
Chapter 8
Solutions to Particular Three-Dimensional
Boundary Value Problems of Elastostatics

In this chapter the boundary value problems related to torsion of a prismatic bar
bounded by a cylindrical lateral surface and by a pair of planes normal to the lateral
surface, are discussed. It is assumed that a resultant torsion moment is applied at
one of the bases while the other is subject to a warping and the lateral surface is
stress free. In each of the problems an approximate three-dimensional formulation
is reduced to a two-dimensional one for Laplace’s or Poisson’s equation on the cross
section of the bar.

8.1 Torsion of Circular Bars

We consider a circular prismatic bar of length l and radius a referred to the Cartesian
coordinates (x1, x2, x3) in such a way that x3 coincides with the axis of the bar, the
bar is fixed at x3 = 0 in the (x1, x2) plane, while at x3 = l a torsion moment M3 is
applied. This moment causes the bar to be twisted, and the generators of the circular
cylinder deform into helical curves.

An elastic state s = [u,E,S] in the bar is approximated by s̃ = [̃u,˜E,˜S], where

ũ1 = −α x2 x3, ũ2 = α x1 x3, ũ3 = 0 (8.1)

and α is the angle of twist per unit length along the x3 axis

˜E11 = ˜E22 = ˜E33 = ˜E12 = 0

˜E23 = 1

2
α x1, ˜E31 = −1

2
α x2

(8.2)

and
˜S11 = ˜S22 = ˜S33 = ˜S12 = 0

˜S23 = μα x1, ˜S31 = −μα x2
(8.3)
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The torsion moment M3 is

M3 =
∫

A

(x1˜S23 − x2˜S31)dx1dx2 = μα

∫

A

(x2
1 + x2

2 )dx1dx2 ≡ μα J (8.4)

where A is the area of the cross section : A = {(x1, x2) :
√

x2
1 + x2

2 ≤ a}, and J is
the polar moment of inertia of the cross section about its center. The product μJ is
called the torsional rigidity of the bar. Also, since

nα = xα/a, n3 = 0 on ∂A (α = 1, 2) (8.5)

therefore, because of Eq. (8.3)

˜Si j n j = 0 on ∂A (i, j = 1, 2, 3) (8.6)

that is, the elastic state s̃ = [̃u,˜E,˜S] satisfies the homogeneous boundary conditions:
(i) ũ = 0 on x3 = 0, and (ii)˜Sn = 0 on the lateral surface ∂A × [0, l]. A shear stress
boundary condition on the plane x3 = l is replaced by application of the resultant
moment M3 on this plane.

Torsion of Noncircular Prismatic Bars

A noncircular prismatic bar of length l is fixed at x3 = 0 in the sense that the
displacement components in the (x1, x2) plane vanish while the axial displacement
is subject to a warping, and the other end x3 = l is twisted by a moment M3; the
lateral surface of the bar is stress free and no body forces are present. Therefore, an
elastic state s = [u,E,S] in the bar is approximated by s̃ = [̃u,˜E,˜S] in which

ũ1 = −α x2 x3, ũ2 = α x1 x3, ũ3 = α ψ(x1, x2) (8.7)

whereψ = ψ(x1, x2) is called a warping function. The strain-displacement relations,
the equilibrium equations with zero body forces, and the constitutive stress-strain
relations, respectively, associated with the displacements (8.7), take the forms

˜E11 = ˜E22 = ˜E33 = ˜E12 = 0

˜E23 = 1

2
α(ψ,2 + x1), ˜E31 = 1

2
α (ψ,1 − x2)

(8.8)

ψ,11 + ψ,22 = 0 (8.9)

and
˜S11 = ˜S22 = ˜S33 = ˜S12 = 0
˜S23 = μα(ψ,2 + x1), ˜S31 = μα(ψ,1 − x2)

(8.10)

The torsion moment M3 takes the form
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M3 =
∫

A

(x1˜S23 − x2˜S31)dx1dx2 = α D (8.11)

where

D = μ

∫

A

(x2
1 + x2

2 + x1ψ,2 − x2ψ,1)dx1dx2 (8.12)

is called the torsional rigidity of the bar.
The boundary conditions are satisfied in the following sense. The bases x3 = 0

and x3 = l of the bar are the resultant force free, that is,

F1 =
∫

A

˜S31dx1dx2 = 0, F2 =
∫

A

˜S32dx1dx2 = 0 (8.13)

and the distribution of shear stresses on the base x3 = l is represented by the torsion
moment M3. To satisfy the stress free lateral surface boundary condition, we postulate
that

∂ψ

∂n
= x2n1 − x1n2 on ∂A (8.14)

As a result, the torsion problem of a noncircular prismatic bar has been solved once
a warping function ψ = ψ(x1, x2) that satisfies the harmonic equation

∇2ψ = 0 on A (8.15)

subject to the boundary condition

∂ψ

∂n
= x2n1 − x1n2 on ∂A (8.16)

has been found.
For example, for an elliptic bar with semi-axes a and b and with the center at the

origin, we obtain

ψ(x1, x2) = b2 − a2

b2 + a2 x1x2 (8.17)

and

D = π μ a3b3

a2 + b2 , M3 = α D (8.18)

˜S13 = − 2M3

π ab3 x2, ˜S13 = 2M3

π a3b
x1 (8.19)
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Prandtl’s Stress Function
Prandtl’s stress function φ = φ(x1, x2) is defined in terms of the warping function
ψ = ψ(x1, x2) by the formulas

φ,2 = μα(ψ,1 − x2) = ˜S13

φ,1 = −μα(ψ,2 + x1) = −˜S23
(8.20)

One can show that the boundary value problem for the warping function ψ =
ψ(x1, x2), described by Eqs. (8.15) and (8.16), is equivalent to finding a Prandtl’s
stress function φ = φ(x1, x2) that satisfies Poisson’s equation

∇2φ = −2μα on A (8.21)

subject to the homogeneous boundary condition

φ = 0 on ∂A (8.22)

while the torsion moment M3 is calculated from the formula

M3 = 2
∫

A

φ(x1, x2)dx1dx2 (8.23)

8.2 Problems and Solutions Related to Particular
Three-Dimensional Boundary Value
Problems of Elastostatics—Torsion Problems

Problem 8.1. Show that the warping functionψ = const solves the torsion problem
of a circular bar.

Solution. By letting ψ = 0 in Eqs. (8.7)–(8.10) we obtain s̃ = [̃u,˜E,˜S], where
ũ,˜E and˜S are given by Eqs. (8.1)–(8.3), respectively, that describes a solution to the
torsion problem of a circular bar.

Problem 8.2. Show that in the torsion problem of an elliptic bar, the resultant shear
stress ˜St at points on a given diameter of the ellipse is parallel to the tangent at the
point of intersection of the diameter and the ellipse [see Fig. 8.1].

Solution. For an elliptic bar subject to a torsion moment M3, the stresses ˜S13 and
˜S23, respectively, are given by [see Eqs. (8.19)]

˜S13 = − 2 M3

π ab3 x2 (8.24)
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and
˜S23 = 2 M3

π a3b
x1 (8.25)

The resultant shear stress magnitude is then computed from the formula

˜St =
(

˜S2
13 + ˜S2

23

)1/2 = 2 M3

π ab

(

x2
1

a4 + x2
2

b4

)1/2

(8.26)

Equations (8.24)–(8.26) hold true for any point of the elliptical cross section of the
bar. In particular, for any such point, because of (8.24) and (8.25)

˜S13

˜S23
= −a2

b2

x2

x1
(8.27)

Therefore, the ratio ˜S13/˜S23 is constant along the diameter of the ellipse shown in
Fig. of Problem 8.2 represented by the equation

− a2

b2

x2

x1
= c = const (c > 0) (8.28)

As a result, the resultant shear stress vector τ̃ = ˜S13 e1 + ˜S23 e2, where e1 =
(1, 0)T , e2 = (0, 1)T , coincides with the tangent vector at the point of intersection
of the diameter and the ellipse. Substituting x2 from (8.28) into (8.26) we obtain

˜St = 2 M3

π ab

√

1 + c2 |x1|
a2 (8.29)

This formula shows that for x1 > 0 ˜St is a linear function of x1 along the diameter.
This completes a solution to Problem 8.2.

Problem 8.3. Show that the torsion moment in terms of Prandtl’s stress function
φ = φ(x1, x2) is expressed by

M3 = 2
∫

A

φ(x1, x2)dx1dx2

Solution. A solution to this problem is obtained from Eqs. (8.11)–(8.12), (8.15)–
(8.16), and (8.20)–(8.22).

Problem 8.4. Show that Prandtl’s stress function φ = φ(x1, x2) given by

φ(x1, x2) = 32μα a2
1

π3

∞
∑

n=1,3,5,...

sin
( nπ

2

)

n3

⎡

⎣1 −
cosh

(

nπ x2
2a1

)

cosh
(

nπ a2
2a1

)

⎤

⎦ cos

(

nπ x1

2a1

)
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x 1

− a

b

− b

St

a

x 2

0

Fig. 8.1 The cross section of an elliptic bar in torsion

solves the torsion problem of a bar with the rectangular cross section: |x1| ≤ a1,
|x2| ≤ a2. Also, show that in this case the torsion moment

M3 = 2

a1
∫

−a1

a2
∫

−a2

φ(x1, x2)dx1dx2 = μα(2a1)
3(2a2) k∗

where

k∗ = 1

3

⎡

⎣1 − 192

π5

(

a1

a2

) ∞
∑

n=1,3,5,...

1

n5
tanh

(

nπ a2

2a1

)

⎤

⎦

Solution. For the rectangular cross section C0 : |x1| ≤ a1, |x2| ≤ a2, Prandtl’s
stress function φ = φ(x1, x2) satisfies Poisson’s equation

∇2φ = −2μα on C0 (8.30)

subject to the homogeneous boundary condition

φ = 0 on ∂C0 (8.31)

Since
cos

(nπ

2

)

= 0 for n = 1, 3, 5, . . . (8.32)

therefore, φ = φ(x1, x2) given by
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φ(x1, x2) = 32μα a2
1

π3 ×
∑

n=1,3,5,...

sin
( nπ

2

)

n3

⎡

⎣1 −
ch

(

nπx2
2a1

)

ch
(

nπa2
a1

)

⎤

⎦ cos

(

nπx1

2a1

)

(8.33)
satisfies the homogeneous boundary condition (8.31).

In addition, applying ∇2 to (8.33) and using the identity

∇2
[

cos

(

nπx1

2a1

)

ch

(

nπx2

2a1

)]

= 0 (8.34)

we obtain

∇2φ = −8μα

π

∑

n=1,3,5,...

sin
( nπ

2

)

cos
(

nπx1
2a1

)

n
(8.35)

Hence, φ given by (8.33) satisfies (8.30) if the function 1 on |x1| ≤ a1 can be
represented by the Fourier’s series

1 = 4

π

∑

n=1,3,5,...

sin
( nπ

2

)

cos
(

nπx1
2a1

)

n
|x1| ≤ a1 (8.36)

To show (8.36) we multiply (8.36) by cos
(

kπx1
2a1

)

and integrate over |x1| ≤ a1, and

obtain

a1
∫

−a1

cos

(

kπx1

2a1

)

dx1 = 4

π

∑

n=1,3,5,...

sin
( nπ

2

)

n

×
a1

∫

−a1

cos

(

kπx1

2a1

)

cos

(

nπx1

2a1

)

dx1 (8.37)

Since

a1
∫

−a1

cos

(

kπx1

2a1

)

cos

(

nπx1

2a1

)

dx1 = a1δkn for n, k = 1, 3, 5, . . . (8.38)

and
a1

∫

−a1

cos

(

kπx1

2a1

)

dx1 = 4a1

kπ
sin

(

kπ

2

)

(8.39)
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therefore, Eq. (8.37) is an identity. This proves that the expansion (8.36) holds true,
and as a result φ given by (8.33) solves the torsion problem of a bar with the rectan-
gular cross section.

To calculate the torsion moment we use the formula

M3 = 2

a1
∫

−a1

a2
∫

−a2

φ(x1, x2)dx1dx2 (8.40)

Substituting φ from (8.33) into (8.40) we obtain

M3 = 64μαa2
1

π3 ×
a

∫

−a1

a2
∫

−a2

∑

n=1,3,5,...

sin
( nπ

2

)

n3

⎡

⎣1 −
ch

(

nπx2
2a1

)

ch
(

nπa2
2a1

)

⎤

⎦cos

(

nπx1

2a1

)

dx1dx2

= 32μα(2a1)
3(2a2)

π4

∑

n=1,3,5,...

1

n4 − 64μα(2a1)
4

π5

∑

n=1,3,5,...

1

n5
tanh

(

nπa2

2a1

)

(8.41)

Since
∑

n=1,3,5,...

1

n4 = π4

96
(8.42)

therefore, substituting (8.42) into (8.41) we obtain

M3 = 1

3
μα(2a1)

32a2 ×
⎡

⎣1 − 192

π5

a1

a2

∑

n=1,3,5,...

1

n5
tanh

(

nπa2

2a1

)

⎤

⎦ (8.43)

This completes a solution to Problem 8.4.

Problem 8.5. Show that Prandtl’s stress function

φ(r, θ) = μα

2
(r2 − b2)

(

2a cos θ

r
− 1

)

defined over the region

0 < b ≤ r ≤ 2a − b, − cos−1
(

b

2a

)

≤ θ ≤ cos−1
(

b

2a

)

solves the torsion problem of the circular shaft with a circular groove shown in
Fig. 8.2; in particular, find the stresses ˜S13 and ˜S23 on the boundary of the shaft.

Hint. Use the polar coordinates
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Fig. 8.2 The cross section of
a circular bar with a circular
groove

r =
 2

a 
co

s 
θ

x 2

x 1
b

0

a
θ

x1 = r cos θ, x2 = r sin θ

Solution. First, we note that the function

φ(r, θ) = μα

2
(r2 − b2)

(

2a cos θ

r
− 1

)

(8.44)

vanishes on the boundary of the circular shaft with a circular groove shown in
Fig. of Problem 8.5.

Next, using ∇2 in the form

∇2 = ∂2

∂r2 + 1

r

∂

∂r
+ 1

r2

∂2

∂θ2 (8.45)

and the equations
∇2(r cos θ) = ∇2(r−1 cos θ) = 0 (8.46)

and applying ∇2 to (8.44) we obtain

∇2φ = −2μα (8.47)

Therefore, φ solves the torsion problem of the circular shaft with a circular groove. In
particular, the stresses ˜S13 and ˜S23 are computed from the formulas [see Eqs. (8.20)]

˜S13 = φ,2, ˜S23 = −φ,1 (8.48)

Substituting φ from (8.44) into (8.48), and using the polar coordinates, we obtain
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˜S13 = μαx2

(

2a x1
b2

r4 − 1

)

(8.49)

and

˜S23 = −μα
[

a

(

1 − b2

r2

)

− x1 + 2a x2
1

b2

r4

]

(8.50)

In Eqs. (8.49) and (8.50)

x1 = r cos θ x2 = r sin θ (8.51)

By letting r = b in (8.49) and (8.50) we get

˜S13|r=b = μα(2a cos θ − b) sin θ (8.52)

˜S23|r=b = −μα(2a cos θ − b) cos θ (8.53)

Hence, the resultant shear stress magnitude for r = b takes the form

˜St =
(

˜S2
13 + ˜S2

23

)1/2 = μα(2a cos θ − b) (8.54)

Since
∂˜St

∂θ
= 0,

∂2
˜St

∂θ2 < 0 at θ = 0 (8.55)

the function ˜St = ˜St (θ) attains a maximum at θ = 0. Hence, the resultant shear
stress attains a maximum at the point (x1, x2) = (b, 0) and

˜St (θ = 0) = μα(2a − b) (8.56)

If b → 0, the RHS of (8.56) → 2μαa. Hence, for a small groove radius the maximum
resultant shear stress doubles that of a bar with a circular cross section [see Eq. (8.3)].

This completes a solution to Problem 8.5.
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