
Chapter 6
Complete Solutions of Elasticity

In this chapter general solutions of the homogeneous isotropic elastostatics and
elastodynamics are discussed. The general solutions are related to both the displace-
ment and stress governing equations, and emphasis is made on completeness of the
solutions [See also Chap. 16].

6.1 Complete Solutions of Elastostatics

A vector field u � u(x) on B that satisfies the displacement equation of equilibrium

�2u �
1

1 � 2ν
�(div u)�

b
μ
� 0 (6.1)

is called an elastic displacement field corresponding to b.

Boussinesq-Papkovitch-Neuber (B-P-N) Solution. Let

u � ψ �
1

4(1 � ν)
�(x � ψ � ϕ) (6.2)

where ϕ and ψ are fields on B that satisfy Poisson’s equations

�2ψ � �
1

μ
b (6.3)

and

�2ϕ �
1

μ
b � x (6.4)

Then u is an elastic displacement field corresponding to b.
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Boussinesq-Somigliana-Galerkin (B-S-G) Solution. Let u be a vector field given by

u � �2g �
1

2(1 � ν)
�(div g) (6.5)

where

�2�2g � �
1

μ
b (6.6)

Then u is an elastic displacement field corresponding to b.
We say that a representation for the displacement u expressed in terms of auxiliary

functions is complete if these auxiliary functions exist for any u that satisfies the
displacement equation of equilibrium (6.1).

For B-P-N solution such auxiliary functions are the fields ϕ and ψ ; while for
B-S-G solution an auxiliary function is the field g.

Completeness of B-P-N and B-S-G Solutions. Let u be a solution to the displace-
ment equation of equilibrium with the body force b. Then there exists a field g on B
that satisfies Eqs. (6.5)–(6.6). Also, there exist fields ϕ and ψ that satisfy Eqs. (6.2)–
(6.4).

B-P-N solution for axial symmetry. For an axially symmetric problem with
b � 0 in which x3 � z is the axis symmetry of a body, the displacement vector
field u � u(r, z) referred to the cylindrical coordinates (r, θ , z) takes the form

u � ψk �
1

4(1 � ν)
�(zψ � ϕ) (6.7)

where
z � x � k (6.8)

with k being a unit vector along the x3 axis, and with scalar-valued harmonic functions
ϕ � ϕ(r, z) and ψ � ψ(r, z). In components we obtain

u � �ur(r, z), 0, uz(r, z)� (6.9)

where

ur � �
1

4(1 � ν)

∂

∂r
(zψ � ϕ) (6.10)

uz � ψ �
1

4(1 � ν)

∂

∂z
(zψ � ϕ) (6.11)

and
�2ϕ � 0, �2ψ � 0 (6.12)

with
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�2 �
∂2

∂r2 �
1

r

∂

∂r
�
∂2

∂z2 (6.13)

B-S-G solution for axial symmetry with b � 0 and g � χk is also called Love’s
solution.

u � (�2χ)k �
1

2(1 � ν)
�(k � �χ) (6.14)

where
�2�2χ � 0 (6.15)

In cylindrical coordinates (r, θ, z)

ur � �
1

2(1 � ν)

∂2

∂r∂z
χ (6.16)

uθ � 0 (6.17)

uz �
1

2(1 � ν)

�
2(1 � ν)�2 �

∂2

∂z2

�
χ (6.18)

6.2 Complete Solutions of Elastodynamics

The displacement equation of motion for a homogeneous isotropic elastic body takes
the form

�2
2u �

��
c1

c2

�2

� 1

�
�(div u)�

b
μ
� 0 (6.19)

where

�2
2 � �2 �

1

c2
2

∂2

∂t2 ,
1

c2
1

�
ρ

λ� 2μ
,

1

c2
2

�
ρ

μ
(6.20)

The body force b is represented by Helmholtz’s decomposition formula

b � ��h � curl k, div k � 0 (6.21)

A solution u on�B	�0,
) to Eq. (6.19) will be called an elastic motion corresponding
to b.

Green-Lame (G-L) Solution. Let

u � �ϕ � curl ψ (6.22)

where ϕ and ψ satisfy, respectively, the equations
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�2
1ϕ �

h

λ� 2μ
(6.23)

and

�2
2ψ �

k
μ

(6.24)

Then u is an elastic motion corresponding to b given by Eq. (6.21). In Eq. (6.23)

�2
1 � �2 �

1

c2
1

∂2

∂t2 (6.25)

Cauchy-Kovalevski-Somigliana (C-K-S) Solution. Let

u � �2
1g �

�
c2

2

c2
1

� 1

�
�(div g) (6.26)

where g satisfies the inhomogeneous biwave equation

�2
1�2

2g � �
b
μ

(6.27)

Then u is an elastic motion corresponding to b.

Note. Both G-L and C-K-S solutions are complete.

6.3 Complete Stress Solution of Elastodynamics

The stress equation of motion for a homogeneous isotropic elastic body takes the form

	�(div S)�
ρ

2μ

�
�S �

ν

1 � ν
(tr �S)1

�
� �	�b (6.28)

A solution S on �B	�0,
) to Eq. (6.28) will be called a stress motion corresponding
to b.

Stress Solution of Galerkin Type. Let

S �

�
�� � ν1 �2

2

�
tr G � 2(1 � ν)�2

1 G


(6.29)

where G is a symmetric second-order tensor field on �B 	 �0,
) that satisfies the
equations

�2
1 �2

2 G �
1

1 � ν
	�b (6.30)
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and
�2G ���(tr G)� 2	�(div G) � 0 (6.31)

Then S is a stress motion corresponding to b, that is, S satisfies Eq. (6.28).

Completeness of the Stress Solution of Galerkin Type.

The stress solution of Galerkin type corresponding to homogeneous initial conditions
is complete, that is, for any stress motion S corresponding to b there exists a second-
order symmetric tensor field G such that Eqs. (6.29)–(6.31) are satisfied.

6.4 Problems and Solutions Related to Complete Solutions
of Elasticity

Problem 6.1. The displacement u � u(x, ξ) at a point x due to a concentrated force
l applied at a point ξ of a homogeneous isotropic infinite elastic body is given by
(x � ξ )

u(x, ξ) � U(x, ξ)l

where

U(x, ξ) �
1

16πμ(1 � ν)

1

R

�
(3 � 4ν)1 �

(x � ξ)� (x � ξ)
R2

�
with

R � �x � ξ �

Use the stress-displacement relation to show that the associated stress S � S(x, ξ)
takes the form

S(x, ξ) � �
1

8π(1 � ν)

1

R3

�
3

R2 �(x � ξ) � l�(x � ξ)� (x � ξ)

�(1 � 2ν)�(x � ξ)� l � l � (x � ξ)� �(x � ξ) � l� 1�
�

Solution. The displacement u in components takes the form

ui � Uik �k (6.32)

where

Uik �
A

2μ
R�1



(3 � 4ν)δik � (xi � ξi)(xk � ξk)R

�2


(6.33)

and

A �
1

8π(1 � ν)
(6.34)
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The stress tensor Sij is computed from the stress-strain relation

Sij � 2μ

�
Eij �

ν

1 � 2ν
Ekk δij

�
(6.35)

where
Eij � u(i,j) � U(ik,j) �k (6.36)

Calculating Uik,j, by using Eq. (6.33), we obtain

Uik,j � �
A

2μ
R�3



(3 � 4ν)(xj � ξj)δki � 3(xi � ξi)(xj � ξj)(xk � ξk)R

�2

�(xk � ξk)δij � (xi � ξi)δkj
�

(6.37)

Hence, taking the trace of (6.37) with respect to the indices i and j, we get

Uik,i � �
A

2μ
R�3�(3 � 4ν)(xk � ξk)� 3(xk � ξk)� 3(xk � ξk)� (xk � ξk)�

� �
A

2μ
R�3 	 2(1 � 2ν)(xk � ξk) (6.38)

Since
Eii � Uik,i �k (6.39)

therefore,

Eii � Ekk � �
A

2μ
R�3 	 2(1 � 2ν)(xk � ξk)�k (6.40)

Also, by taking the symmetric part of (6.37) with respect to the indices i and j we
obtain

U(ik,j) � �
A

2μ
R�3 �(1 � 2ν)�(xj � ξj)δki � (xi � ξi)δkj�

�3(xi � ξi)(xj � ξj)(xk � ξk)R
�2 � (xk � ξk)δij

�
(6.41)

Hence, because of (6.36), we get

Eij � �
A

2μ
R�3

�
(1�2ν)�(xj � ξj)�i�(xi�ξi)�j��3(xi � ξi)(xj � ξj)(xk � ξk)�kR�2

�(xk � ξk)�k δij
�

(6.42)

Finally, substituting Eij from (6.42) and Ekk from (6.40), respectively, into (6.35),
we obtain
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Sij � �AR�3
�

3R�2(xi � ξi)(xj � ξj)(xk � ξk)�k

�(1 � 2ν)�(xi � ξi)�j � (xj � ξj)�i � (xk � ξk)�kδij
�

(6.43)

Equation. (6.43) is equivalent to the stress formula of Problem 6.1. This completes a
solution to Problem 6.1.

Problem 6.2. The displacement equation of thermoelastostatics for a homogeneous
isotropic body subject to a temperature change T � T(x) takes the form

�2u �
1

1 � 2ν
�(div u)�

2 � 2ν

1 � 2ν
α�T � 0 (6.44)

Let

u � ψ �
1

4(1 � ν)
�( x � ψ �	ϕ) (6.45)

where
�2ψ � 0 (6.46)

and
�2	ϕ � �4(1 � ν)α T (6.47)

Show that u given by Eqs. (6.45) through (6.46) satisfies Eq. (6.44).

Solution. Eqs. (6.44)–(6.47) in components take the form

ui,kk �
1

1 � 2ν
uk,ki �

2 � 2ν

1 � 2ν
α T ,i � 0 (6.48)

ui � ψi �
1

4(1 � ν)
(xaψa �	ϕ),i (6.49)

where
ψi,aa � 0 (6.50)

and 	ϕ,kk � �4(1 � ν)αT (6.51)

Taking the gradient of (6.49) we obtain

ui,k � ψi,k �
1

4(1 � ν)
(xaψa �	ϕ),ik (6.52)

Hence, from (6.50),

ui,kk � �
1

4(1 � ν)
(xaψa �	ϕ),ikk (6.53)
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and

uk,k � ψk,k �
1

4(1 � ν)
(xaψa �	ϕ),kk (6.54)

uk,ki �

�
ψk,k �

1

4(1 � ν)
(xaψa �	ϕ),kk

�
,i (6.55)

Using the relation
(xaψa),kk � 2ψk,k � xaψa,kk � 2ψk,k (6.56)

we reduce (6.53) and (6.55) into

ui,kk � �
1

4(1 � ν)
(2ψk,k �	ϕ,kk ),i (6.57)

and

uk,ki �

�
ψk,k �

1

4(1 � ν)
(2ψk,k �	ϕ,kk )

�
,i (6.58)

Therefore, substituting (6.57) and (6.58) into the LHS of (6.48) we obtain

�
�

1

4(1 � ν)
(2ψk,k ��ϕ,kk )�

1

1 � 2ν

�
ψk,k �

1

4(1 � ν)
(2ψk,k ��ϕ,kk )

�
�

2 � 2ν

1 � 2ν
αT

�
,i

� �
1

2(1 � 2ν)
��ϕ,kk �4(1 � ν)αT�,i (6.59)

Equation (6.59) together with Eq. (6.51) imply that ui given by (6.49) meets (6.48).
This completes a solution to Problem 6.2.

Problem 6.3. The temperature change T of a homogeneous isotropic infinite elastic
body is represented by

T(x) � 	T δ(x) (6.60)

where
δ(x) � δ(x1)δ(x2)δ(x3) (6.61)

δ � δ(xi), i � 1, 2, 3, is a one dimensional Dirac delta function, and 	T is a
constant with the dimension �	T � � �Temperature 	 Volume�. Show that an elastic
displacement u � u(x) and stress S � S(x) corresponding to T � T(x) are given by

u(x) � �
1

4π

1 � ν

1 � ν
α	T �

1

�x�
(6.62)

and

S(x) � �
μ

2π

1 � ν

1 � ν
α	T (�� � 1�2)

1

�x�
(6.63)
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Hint. Use the representation (6.61) through (6.63) of Problem 6.2 in which ψ � 0
and T � 	T δ(x). Also, note that

S � �
μ

2(1 � ν)
(�� � 1�2)	ϕ (6.64)

Solution. By letting ψ � 0 and

	ϕ � �4(1 � ν)φ (6.65)

in Eqs. (6.61)–(6.63) of Problem 6.2 we obtain

ui � φ,i (6.66)

where
�2φ � m T (6.67)

and

m �
1 � ν

1 � ν
α (6.68)

Also,
Sij � 2μ(φ,ij ��

2φδij) (6.69)

If T(x) � 	Tδ(x), a solution to (6.67) in E3 takes the form

φ � �
m	T
4π

1

�x�
(6.70)

Substituting φ from (6.70) into (6.66) and (6.69), respectively, we obtain (6.62) and
(6.63). This completes a solution to Problem 6.3.

Problem 6.4. A solution ϕ � ϕ(x, t) to the nonhomogeneous wave equation

�2
0ϕ(x, t) � �F(x, t) on E3 	 �0,
) (6.71)

subject to the homogeneous initial conditions

ϕ(x, 0) � 0, �ϕ(x, 0) � 0 on E3 (6.72)

takes the form

ϕ(x, t) �
1

4π

�
�x�ξ ��c t

F(ξ, t � �x � ξ � / c)

�x � ξ �
dv(ξ) on E3 	 �0,
) (6.73)
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Here

�2
0 � �2 �

1

c2

∂2

∂ t2 (6.74)

Show that an equivalent form of Eq. (6.73) reads

ϕ(x, t) � �
c2t2

4π

�
�ξ ��1

F�x � c tξ, (1 � �ξ �)t�

�ξ �
dv(ξ) on E3 	 �0,
) (6.75)

Solution. Introduce the transformation of variables

x � ξ � c tζ, c t > 0 (6.76)

Then
dv(ξ) � dξ1 dξ2 dξ3 � �c3t3dζ1dζ2dζ3 (6.77)

and
dv(ξ) � �c3t3dv(ζ ) (6.78)

Since
�x � ξ � � ct�ζ � � ct (6.79)

therefore,
�ζ � � 1 (6.80)

and the integral (6.73) reduces to (6.75). This completes a solution to Problem 6.4.

Problem 6.5. Let S � S(x, t) be a solution to the stress equation of motion of
a homogeneous anisotropic elastodynamics [see Eq. (3.51) in which ρ and K are
constants]

	�(div S)� ρ K� �S� � �B on B 	 �0,
) (6.81)

subject to the initial conditions

S(x, 0) � S0(x), �S(x, 0) � �S0(x) for x � B (6.82)

Here, B � B(x, t), S0 � S0(x), and �S0 � �S0(x) are prescribed functions. Show
that the compatibility condition

curl curl K�S� � 0 on B 	 �0,
) (6.83)

is satisfied if and only if there exists a vector field u � u(x, t) on B	 �0,
) such
that 	� �u � �ρ�1B on B 	 �0,
) (6.84)

http://dx.doi.org/10.1007/978-94-007-6356-2_3
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and
S0(x) � K�1 �	�u(x, 0)�, �S0(x) � K�1 �	� �u(x, 0)� on B (6.85)

Note that B in Eq. (6.81) represents an arbitrary second-order symmetric tensor field
on B 	 �0,
), while S0 and �S0 in Eq. (6.82) stand for arbitrary second-order sym-
metric tensor fields on B.

Solution. A solution to Problem 6.5 is based on the following

Lemma. A symmetric tensor field E on B 	 �0,
) satisfies the condition

curl curl E � 0 on B 	 �0,
) (6.86)

if and only if there is a vector field u on B 	 �0,
) such that

E � 	�u on B 	 (0,
) (6.87)

Proof of Lemma. The proof is split into two parts
(i) (6.87) � (6.86), (ii) (6.86) � (6.87).
To show (i) we substitute (6.87) into the LHS of Eq. (6.86) and find that Eq. (6.86)

holds true. To show (ii), we note that Eq. (6.86) implies that there is a vector field a
such that

curl E � �a (6.88)

Since, by Helmholtz’s theorem, there are a scalar field ϕ and a vector field b such that

a � �ϕ � curl b, div b � 0 (6.89)

Equation (6.88) can be written as

curl E � ��ϕ �� curl b (6.90)

or
εiab Ejb,a � ϕ,ij �εiab bb,aj (6.91)

By taking the trace of (6.91), it is, by letting i � j in (6.91), we obtain

ϕ,ii � 0 or div�ϕ � 0 (6.92)

This implies that there is a vector field c on B 	 �0,
) such that

�ϕ � curl c (6.93)

Substituting (6.93) into (6.90) we obtain

curl E � � curl (c � b) (6.94)
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Since for any vector v
� curl v � curl (�vT ) (6.95)

or

εiab vb,aj � εiab(vj,b)
T
,a (6.96)

therefore, Eqs. (6.94) and (6.95) imply that

curl (E ��vT ) � 0 (6.97)

where
v � b � c (6.98)

Next, it follows from Eq. (6.97) that there is a vector field e on B	 �0,
) such that

E ��vT � � e (6.99)

By taking the transpose of (6.99) and using the symmetry of E (E � ET ) we obtain

E ��v � �eT (6.100)

By adding Eqs. (6.99) and (6.100) we get

E � 	�(v � e) (6.101)

Hence, if we let
u � v � e (6.102)

in Eq. (6.101) we obtain (6.87). This shows (ii), and proof of Lemma is complete.

To show that the compatibility condition (6.83) is satisfied if and only if there
exists a vector field u on B 	 �0,
) such that (6.84) and (6.85) hold true, we note
that Eqs. (6.81) and (6.82) are satisfied if and only if

K�S� � K�S0 � t �S0� � t � ρ�1(	�div S � B) (6.103)

Applying curl curl to this equation we obtain

curl curl K�S� � curl curl
�

t � ρ�1B � K�S0 � t �S0�
�

(6.104)

Hence, the compatibility condition (6.83) is equivalent to

curl curl �t � ρ�1B � K�S0 � t �S0�� � 0 (6.105)
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Using the Lemma we find that Eq. (6.105) holds true if and only if there is a vector
field u such that

t � ρ�1B � K�S0 � t �S0� � 	�u (6.106)

If B, S0, and �S0 are given by (6.84)–(6.85), then Eq. (6.106) is identically satisfied.
Conversely, by differentiating twice (6.106) with respect to time we obtain (6.84).
Also, by differentiating (6.106) with respect to time and letting t � 0 we obtain

�S0 � K�1�	� �u(x, 0)� (6.107)

Finally, by letting t � 0 in (6.106) we get

S0 � K�1�	�u(x, 0)� (6.108)

This completes a solution to Problem 6.5.

Problem 6.6. Consider a homogeneous isotropic elastic body occupying a region
B. Let S � S(x, t) be a tensor field defined by

S(x, t) �

�
�� � ν1�2

2

�
tr χ � 2(1 � ν)�2

1χ


on �B 	 �0,
) (6.109)

whereχ � χ(x, t) is a symmetric second-order tensor field that satisfies the equations

�2
1�2

2χ �
1

1 � ν
	�b on B 	 �0,
) (6.110)

and
�2χ ���(tr χ)� 2	�(divχ) � 0 on B 	 �0,
) (6.111)

Show that S � S(x, t) satisfies the stress equation of motion [see Eq. (6.28)]

	�(div S)�
ρ

2μ

�
�S �

ν

1 � ν
(tr �S) 1

�
� �	�b on B 	 �0,
) (6.112)

Note. The stress field S in the form of Eqs. (6.109) through (6.111) is a tensor solution
of the homogeneous isotropic elastodynamics of the Galerkin type. To show this we
let χ � ��μ/(1� ν)�	�g,where g is the Galerkin vector satisfying Eq. (6.27). Then
Eqs. (6.110 and 6.111) are satisfied identically, and Eq. (6.109) reduces to

S � μ

�
2�2

1
	�g �

1

1 � ν
��(div g)�

ν

1 � ν
1 �2

2(div g)
�

(6.113)

The stress field S given by (6.111) corresponds to a solution of C-K-S [or Galerkin]
type defined by Eqs. (6.26)–(6.27).
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Solution. Eqs. (6.109)–(6.111), respectively, in components take the form

Sij � χaa,ij � ν�2
2χaa δij � 2(1 � ν)�2

1χij (6.114)

�2
1�2

2χij �
1

1�ν b(i,j) (6.115)

and
χij,aa � χaa,ij � χik,kj � χjk,ki � 0 (6.116)

The stress equation of motion (6.112) is rewritten as

S(ik,kj) �
ρ

2μ

�
�Sij �

ν

1 � ν
�Skk δij

�
� �b(i,j) (6.117)

In Eqs. (6.114)–(6.115)

�2
1 � �2 �

1

c2
1

∂2

∂t2 , �2
2 � �2 �

1

c2
2

∂2

∂t2 (6.118)

and 1

c2
2

�
ρ

μ
,

1

c2
1

�
1

c2
2

1 � 2ν

2 � 2ν
(6.119)

By taking the trace of (6.114) we obtain

Saa � �(1 � ν) �2
2 χaa (6.120)

Hence, an alternative form of (6.114) reads

Sij �
ν

1 � ν
Skk δij � χaa,ij � 2(1 � ν)�2

1 χij (6.121)

Next, using (6.114) we obtain

S(ik,kj) � χaa,kkij � ν�2
2 χaa,ij � 2(1 � ν)�2

1 χ(ik,kj) (6.122)

Since, from (6.116)
2χ(ik,kj) � χij,aa � χaa,ij (6.123)

therefore, (6.122) can be written as

S(ik,kj) � �2χaa,ij � ν�2
2 χaa,ij � (1 � ν)�2

1 χaa,ij � (1 � ν)�2
1 χij,aa (6.124)

or

S(ik,kj) �
1

2c2
2

�χaa,ij � (1 � ν)�2
1 χij,aa (6.125)
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Substituting (6.121) and (6.125) into the LHS of (6.117) we obtain

S(ik,kj) �
1

2c2
2

�
�Sij �

ν

1 � ν
�Skkδij

�
�

1

2c2
2

�χaa,ij � (1 � ν)�2
1 χij,aa

�
1

2c2
2



�χaa,ij � 2(1 � ν)�2

1 �χij


� �(1 � ν)�2

1 �2
2 χij (6.126)

Since χij satisfies Eq. (6.115), therefore, by virtue of (6.126), Sij given by (6.114)
meets (6.117). This completes a solution to Problem 6.6.

Problem 6.7. Let S be the tensor solution of homogeneous isotropic elastodynamics
of Problem 6.6 corresponding to homogeneous initial conditions. Show that the
solution is complete, that is, there exists a second-order symmetric tensor field χ
such that Eqs. (6.109) through (6.111) of Problem 6.6 are satisfied.

Solution. To solve Problem 6.7 we prove the two Lemmas.

Lemma 1. Let S satisfy the field equation

	�(div S)�
1

2c2
2

�
�S �

ν

1 � ν
(tr �S)1

�
� �	�b on B 	 �0,
) (6.127)

subject to the homogeneous initial conditions

S(x, 0) � 0, �S(x, 0) � 0 on B (6.128)

Then
curl curl E � 0 on B 	 �0,
) (6.129)

where
E �

1

2μ

�
S �

ν

1 � ν
(tr S)1

�
(6.130)

Lemma 2. Let S satisfy the hypotheses of Lemma 1, and let �S be a continuation of
S on E3 	 �0,
) such that

curl curl �E � 0 on E3 	 �0,
) (6.131)

where
�E �

1

2μ

�
�S �

ν

1 � ν
(tr �S)1

�
on E3 	 �0,
) (6.132)

Define a second-order tensor field χ on �B 	 �0,
) such that

�2(1 � ν)χ � 2μ
c2

1t2

4π

�
�ξ ��1

dv(ξ)

�ξ �
�E(x � c1tξ, (1 � �ξ �)t)�

2μ

1 � 2ν

c2
1c2

2t4

16π2 ��
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�
�ξ ��1

dv(ξ)

�ξ �

�
�η��1

dv(η)
�η�

(tr �E)

	 (x � c1tξ � c2tη, (1 � �ξ �)(1 � �η�)t) (6.133)

Then

�2
2(tr χ) � �

2μ

1 � 2ν
(tr E) (6.134)

Notes

(1) Equations (6.129) and (6.131), respectively, are equivalent to

2	�(div S)��2S �
1

1 � ν
(ν1�2 ���)(tr S) � 0 (6.135)

and

2	�(div �S)��2 �S �
1

1 � ν
(ν1�2 ���)(tr �S) � 0 (6.136)

To prove that (6.135) � (6.129) we use the identity [see Problem 1.12,
Eq. (1.204) in which S is replaced by E]

curl curl E � 2	�(div E)��2E ��� (tr E)� 1��2(tr E)� div div E�
(6.137)

Equation (6.129) implies that the LHS of (6.137) vanishes which written in
components means

Eik,kj � Ejk,ki � Eij,kk � Eaa,ij � δij(Eaa,bb � Eab,ab) � 0 (6.138)

By letting i � j in (6.138) we obtain

2Eik,ki � 2Eaa,bb � 3(Eaa,bb � Eab,ab) � 0 (6.139)

or
Eaa,bb � Eab,ab � 0 (6.140)

Hence (6.129) is equivalent to

2	�(div E)��2E ���(tr E) � 0 (6.141)

Substituting E from (6.130) into (6.141), and using the relations

div E �
1

2μ

�
div S �

ν

1 � ν
�(tr S)

�
(6.142)
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(tr E) �
1

2μ

1 � 2ν

1 � ν
(tr S) (6.143)

2	��(tr S) � 2��(tr S) (6.144)

we obtain

2	�(div S)��2S �
2ν

1 � ν
��(tr S)�

ν

1 � ν
1�2(tr S)�

1 � 2ν

1 � ν
��(tr S)

� 2	�(div S)��2S �
1

1 � ν
�ν1�2(tr S)���(tr S)� � 0 (6.145)

Therefore, (6.129) � (6.135) � (6.145).
(2) An alternative form of (6.133) reads

�2(1 � ν)χ �
c2

1t2

4π

�
�ξ ��1

dv(ξ)

�ξ �

�
�S �

ν

1 � ν
(tr �S)1

�
(x � c1tξ, t(1 � �ξ �))

�
1

1 � ν
��

�
c2

1c2
2t4

16π2

� �
�ξ ��1

dv(ξ)

�ξ �

�
�η��1

dv(η)
�η�

(tr �S)

	 (x � c1tξ � c2tη, t(1 � �ξ �)(1 � �η�)) (6.146)

To prove that (6.133) � (6.146) we substitute �E from (6.132) into (6.133) and
obtain (6.146).

(3) A solution 	ϕ � 	ϕ(x, t) of the biwave equation

�2
1 �2

2	ϕ � f on �B 	 �0,
) (6.147)

subject to the homogeneous initial conditions

	ϕ(k)(x, 0) � 0 on B, k � 0, 1, 2, 3 (6.148)

takes the form of iterated retarded potential

�ϕ(x, t) �
c2

1c2
2t4

16π2

�
�ξ ��1

dv(ξ)

�ξ �

�
�η��1

dv(η)
�η�

f (x � c1tξ � c2tη, t(1 � �ξ �)(1� �η�))

(6.149)

To show that 	ϕ given by (6.149) satisfies Eq. (6.147), note that because of the
solution to Problem 6.4, a solution to the equation

�2
1u � f on B 	 �0,
) (6.150)
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subject to the homogeneous initial conditions

u(x, 0) � 0, �u(x, 0) � 0 on B (6.151)

takes the form

u(x, t) �
c2

1t2

4π

�
�ξ ��1

dv(ξ)

�ξ �
f (x � c1tξ, t(1 � �ξ �)) (6.152)

Similarly, a solution to the equation

�2
2	ϕ � u on B 	 �0,
) (6.153)

in which u is prescribed, and subject to the conditions

	ϕ(x, 0) � 0, �	ϕ(x, 0) � 0 on B (6.154)

takes the form

	ϕ(x, t) �
c2

2t
2

4π

�
�η��1

dv(η)
�η�

u(x � c2tη, t(1 � �η�)) (6.155)

Note that substituting u from (6.153) into (6.150) we obtain

�2
1 �2

2 	ϕ � f (6.156)

and it follows from (6.152) that

u(x � c2tη, t(1 � �η�))

�
c2

1t
2

4π

�
�ξ ��1

dv(ξ)

�ξ �
	 f (x � c1tξ � c2tη, t(1 � �ξ �)(1 � �η�)) (6.157)

Therefore, substituting (6.157) into (6.155) we find that a solution of (6.156)
takes the form (6.149). Also, by differentiating (6.149) with respect to time we
obtain 	ϕ(x, 0) � �	ϕ(x, 0) � �	ϕ(x, 0) �

...	ϕ(x, 0) � 0 (6.158)

This completes the proof that 	ϕ given by (6.149) satisfies (6.147) and (6.148).

Proof of Lemma 1. Applying the operator curl curl to Eq. (6.127) and using the
relation

curl curl 	�(div S � b) � 0 (6.159)
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we obtain
curl curl �E � 0 (6.160)

where E is given by Eq. (6.130).
From (6.128) and (6.130)

E(x, 0) � 0, �E(x, 0) � 0 (6.161)

Therefore, integrating (6.160) twice with respect to time, and using (6.161), we arrive
at Eq. (6.129). This completes the proof of Lemma 1.

Proof of Lemma 2. Introduce �ϕ � �ϕ(x, t) on E3 	 �0,
) by the formula

�ϕ(x, t) � �
c2

2t
2

4π

1

1 � ν

�
�ξ ��1

dv(ξ)

�ξ �
(tr �S)(x � c2tξ, t(1 � �ξ �)) (6.162)

and let �χ � �χ(x, t) be an extension of χ on E3 	 �0, 
).
Then

�ϕ(x, 0) � 0, ��ϕ(x, 0) � 0
�χ(x, 0) � 0, ��χ(x, 0) � 0

on E3 (6.163)

and

�2
2 �ϕ � �

1

1 � ν
(tr �S) on E3 	 �0,
) (6.164)

Also, using Note 3, and applying the wave operator �2
1 to Eq. (6.146), extended to

E3 	 �0,
), we obtain

�2(1 � ν)�2
1 �χ �

�
�S �

ν

1 � ν
(tr �S)1

�
���

c2
2t

2

4π

1

1 � ν

	

�
�η��1

dv(η)
�η�

(tr �S)(x � c2tη, t(1 � �η�)) (6.165)

Taking the trace of (6.165) and using definition of �ϕ [see (6.162)] we get

� 2(1 � ν)�2
1(tr �χ) �

1 � 2ν

1 � ν
(tr �S)��2 �ϕ (6.166)

Next, multiplying (6.164) by (1 � 2ν), and using the identity

(1 � 2ν)�2
2 � 2(1 � ν)�2

1 ��2 (6.167)

we obtain
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2(1 � ν)�2
1 �ϕ � �

1 � 2ν

1 � ν
(tr �S)��2 �ϕ (6.168)

By addition of Eqs. (6.166) and (6.168) we get

�2
1( �ϕ � tr �χ) � 0 (6.169)

Since, in view of (6.163),

( �ϕ � tr �χ)(x, 0) � 0 on E3 (6.170)

and
( ��ϕ � tr ��χ)(x, 0) � 0 on E3 (6.171)

therefore, it follows from (6.169) that

�ϕ � tr �χ on E3 	 �0,
) (6.172)

Substituting �ϕ from (6.172) into (6.162) and applying the operator �� we get

��(tr �χ) � �
c2

2t
2

4π

1

1 � ν
��

�
�ξ ��1

dv(ξ)

�ξ �
(tr �S)(x � c2tξ, t(1 � �ξ �)) (6.173)

Also, substituting �ϕ from (6.172) into (6.164) we obtain

�2
2(tr �χ) � �

1

1 � ν
(tr �S) (6.174)

Since, because of (6.132),

(tr �E) �
1

2μ

1 � 2ν

1 � ν
(tr �S) (6.175)

Equation (6.174) is equivalent to (6.134). A restriction of (6.134) to �B 	 �0, 
)
leads to

�2
2(tr χ) � �

1

1 � ν
(tr S) (6.176)

This completes proof of Lemma 2.

Solution to Problem 6.7. We are to show that χ introduced by Lemma 2 [see
Eq. (6.133)] satisfies Eqs. (6.109)–(6.111) of Problem 6.6.

By Lemma 2 [see also Eq. (6.176)]

�2
2(tr χ) � �

1

1 � ν
(tr S) (6.177)



6.4 Problems and Solutions Related to Complete Solutions of Elasticity 171

An equivalent form to Eq. (6.177) reads

tr χ � �
c2

2t
2

4π

1

1 � ν

�
�ξ ��1

dv(ξ)

�ξ �
(tr S)(x � c2tξ, t(1 � �ξ �)) (6.178)

By applying the operator �� to this equation we obtain

��(tr χ) � �
c2

2t
2

4π
��

1

1 � ν

�
�ξ ��1

dv(ξ)

�ξ �
(tr S)(x � c2tξ, t(1 � �ξ �)) (6.179)

It follows from Eq. (6.165), restricted to �B 	 �0, 
), and from Eq. (6.179) that

�2(1 � ν)�2
1χ � S �

ν

1 � ν
(tr S)1 ���(tr χ) (6.180)

Also, from Eqs. (6.177) and (6.180), we obtain

S � ��(tr χ)� 1ν�2
2(tr χ)� 2(1 � ν)�2

1χ (6.181)

Therefore, χ introduced by Lemma 2 satisfies Eq. (6.109) of Problem 6.6.
Next, applying the operator �2

1�2
2 to Eq. (6.146) we obtain

�2(1 � ν)�2
1�2

2χ � �2
2

�
S �

ν

1 � ν
(tr S)1

�
�

1

1 � ν
��(tr S)

�
1

1 � ν
��(tr S)��2S �

ν

1 � ν
�2(tr S)1

�
1

c2
2

�
�S �

ν

1 � ν
(tr �S)1

�
(6.182)

It follows from (6.145) that

�2S �
1

1 � ν



��(tr S)� ν1�2(tr S)


� 2	�V(div S) (6.183)

Therefore, Eq. (6.182) is reduced to

�2(1 � ν)�2
1�2

2χ � 2	�(div S)�
1

c2
2

�
�S �

ν

1 � ν
(tr �S)1

�
(6.184)

and, since S is a solution to Eq. (6.127), we obtain

�2
1�2

2χ �
1

1 � ν
	�b (6.185)
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This shows that χ introduced by Lemma 2 satisfies Eq. (6.110) of Problem 6.6.
Finally, introduce the notation

ψ � �2(1 � ν)χ (6.186)

then using Eqs. (6.146) and (6.178) we obtain

�
�2 � 2��div ���tr

�
ψ �

c2
1t2

4π

�
�ξ ��1

dv(ξ)

�ξ �

�
�2 �S � 2��(div �S)�

1

1 � ν

�
��(tr �S)

�ν1�2(tr �S)
��
�(x�c1tξ, t(1��ξ �))

�
c2

1t2

4π

(1 � 2ν)

1 � ν

�
�ξ ��1

dv(ξ)

�ξ �
��(tr �S)(x�c1tξ, t(1��ξ �))

����2

	
c2

1c2
2t4

16π2



1

1 � ν

�
�ξ ��1

dv(ξ)

�ξ �

�
�η��1

dv(η)
�η�

(tr �S)

� (x � c1tξ � c2tη, t(1 � �ξ �)(1� �η�))

���
2(1 � ν)

1 � ν

c2
2t2

4π

�
�η��1

dv(η)
�η�

(tr �S)

� (x � c2tη, t(1 � �η�)) (6.187)

Since [see (6.167)]
�2 � 2(1 � ν)�2

1 � (1 � 2ν)�2
2 (6.188)

therefore

�2

�
c2

1c2
2t4

16π4

��
�ξ ��1

dv(ξ)

�ξ �

�
�η��1

dv(η)
�η�

(tr �S)(x� c1tξ � c2tη, t(1 � �ξ �)(1 � �η�))

� 2(1 � ν)
c2

2t2

4π

�
�η��1

dv(η)
�η�

(tr �S)(x � c2tη, t(1 � �η�))

� (1 � 2ν)
c2

1t2

4π

�
�ξ �<1

dv(ξ)

�ξ �
(tr �S)(x � c1tξ, t(1 � �ξ �)) (6.189)

Substituting (6.189) into the RHS of (6.187) we obtain
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�2ψ � 2	�(div ψ)���(tr ψ) �
c2

1t2

4π

�
�ξ ��1

dv(ξ)

�ξ �

�
�2 �S � 2	�(div �S)�

1

1 � ν

	 ���(tr �S)� ν1�2(tr �S)�
�

	 (x � c1tξ, t(1 � �ξ �)) (6.190)

Because of (6.136) the integrand on the RHS of (6.190) vanishes. Therefore, if
follows from Eqs. (6.186) and (6.190) that

�2χ � 2	�(div χ)���(tr χ) � 0 (6.191)

This means that χ introduced by Lemma 2 satisfies Eq. (6.111) of Problem 6.6.
Therefore, χ meets Eqs. (6.109)–(6.111), and a solution to Problem 6.7 is complete.

Problem 6.8. Consider the stress equation of motion

	�(div S)�
ρ

2μ

�
�S �

ν

1 � ν
(tr �S) 1

�
� �	�b on B 	 �0,
) (6.192)

subject to the initial conditions

S(x, 0) � S0(x), �S(x, 0) � �S0(x) for x � B (6.193)

where b, S0, and �S0 are prescribed functions. Define a scalar field α � α(x, t) and
a vector field β � β(x, t) by

α(x, t) �
1

4πc2
1

div
�
B

γ(y, t)

�x � y�
dv(y) (6.194)

and

β(x, t) � �
1

4πc2
2

curl
�
B

γ(y, t)

�x � y�
dv(y) (6.195)

where
γ(x, t) � b(x, t)� div �S0(x)� t �S0(x)� (6.196)

Let φ and ω satisfy the equations

�2
1φ � α on B 	 �0,
) (6.197)

and
�2

2ω � β, div ω � 0 on B 	 �0,
) (6.198)
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subject to the homogeneous initial conditions

φ(x, 0) � �φ(x, 0) � 0
ω(x, 0) � �ω(x, 0) � 0

on B (6.199)

Let

S(x, t) � S0(x)� t �S0(x)� 2c2
2 ���φ �

	�(curl�)� �
�

c2
1 � 2c2

2

�
�2φ 1 (6.200)

Show that S satisfies Eqs. (6.192) and (6.193).

Note. The solution (i), in which φ and � satisfy Equations (6.197) through (6.199),
represents a tensor solution of homogeneous isotropic elastodynamics of the Lame-
type [see Eqs. (6.22)–(6.24)].

Solution. Let φ � φ(x, t) and ω � ω(x, t) satisfy the equations

�2
1φ � α on B 	 �0,
) (6.201)

�2
2ω � β, div ω � 0 on B 	 �0,
) (6.202)

subject to the homogeneous initial conditions

φ(x, 0) � 0, �φ(x, 0) � 0 on B (6.203)

ω(x, 0) � 0, �ω(x, 0) � 0 on B (6.204)

where α and β are defined by

α(x, t) � �
1

4πc2
1

div
�
B

γ(y, t)

�x � y�
dv(y) (6.205)

β(x, t) � �
1

4πc2
2

curl
�
B

γ(y, t)

�x � y�
dv(y) (6.206)

and
γ(x, t) � b(x, t)� div�S0(x)� t �S0(x)� (6.207)

Define S � S(x, t) on �B 	 �0,
) by

S(x, t) � S0(x)� t �S0(x)� 2c2
2
	� (�φ � curl ω)�

�
c2

1 � 2c2
2

�
�2φ1 (6.208)

we are to show that

	�(div S)�
1

2c2
2

�
�S �

ν

1 � ν
(tr �S)1

�
� �	� b on B 	 �0,
) (6.209)
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and
S(x, 0) � S0(x), �S(x, 0) � �S0(x) on B. (6.210)

To this end we note first that due to the homogeneous initial conditions (6.203)
and (6.204), S given by (6.208) meets the nonhomogeneous initial conditions (6.210).
To show that S satisfies the field Eq. (6.209) we make the following steps.

Applying the identity

curl curl u � � div u ��2u (6.211)

to the field

u(x, t) � �
1

4π

�
B

γ(y, t)

�x � y�
dv(y) (6.212)

that satisfies Poisson’s equation
�2u � γ (6.213)

and using the definitions of α and β [see Eqs. (6.205) and (6.206)] we obtain

� c2
1 �α � c2

2 curl β � γ (6.214)

Next, by using the relations

1

c2
2

�
ρ

μ
,

1

c2
1

�
1

c2
2

1 � 2ν

2 � 2ν
(6.215)

and differentiating (6.208) twice with respect to time we obtain

�S � 2 c2
2

�	�(� �φ � curl �ω)�
ν

1 � 2ν
�2 �φ 1

�
(6.216)

Since
tr 	� (� �φ) � �2 �φ, tr 	�(curl �ω) � 0 (6.217)

therefore, taking the trace of (6.216) we get

tr �S � c2
2

2(1 � ν)

1 � 2ν
�2 �φ (6.218)

and it follows from (6.216) and (6.218) that

1

2μ

�
�S �

ν

1 � ν
(tr �S)1

�
�

1

ρ
	�(� �φ � curl �ω) (6.219)
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In addition, if follows from (6.208) that

div S � b � div
�

S0 � t �S0 � 2c2
2
	�(�φ � curl ω)� (c2

1 � 2c2
2)�

2φ1
�
� b

(6.220)

� div(S0 � t �S0)� b(x, t)�


c2

2 �
2 � (c2

1 � c2
2)� div


(�φ � curl ω)

(6.221)

Hence, in view of (6.207) and (6.214) we get

div S � b � �c2
1 �α � c2

2 curl β ��2 (c2
1� φ � c2

2 curl ω) (6.222)

Finally, applying the operator 	� to (6.222) we obtain

	�(div S � b) � 	��c2
1�(�

2φ � α)� c2
2curl(�2ω � β)�

� 	� 

c2

1�
�
�2

1φ � α � c�2
1

�φ
�
� c2

2curl
�
�2

2ω � β � c�2
2 ��

�
(6.223)

Since φ and ω satisfy Eqs. (6.201) and (6.202), respectively, therefore dividing
(6.223) by ρ and taking into account (6.219) we find that S � S(x, t) satisfies
the stress equation of motion in the form

ρ�1	� (div S � b)�
1

2μ

�
�S �

ν

1 � ν
(tr �S)1

�
� 0 (6.224)

This completes solution to Problem 6.8.

Problem 6.9. Let S be a symmetric second-order tensor field on B 	 �0,
) that
satisfies the stress equation of motion

	�(div S)�
ρ

2μ

�
�S �

ν

1 � ν
(tr �S) 1

�
� �	�b on B 	 �0,
) (6.225)

subject to the initial conditions

S(x, 0) � S0(x), �S(x, 0) � �S0(x) for x � B (6.226)

Show that there are a scalar field φ � φ(x, t) and a vector field ω � ω(x, t) such
that

S � S0 � t �S0 � 2c2
2

�
��φ � 	�(curlω)

�
� (c2

1 � 2c2
2)�

2φ 1 (6.227)

�2
1φ � α, φ(x, 0) � �φ(x, 0) � 0 (6.228)
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�2
2ω � β, divω � 0, ω(x, 0) � �ω(x, 0) � 0 (6.229)

where the fields α and β are given by Eqs. (6.227) and (6.228), respectively, of
Problem 6.8.

Note. Solution to Problem 6.9 implies that the tensor solution of Lame-type [Eqs.
(6.227) through (6.229)] is complete.

Solution. In this problem the fields S0, �S0, and b are prescribed. Therefore, the
fields α and β, given by Eqs. (6.234) and (6.235), respectively, of Problem 6.8
are given.

Let φ(0) and ω(0) be solutions to the equations [see Eqs. (6.230) and (6.231) of
Problem 6.8]

�2
1 φ

(0) � α on B 	 �0,
) (6.230)

�2
2 ω

(0) � β, div ω � 0 on B 	 �0,
) (6.231)

subject to the homogeneous initial conditions

φ(0)(x, 0) � 0, �φ(0)(x, 0) � 0 (6.232)

ω(0)(x, 0) � 0, �ω(0)(x, 0) � 0 (6.233)

For example, φ(0) and ω(0) can be taken in the form of retarded potentials. Then, it
follows from the solution to Problem 6.8 that the tensor field S(0) defined by

S(0)(x, t) � S0(x)� t �S0(x)� 2c2
2
	� �

�φ(0) � curl ω(0)
�
�
�

c2
1 � 2c2

2

�
�2φ(0)1

(6.234)
satisfies the equation

	� �
div S(0) � b

�
�

ρ

2μ

�
�S(0) �

ν

1 � ν
(tr �S(0))1

�
� 0 (6.235)

In addition, because of (6.232) and (6.233)

S(0)(x, 0) � S0(x), �S(0)(x, 0) � �S0(x) (6.236)

Introduce the notation
R � S � S(0) (6.237)

where S satisfies Eqs. (6.225) and (6.226) of the Problem 6.9. Then R satisfies the
equations 	�(div R)�

ρ

2μ

�
�R �

ν

1 � ν
(tr �R)1

�
� 0 (6.238)
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and
R(x, 0) � 0, �R(x, 0) � 0 (6.239)

An equivalent form of (6.238) reads

�R � ρ�1
�

2μ	�(div R)�
2μν

1 � 2ν
	 �div(div R)�1

�
(6.240)

In components (6.240) reads

�Rij � ρ�1
�
μ(Rik,kj � Rjk,ki)�

2μν

1 � 2ν
Rab,ab δij

�
(6.241)

Hence

�Ria,a � ρ�1
�
μ(Rik,kaa � Rak,kia)�

2μν

1 � 2ν
Rmn,mni

�
(6.242)

Taking into account the relations

�2 � � div � curl curl (6.243)

c2
2 �

μ

ρ
, c2

1 �
2(1 � ν)

1 � 2ν
c2

2 (6.244)

and using direct notation, we reduce (6.242) to the form

div �R �
�

c2
1 � div � c2

2 curl curl
�

div R (6.245)

Let ξ and r be defined by

ξ � c2
1 div div R � t (6.246)

r � �c2
2 curl div R � t (6.247)

where � represents the convolution product. Then

�ξ � c2
1 div div R (6.248)

ξ(x, 0) � 0, �ξ(x, 0) � 0 (6.249)

and

�r � �c2
2 curl div R (6.250)

r(x, 0) � 0, �r(x, 0) � 0 (6.251)

div r(x, t) � 0 (6.252)
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It follows from (6.239) and (6.245)–(6.251) that

div R � �ξ � curl r (6.253)

By taking the div operator on (6.253) we obtain

div div R � �2ξ (6.254)

and applying the curl to (6.253) we get

curl div R � curl curl r (6.255)

Hence, in view of (6.243) and (6.252)

curl div R � ��2r (6.256)

Also, because of Eqs. (6.248) and (6.254) we obtain

�2
1ξ � 0 (6.257)

and using Eqs. (6.250) and (6.256) we obtain

�2
2r � 0 (6.258)

Substituting div R from (6.253) into (6.240) we obtain

�R �
μ

ρ

�
2	� � 1

2ν

1 � 2ν
div

�
(�ξ � curl r) (6.259)

Let
φ(1) � ξ � t, ω(1) � r � t (6.260)

Then
�φ(1) � ξ, φ(1)(x, 0) � �φ(1)(x, 0) � 0 (6.261)

and
�ω(1) � r, ω(1)(x, 0) � �ω(1)(x, 0) � 0, div ω(1) � 0 (6.262)

Integrating (6.259) twice with respect to time and taking into account the homoge-
neous initial conditions (6.239), (6.261) and (6.262) we obtain

R � ρ�1μ

�
2	� � 1

2ν

1 � 2ν
div

��
�φ(1) � curlω(1)

�
(6.263)

where, because of (6.257) and (6.258), (6.261)1 and (6.262)1,
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�2
1
�φ(1) � 0 (6.264)

and
�2

2 �ω
(1) � 0 (6.265)

Since, in view of (6.249), (6.251), (6.261)2 and (6.262)2

φ(1)(x, 0) � �φ(1)(x, 0) � �φ(1)(x, 0) �
...
φ
(1)
(x, 0) � 0 (6.266)

ω(1)(x, 0) � �ω(1)(x, 0) � �ω(1)(x, 0) �
...
ω(1)(x, 0) � 0 (6.267)

therefore, integrating twice Eqs. (6.264) and (6.265), with respect to time, we obtain

�2
1 φ

(1) � 0 (6.268)

and
�2

1 ω
(1) � 0 (6.269)

Also, note that an alternative form of (6.263) reads

R � 2c2
2
	� �

�φ(1) � curlω(1)
�
�
�

c2
1 � 2c2

2

� �
�2φ(1)

�
1 (6.270)

Therefore, because of (6.234), (6.237), and (6.270)

S � S0 � R � S0(x)� t �S0(x)� 2c2
2
	� 


�
�
φ(0) � φ(1)

�
� curl

�
ω(0) � ω(1)

�
�
�

c2
1 � 2c2

2

� 

�2

�
φ(0) � φ(1)

�
1 (6.271)

The fields φ and ω are defined by

φ � φ(0) � φ(1), ω � ω(0) � ω(1) (6.272)

where (φ(0), ω(0)) and (φ(1), ω(1)) have been defined before.
If the definition (6.272) of φ and ω is taken into account, Eq. (6.271) reduces to

Eq. (6.225) of Problem 6.9.
Finally, if we note that the pair (φ(0), ω(0)) satisfies Eqs. (6.230)–(6.233) and the

pair (φ(1), ω(1)) satisfies Eqs. (6.261)–(6.262), and (6.268)–(6.269), we find that the
pair (φ, ω) meets Eqs. (6.228)–(6.229). This completes a solution to Problem 6.9.

Problem 6.10. Consider the stress equation of motion in the form

	�(div S)� ρ K� �S� � �B on B 	 �0,
) (6.273)

subject to the homogeneous initial conditions
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S(x, 0) � 0, �S(x, 0) � 0 for x � B (6.274)

where

K�S� �
1

2μ

�
S �

ν

1 � ν
(tr S) 1

�
(6.275)

and B � B(x, t) is an arbitrary symmetric second-order tensor field on B 	 �0,
).
Define a vector field v � v(x, t) by

v(x, t) � �
c2

2 t2

4π

�
�ξ ��1

f�x � c2tξ, (1 � �ξ �)t�

�ξ �
dv(ξ) (6.276)

where

f(x, t) �

��
c2

1

c2
2

� 1

�
�g �

1

ρ c2
2

div K�1�B�

�
(x, t) (6.277)

g(x, t) � �
c2

1 t2

4π

�
�ξ ��1

h�x � c1tξ, (1 � �ξ �)t�

�ξ �
dv(ξ) (6.278)

and

h(x, t) �
1

ρ c2
1

div div K�1�B�(x, t) (6.279)

Let

S(x, t) �
1

ρ
K�1�	�v � B� � t (6.280)

Show that S satisfies Eqs. (6.273) and (6.274).
Hint. Use the result of Problem 6.4 that the function

ϕ(x, t) � �
c2t2

4π

�
�ξ ��1

F�x � ctξ, (1 � �ξ �)t�

�ξ �
dv(ξ) on E3 	 �0,
) (6.281)

satisfies the inhomogeneous wave equation�
�2 �

1

c2

∂2

∂t2

�
ϕ � �F on E3 	 �0,
) (6.282)

subject to the homogeneous initial conditions

ϕ(x, 0) � �ϕ(x, 0) � 0 (6.283)

Solution. To show that S given by
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S(x, t) � ρ�1K�1�	�v � B� � t (6.284)

satisfies Eqs. (6.273)–(6.274), we note that

S(x, 0) � 0, �S(x, 0) � 0 (6.285)

Hence, S given by (6.284), satisfies Eqs. (6.274). To show that S given by (6.284)
satisfies (6.273) we substitute S given by (6.284) to (6.273) and obtain

	�(div S)� ρK� �S� � 	�(div S)� 	�v � B � �B (6.286)

In the following we prove that
v � div S (6.287)

This implies that S given by (6.284) meets (6.273). To this end we note that from
Eqs. (6.276)–(6.277) we obtain

�2
2v � �f � �

��
c2

1
c2

2
� 1

�
�g � 1

ρc2
2
div K�1�B�

�
(6.288)

v(x, 0) � 0, �v(x, 0) � 0 (6.289)

Also, Eqs. (6.278)–(6.280) imply that

�2
1g � �h � �

1

ρc2
1

div div K�1�B� (6.290)

g(x, 0) � �g(x, 0) � 0 (6.291)

By taking the div operator of (6.288) we get

�2
2div v � �

��
c2

1

c2
2

� 1

�
�2g �

1

ρc2
2

div div K�1�B�

�
(6.292)

By eliminating div div K�1�B� from Eqs. (6.290) and (6.292), we obtain

�2
2(div v) � �

��
c2

1

c2
2

� 1

�
�2g �

c2
1

c2
2

�2
1g

�

� �

�
��2g �

1

c2
2

�g

�
� ��2

2g (6.293)

Hence
�2

2(div v � g) � 0 (6.294)
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Since, v and g satisfy the homogeneous initial conditions (6.289) and (6.291), respec-
tively, Eq. (6.294) implies that

div v � g (6.295)

Substituting g from (6.295) into the RHS of (6.288), we obtain

�v � c2
2�

2v �
�

c2
1 � c2

2

�
�div v � ρ�1div K�1�B� (6.296)

Since
�2v � 2 div (	�v)��div v (6.297)

and
�div v � div �1 tr (	�v)� (6.298)

therefore, Eq. (6.296) can be written as

�v � div
�

2c2
2(
	�v)�

�
c2

1 � 2c2
2

�
1 tr (	�v)� ρ�1K�1�B�

�
(6.299)

or, in view of (6.284),
�v � div �S (6.300)

Integrating (6.300) with respect to time twice, and using the homogeneous initial
conditions for v and S, given by Eqs. (6.285) and (6.289), respectively, we arrive at
Eq. (6.287). This completes a solution to Problem 6.10.

Note that the solution to Problem 6.10 provides an effective solution of the incom-
patible elastodynamics when B represents a space-time distribution of defects on
B 	 �0,
).
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