Chapter 8
Solutions to Particular Three-Dimensional
Boundary Value Problems of Elastostatics

In this chapter the boundary value problems related to torsion of a prismatic bar
bounded by a cylindrical lateral surface and by a pair of planes normal to the lateral
surface, are discussed. It is assumed that a resultant torsion moment is applied at
one of the bases while the other is subject to a warping and the lateral surface is
stress free. In each of the problems an approximate three-dimensional formulation
is reduced to a two-dimensional one for Laplace’s or Poisson’s equation on the cross
section of the bar.

8.1 Torsion of Circular Bars

We consider a circular prismatic bar of length / and radius a referred to the Cartesian
coordinates (x1, x2, x3) in such a way that x3 coincides with the axis of the bar, the
bar is fixed at x3 = 0 in the (x1, x2) plane, while at x3 = [ a torsion moment M3 is
applied. This moment causes the bar to be twisted, and the generators of the circular
cylinder deform into helical curves. o

An elastic state s = [u, E, S] in the bar is approximated by 5 = [u, E, S], where

ulp = —uo x2 X3, ﬁz:axl)g, ﬁ3=0 (8.1)
and « is the angle of twist per unit length along the x3 axis

En=En=E3=Ep=0

: 1 3 1 (8.2)
3= -0 X[, = ——0 X
2 ) 1 31 ) 2
and ~ - ~ ~
Si1=5802=58=5812=0 83)
8§23 = paxy, 831 = —pax;
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The torsion moment M3 is

M3 = / (x1823 — x2831)dx1dxs = pat /(xl2 +xNdxidx, = pal (8.4
A A

where A is the area of the cross section : A = {(xy, x2) : xlz + x% < a},and J is
the polar moment of inertia of the cross section about its center. The product pJ is
called the rorsional rigidity of the bar. Also, since

Ny = Xxy/a, n3=0 on A (¢ =1,2) (8.5)

therefore, because of Eq. (8.3)

Sijnj=0 on 9A (i,j=1,23) (8.6)

that is, the elastic state s = [u, E, §] satisfies the homogeneous boundary conditions:
(i)u =0on x3 = 0, and (ii) Sn = 0 on the lateral surface dA x [0, I]. A shear stress
boundary condition on the plane x3 = [ is replaced by application of the resultant
moment M3 on this plane.

Torsion of Noncircular Prismatic Bars

A noncircular prismatic bar of length / is fixed at x3 = 0 in the sense that the
displacement components in the (xg, x2) plane vanish while the axial displacement
is subject to a warping, and the other end x3 = [ is twisted by a moment M3; the
lateral surface of the bar is stress free and no body forces are present. Therefore, an
elastic state s = [u, E, S] in the bar is approximated by 5 = [u, E, S] in which

Uy =—aXx2Xx3, Uy=0ox1x3, Uz=aypx,x) (8.7
where ¢ = ¥ (x1, x7) is called awarping function. The strain-displacement relations,
the equilibrium equations with zero body forces, and the constitutive stress-strain

relations, respectively, associated with the displacements (8.7), take the forms

Ejn=En=E;=E;p=0

- 1 _ 1 (8.8)
Eyxz = Ea(lpl + x1), E3= 501 (Y1 —x2)
Y+ y22=0 89)
and ~ ~ ~ ~
Si=82=53=S2=0 (8.10)

Sz = pa (Yo +x1), S31 = pa(y — x2)

The torsion moment M3 takes the form
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M3 = / (X1§23 —xz§31)dX]dX2 =aD (8.11)
A

where
D=pu /(x12+x%+X11/f,2—leﬂ,l)dxldxz (8.12)
A

is called the torsional rigidity of the bar.
The boundary conditions are satisfied in the following sense. The bases x3 = 0
and x3 = [ of the bar are the resultant force free, that is,

F =/§31dx1dx2 =0, F, =/§32dx1dx2 =0 (8.13)
A A

and the distribution of shear stresses on the base x3 =/ is represented by the torsion
moment M3. To satisfy the stress free lateral surface boundary condition, we postulate
that
oy
— = Xpn|p — Xjnp On 0A (8.14)
on
As a result, the torsion problem of a noncircular prismatic bar has been solved once
a warping function ¢ = ¥ (x1, x2) that satisfies the harmonic equation

V2% =0 on A (8.15)
subject to the boundary condition

0
W o ony —ximy on 9A (8.16)
on
has been found.
For example, for an elliptic bar with semi-axes a and b and with the center at the
origin, we obtain

b2_a2
Y(xy, x2) = mxlxz (8.17)
and
313
wua’b
= i Mz =aD (8.18)
S 2Ms S = =M (8.19)
= - X2, = X .
13 T 13= 5N



212 8 Solutions to Particular Three-Dimensional Boundary Value

Prandtl’s Stress Function
Prandtl’s stress function ¢ = ¢ (x1, x2) is defined in terms of the warping function
Y = ¥ (x1, x2) by the formulas

$o=paly —x) =S
¢1=—pa(Pr+x)=—53 (3:20)

One can show that the boundary value problem for the warping function ¥ =
¥ (x1, x2), described by Egs. (8.15) and (8.16), is equivalent to finding a Prandtl’s
stress function ¢ = ¢ (x1, x) that satisfies Poisson’s equation

V¢ =—2ua on A (8.21)
subject to the homogeneous boundary condition
¢=0 on 0A (8.22)

while the torsion moment M3 is calculated from the formula

Mz =2 /¢(X1, x2)dx1dx; (8.23)
A

8.2 Problems and Solutions Related to Particular
Three-Dimensional Boundary Value
Problems of Elastostatics—Torsion Problems

Problem 8.1. Show that the warping function ¢ = const solves the torsion problem
of a circular bar.

Solution. By letting ¥ = 0 in Egs. (8.7)~(8.10) we obtain 5 = [, E, S], where
u, E and S are given by Eqgs. (8.1)—(8.3), respectively, that describes a solution to the
torsion problem of a circular bar.

Problem 8.2. Show that in the torsion problem of an elliptic bar, the resultant shear
stress S; at points on a given diameter of the ellipse is parallel to the tangent at the
point of intersection of the diameter and the ellipse [see Fig. 8.1].

Solution. For an elliptic bar subject to a torsion moment M3, the stresses S13 and
S»3, respectively, are given by [see Egs. (8.19)]

B 7 ab’

X2 (8.24)
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and
Sy = 22 (8.25)
B! ’
The resultant shear stress magnitude is then computed from the formula
1/2
1= S5+ 5 T mwab\adt b ’

Equations (8.24)—(8.26) hold true for any point of the elliptical cross section of the
bar. In particular, for any such point, because of (8.24) and (8.25)

S 2
B X (8.27)
$23 b* x1

Therefore, the ratio S;3 / Sy3 is constant along the diameter of the ellipse shown in
Fig. of Problem 8.2 represented by the equation

a2 X2

— ﬁxl = ¢ = const (¢ > 0) (8.28)

As a result, the resultant shear stress vector T = §13 e + §23 e>, where e; =
(1,007, e; = (0, 1)7, coincides with the tangent vector at the point of intersection
of the diameter and the ellipse. Substituting x, from (8.28) into (8.26) we obtain

. 2M
5 =M i (8.29)

7 ab a?

This formula shows that for x; > 0 E is a linear function of x| along the diameter.
This completes a solution to Problem 8.2.

Problem 8.3. Show that the torsion moment in terms of Prandtl’s stress function

¢ = ¢ (x1, x2) is expressed by

M3 =2 /¢(X1,X2)dX1dX2

Solution. A solution to this problem is obtained from Eqgs. (8.11)—(8.12), (8.15)—
(8.16), and (8.20)—(8.22).

Problem 8.4. Show that Prandtl’s stress function ¢ = ¢ (x1, x2) given by

32;Laal i sm(%) 1 cosh("ga’l‘z) (nnxl)
— cos

3
n nwa 2a
n=1,3,5,. COSh( a12) 1

¢ (x1,x2) =
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Fig. 8.1 The cross section of an elliptic bar in torsion

solves the torsion problem of a bar with the rectangular cross section: |x1| < ajy,
|x2] < ap. Also, show that in this case the torsion moment

aj

a
Ms =2 / / ¢ (x1, x2)dx1dxs = pa2ar)’ az) k*

—a) —ap

where

Q) 13,

00
k* = % 1 - 17T9_52 (a_l) Z nistanh (n;:lz)
Solution. For the rectangular cross section Co : |x1| < ay, |x2| < a2, Prandtl’s
stress function ¢ = ¢ (x1, x7) satisfies Poisson’s equation
V2p = —2pa on Cp (8.30)
subject to the homogeneous boundary condition

¢=0 ondCo (8.31)

Since o
cos (7) =0 forn=13.5,... (8.32)

therefore, ¢ = ¢ (x1, x2) given by
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32 puaat sin (% ch (ngxz) b4
e = 22l 5 EE) S s ()
T _ n ch (nnaz) 2aq
n=1,3,5,... a

(8.33)
satisfies the homogeneous boundary condition (8.31).
In addition, applying V? to (8.33) and using the identity

5 nwTXxX| nwxy
V“|cos ch = (8.34)
2a1 2a1

29— _SHe
Vi =—— >

n=1,3,5,...

we obtain

(8.35)

Hence, ¢ given by (8.33) satisfies (8.30) if the function 1 on |x;| < a; can be
represented by the Fourier’s series

sin (%) cos ("272’:1)

n

lx1] < ai (8.36)

4
1=—
7Tn=1,3,5,m

To show (8.36) we multiply (8.36) by cos (kga’i‘ ) and integrate over |x1| < aj, and

obtain
aj
k 4 sin (&
/cos(nxl)dxlz— (2)
2a; T n
“a n=1,3,5,...
aj
kmxy nix|
X cos cos dx (8.37)
2a; 2a;
“a
Since
ai k
/cos TN cos () dxy = ardpy forn k=1,3.5,...  (8.38)
2ay 2ay
“a
and

k 4 k
/ cos [T gy, = 2 gin (22 (8.39)
2ay km 2
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therefore, Eq. (8.37) is an identity. This proves that the expansion (8.36) holds true,
and as a result ¢ given by (8.33) solves the torsion problem of a bar with the rectan-
gular cross section.

To calculate the torsion moment we use the formula

ar @
Mz =2 / / ¢ (x1, x2)dx1dx; (8.40)
—a) —ay

Substituting ¢ from (8.33) into (8.40) we obtain

64 sin (%) ch (ng Xz)
M3 Maal / / Z 2 — - COS (’127.”Cl ) dxldxz
iy n=13.5.. ch (néflal ) a
32 pa(2ay)? (2a2) 1 64 pa2ap)* 1 nmway
= = e = tanh 2
n=1,3,5,... n=1,3,5,...
(8.41)
Since
4
— (8.42)

n=1,3,5,...

therefore, substituting (8.42) into (8.41) we obtain

1 192
Ms= - paa)2a x [1- — 2 > —tanh (”’”’2) (8.43)
3 75 ap i nd 2a;

This completes a solution to Problem 8.4.

Problem 8.5. Show that Prandtl’s stress function
2 0
9(r.0) = T2 =) ( - 1)

defined over the region

b b
O<b<r<2a—b —cos'—)<6<cos™'(—
2a 2a

solves the torsion problem of the circular shaft with a circular groove shown in
Fig.8.2; in particular, find the stresses S13 and S>3 on the boundary of the shaft.

Hint. Use the polar coordinates
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Fig. 8.2 The cross section of X,
a circular bar with a circular
groove

\
57
\
a \\
0 6 \
1 .
b | /i ] X
1 ]
\ 7
\ /
\ V4
\ 7/
Xy =r cosf, xp=rsind
Solution. First, we note that the function
o 2a cos O
O, 0) = “7@2 —b?) ( - 1) (8.44)
r

vanishes on the boundary of the circular shaft with a circular groove shown in
Fig. of Problem 8.5.
Next, using V2 in the form

92 19 1 92

V=t Tt (345
and the equations
V2(rcos 0) = V2(r~'cos) =0 (8.46)
and applying V2 to (8.44) we obtain
V2 = -2 pa (8.47)

Therefore, ¢ solves the torsion problem of the circular shaft with a circular groove. In
particular, the stresses S13 and S»3 are computed from the formulas [see Egs. (8.20)]

Si3=¢2 Spn=—¢. (8.48)

Substituting ¢ from (8.44) into (8.48), and using the polar coordinates, we obtain
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- b2
S13 = pnaxp (Za X1— — 1) (8.49)
r
and
~ b2 b2
S = —pa [a (1 - —2) —x1 +2ax3 —4} (8.50)
r r
In Eqgs. (8.49) and (8.50)
X; =rcos@ xp =rsinf (8.51)

By letting r = b in (8.49) and (8.50) we get

Si3lr=p = pa(2acosd — b) sin @ (8.52)
S23lrmp = —pa(2a cos O — b) cos O (8.53)

Hence, the resultant shear stress magnitude for » = b takes the form

~ - - 1/2
S, = (513 + 523) — pa(Racosé — b) (8.54)
Since ~ ~
a8, 825,
L =0, — <0 atf = (8.55)
90 962

the function S, = S (0) attains a maximum at & = 0. Hence, the resultant shear
stress attains a maximum at the point (x1, x2) = (b, 0) and

S,(0 =0) = ua(2a — b) (8.56)
Ifb — 0,the RHS of (8.56) — 2uaa. Hence, for a small groove radius the maximum

resultant shear stress doubles that of a bar with a circular cross section [see Eq. (8.3)].
This completes a solution to Problem 8.5.
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