Chapter 9
Solutions to Particular Two-Dimensional
Boundary Value Problems of Elastostatics

In this chapter a number of two-dimensional boundary value problems for a body
under plane strain conditions or under generalized plane stress conditions are solved.
The problems include: (i) a semispace subject to an internal concentrated body force,
(i1) an elastic wedge subject to a concentrated load at its tip, and (iii) an infinite
elastic strip subject to a discontinuous temperature field. To solve the problems a
two-dimensional version of the Boussinesq-Papkovitch-Neuber solution as well as
an Airy stress function method, are used.

9.1 The Two-Dimensional Version
of Boussinesq-Papkovitch-Neuber
Solution for a Body Under Plane Strain Conditions

An elastic state s = [u, E, S] corresponding to a body under plane strain conditions
is described by the equations [see Egs.7.70 and 7.71 in Problem 7.1.]

1
g = VYo — m(xylﬂy +¢)a 9.1
where
Y _ le 9.2)
ayy m :
and b
Xy by
@y = (9.3)
Yy m

The strains Eyg and stresses Sy, associated with uy, are given, respectively, by
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Eop = sq 20 =29 V@p) = Xy ¥yap — bap] (9.4)

and

7

m[z(l —2v) w(a,ﬂ) — Xy wy,otﬂ +2v Wy,y‘saﬂ - §0,a;‘3] 9.5)

Sap =

If a concentrated force Py normal to the boundary of a semispace |x{| < 0o, x2 >0
is applied at the point (x1, x2) = (0, 0), and suitable asymptotic conditions are
imposed on s = [u, E, S] at infinity, then a suitable choice of the pair (¢, V) leads
to the stress tensor Syg in the form

Sii=— , So=——7x, Sp=——7 9.6
11 —atia, S» A Si el b (9.6)

r=|x| = 1/)cl2 +x% 9.7

In polar coordinates (r, ¢) related to the Cartesian coordinates (x1, x2) by

where

X] =7 CcoS¢, Xp=r sing (9.8)
we obtain
2P .
Spp=———sin ¢, Sy, =358,=0 (9.9)
Tr

Clearly, it follows from (9.6) and (9.9) that

S| =0 as r - o0 (9.10)
Similarly, if a concentrated force Tj tangent to the boundary of a semispace
|x1] < 00,x2 > 0 is applied at the point (x1, x2) = (0, 0), and suitable asymp-

totic conditions are imposed on s = [u, E, S] at infinity, then a suitable choice of the
pair (¢, ¥ ) leads to the stress tensor Syg in the form

2To 2To 2To
Sii=———xi, Spm=-———xx}, Sp=-——xin 9.11)
Tr Tr Tr

In polar coordinates (r, ¢) we obtain
Ty
Syr = i cos ¢, Spp=S84,=0 (9.12)

and it follows from Egs. (9.11) and (9.12) that

S| >0 as r > o© (9.13)
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9.2 Problems and Solutions Related to Particular
Two-Dimensional Boundary Value Problems
of Elastostatics

Problem 9.1. Find an elastic state s = [u, E, S] corresponding to a concentrated
body force in an interior of a homogeneous and isotropic semispace |xj| < oo,
X3 > 0, under plane strain conditions, when the boundary of semispace is stress free
and the elastic state satisfies suitable asymptotic conditions at infinity.

Solution. We confine ourselves to the case when the semispace: |xj| < o0,
xp > 0 with stress free boundary x» = 0 is subject to the body force of the form

by = bo 8a2 8(x1) 8(x2 — &2) (9.14)

where b represents intensity of the force and & > 0. This means that the semispace
is subject to an internal force that is normal to its boundary and concentrated at the

point (0, &).
A solution s = [u, E, S] to the problem is to be found by using a restricted form
of Boussinesq—Papkowitch—Neuber solution [see Egs. (9.1)—(9.5) in which we let

V1=0.Y2=9,9=9¢]

1
uj =—m(x2l/f7l+</),l) (9.15)

1
= — 3 —_ 4 - 2 ¥ 916
u 4(1_‘))[( V) Y —x2%,2 —¢,2 ] (9.16)
where ¥ = ¥ (x1, x2) and ¢ = @(x1, x2) satisfy Poisson’s equations

1
1/[,},’,.: ——b2 (9-17)
w

and 1
@.rr = —X2b2 (9.18)
m

The strain and stress fields are then given, respectively, by

1
En =m[—x21//,11—¢,11] (9.19)
1
Ey = m[z(l —20)¥,0 —x2V,20 — @,22 | (9.20)
E1 [A=2v)Y,1 —x2¥, 12— ¢,12] 9.21)

pETy
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and
i = ﬁ [—x2v 11 + 2002 — 0,11 ] 9.22)
Sy = ﬁ 2 =¥ —x2¥,22—¢,22] (9.23)
S]2 = ﬁ [(1 — 21))1//,] _x21ﬂ,]2 —(P,12] (924)

The boundary conditions take the form
S12(x1,0) = S22(x1,0) =0 for |x1| < 00 (9.25)
In addition, we assume suitable vanishing conditions at infinity, and suitable restric-
tions on u to obtain a unique solution to the problem.
To this end we look for a solution s = [u, E, S] in the form
s =50 450 (9.26)
where 50 = [u©@, E@ §@] s a solution for an infinite plane |x| < oo, |x2] < 00

subject to the body force (9.14), and sO = [®, ED, S(l)] is a solution for a
semispace |x1| < 00, xp > 0 subject to the boundary conditions

SV (1, 0) = =59 (x1,0) 9.27)

and 1 .
S (x1,0) = =S (x1,0) (9.28)

This amounts to looking for a pair (¥, ¢) in the form

v =9 @ 4+ y® (9.29)
and
o =90+ (9.30)
where 1
vy = _Zp, (9.31)
"
and .
V2 ® = Zxob, (9.32)
"
and

vy =0, v =0 (9.33)
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Substituting by from (9.14) into (9.31) and (9.32), respectively, we obtain
2.,(0) bo
VoYt = —;5(961)5(362 —&) (9.34)

and b
V2 = 07525@1)5@2 ) 9.35)

where we used the identity

X2 0(x2 — &) =6 06(x2 — &) (9.36)

Equations (9.34) and (9.35) are to be satisfied for every (x1, x2) € E 2 and for a fixed
positive & . The unique solutions to Egs. (9.34) and (9.35) are then given, respectively,
by

bg r
v O = 5 In (Zl) (9.37)
and bot
0= 2 (1)
where

r =X + (x2 — &)2 (9.39)

and L is a positive constant of the length dimension. The solution 5@ is obtained
by letting ¥ = ¥ @ and ¢ = ¢© into Egs. (9.15)-(9.16), (9.19)—(9.21), and
(9.22)—(9.24). Therefore, we obtain

©__ b e 0 (1
T =y 2 52) (L) (9.40)
O P R
Uy = 87 (1 —v) [(3 4v) — (x2 — &) 2]ln (L) (9.41)
and
O_ b 8 m
B = na =28 ax2 In (L) (9.42)

o _ bo 9 8_2 al
Y =i [2(1 — 21)) — (- &) %} (L) (9.43)
2

bo ad P rl
“ERd =W [(1 - 2\1)% — (x2 — &) 3x18x2i| In (Z) (9.44)
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The stress components § ]((1)), Ség), and Sl(g) are given by

O _ _L i _ _ 8_2 2t
S| = prTR— |:2v8x2 (x2 éz)axlzj|ln(L) (9.45)
©) _ bo i _ _ 3_2 n
S5, = prT— |:2(1 V) oxs (x2 — &) 3x22j| ln( ) (9.46)
) _ bo _ i _ _ 0? :| r_1
Sy = 2 T |:(1 2v) o (x2 52)8x18x2 ln( ) (9.47)

The solution s is to be found by letting v = ¢ and ¢ = @O into
Eqs.(9.15)=(9.16), (9.19)=(9.21), and (9.22)—(9.24), where ") and ¢ satisfy
Egs. (9.33); and (9.33),, respectively, for |x;| < 00, x> > 0, subject to suitable
boundary conditions at x = 0. A hint as to how ¥V and ¢ could be found
comes from the boundary conditions (9.27) and (9.28) written in terms of the pairs
W@, @) and (¥ V. pD):

[ =209 =" ] 1,0 = —f ) 948)
(=209 =¢8] 2 (x1.0) = —g@) (9.49)
where
fan=[a =209 =0 |1 0.0 9.50)
and
g =[@ =20 = 0. | 2 (11,0 ©.51)
Since -
8%111 (%) - / e~ 28l in o x  da (9.52)
0
and -
(1) = [ eebegl
P In (L) = /e cosaxjda (9.53)
0

therefore, because of (9.37) and (9.38) we obtain

oo
b
0= / e 8l sinax  da (9:54)
T
0
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and

e~ *M2=8l cos xida

s

N3
S
S
or

It follows from (9.55) that

e ¢]

b
%ig) = —0—&/e_“‘x2_52‘a sinaxjda
2w
0

225

(9.55)

(9.56)

and an extension of the RHS of (9.50) to include arbitrary point (x1, x2) reads

[0 =200 =6, | k1. 32)
o0

by

T 2
0

Hence

fx) = —b—o / e o8 [(1 —2v) — a&]sinax|da
2w
0

Similarly, we obtain

(0.¢]
b
w,g)): -0 /e“"m_&'cosaxlda
2w
0

and

o0

b d

gp,g;) = b2 —/e‘“'xz_&‘ cosaxjdo
27T 1 9x)

0
For 0 < x3 < & Eq. (9.60) takes the form

© _ bo&2

@y = i e &)y cos ax da

\8

0

Hence, using (9.59) and (9.61) we reduce (9.51) to the form

= —/e—“‘xz—&‘ [(1 —2v) — a&]sinax do

(9.57)

(9.58)

(9.59)

(9.60)

(9.61)
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o0
b
glxy) = -0 / e‘“gz[(Z —2v) + aér]cosaxda (9.62)
2w 1
0
Since
V2[e™ 2 cosaxy] = 0 (9.63)

an inspection of Egs. (9.33) and of the boundary conditions (9.48) and (9.49) in
which f and g are given by the integrals (9.58) and (9.62), respectively, leads to the
integral form of (1 and ¢V for |x;| < 00, x > 0:

oo
v D (xy, x0) = / A(o)e ™ cosaxda (9.64)
0
and
o0
oW (x1, x2) =/B(a)e—‘”2 cosaxida (9.65)
0

where A(«) and B(«) are arbitrary functions on [0, 0o) to be selected in such a way
that the boundary conditions (9.48) and (9.49) are satisfied. For the partial derivatives
of ¥ and ¢ that come into the boundary conditions (9.48) and (9.49) we obtain

o0
v =— / A(@)e™q sin axda (9.66)
0
oo
%g]) = —/B(oz)e_‘”?a cos axida (9.67)
0
o0
%éll) Z/B(oz)e““za2 sinaxido (9.68)
0
o0
W,gl) = —/A(a)ef"xza cosaxida (9.69)
0
o0
0.5 = / B(@)e~*2a? cos axjda (9.70)
0

Therefore, substituting (9.66) and (9.68) into (9.48), and (9.69) and (9.70) into (9.49),
and using f and g in the forms (9.58) and (9.62), respectively, we find that the
functions A = A(«) and B = B(«) must satisfy the linear algebraic equations
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b 1
(1 —2v)A +aB = —2—°e*“§2 [1—2v — ab)]
g
b
(2—2v)A +aB = __Oe*“fz—[z—zwasz] 9.71)
2w o

and the only solution (A, B) to (9.71) takes the form

bo a2 (14 2aé>)

A= (9.72)
27T 1L o
b 34
B = 2082 0, G4V (9.73)
2T o

It follows from Eqgs. (9.64)—(9.65) and (9.72)—(9.73) that the integral representations
of (D and ¢V are divergent, however, all partial derivatives of ¥ and ¢! are
represented by the convergent integrals. This implies that the integral representations
of E™ and SV are convergent. In the following we are to obtain first the integral

forms of E( and SV, as well as of u(l) and uéli, and next the integral representa-

tion of ug is used to recover u, (D by integration. Note that an alternative form of

Eqgs. (9.19)=(9.21) and (9.22)—(9.24), respectively, taken at v = %) and ¢ =

W, reads

(1) o _ o
E E; = 9.74
+ E5 >y 1# ( )

1—2v 1
(H (D (D (1) (H () (1)
Eyf —Ey =— V. BT [x (w’ll —¥., )+‘P’11 ‘/’22]

2—2v
(9.75)
)= 12 o 1 (v B +0.) (9.76)
12 4(1 —v) 1 4(1 —v) 2¥Vo12 '12 .
and | | |
S+ 85 = —1// & 9.77)

1-2 o
1 1 1 1 1 1 1
Sl(l)—S()——u, w() I:xg(iﬁ() w())+<p§1) (péz):l

1 — 2(1
(9.78)
iz = 2(1 —v) Vo 2(1 —v) (x2¢’12 + @12 ) (9.79)

Also, it follows from (9.15) and (9.16), respectively, taken at v = ¢! and ¢ =
o
@' that

1
a (1 Y]
u, = 4(1 > (leﬂ + @, ) (9.80)



228 9 Solutions to Particular Two-Dimensional Boundary Value Problems

and

1
M (H (H (e))
u2,1 = 4(1 _ V) [(3 _4‘))1#’1 —leﬂ»lz _§0,12 :I (981)

Therefore, substituting 10(1) and (p(l) from (9.64) and (9.65), respectively, where A
and B are given by (9.72) and (9.73), respectively into Egs. (9.74)—(9.81), we obtain

o0
by 1—2
=0 Y / e~ (1 4 2ay) cos ax dar (9.82)
2n 2 —2v
0

o0

/ efa(szrEZ)(l + 2a&p) cosaxida
0

by 1—2v

& ) _
Eir —En = _271[L2—2V

bo

o0
- /e_a(xz"'&)a[xg(l +2a6) — £(3 — 4v)] cosax;da
4l —v)
0

(9.83)

(1)_ b() 1—2v

_ b 1-2v —e(2+8) (1 4 20&y) sin axdo
4 g, = e ( &) 1
0

R Y S -
2 41— ) e [x2 — 3 —4v)& + 2aérxn] X asinaxjda
0
(9.84)
and
b o
Sﬁ) + S%) = Wo_v)/efa(xﬁsz)(l + 2a&r) cosaxida (9.85)
0
bo(1—2v) [
ol — 2V _
Sﬁ) - S%) = _m e HE) (1 4 20&5) cos axida
0

o
b
-0 / e 2t g [xy — (3 — 4v)&) + 20Erx2] cos ax;da
2r (1l —v)
0

(9.86)
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oo
a _ b()(l - 21))

2= amd =) em 2t (] 4 2a8) sinaxida
0

o0
b
+ L — / e H) [xy — (3 — 4v)ér + 20érxs|a sin ax da
4 (1 —v)
0

(9.87)
In addition, Eqgs. (9.80) and (9.81), respectively, imply that
b o0
W) = ——2 / TR ) (3—4v)Er + 206 x0 ] sinaxida (9.88)
8l —v)
0

and
o
m _ b —a(+E) 2
Uy | = c———— / e {3—4v+1[(3 —4v)& + x2]o + 26 x0207}
’ 8l —v)
0

X sinaxido (9.89)
It follows from Eqs. (9.82)—(9.89), respectively, that E(V), §() uil), and ug% are rep-
resented by the convergent integrals for any point of the semispace: |x1|<o0o, x2> 0.
In addition, by using the formulas [see (9.52) and (9.53)]

o]

d R
e “cosaxjda = —1In (—) (9.90)
ou L
b 5 (R
/e_“” sinaxjdo = —In | — (9.91)
8x1 L
0

and the formulas obtained from (9.90) and (9.91) by differentiation

o0
o a2 R
e “asinaxjda = — In{— (9.92)
dx10u L
T 3 [ (R\]
—au, 2
da = In{— 9.93
/e a” sinaxida o192 _n(L)_ ( )
0
o
3?2 [ (R\]
/67“”01 cosaxjda = e _ln (Z)_ (9.94)
0
T 3T (R\]
—ou, 2
do=—|In{— 95
/e a”cosaxida 53 _n(L)_ (9.95)
0
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R=\/x}+u? u>0 (9.96)

) (1)
,and Uy

where

1

the fields EV, SO ug can be obtained in terms of elementary functions.

For example, by using (9.91) and (9.92), the closed form of u%” is obtained

u = —$ [[X2 ~ G- 4v)sz]% [ (F)]

92 %)
o [n (z)]] ©.97)
ry = \/x7 + (x2 + £)2 (9.98)

To obtain a closed-form of ug) we integrate (9.89) with respect to x| over the interval
[0, x1] and obtain

—2x262

where

o0
0 M _ bo —a(rr+6)
uy (xr, x2) —uy (0, x2) = e
8ru(l —v)
0

X{3—4v+[B—-4)&E + x]a+ 252)520{2}

] —
x —COSEXL 4 (9.99)

o

By letting
u$"(0,x2) =0 forxy >0 (9.100)

Equation (9.99) can be written as

o0
u(zl) = b0 (3 —4v) / e_”("ZJ“&)—(1 — o axl)doz
8ru(l —v) o
0

o0
+[(B = 4v)& + x2] / e~ 2H) (1 _ cosax)da
0

o0
+2&x0 / e 42ty (1 — cosax;)da 9.101)
0

By integrating (9.91) with respect to x; we obtain
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o0
1— R
/ pmou Z —COSX1 L (_) (9.102)
o u
Hence
o0
/ pmatarey L ZCosaxy (9.103)
/ o x2+ &

and by differentiation of (9.103) with respect to x,, we obtain

o0
d
/e—“<x2+52>(1 — cosaxy)da = —— ln( 2 ) (9.104)
dx2 X2+ &
0
and
° 2
—a(x2+€2) 9 n
e 22 (1 — cosaxy)da = — In (9.105)
axy;  \x2+&

Finally, substituting (9.103), (9.104), and (9.105) into (9.101) we obtain u}" in the
form

b [(3—4\1) 1n( 2 )— (G — 46 + x0] - ln( 2 )
0x2

2 7 8ru(l—v) x2+& x2+&
ey ” ( 2 ) (9.106)
Xo——= In .
2 28x§ X2+ &

This completes a solution to Problem 9.1 in which the semispace is subject to an
internal force that is normal to its boundary and concentrated at the point (0, &;).
In a similar way a solution to Prob. 9.1 in which the semispace is subject to a
force that is parallel to its boundary and concentrated at (0, &), may be obtained.
Let U,» and Uy, respectively, denote the displacement of the semispace corre-
sponding to the unit normal and parallel forces at (0, &), and let I = (1, [) be an
arbitrary force concentrated at (0, &). Then the displacement u,, corresponding to a
solution to Problem 9.1 in which the semispace is subject to the concentrated force
I at (0, &) takes the form
ug = Uqplp (9.107)

This completes a solution to Problem 9.1 in which the semispace with stress free
boundary is subject to a concentrated force [ at (0, &).

Problem 9.2. Find an elastic state s = [u, E, S] corresponding to a concentrated
body force in an interior of a homogeneous and isotropic semispace |xj| < oo,
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x2 > 0, under plane strain conditions, when the boundary of semispace is clamped
and the elastic state vanishes at infinity.

Solution. Let the semispace |x;| < 00, xp > 0 with a clamped boundary x; = 0
be subject to the body force

by = bpdu28(x1)8(x2 — £2) (9.108)

An elastic state s = [u, E, S] corresponding to (9.108) and satisfying the boundary
conditions
ur(xr, 0) =uz(x1,0) =0 |xi| <00 (9.109)

and suitable vanishing conditions at infinity may be found in a way similar to that of
Problem 9.1. To this end we use Eqgs. (9.109)—(9.119) of Problem 9.1 to obtain u, E,
and S, respectively.

In particular, u1 and u; are to be found from the equations

1
uy =—m(w,1+¢,1) (9.110)

1
U2 = 4(1 _ U) [(3 - 4V)w - x2¢12 _(/)72] (9111)

where 1 and ¢ satisfy Poisson’s equations

Vzl/f——lb 9.112
= 2 9.112)
"

and {
V29 = —x2bs (9.113)
"

To find a pair (¥, ¢) that generates (11, uz) by Egs. (9.110)—(9.111) in such a way
that Egs. (9.109) are satisfied, we let

v =9 +yD x| <o00,x>0 (9.114)
and

9 =909 40D |x] <00,x,>0 (9.115)
where .

Viy©® = —br Il <oc0.x2 20 (9.116)
and

2.,0) _ l
V'™ = —x0by x| < 00,x3 >0 9.117)
n



9.2 Problems and Solutions Related to Particular Two-Dimensional Boundary 233

and
vy =0, v =0 (9.118)

and the harmonic functions ¥ (1) and ¢! defined for |x{| < 0o, x» > 0 are selected
in such a way that u and u> vanish at x, = 0. To obtain a pair (@, ¢©) we extend
Egs. (9.116)=(9.117) to the whole plane E? in which a normal force of intensity

bo is concentrated at (0, &) and a normal force of intensity—by is concentrated at
(0, —&>). This amounts to solving the equations

b
V2 — —;OS(xl)[S(xz — &) — 8(x2 + £)] (9.119)
and
V20 = &boxz[S(xz — &) —8(x2+&)] for x| < oo, |x2f <oo  (9.120)

Note that a restriction of Egs. (9.119)—(9.120) to the semispace |x1| < oo, x3 > 0
leads to Egs. (9.116)—(9.117), and an extension of W@, ¢©®) s denoted in the same
way as its restriction.

Since

x28(x2 — &) =&0(x2 — &) (9.121)

then
—x20(x2 — &) = —628(x2 — &) (9.122)

and replacing & by —& in (9.122) we get
—x28(x2 + 62) = £28(x2 + §2) (9.123)
Hence, Eq. (9.120) can be written as

b
VZp® = —fz [8(x2 — &) +8(x2 + £)] for x| < o0, [r2] <00 (9.124)

Proceeding in a way similar to that of solving Eqgs. (9.129) and (9.130) of Problem
9.1, from Eqgs. (9.119) and (9.124), respectively, we obtain

yO = _;T_OM [m (%) In (%2)] (9.125)
and
o= 22 [ (1) +n ()] 9.126)
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ria = /xt + (2 F&)? (9.127)

It follows from (9.125)—(9.127) that

where

v Q1,00 =0, |x1] <0 (9.128)
and

b
0O, 0) = 2521 (r—(’) x| < oo (9.129)
T L

ro = Jx] + &7 (9.130)

Also, using (9.110) and (9.111) in which ¥ = ¥ and ¢ = ¢©, and letting x, = 0
we obtain

where

b 0]
@ (x1,0) = b 9 (V—O) (9.131)
4 pu(l —v) oxy L
and
u (x1,0) =0 (9.132)
The displacements ugl) and uél) are represented by
1
D (1, xp) = i (xzw,ﬁ” +¢,§”) 9.133)
1
(D 1 (1) (1
s (. 22) = s [G=any® —xp " ] (9.134)
where /(1) and ¢! are harmonic on the semispace |x1| < 00, x2 > 0.
It is easy to check that the function ¢V = ¢ (x1, x2) given by
b
o0y xp) = — 2052 1 (3) (9.135)
T L
satisfies the Laplace’s equation
2 ()
Vep'/ =0 for |x1] <00, x0 >0 (9.136)

and complies with the boundary condition

wi(x1,0) = u'® (x1, 0) + ul” (x1,0) = 0 (9.137)
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To find w(l), note that because of (9.132) and (9.134), I/I(l) must satisfy the Laplace
equation for |x1| < 00, x2 > 0 subject to the boundary condition

G—ayp D, 0 = ¢, (1, 0) = =202 9 1y (2)

T 0X2 L7,
b ad
__bb2 0 (r—o) (9.138)
T 06 L
Since
o
/ e cos axjda (9.139)
3%2
0
therefore, (9.138) takes the form
b o0
3=y, 0) = — 22 / ¢~ cos axidar (9.140)
g
0

and we find that for any point of the semispace |x;| < 0o, x2 > 0

boéa 0 In (rz)

M __ B ("
V) == i, ML

(9.141)

As a result, because of (9.114) and (9.115), (9.125) and (9.126), and (9.135) and
(9.141), we obtain

b
1/f(x1,x2)=—Wo_4v) [( 4v)lr1( )+2§2—1n(L):| (9.142)
and
ot = 221 (”) (9.143)
2w )

Next, substituting ¢ and ¢ from Egs. (9.142) and (9.143), respectively, to
Egs. (9.110)—(9.111), we obtain a closed-form displacement vector u corresponding
to the solution s = [u, E, S]. The associated fields E and S, respectively, are obtained
by substituting ¢ and ¢ from (9.142) and (9.143), into Eqgs. (9.113)—(9.115) and
(9.116)—(9.119) of Problem 9.1.

This completes a solution to Problem 9.2 when the concentrated body force is
normal to the clamped boundary x> = 0.

If the concentrated body force is parallel to the clamped boundary x, = 0, Problem
9.2 may be solved in a similar way. When the body force is arbitrarily oriented
with regard to the clamped boundary xo = 0, a solution to Problem 9.2 is a linear
combination of the solutions corresponding to the normal and parallel directions of
the concentrated body force. This completes a solution to Problem 9.2.
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1 I

X; =7 CoS @

0 R
. 9) Xy = rsing

X2

Fig. 9.1 The infinite wedge loaded by a concentrated force

Problem 9.3. Suppose that a homogeneous isotropic infinite elastic wedge, sub-
jected to generalized plane stress conditions, is loaded in its plane by a concentrated
force [ applied at its tip (see Fig.9.1)

Xy =rcosep, 0=——¢

xy=rsing, |0 <«

Show that the stress components S, Ew, and EW corresponding to the force I and
vanishing at infinity take the form

— 21 cos ¢ 21, sin ¢
Spr(r, @) = - — A <
r (2a —sin2w) r (2o + sin2a)

Er(p(rv (p) = E(p(ﬂ(ra (p) = 0

forevery0 <r <oo., 7 /2—a <¢ <m /2+a.Notethat/; <Oandl; <0, and
|Syr| = oo fore — O and r > 0.

Solution. A solution to this problem is to be given in the two cases

i h#0, Lh=0
i) 1 =0, L #0
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The case (i). The stress components Sl‘r, Sllw, and S(g(p in a semi-infinite disk
|x1] < o0,x2 > 0 subject to a tangent concentrated force Ty at (0, 0) take the
form [see Eq. (9.12)]

S (r, ) = - cos @ = - sin 6 (9.144)

SN (r, @) = Sy, (r,9) =0 (9.145)

where 0 <r < 00,0 < ¢ < 2m.

A restriction of Egs. (9.144) and (9.145) to the wedge region shown in the Figure
provides a solution to Problem 9.3 in case (i) if a resultant tangent force at the tip of
the wedge is equal to /1, that is, if for every r > 0

o
/ Sl rsin0do =1 (9.146)
—a
Substituting S, from (9.144) into (9.146) we obtain

o

o
2TH ) 2Ty To .
——x2 [sin“df =—— | (1 —cos20)df =—— Lo —sin2a) = [;
b4
0

T T
0
(9.147)
Hence
Ty = 2 (9.148)
07 T2a —sin2a '
and substituting 7y from (9.148) into (9.144) we obtain
21

SE(r ) = —— (9.149)

r(2a — sin2w)

S;"w(r, @) =0, S;‘f(p(r, 9)=0 for 0 <r < o0, |@p— %’ <a (9.150)

S*

%
The stress components S/, S5,

S and g, represent a solution to Problem 9.3 in
case (i).

The case (ii). The stress components Srlr, Srl(p, and S(j(p in a semi-infinite disk

|x1] < oo,x3 > 0 subject to a normal force Py concentrated at (0, 0) take the
form [see Egs. (9.9)]

n 2Py . 2Py
Sy (s §0)=—Fsm(p=—gcose (9.151)

S (r @) = Sy (r,9) =0 (9.152)
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forevery 0 <r < o0, 0 < ¢ <2m.

Similarly as in the case (i), a restriction of Egs. (9.151)—(9.152) to the wedge
region provides a solution to Prob. 9.3 in case (ii) if a resultant normal force at the
tip of wedge is equal to />, that is, if for every r > 0

o
/ St rcosdo =1, (9.153)

—a

Substituting SrJ; from (9.151) into (9.153) and integrating, we obtain

2P0
/ (1 +cos20)d0 =1, (9.154)
or ,
27T
Pp= = 9.155
0 2a + sin 2« ( )

Finally, substituting Py from (9.155) into (9.151) we obtain

2l sing
s* L 9.156
) = e Fsin20) ©.156)
S @) = S (r @) =0 (9.157)

<.

for every 0 < r < o0, |% —¢
Th? stress components S, S7, and S;7, represent a solution to Prob. 9.3 in
case (ii).
A solution to Problem 9.3 takes the form

Sy =85+ 8%, Sp=28p,=0 (9.158)

This completes a solution to Problem 9.3

Problem 9.4. Show that for a homogeneous isotropic infinite elastic wedge under
generalized plane stress conditions loaded by a concentrated moment M at its tip
(see Fig.9.2) the stress components Sir, S,(p, and SW vanishing at infinity take the
form

2M sin (2¢ — @)
rZ sin o — o cos o
M cos (2¢ — o) — cos «

Er(p(ra §0) = _I"_2

Spr(r, ) =

sin @ — & CoS «
Ew(r,go)zo for every r >0, O0<¢ <«
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where

o
M= —r/(§r¢,r) )
0

Note that the stress components S, and Er(p become unbounded for @ = o™, where
a* is the only root of the equation

sina™ —a*cosa® =0
that is, for «* = 257.4°. Hence, the solution makes sense for an elastic wedge that
obeys the condition 0 < @ < a*.

Solution. The stress components S, Ew’ and EW produced in the wedge by a
moment M at its tip (see Figure) are to be found using an Airy stress function
F=F(r o)

_ 5 92\
S, = (v - m) F (9.159)
_ 9% _
Spp = —F 9.160
w0 = 3o ( )
— 9 (1 0F
Syp=——Q - — 9.161
ro -\ ag0) ( )
where o
V2V’F =0 (9.162)

Fig. 9.2 The infinite wedge

M
loaded by a concentrated
moment
Xy 0
[
® [(r. )
-
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and
2 19 1 92

Vi — - —4 - — 9.163
orz  r ar  r? 9¢? ( )

By inspection of (9.160) and (9.161), and of the definition of moment M, we
conclude that a biharmonic function F = F(p) is to solve the problem. In the
following we are to show that a solution to Problem 9.4 is obtained if F takes the
form

F(r,9) =c1(2¢ —a) + ¢2sin(Qp — a) (9.164)

where c1 and ¢, are constants to be determined from the stress free boundary condi-
tions at ¢ = 0 and ¢ = « for r > 0, and from the definition of M:

o

M = —r/E,w rdg (9.165)
0

Note that F given by (9.164) satisfies Eq. (9.162) since
V2 V2F = ¢,V [r 2 sin¢ —a)] =0 forO<r <oo, 0<¢ <a (9.166)

Substituting F from (9.164) into (9.159), (9.160), and (9.161), respectively, we obtain

_ in(2p —
S, = —4c w (9.167)
r
Spp =0 (9.168)
— 2
Srp = ) [c1 + c2cosp — a)] (9.169)
Also note that the boundary conditions
Sy =0 atg=0and g =« (9.170)
are satisfied if
c] = —cpcosa 9.171)

Therefore, substituting (9.171) into (9.164) and (9.169), respectively, we obtain

F=c [sin(Qp — o) — (29 — &) cos «] 9.172)
and
— 2¢o
Srp = o [cos(2¢p — o) — cos ] (9.173)

Hence, substituting (9.173) into (9.165) we obtain
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X1

S11=51,=0
T:T0¢0 /> 1 12

0
2
X2
7
T=0 Y\\>S11_512_0
Fig. 9.3 The infinite strip
o
M = —-2c¢; / [cos(Qp — ) — cosa]dy 9.174)
0

or
M

2(sina — o cos &)

o= (9.175)

Finally, by substituting ¢, from (9.175) into (9.167) and (9.173), respectively, we
obtain the required result. This completes a solution to Problem 9.4.

Problem 9.5. Consider a homogeneous isotropic infinite elastic strip under gener-
alized plane stress conditions: |x1| < I, |xz| < oo subject to the temperature field
of the form

T (x1,x2) = To[l — H(x2)] (9.176)

where Ty is a constant temperature and H = H (x) is the Heaviside function

1 for x >0
H(x)=11/2 for x=0 (9.177)
0 for x <O

Note that in this case, we complemented the definition of the Heaviside function by
specifying its value at x = 0 (Fig.9.3).

Show that the stress tensor field S = S(x1, x2) corresponding to the discontinuous
temperature (9.176) is represented by the sum
(2)

=543 (9.178)
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where | 1 1
54 = —EaToll — H(xp)], Sy =555 =0 (9.179)

and <@ <@ <@
Sll :F,221 522 =F,lls 512 =_F,12 (9180)

where the biharmonic function F = F(x1, x») is given by

2

22 ) sin B x2
Flo ) = Balo | =02 [ (A cosh x4 B fxy sinh fx) =537 B3 ¥
T
(9.181)
_siohB+pcoshp . sinhp (9.182)
sinh 28 + 28 sinh 28 + 28

Hint. Note that

2 —(1
SW (&1, x0) = =SV (&1, x12)

o0
EaT 2 T si
_ 2o 1——/Sm’3x2d,3 for |xa] < 00
2 B
0

Solution. To solve the problem we recall the integral representation of the Heaviside
step function

0 for x <O 1 i
H(xy) = {3 for x,=0 =§+;/
1 for x>0 0

sin ,sz

(9.183)

The temperature T (x|, x2) on the strip |x1| < 1, |x2| < oo is then represented by

o]

TG =To[l — Hox)] = =2 | 1 %/ SinBx2 g (9.184)
0

We are to find a stress tensor S corresponding to a solution s = [u, E, S] of a problem

of thermo-elastostatics for the strip subject to the discontinuous temperature (9.184)

when the strip boundaries x; = 1 and x; = —1 are stress free, that is, when
S11(£1, x2) = S1a(£1, x2) =0 for |x2| < 00 (9.185)

To this end we look for s in the form

s =251 +5 (9.186)
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where s; = [u”, ED, SM7 is generated from a displacement potential ¢ = ¢ (x»)
by the formulas

u) =vg (9.187)
EV =vve (9.188)
SO =2,(VV$ — V1) (9.189)

in which ¢ satisfies Poisson’s equation
V26 =moT, mo=(l+v)a (9.190)

where T is given by Eq. (9.184) and s, = [u®, E®, $®7is a solution of isothermal
elastostatics for the strip that complies with the boundary conditions

SD (£ 1) = =SV (1, x)
SD(£1, x) = =D (&1, x2) 9.191)

The stress components Sﬁ), Sg), and Sg) are to be computed from an Airy stress
function F = F(x1, x2) by the formulas

Sﬁ) =F.m, Sg) =F,1, 51%) =—F.,1» (9.192)
V2V2F =0 (9.193)

Since ¢ = ¢ (x7), it follows from Egs. (9.189) and (9.190) that the stress components
Sﬂ), S%), and Sg) are given by

SO = —2umoT = —EaToll — H(x)] (9.194)
Sy =Sy =0, x| <1, |x2| <00 (9.195)

and the problem is reduced to that of finding a biharmonic function F = F(x1, x2)
on the strip region: |x1| < 1, |x2| < oo that complies with the boundary conditions

F.y (£1,x2) = 2umgT (9.196)

and B
Foi2(+1,x)=0 (9.197)

An alternative form of (9.196) reads
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o
— EaT, 2 [si
Fo (£1,xp) = —=-2 1——/Smﬁx2dﬁ (9.198)
T B
0
Since
V2(cos hBx; sin Bxz) =0 (9.199)
V2V2(,3x1 sinh Bx; sin Bx2) =0 (9.200)
and _ B
F(xy, x2) = F(—x1, x2) (9.201)

the function F is postulated in the form [see Eq.9.181 of Problem 9.5]

— x% 2 7 . sin Bx;
F(x1,x2) = EaTy Z + ; / (A cosh Bx; + BBx; sinh Bxq) Tdﬁ
’ (9.202)

where A and B are arbitrary functions on [0, co) that make the integral (9.202) to
converge for |x1| < 1, |x2| < oo.

Substituting (9.202) into the boundary conditions (9.197) and (9.198), respec-
tively, we obtain

Asinh 8 4+ B(sinh § 4+ fcosh B) =0

and
AcoshB + BBsinh g =1/2 (9.203)

A unique solution to Egs. (9.203) takes the form

sinh 8 + B cosh B

A= DT TP P 9.204

sinh28 + 28 ( )

B= sinh § (9.205)
~ sinh2B 428 '

Hence substituting F = F(x1, x2) given by (9.202) in which A and B are given by
(9.204) and (9.205), respectively, into (9.192) we obtain the integral representation
of the stress tensor S@. A solution to Problem 9.5 is obtained in the form

S=80 48§ (9.206)

where S and S are given by Egs. (9.194)—(9.195) and (9.192), respectively.
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