣∣∣∣
x2=0

= −b0ξ2

πμ

∂

∂ξ2
ln
(r0

L

)
(9.138)

Since

∂

∂ξ2
ln
(r0

L

)
=

∞∫

0

e−αξ2 cosαx1dα (9.139)

therefore, (9.138) takes the form

(3 − 4ν)ψ(1)(x1, 0) = −b0ξ2

πμ

∞∫

0

e−αξ2 cosαx1dα (9.140)

and we find that for any point of the semispace |x1| < ∞, x2 ≥ 0

ψ(1)(x1, x2) = − b0ξ2

πμ(3 − 4ν)

∂

∂x2
ln
(r2

L

)
(9.141)

As a result, because of (9.114) and (9.115), (9.125) and (9.126), and (9.135) and
(9.141), we obtain

ψ(x1, x2) = − b0

2πμ(3 − 4ν)

[
(3 − 4ν) ln

(
r1

r2

)
+ 2ξ2

∂

∂x2
ln
(r2

L

)]
(9.142)

and

ϕ(x1, x2) = b0ξ2

2πμ
ln

(
r1

r2

)
(9.143)

Next, substituting ψ and ϕ from Eqs. (9.142) and (9.143), respectively, to
Eqs. (9.110)–(9.111), we obtain a closed-form displacement vector u corresponding
to the solution s =[u,E,S]. The associated fields E and S, respectively, are obtained
by substituting ψ and ϕ from (9.142) and (9.143), into Eqs. (9.113)–(9.115) and
(9.116)–(9.119) of Problem 9.1.

This completes a solution to Problem 9.2 when the concentrated body force is
normal to the clamped boundary x2 = 0.

If the concentrated body force is parallel to the clamped boundary x2 = 0, Problem
9.2 may be solved in a similar way. When the body force is arbitrarily oriented
with regard to the clamped boundary x2 = 0, a solution to Problem 9.2 is a linear
combination of the solutions corresponding to the normal and parallel directions of
the concentrated body force. This completes a solution to Problem 9.2.
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x 2

x 1

ϕr

(r, )ϕ
αα

l2

l1

l

0

θ

αθ ≤

ϕπθ −=
2

ϕ= sinrx2

ϕ= cosrx1

Fig. 9.1 The infinite wedge loaded by a concentrated force

Problem 9.3. Suppose that a homogeneous isotropic infinite elastic wedge, sub-
jected to generalized plane stress conditions, is loaded in its plane by a concentrated
force l applied at its tip (see Fig. 9.1)

x1 = r cosϕ, θ = π

2
− ϕ

x2 = r sin ϕ, |θ | ≤ α

Show that the stress components Srr , Srϕ, and Sϕϕ corresponding to the force l and
vanishing at infinity take the form

Srr (r, ϕ) = 2l1
r

cosϕ

(2α − sin 2α)
+ 2l2

r

sin ϕ

(2α + sin 2α)

Srϕ(r, ϕ) = Sϕϕ(r, ϕ) = 0

for every 0 < r < ∞., π /2 − α ≤ ϕ ≤ π /2 + α. Note that l1 < 0 and l2 < 0, and∣∣Srr
∣∣→ ∞ for α → 0 and r > 0.

Solution. A solution to this problem is to be given in the two cases

(i) l1 	= 0, l2 = 0
(ii) l1 = 0, l2 	= 0
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The case (i). The stress components S||
rr , S||

rϕ , and S||
ϕϕ in a semi-infinite disk

|x1| < ∞, x2 ≥ 0 subject to a tangent concentrated force T0 at (0, 0) take the
form [see Eq. (9.12)]

S||
rr (r, ϕ) = −2T0

πr
cosϕ = −2T0

πr
sin θ (9.144)

S||
rϕ(r, ϕ) = S||

ϕϕ(r, ϕ) = 0 (9.145)

where 0 ≤ r < ∞, 0 ≤ ϕ < 2π .
A restriction of Eqs. (9.144) and (9.145) to the wedge region shown in the Figure

provides a solution to Problem 9.3 in case (i) if a resultant tangent force at the tip of
the wedge is equal to l1, that is, if for every r ≥ 0

α∫

−α
S||

rr r sin θdθ = l1 (9.146)

Substituting S||
rr from (9.144) into (9.146) we obtain

− 2T0

π
× 2

α∫

0

sin2 θ dθ = −2T0

π

α∫

0

(1 − cos 2θ) dθ = −T0

π
(2α − sin 2α) = l1

(9.147)
Hence

T0 = − l1π

2α − sin 2α
(9.148)

and substituting T0 from (9.148) into (9.144) we obtain

S∗
rr (r, ϕ) = 2l1 cosϕ

r(2α − sin 2α)
(9.149)

S∗
rϕ(r, ϕ) = 0, S∗

ϕϕ(r, ϕ) = 0 for 0 < r < ∞,

∣∣∣ϕ − π

2

∣∣∣ ≤ α (9.150)

The stress components S∗
rr , S∗

rϕ , and S∗
ϕϕ represent a solution to Problem 9.3 in

case (i).

The case (ii). The stress components S⊥
rr , S⊥

rϕ , and S⊥
ϕϕ in a semi-infinite disk

|x1| < ∞, x2 ≥ 0 subject to a normal force P0 concentrated at (0, 0) take the
form [see Eqs. (9.9)]

S⊥
rr (r, ϕ) = −2P0

πr
sin ϕ = −2P0

πr
cos θ (9.151)

S⊥
rϕ(r, ϕ) = S⊥

ϕϕ(r, ϕ) = 0 (9.152)
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for every 0 < r < ∞, 0 < ϕ ≤ 2π .
Similarly as in the case (i), a restriction of Eqs. (9.151)–(9.152) to the wedge

region provides a solution to Prob. 9.3 in case (ii) if a resultant normal force at the
tip of wedge is equal to l2, that is, if for every r ≥ 0

α∫

−α
S⊥

rr r cos θdθ = l2 (9.153)

Substituting S⊥
rr from (9.151) into (9.153) and integrating, we obtain

− 2P0

π

α∫

0

(1 + cos 2θ)dθ = l2 (9.154)

or

P0 = − l2π

2α + sin 2α
(9.155)

Finally, substituting P0 from (9.155) into (9.151) we obtain

S∗∗
rr (r, ϕ) = 2l2 sin ϕ

r(2α + sin 2α)
(9.156)

S∗∗
rϕ(r, ϕ) = S∗∗

ϕϕ(r, ϕ) = 0 (9.157)

for every 0 < r < ∞,
∣∣π

2 − ϕ
∣∣ ≤ α.

The stress components S∗∗
rr , S∗∗

rϕ , and S∗∗
ϕϕ , represent a solution to Prob. 9.3 in

case (ii).
A solution to Problem 9.3 takes the form

Srr = S∗
rr + S∗∗

rr , Srϕ = Sϕϕ = 0 (9.158)

This completes a solution to Problem 9.3

Problem 9.4. Show that for a homogeneous isotropic infinite elastic wedge under
generalized plane stress conditions loaded by a concentrated moment M at its tip
(see Fig. 9.2) the stress components Srr , Srϕ, and Sϕϕ vanishing at infinity take the
form

Srr (r, ϕ) = 2M

r2

sin (2ϕ − α)

sin α − α cos α

Srϕ(r, ϕ) = − M

r2

cos (2ϕ − α)− cos α

sin α − α cos α
Sϕϕ(r, ϕ) = 0 for every r > 0, 0 < ϕ < α
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where

M = −r

α∫

0

(Srϕr) dϕ

Note that the stress components Srr and Srϕ become unbounded for α = α∗, where
α∗ is the only root of the equation

sin α∗ − α∗ cosα∗ = 0

that is, for α∗ = 257.4◦. Hence, the solution makes sense for an elastic wedge that
obeys the condition 0 < α < α∗.

Solution. The stress components Srr , Srϕ , and Sϕϕ produced in the wedge by a
moment M at its tip (see Figure) are to be found using an Airy stress function
F = F(r, ϕ)

Srr =
(

∇2 − ∂2

∂r2

)
F (9.159)

Sϕϕ = ∂2

∂r2 F (9.160)

Srϕ = − ∂

∂r

(
1

r

∂F

∂ϕ

)
(9.161)

where
∇2∇2 F = 0 (9.162)

Fig. 9.2 The infinite wedge
loaded by a concentrated
moment

ϕ ( )ϕ,r

α

x 1

x 2

M

0
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and

∇2 = ∂2

∂r2 + 1

r

∂

∂r
+ 1

r2

∂2

∂ϕ2 (9.163)

By inspection of (9.160) and (9.161), and of the definition of moment M , we
conclude that a biharmonic function F = F(ϕ) is to solve the problem. In the
following we are to show that a solution to Problem 9.4 is obtained if F̄ takes the
form

F(r, ϕ) = c1(2ϕ − α)+ c2 sin(2ϕ − α) (9.164)

where c1 and c2 are constants to be determined from the stress free boundary condi-
tions at ϕ = 0 and ϕ = α for r > 0, and from the definition of M :

M = −r

α∫

0

Srϕ rdϕ (9.165)

Note that F given by (9.164) satisfies Eq. (9.162) since

∇2 ∇2 F = c2∇2[r−2 sin(2ϕ − α)] = 0 for 0 < r < ∞, 0 ≤ ϕ ≤ α (9.166)

Substituting F from (9.164) into (9.159), (9.160), and (9.161), respectively, we obtain

Srr = −4c2
sin(2ϕ − α)

r2 (9.167)

Sϕϕ = 0 (9.168)

Srϕ = 2

r2 [c1 + c2 cos(2ϕ − α)] (9.169)

Also note that the boundary conditions

Srϕ = 0 at ϕ = 0 and ϕ = α (9.170)

are satisfied if
c1 = −c2 cosα (9.171)

Therefore, substituting (9.171) into (9.164) and (9.169), respectively, we obtain

F = c2 [sin(2ϕ − α)− (2ϕ − α) cosα] (9.172)

and

Srϕ = 2c2

r2 [cos(2ϕ − α)− cosα] (9.173)

Hence, substituting (9.173) into (9.165) we obtain
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T = T0 ≠ 0
0= =S12S11

0==S 12S 11T = 0

2
x 2

x 1

0

Fig. 9.3 The infinite strip

M = −2c2

∫ α

0
[cos(2ϕ − α)− cosα]dϕ (9.174)

or

c2 = − M

2(sin α − α cosα)
(9.175)

Finally, by substituting c2 from (9.175) into (9.167) and (9.173), respectively, we
obtain the required result. This completes a solution to Problem 9.4.

Problem 9.5. Consider a homogeneous isotropic infinite elastic strip under gener-
alized plane stress conditions: |x1| ≤ 1, |x2| < ∞ subject to the temperature field
of the form

T (x1, x2) = T0[1 − H(x2)] (9.176)

where T0 is a constant temperature and H = H(x) is the Heaviside function

H(x) =
⎧
⎨
⎩

1 for x > 0
1/2 for x = 0
0 for x < 0

(9.177)

Note that in this case, we complemented the definition of the Heaviside function by
specifying its value at x = 0 (Fig. 9.3).

Show that the stress tensor field S = S(x1, x2) corresponding to the discontinuous
temperature (9.176) is represented by the sum

S = S
(1) + S

(2)
(9.178)
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where
S
(1)
11 = −EαT0[1 − H(x2)], S

(1)
22 = S

(1)
12 = 0 (9.179)

and
S
(2)
11 = F,22, S

(2)
22 = F,11, S

(2)
12 = −F,12 (9.180)

where the biharmonic function F = F(x1, x2) is given by

F(x1, x2) = EαT0

⎡
⎣ x2

2

4
+ 2

π

∞∫

0

(A cosh β x1 + B β x1 sinh β x1)
sin β x2

β3 dβ

⎤
⎦

(9.181)

A = sinh β + β cosh β

sinh 2β + 2β
, B = − sinh β

sinh 2β + 2β
(9.182)

Hint. Note that

S
(2)
11 (±1, x2) = −S

(1)
11 (±1, x2)

= EαT0

2

⎛
⎝1 − 2

π

∞∫

0

sin β x2

β
dβ

⎞
⎠ for |x2| < ∞

Solution. To solve the problem we recall the integral representation of the Heaviside
step function

H(x2) =
⎧
⎨
⎩

0 for x2 < 0
1
2 for x2 = 0
1 for x2 > 0

⎫
⎬
⎭ = 1

2
+ 1

π

∞∫

0

sin βx2

β
dβ (9.183)

The temperature T (x1, x2) on the strip |x1| ≤ 1, |x2| < ∞ is then represented by

T (x1, x2) = T0 [1 − H(x2)] = T0

2

⎡
⎣1 − 2

π

∞∫

0

sin βx2

β
dβ

⎤
⎦ (9.184)

We are to find a stress tensor S corresponding to a solution s = [u,E,S] of a problem
of thermo-elastostatics for the strip subject to the discontinuous temperature (9.184)
when the strip boundaries x1 = 1 and x1 = −1 are stress free, that is, when

S11(±1, x2) = S12(±1, x2) = 0 for |x2| < ∞ (9.185)

To this end we look for s in the form

s = s1 + s2 (9.186)
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where s1 = [u(1),E(1),S(1)] is generated from a displacement potential φ = φ(x2)

by the formulas

u(1) = ∇φ (9.187)

E(1) = ∇∇φ (9.188)

S(1) = 2μ(∇∇φ − ∇2φ1) (9.189)

in which φ satisfies Poisson’s equation

∇2φ = m0T , m0 = (1 + ν)α (9.190)

where T is given by Eq. (9.184) and s2 = [u(2),E(2),S(2)] is a solution of isothermal
elastostatics for the strip that complies with the boundary conditions

S(2)11 (±1, x2) = −S(1)11 (±1, x2)

S(2)12 (±1, x2) = −S(1)12 (±1, x2) (9.191)

The stress components S(2)11 , S(2)22 , and S(2)12 are to be computed from an Airy stress
function F = F(x1, x2) by the formulas

S(2)11 = F,22 , S(2)22 = F,11 , S(2)12 = −F,12 (9.192)

∇2∇2 F = 0 (9.193)

Since φ = φ(x2), it follows from Eqs. (9.189) and (9.190) that the stress components
S(1)11 , S(1)22 , and S(1)12 are given by

S(1)11 = −2μm0T = −EαT0[1 − H(x2)] (9.194)

S(1)22 = S(1)12 = 0, |x1| ≤ 1, |x2| < ∞ (9.195)

and the problem is reduced to that of finding a biharmonic function F = F(x1, x2)

on the strip region: |x1| ≤ 1, |x2| < ∞ that complies with the boundary conditions

F,22 (±1, x2) = 2μm0T (9.196)

and
F,12 (±1, x2) = 0 (9.197)

An alternative form of (9.196) reads
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F,22 (±1, x2) = EαT0

2

⎡
⎣1 − 2

π

∞∫

0

sin βx2

β
dβ

⎤
⎦ (9.198)

Since

∇2(cos hβx1 sin βx2) = 0 (9.199)

∇2∇2(βx1 sinh βx1 sin βx2) = 0 (9.200)

and
F(x1, x2) = F(−x1, x2) (9.201)

the function F is postulated in the form [see Eq. 9.181 of Problem 9.5]

F(x1, x2) = EαT0

⎡
⎣ x2

2

4
+ 2

π

∞∫

0

(A cosh βx1 + Bβx1 sinh βx1)
sin βx2

β3 dβ

⎤
⎦

(9.202)
where A and B are arbitrary functions on [0,∞) that make the integral (9.202) to
converge for |x1| ≤ 1, |x2| < ∞.

Substituting (9.202) into the boundary conditions (9.197) and (9.198), respec-
tively, we obtain

A sinh β + B(sinh β + β cosh β) = 0

and
A cosh β + Bβ sinh β = 1/2 (9.203)

A unique solution to Eqs. (9.203) takes the form

A = sinh β + β cosh β

sinh 2β + 2β
(9.204)

B = − sinh β

sinh 2β + 2β
(9.205)

Hence substituting F = F(x1, x2) given by (9.202) in which A and B are given by
(9.204) and (9.205), respectively, into (9.192) we obtain the integral representation
of the stress tensor S(2). A solution to Problem 9.5 is obtained in the form

S = S(1) + S(2) (9.206)

where S(1) and S(2) are given by Eqs. (9.194)–(9.195) and (9.192), respectively.
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