Chapter 6
Complete Solutions of Elasticity

In this chapter general solutions of the homogeneous isotropic elastostatics and
elastodynamics are discussed. The general solutions are related to both the displace-
ment and stress governing equations, and emphasis is made on completeness of the

solutions [See also Chap. 16].

6.1 Complete Solutions of Elastostatics

A vector field u = u(x) on B that satisfies the displacement equation of equilibrium

Vu +

1 . b
V(diva)+ — =10
1 2v m

is called an elastic displacement field corresponding to b.

Boussinesq-Papkovitch-Neuber (B-P-N) Solution. Let

1
u=1y mv(x ¥ +e)

where ¢ and v are fields on B that satisfy Poisson’s equations
1
Vi = —b
n

and 1
qu) =—b x
n

Then u is an elastic displacement field corresponding to b.
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Boussinesq-Somigliana-Galerkin (B-S-G) Solution. Let u be a vector field given by

1
_ 2 ;
u=V-g >0 ) V(div g) (6.5)

where )
V2V2g= —b (6.6)
w

Then u is an elastic displacement field corresponding to b.

We say that a representation for the displacement u expressed in terms of auxiliary
functions is complete if these auxiliary functions exist for any u that satisfies the
displacement equation of equilibrium (6.1).

For B-P-N solution such auxiliary functions are the fields ¢ and 1; while for
B-S-G solution an auxiliary function is the field g.

Completeness of B-P-N and B-S-G Solutions. Let u be a solution to the displace-
ment equation of equilibrium with the body force b. Then there exists a field g on B
that satisfies Eqgs. (6.5)—(6.6). Also, there exist fields ¢ and i that satisfy Egs. (6.2)—
(6.4).

B-P-N solution for axial symmetry. For an axially symmetric problem with
b = 0 in which x3 = z is the axis symmetry of a body, the displacement vector
field u = u(r, z) referred to the cylindrical coordinates (r, 6, z) takes the form

1

where
z=x k (6.8)

with k being a unit vector along the x3 axis, and with scalar-valued harmonic functions
¢ = ¢(1, z) and ¥ = ¥ (r, z). In components we obtain

u = [u.(r, z), 0, u,(r,z)] (6.9)
where
_ ;3 6.10)
u = 20 v ar(ZlﬁJr(p) (6.
— ; i 6.11
u; =Y PR aZ(Zxﬁer) (6.11)
and
V=0, V% =0 (6.12)

with
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v2—82+18+82 (6.13)
92 ror 972 '
B-S-G solution for axial symmetry with b = 0 and g = xk is also called Love’s
solution.

1
_ 2
u=(V-yk —2(1 1))V(k Vx) (6.14)

where
V2Vl =0 (6.15)

In cylindrical coordinates (r, 0, z)

2
U = ! 9 (6.16)
2(1  v) droz
up =0 6.17)
1 92
U= 3T [2(1 v)V2 @] X (6.18)

6.2 Complete Solutions of Elastodynamics

The displacement equation of motion for a homogeneous isotropic elastic body takes
the form

2
b
Pu + (C—‘) 1| Vdive) + = =0 (6.19)
c2 w
where 5
10 1 1
M=v: o S=_f  __F (6.20)
c5 ot g At2n o5 u
The body force b is represented by Helmholtz’s decomposition formula
b= Vh curlk, divk=0 (6.21)

A solutionuon B x[0, c0) to Eq. (6.19) will be called an elastic motion corresponding
tob.

Green-Lame (G-L) Solution. Let
u= Vg +curl ¢ (6.22)

where ¢ and 1 satisfy, respectively, the equations
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2 = h (6.23)
=3 +2u '
and
, k
D%y = — (6.24)
"

Then u is an elastic motion corresponding to b given by Eq. (6.21). In Eq. (6.23)

mov? 1 i (6.25)
b 2 9t '
Cauchy-Kovalevski-Somigliana (C-K-S) Solution. Let
2
u=0C%g+ C—§ 1) vaiv g (6.26)
1
where g satisfies the inhomogeneous biwave equation
22 b
N

Then u is an elastic motion corresponding to b.

Note. Both G-L and C-K-S solutions are complete.

6.3 Complete Stress Solution of Elastodynamics

The stress equation of motion for ahomogeneous isotropic elastic body takes the form

—~ . J v .. —~
v — 1=V 2
(div S) 2 [S T+ (trS) i| b (6.28)

A solution S on B x [0, 00) to Eq. (6.28) will be called a stress motion corresponding
tob.

Stress Solution of Galerkin Type. Let
s=[(vw w@E)e6 20 »Oi6] (6.29)

where G is a symmetric second-order tensor field on B x [0, co) that satisfies the

equations
1

1 v

203G = Vb (6.30)
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and
V3G +VV(IrG) 2V(divG) =0 6.31)

Then S is a stress motion corresponding to b, that is, S satisfies Eq. (6.28).
Completeness of the Stress Solution of Galerkin Type.

The stress solution of Galerkin type corresponding to homogeneous initial conditions
is complete, that is, for any stress motion S corresponding to b there exists a second-
order symmetric tensor field G such that Egs. (6.29)—(6.31) are satisfied.

6.4 Problems and Solutions Related to Complete Solutions
of Elasticity

Problem 6.1. The displacement u = u(x, £) at a point x due to a concentrated force
I applied at a point £ of a homogeneous isotropic infinite elastic body is given by
(x#8§)

u(x,§) = Ux, §)I

where o x HOK &
X X
R Ry
with
R=[|x &

Use the stress-displacement relation to show that the associated stress S = S(x, &)
takes the form

1 1
87(1 v)R3

+(1 20{x HI+Ix §) [ §) l]l}]

3
S(x,§) = gl £ lx Hex §)

Solution. The displacement u in components takes the form
ui = Uik Li (6.32)

where
A 1 2
Ur=3-R'[G 48+ &) &R 7] (6.33)
"

and
1

A= sz(1 ) 634
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The stress tensor S;; is computed from the stress-strain relation

Vv

where
Eij = uj) = Uik) bk (6.36)

Calculating Uy j, by using Eq.(6.33), we obtain
P i 3 : NS s . N xs ) 2
Ulk,] = 2MR €] 4”)()9 Ej)akl + 3(x; El)(x/ gj)(xk &R
(o E08 (i E)dy] (6.37)

Hence, taking the trace of (6.37) with respect to the indices i and j, we get

A
Uir,i = ZR G 4)0x &) +30x &) 30w &) (u &)l
A

= —R3x201 210 &) (6.38)
2p
Since
Eij = Uik,i Lk (6.39)
therefore,
A
Eij=Ey = ER Ix 21 20 &)l (6.40)

Also, by taking the symmetric part of (6.37) with respect to the indices i and j we
obtain

A 3
Ugrj) = ZR {1 20 &)k + (ki &)k
30 ENy E)Ou EOR 2 (w Sk)fsij} (6.41)

Hence, because of (6.36), we get

A
Ejj = ER 3{(1 20§+ ENGIH3(G &) §)a &R 2

O E0C 8} (6.42)

Finally, substituting Ej; from (6.42) and Eyy from (6.40), respectively, into (6.35),
we obtain
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S;= AR 3{3R 2o &G & Bl
+(1 200 &G+ (5 & (x E)di) (6.43)

Equation. (6.43) is equivalent to the stress formula of Problem 6.1. This completes a
solution to Problem 6.1.

Problem 6.2. The displacement equation of thermoelastostatics for a homogeneous
isotropic body subject to a temperature change T = T(x) takes the form

V2u + Vdive 2 2evr =0 (6.44)
1V o = .
1 2v 1 2v
Let 1
= -V 6.45
u=1y TR (x ¥ +9) (6.45)
where
V2 =0 (6.46)
and
Vo= 4(1+v)aT (6.47)

Show that u given by Eqs. (6.45) through (6.46) satisfies Eq. (6.44).
Solution. Egs. (6.44)—(6.47) in components take the form

242v
i i T,,=0 6.48
ui ik + T oy tkki T, @ T (6.48)
1
uj = y; m(%‘ﬁa + @i (6.49)
where
wi,aa =0 (6.50)
and
Q= 41 +v)aT (6.51)
Taking the gradient of (6.49) we obtain
1
ujr = Vi m(xallfa +©),i (6.52)
Hence, from (6.50),
1
Uik = ————&aVa + ©)sikk (6.53)

41 v)
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and
¥ ! (XaVa + @) (6.54)
U, = — (X .
Kk k3 WaVe ) kk
1
ki = | Vik Ve + @) ik |i (6.55)
41 v
Using the relation
XaVa) ik = 2Vk k + XaVa ik = 2Vk k (6.56)

we reduce (6.53) and (6.55) into

Ui ke = QUkk + Ookk )si (6.57)

41 v

and

1
Up ji = [Iﬂk,k —v)(zlﬂk,k + Ooxk )}i (6.58)

4(1

Therefore, substituting (6.57) and (6.58) into the LHS of (6.48) we obtain

. 1
C¥x + Qi) + ——— [llfk,k

! L s +ou| 22t
aa v 1 20 by Wk T @ kk “h

aa 1 2
1 5
= m{%kk +4(1 +v)aT},; (6.59)

Equation (6.59) together with Eq.(6.51) imply that u; given by (6.49) meets (6.48).
This completes a solution to Problem 6.2.

Problem 6.3. The temperature change 7 of a homogeneous isotropic infinite elastic
body is represented by

T(x) =T 8(x) (6.60)

where
3(x) = 8(x1)8(x2)8(x3) (6.61)
8§ = 8(x;), 1 = 1,2,3, is a one dimensional Dirac delta function, and Tisa

constant with the dimension [T] = [Temperature x Volume]. Show that an elastic
displacement u = u(x) and stress S = S(x) corresponding to 7 = 7'(x) are given by

I 14+v - 1

- VTV — 6.62
= T TV (6.62)

and 1+ )
Sy = LTV Fwv o 1v?) — (6.63)

271w x|
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Hint. Use/t\ the representation (6.61) through (6.63) of Problem 6.2 in which ¢ = 0
and T = T §(x). Also, note that

n 2\~
TTR) (VV 1V9Hp (6.64)

S =
Solution. By letting y = 0 and
o= 41 )¢ (6.65)

in Egs. (6.61)—(6.63) of Problem 6.2 we obtain

up =¢,; (6.66)

where
Vi =mT (6.67)

and 1+
m=-—"Y4 (6.68)
1 v

Also,

Si =2 Vs (6.69)

IfT(x) = Ts (x), a solution to (6.67) in E> takes the form
mT 1
o= —— (6.70)
4 x|

Substituting ¢ from (6.70) into (6.66) and (6.69), respectively, we obtain (6.62) and
(6.63). This completes a solution to Problem 6.3.

Problem 6.4. A solution ¢ = ¢(x, ) to the nonhomogeneous wave equation
Be(x,1) = F(x,1) on E* x [0, oc) 6.71)
subject to the homogeneous initial conditions
9(x,00=0, ¢(x0=0 on E (6.72)

takes the form

o, 1) = — / F@.t & 8179 1)y on E3x[0.00) (6.73)
4w x &

Ix &l=<ct
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Here
) , 192
Op=V Sy (6.74)

Show that an equivalent form of Eq. (6.73) reads

2 FIx cig, (1 |ED1]

4m H
[E1<1

dv(E) on E3x[0,00) (6.75)

p(x, 1) =

Solution. Introduce the transformation of variables

X &=ct;, ct>0 (6.76)
Then
dv(§) = d&y d&y d&s = SAPdeidgdes (6.77)
and
dv(€) = Adu(C) (6.78)
Since
x &l=ctlg]| <ct (6.79)
therefore,
¢ < 1 (6.80)

and the integral (6.73) reduces to (6.75). This completes a solution to Problem 6.4.

Problem 6.5. Let S = S(x, t) be a solution to the stress equation of motion of
a homogeneous anisotropic elastodynamics [see Eq. (3.51) in which p and K are
constants]

V(divS) pK[S]= B on B x [0, ) (6.81)
subject to the initial conditions
S(x,0) = Sp(x), S(x,0) =S8o(x) for xeB (6.82)

Here, B = B(x, 1), So = So(x), and So = So(x) are prescribed functions. Show
that the compatibility condition

curlcurl K[S]=0 on B x [0, o0) (6.83)
is satisfied if and only if there exists a vector field u = u(x, #) on B x [0, 00) such

that N
Vi= p 'B on Bx[0, ) (6.84)
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and
Sox) =K '[Vu(x,0)], So(x) =K '[Vi(x,0)] on B (6.85)

Note that B in Eq. (6.81) represents an arbitrary second-order symmetric tensor field
on B x [0, 00), while Sp and Sg in Eq. (6.82) stand for arbitrary second-order sym-
metric tensor fields on B.

Solution. A solution to Problem 6.5 is based on the following
Lemma. A symmetric tensor field E on B x [0, 00) satisfies the condition
curlcurl E =0 on B x [0, 0c0) (6.86)
if and only if there is a vector field u on B x [0, c0) such that
E=Vu onB x (0, 50) (6.87)
Proof of Lemma. The proof is split into two parts

(1) (6.87) = (6.86), (ii) (6.86) = (6.87).

To show (i) we substitute (6.87) into the LHS of Eq. (6.86) and find that Eq. (6.86)
holds true. To show (ii), we note that Eq. (6.86) implies that there is a vector field a
such that

curl E = Va (6.88)
Since, by Helmholtz’s theorem, there are a scalar field ¢ and a vector field b such that

a=Vy+curlb, divb=0 (6.89)

Equation (6.88) can be written as

curl E = VVgp + V curl b (6.90)

or
€iab Ejp,a = ©.ij TE€iab b qj (6.91)

By taking the trace of (6.91), it is, by letting i = j in (6.91), we obtain
¢,ii=0 or divVp =0 (6.92)

This implies that there is a vector field ¢ on B x [0, 00) such that

Vo =curl ¢ (6.93)
Substituting (6.93) into (6.90) we obtain

curl E =V curl (¢ +b) (6.94)
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Since for any vector v
V curl v = curl (Vv7) (6.95)

or
T
€iab Vb.aj = €iab(Vjb) 4 (6.96)

therefore, Eqgs. (6.94) and (6.95) imply that
curl (E W) =0 (6.97)

where
v=b+c (6.98)

Next, it follows from Eq. (6.97) that there is a vector field e on B x [0, co) such that
E VW =Ve (6.99)
By taking the transpose of (6.99) and using the symmetry of E (E = E”) we obtain
E Vv=Ve (6.100)

By adding Eqs. (6.99) and (6.100) we get
E=V(v+e) (6.101)

Hence, if we let
u=v+e (6.102)

in Eq.(6.101) we obtain (6.87). This shows (ii), and proof of Lemma is complete.
To show that the compatibility condition (6.83) is satisfied if and only if there
exists a vector field u on B x [0, o0) such that (6.84) and (6.85) hold true, we note
that Egs. (6.81) and (6.82) are satisfied if and only if
K[S] = K[So +1So] + 1% p ' (VdivS + B) (6.103)
Applying curl curl to this equation we obtain

curl curl K[S] = curl curl {t «p 'B+K[Sy + tSo]} (6.104)

Hence, the compatibility condition (6.83) is equivalent to

curl curl {rx p "B+ K[So + So]} = 0 (6.105)
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Using the Lemma we find that Eq. (6.105) holds true if and only if there is a vector
field u such that )
txp "B+K[So+1So]l = Vu (6.106)

If B, So, and S are given by (6.84)—(6.85), then Eq. (6.106) is identically satisfied.
Conversely, by differentiating twice (6.106) with respect to time we obtain (6.84).
Also, by differentiating (6.106) with respect to time and letting t = 0 we obtain

So = K '[Vi(x, 0)] (6.107)
Finally, by letting r = 0 in (6.106) we get

So =K '[Vu(x, 0)] (6.108)

This completes a solution to Problem 6.5.

Problem 6.6. Consider a homogeneous isotropic elastic body occupying a region
B. Let S = S(x, t) be a tensor field defined by

S(x, 1) = [(vv le%) wy 201 v)D%x] on Bx[0,00) (6.109)

where x = x (X, t) is asymmetric second-order tensor field that satisfies the equations
1 ~

(P3x = ﬁVb on B x [0, 00) (6.110)

and
V2x +VV(ry) 2V(divx) =0 on B x [0, 00) 6.111)

Show that S = S(x, 7) satisfies the stress equation of motion [see Eq. (6.28)]

v
14+v

V(div S) zﬁ [s
n

(trS) 1} = Vb on B x[0,00) (6.112)
Note. The stress field S in the form of Eqs. (6.109) through (6.111) is a tensor solution
of the homogeneous isotropic elastodynamics of the Galerkin type. To show this we
letx = [u/(1 v)]Vg, where g is the Galerkin vector satisfying Eq. (6.27). Then
Egs. (6.110 and 6.111) are satisfied identically, and Eq. (6.109) reduces to

~ 1
S=u [ZD%Vg I—VV(div g) + lLl O3 (div g)] (6.113)
V V

The stress field S given by (6.111) corresponds to a solution of C-K-S [or Galerkin]
type defined by Eqgs. (6.26)—(6.27).
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Solution. Egs. (6.109)-(6.111), respectively, in components take the form

Si = Xaaij VBxaa 8 201 )iy (6.114)
D3 x5 = T5b6)) (6.115)

and
Xij.aa t Xaaij  Xikdkj — Xjkki =0 (6.116)

The stress equation of motion (6.112) is rewritten as

0 . Voo
Sicrn — S ——Su i) = by 6.117
k) 5 ( ik u) (i) ( )
In Egs. (6.114)—(6.115)
1 92 1 92

1=V —— =V - 6.118
1 c% 3t2 2 c% at ( )

and 1 p 1 11 2v
—=5, == (6.119)

By taking the trace of (6.114) we obtain

Sea = (1+v) 03 Xaa (6.120)

Hence, an alternative form of (6.114) reads

Si; Sik 8if = Xaayj 21 )} xi (6.121)

14+v
Next, using (6.114) we obtain
S(ik.kj) = Xaa,kkij VB Kaay 200 v)OF X (ik, k) (6.122)

Since, from (6.116)
2X(ik,kj) = Xij.aa 1 Xaa,ij (6.123)

therefore, (6.122) can be written as
Stk = Vixaai VO3 Xaai (1 VO] Xaay (1 WOT xjaa  (6.124)
or

1
S(ik,kj) = FXaa,ij (1 v Xij,aa (6.125)
2
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Substituting (6.121) and (6.125) into the LHS of (6.117) we obtain

1 . Voo 1 .. 5
S(ik k) 2_c% (Sij H—_vSkkSU)ZEXM’ij (I v)UY Xij.aa
LT, .
2 [y 200 0 )= 0 WO Bk (6.126)

2

Since y;; satisfies Eq.(6.115), therefore, by virtue of (6.126), S;; given by (6.114)
meets (6.117). This completes a solution to Problem 6.6.

Problem 6.7. Let S be the tensor solution of homogeneous isotropic elastodynamics
of Problem 6.6 corresponding to homogeneous initial conditions. Show that the
solution is complete, that is, there exists a second-order symmetric tensor field x
such that Egs. (6.109) through (6.111) of Problem 6.6 are satisfied.

Solution. To solve Problem 6.7 we prove the two Lemmas.

Lemma 1. Let S satisfy the field equation

V(divS) 2i (S v (trS)l): Vb on B x [0, 00) (6.127)

2
c5 1+v

subject to the homogeneous initial conditions

S(x,0) =0, $(x,00=0 onB (6.128)
Then
curl curl E =0 on B x [0, 00) (6.129)
where | y
E = W (S T (tr S)l) (6.130)

Lemma 2. Let S satisfy the hypotheses of Lemma 1, and let S be a continuation of
Son E3 x [0, 00) such that

curlcurlE = 0 on E> x [0, 00) (6.131)

where

- 1 - -
By (s 1 _‘;v(trS)l) on E3 x [0, 00) (6.132)

Define a second-order tensor field y on B x [0, 0o) such that

dv(§) 2u_cicyt
£ Ex ci8, (1 |5|)t)+1 2v 1672

21 vy =2 ar’ /
VK=
<1
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dv(§) dv(n) (o )
t3 |
gi<1 ni<1
x(x cit& cm, (1 [ENA MDD (6.133)
Then 5
Ry = —L (wE) (6.134)
2v
Notes

(1) Equations (6.129) and (6.131), respectively, are equivalent to

_ 1
2V(divS) V’S+ " w1v?  vV)(trS) =0 (6.135)
v
and |
2V(divS) V2§ + - Ww1vZ VW) S) =0 (6.136)
v

To prove that (6.135) < (6.129) we use the identity [see Problem 1.12,
Eq. (1.204) in which S is replaced by E]

curlcurl E =2V(divE) V?E VV (¢ E) + 1[V3(r E) div div E]
(6.137)

Equation (6.129) implies that the LHS of (6.137) vanishes which written in
components means

Epxj + Exxi Eijik  Eaaij + 8ij(Eaapp  Eab,ap) =0 (6.138)
By letting i = j in (6.138) we obtain
2Ei ki 2Eaapb + 3(Eaabb  Eab.ap) =0 (6.139)

or
Eaa,bb Eab,ab =0 (6140)

Hence (6.129) is equivalent to
2V(divE) V’E VVUE)=0 (6.141)

Substituting E from (6.130) into (6.141), and using the relations

1
dvE = — [div s 2 v S)] (6.142)
21 1+v
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trE) = trS 6.143
(tr E) CRE ( ) ( )
2VV(tr S) = 2VV(tr S) (6.144)
we obtain
S 2 2v v 2 2v
2V(divS) VS —— VV(wrS) 4+ —1V*(urS) VV(tr S)
1+v 1+v v
~ 1
=2V(divS) V2S+ " W1V(rS) VV(rS)]=0 (6.145)
v

Therefore, (6.129) < (6.135) < (6.145).
(2) An alternative form of (6.133) reads

2.2
20 vy =95 / S [S livarS)l](x cug, (1 [£])

4r €]
lgl<1
1 i3t dv(€) dv(n) =~
+1+vvv(l6n2)/ €l Y
HE ml=<1
X (x citE com, t(1 |ED(L ) (6.146)

To prove that (6.133) < (6.146) we substitute E from (6.132) into (6.133) and
obtain (6.146).
(3) A solution ¢ = @(x, r) of the biwave equation
2 03¢ =f onB x [0, 00) (6.147)
subject to the homogeneous initial conditions

o®(x,00=0 onB, k=0,1,2,3 (6.148)

takes the form of iterated retarded potential

P(x, 1) =

et / dv(€) dv(n)

1672 &1 |
g1 mi<1

f&xcitg com, oL [EDHA M)

(6.149)

To show that @ given by (6.149) satisfies Eq. (6.147), note that because of the
solution to Problem 6.4, a solution to the equation

1u =f onB x [0, c0) (6.150)
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subject to the homogeneous initial conditions
u(x,0) =0, u(x,0)0=0 onB (6.151)
takes the form

2.2
1§1<1

f&x a1 [E]) (6.152)

Similarly, a solution to the equation
(3¢ =u onB x [0, o) (6.153)
in which u is prescribed, and subject to the conditions
?x,00=0, 9x,00=0 onB (6.154)
takes the form

c2t2 dv(n)
P(x.1) = 2~
4r |

ml<1

u(x cym, t(1 In))) (6.155)

Note that substituting u from (6.153) into (6.150) we obtain

Dl 9 =1 (6.156)
and it follows from (6.152) that
u(x com, (I D)
2
2%5[1 dTg(f) xfx citg com, (L EHA D) (6.157)

Therefore, substituting (6.157) into (6.155) we find that a solution of (6.156)
takes the form (6.149). Also, by differentiating (6.149) with respect to time we
Obtain Py D es

0(x,0) = ¢0(x,0) = p(x,0) = ¢p(x,0) =0 (6.158)

This completes the proof that ¢ given by (6.149) satisfies (6.147) and (6.148).

Proof of Lemma 1. Applying the operator curl curl to Eq.(6.127) and using the
relation N
curl curl V(divS +b) =0 (6.159)
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we obtain )
curl curl E = 0 (6.160)
where E is given by Eq. (6.130).
From (6.128) and (6.130)
Ex,00=0, E(x,0)=0 (6.161)

Therefore, integrating (6.160) twice with respect to time, and using (6.161), we arrive
at Eq.(6.129). This completes the proof of Lemma 1.

Proof of Lemma 2. Introduce ¢ = ¢(x, 1) on E* x [0, 00) by the formula

2.2

5 ot 1 dv(€)

px, 1) = e _l—l—v/ 2] (rS)(x cat&, 1(1 |&])) (6.162)
lE1<1

and let § = (x, 1) be an extension of y on E3 x [0, 00).

Then )
o, 0)=0, ¢(x,0)=0 on E? (6.163)
xx,0) =0, %(x,0 =0 :
and |
3¢ = 0 (tr S) on E> x [0, 00) (6.164)

Also, using Note 3, and applying the wave operator D% to Eq. (6.146), extended to
E3 x [0, o0), we obtain

2.2
2~ & v ~ et 1
21 vOyx = [S T 1)(tr S)l] + VV—47T Ty
X / dﬁ?)(tr S)x cxm, 11 ) (6.165)

mi=<l1
Taking the trace of (6.165) and using definition of ¢ [see (6.162)] we get

1 2w -
1+vv(trS) V2 (6.166)

201 vy =
Next, multiplying (6.164) by (1 ~ 2v), and using the identity
(1 2v03 =20 v Vv? (6.167)

we obtain
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2v
14+v

21 v)ig = (tr S) + V3¢ (6.168)

By addition of Egs. (6.166) and (6.168) we get

i@ uyp =0 (6.169)
Since, in view of (6.163),
@ twPE0=0 onE’ (6.170)
and )
@ w0 =0 onkE’ (6.171)

therefore, it follows from (6.169) that
¢=try onkE> x[0,00) (6.172)

Substituting ¢ from (6.172) into (6.162) and applying the operator VV we get

VV(tr§) = Sr vV / W) wSyx  eatr(l ED)  (6.173)
47 1+v |€] ’ '
[E1=<1

Also, substituting ¢ from (6.172) into (6.164) we obtain

B(tr ) = rS 6.174
2(r ) 1Jrv(r ) ( )
Since, because of (6.132),
- 11 2v -
trE) = — trS 6.175
(tr E) 2 1_’_v(r ) ( )

Equation (6.174) is equivalent to (6.134). A restriction of (6.134) to B x [0, 00)
leads to

3 (tr ) =

s (6.176)

This completes proof of Lemma 2.

Solution to Problem 6.7. We are to show that ) introduced by Lemma 2 [see
Eq. (6.133)] satisfies Egs. (6.109)—(6.111) of Problem 6.6.
By Lemma 2 [see also Eq.(6.176)]

D3(try) = (tr S) (6.177)

1+v
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An equivalent form to Eq. (6.177) reads

22
o 1 / WE) rSyx  extt it ED) (6.178)

&1

By applying the operator V'V to this equation we obtain

3 1 du(&)
VV(try) = EVVI_H)/ g O gD (6179
gl<1

It follows from Eq. (6.165), restricted to B x [0, 00), and from Eq. (6.179) that

v
1+v

21 vy =S (tr )1 VV(try) (6.180)

Also, from Eqgs. (6.177) and (6.180), we obtain
S=VVry Wy 201 vy (6.181)

Therefore, % introduced by Lemma 2 satisfies Eq. (6.109) of Problem 6.6.
Next, applying the operator D%D% to Eq. (6.146) we obtain

v
1+v

21 vPEy =03 (s (tr S)l) + %VV(U S)
v

1
- UV@S)+ VS —— V2 S)1
1+v

1+v
: (s " S)l) (6.182)
— T .
c% 1+v
It follows from (6.145) that
1 o~
VS 4 [VV(tr S) Vi S)] — 2V(div S) (6.183)
14+v
Therefore, Eq. (6.182) is reduced to
—~ 1 .. ..
201 v)OiO3x =2VWdivS) — (s " S)l) (6.184)
c3 14+v

and, since S is a solution to Eq. (6.127), we obtain

12002 —L% 6.185
12X—1 ) (6.185)
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This shows that  introduced by Lemma 2 satisfies Eq.(6.110) of Problem 6.6.
Finally, introduce the notation

v= 201 vy (6.186)

then using Eqs. (6.146) and (6.178) we obtain

2.2
A dVE) [ re e a 1 N
— ‘ {v § 2V@ivd) + [VV(tr S)

l§1=1

(V*  2Vdiv+ VVir) y =

vlvz(trg)]}X(X e, (1 1ED)

A (1 2v) [ dv)

T 1+v €]
lE1<1

4
Y AN /dv(.g) / dvm)
(16 )i ) e Y
|§1=1 mi=1
x(x s cm. o1 EDA D)
2.2
21 v)ept” / dv(n)(trs)

VV(tr S)(x cité, (1 |€])

LA e m|
mi=<1
x (x com, t(1 n])) (6.187)
Since [see (6.167)]
vi=20 v a 2 (6.188)
therefore
o et / dvE) [ dvn), &
v (16n4) W m (trS)(x crtE com, 11 [ENA n))
ni<it
2.2
d
— 21 v)%/ T(T)arsxx om, (1 M)
|n|<1
1 2v ar’ /ﬁ(t S)x i, 11 |€]) (6.189)
4 e €]

Substituting (6.189) into the RHS of (6.187) we obtain
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2.2
Viy  2V(divy) + VV(tr y) = Gar [ dve) [v2 S 2V(divS) + L
4 €] 14+v
HS
x [VV(@rS) v1V(tr S)]
x (x citg, 11 |E]) (6.190)

Because of (6.136) the integrand on the RHS of (6.190) vanishes. Therefore, if
follows from Eqgs. (6.186) and (6.190) that

V2 2V(divy) + VV(ry) =0 (6.191)

This means that x introduced by Lemma 2 satisfies Eq.(6.111) of Problem 6.6.
Therefore, % meets Eqgs. (6.109)—(6.111), and a solution to Problem 6.7 is complete.

Problem 6.8. Consider the stress equation of motion

v
14+v

Y(divs) 2ﬁ [S
m

trS) 1} = Vb on B x[0,00) (6.192)

subject to the initial conditions
S(x,0) = So(x), S(x,0) =Sp(x) for x€B (6.193)

where b, Sy, and Sy are prescribed functions. Define a scalar field o« = «(x, 1) and
a vector field B = B(x, t) by

, 1
a(x, 1) = —— -0 o) (6.194)
o x 'yl
B
and 1
, 1
B(x, 1) = S curl Y00 ) (6.195)
4rc3 Ix yl
B
where )
Y(x, 1) = b(x, 1) + div [So(x) + 1 Sp(x)] (6.196)
Let ¢ and w satisfy the equations
(¢ =a on B x[0,00) (6.197)

and
Bw=B, divo=0 on B x[0,00) (6.198)
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subject to the homogeneous initial conditions

$(x,0) = p(x,0) =0
w(x,0) =aox, 0 =0 " B (6.199)

Let
S(x, 1) = So(x) + 180(x) + 262 [VV¢ + V(curl )] + (c% 2c§) V21 (6.200)

Show that S satisfies Eqs. (6.192) and (6.193).

Note. The solution (i), in which ¢ and @ satisfy Equations (6.197) through (6.199),
represents a tensor solution of homogeneous isotropic elastodynamics of the Lame-
type [see Egs. (6.22)—(6.24)].

Solution. Let ¢ = ¢(x, 1) and w = w(X, 1) satisfy the equations

(¢ =a onB x [0,0) (6.201)
Bw =P, divo=0 onB x [0, 00) (6.202)

subject to the homogeneous initial conditions

¢(x,0) =0, $(x,00=0 onB (6.203)
wx,00=0, o(x,00=0 onB (6.204)

where « and B are defined by

a0 = +—— div [ 22D 4y (6.205)
dmey J x
By = ——cul [ 8D 4y (6.206)
dres x
B
and ]
YO, 1) = b(x, 1) + div[So(x) + 1 So(x)] (6.207)

Define S = S(x, f) on B x [0, 00) by
S(x, 1) = So(x) + 1 So(x) + 22 V (Vg + curl ) + (c% 2c§) V241 (6.208)

we are to show that

v
14+v

V(div S) S (S

- (tr S)l) = Vb onB x[0,00) (6.209)
2c5
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and
S(x,0) = So(x), S(x,0) = So(x) on B. (6.210)

To this end we note first that due to the homogeneous initial conditions (6.203)

and (6.204), S given by (6.208) meets the nonhomogeneous initial conditions (6.210).

To show that S satisfies the field Eq. (6.209) we make the following steps.
Applying the identity

curlcurlu = Vdiva V2u 6.211)
to the field | w.0)
, 1
ux )= — [ XD g 6.212)
dz ) Ix yl
B

that satisfies Poisson’s equation
Viu=y (6.213)

and using the definitions of o and B [see Egs. (6.205) and (6.206)] we obtain

Vo SGeurlB=y (6.214)
Next, by using the relations
1 1 11 2
=2 5=-5-2= (6.215)
5 Ko 52 2v

and differentiating (6.208) twice with respect to time we obtain

.. v ..
1

S=243 [ﬁ(v é + curl &) + T V3¢ 1] (6.216)
V

Since

r V(V$) =V, trV(curld) =0 6.217)
therefore, taking the trace of (6.216) we get

.20 }
tr§ = c? % V24 (6.218)

and it follows from (6.216) and (6.218) that

1 . .. 1 ~ .
— [s Y sn} — —V(Vé + curl &) (6.219)
21 1+v P
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In addition, if follows from (6.208) that

divS +b =div{So+1 80 +23 V(o + cu ) + (] 2)V?¢1} +b

(6.220)
— div(So + 1 So) + b(x, ) + [cg V(2 AV div] (Vo + curl )
(6.221)
Hence, in view of (6.207) and (6.214) we get
divS+b= ¢} Va cGcurlB+ V(Y ¢+ c5curl w) (6.222)

Finally, applying the operator Vv to (6.222) we obtain

V(divS +b) = V[V(V2p )+ Geurl(Vio  P)]

=V I:C%V (D%(ﬁ a+c 24)) + c3curl (D%a) B+c, 2(0)]
(6.223)
Since ¢ and w satisfy Egs.(6.201) and (6.202), respectively, therefore dividing

(6.223) by p and taking into account (6.219) we find that S = S(x, t) satisfies
the stress equation of motion in the form

—~ 1 .. ..
p 'VdivS+b) — [s " S)1:| =0 (6.224)
21 14+v

This completes solution to Problem 6.8.

Problem 6.9. Let S be a symmetric second-order tensor field on B x [0, oo) that
satisfies the stress equation of motion

v
14+v

V(divS) zﬁ [s
"

(trS) 1] = Vb on B x[0,00) (6.225)
subject to the initial conditions

S(x,0) = So(x), S(x,0) = Sp(x) for x€B (6.226)

Show that there are a scalar field ¢ = ¢(x, ) and a vector field w = w(X, t) such
that

S =80 +180 +2c} [VV¢ + V(curl )] + (] 2c3)V?p1 (6.227)

Jp =, ¢(x,0)=¢(x,0)=0 (6.228)
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D%a) =B, divo=0, ox,0)=ax,0 =0 (6.229)
where the fields « and B are given by Egs.(6.227) and (6.228), respectively, of
Problem 6.8.

Note. Solution to Problem 6.9 implies that the tensor solution of Lame-type [Eqgs.
(6.227) through (6.229)] is complete.

Solution. In this problem the fields S, So, and b are prescribed. Therefore, the
fields « and B, given by Egs.(6.234) and (6.235), respectively, of Problem 6.8
are given.

Let ¢(O) and »© be solutions to the equations [see Eqgs. (6.230) and (6.231) of
Problem 6.8]

2 ¢© =« onB x [0, ) (6.230)
0@ =B, divw=0 onB x [0, 00) (6.231)

subject to the homogeneous initial conditions

09x,0 =0 ¢$P%x,0=0 (6.232)
0Px,0 =0, oPx,0 =0 (6.233)

For example, ¢’ and »® can be taken in the form of retarded potentials. Then, it
follows from the solution to Problem 6.8 that the tensor field S defined by

SO (x, 1) = So(x) + 1So(x) + 263V (V¢<°> + curl a)<°>) + (c% 2c§) V2401

(6.234)
satisfies the equation
S (d4iv QO P lgo Y &0y | —
v (dw SO 4 b) o [S (8 )1] —0 (6.235)
In addition, because of (6.232) and (6.233)
SO, 0) =Sy(x), SOx,0) =Sox) (6.236)
Introduce the notation
R=S S© (6.237)

where S satisfies Egs. (6.225) and (6.226) of the Problem 6.9. Then R satisfies the
equations

Soq o [ v .. _
V(div R) ﬂ [R T (tr R)1i| =0 (6.238)
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and ]
Rx,00=0, Rx,0=0

An equivalent form of (6.238) reads

PATAY
1 2v

R=p ! |2M/V\(div R) +

In components (6.240) reads

2v

. 1 2uv
Rij=p "Rk ki + Rjx ki) + I—Rab,ab dij

Hence

2uv

Taking into account the relations

and using direct notation, we reduce (6.242) to the form

divR = (c% V div C% curl curl) divR

Let £ and r be defined by

£=cldivdivR*1¢

r= c5curldivR ¢

where * represents the convolution product. Then

E=cldivdivR
£(x,00=0, £(x,00=0

and

= ¢ curldivR
rx,0) =0, rx,0 =0
divr(x,r) =0

x [div(div R)]l]

Riga = p ! N(Rik,kaa + Rak,kia) + —
1 2v

(6.239)

(6.240)

(6.241)

(6.242)

(6.243)

(6.244)

(6.245)

(6.246)
(6.247)

(6.248)
(6.249)

(6.250)
(6.251)
(6.252)
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It follows from (6.239) and (6.245)—(6.251) that
div R = V& + curlr (6.253)

By taking the div operator on (6.253) we obtain
div div R = V¢ (6.254)
and applying the curl to (6.253) we get
curl div R = curl curlr (6.255)
Hence, in view of (6.243) and (6.252)
curldivR= V?r (6.256)
Also, because of Egs. (6.248) and (6.254) we obtain
?e=0 (6.257)
and using Egs. (6.250) and (6.256) we obtain
r =0 (6258)

Substituting div R from (6.253) into (6.240) we obtain

} ~ 2
R=H [zv 1" div] (VE + curl 1) (6.259)
0 1 2v
Let
oV =t xt, oV =rxs (6.260)
Then . )
¢V =t ¢Vx0=¢"x0=0 (6.261)
and
oW =r, oWx,0=0Vx0 =0 divo®=0 (6.262)

Integrating (6.259) twice with respect to time and taking into account the homoge-
neous initial conditions (6.239), (6.261) and (6.262) we obtain

_ 2
R=p 'u(2V+1—1 div (Vqs(” + curlw(])) (6.263)
1 2v

where, because of (6.257) and (6.258), (6.261); and (6.262)1,
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2 =0 (6.264)

and
Bl =0 (6.265)

Since, in view of (6.249), (6.251), (6.261), and (6.262),

¢V (x,0) = ¢V x.0 = Vx,0 =" (x,0 =0 (6.266)

oV(x,0 =0V x 0 =6V x 0 ="x0 =0 (6.267)

therefore, integrating twice Egs. (6.264) and (6.265), with respect to time, we obtain
e =0 (6.268)

and
2o =0 (6.269)

Also, note that an alternative form of (6.263) reads
R =229 (v¢>“> + Curla)(])) + (c% 2c§) (V2¢><‘>) 1 (6.270)
Therefore, because of (6.234), (6.237), and (6.270)
S = Sp + R = So(x) + 1$o(x) + 22V [v (¢(0> n ¢<“) + curl (w“)) + a)(l))]
n (c% 26%) [v2 (¢<0) + ¢(1>)] 1 (6.271)
The fields ¢ and w are defined by
p=00+¢", 0=0?+0" (6.272)
where (¢(0), »©) and (¢(1), o) have been defined before.
If the definition (6.272) of ¢ and w is taken into account, Eq.(6.271) reduces to
Eq.(6.225) of Problem 6.9.
Finally, if we note that the pair (¢©, »©) satisfies Egs. (6.230)—(6.233) and the

pair (¢V, w) satisfies Eqs. (6.261)—(6.262), and (6.268)—(6.269), we find that the
pair (¢, w) meets Eqgs. (6.228)—(6.229). This completes a solution to Problem 6.9.

Problem 6.10. Consider the stress equation of motion in the form
V(divS) pKISI= B on Bx[0,0) (6.273)

subject to the homogeneous initial conditions
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Sx,0) =0, S(x,0)=0 for xeB (6.274)

where

1 v
K[S] = ﬂ [S T v(tr S) 1] (6.275)

and B = B(x, ¢) is an arbitrary symmetric second-order tensor field on B x [0, 00).
Define a vector field v = v(x, 1) by

2.2
vz, = 2! / fix cod, 4 1EDA ) ey (6.276)
47 €]
lel<1
where s
f(x,1) = [(% l)Vg+ %diVK 1[131} (X, 1) (6.277)
c5 pCc5
ci® [ hIx cig (1 [ED]
g(x, 1) = / dv(€) (6.278)
4m [3
[E[<1
and
h(x, ) = %div divK '[B](x, 1) (6.279)
Py
Let
S(x, 1) = %K "[Vv+B]*t (6.280)

Show that S satisfies Eqs. (6.273) and (6.274).
Hint. Use the result of Problem 6.4 that the function

2.2
o(x, 1) = % Fix Cti’g('l |E|)t]dv(§) on E3x[0,00) (6.281)

=<1

satisfies the inhomogeneous wave equation
g2 A Gl F E3 x [0, 00) (6.282)
-— = on E° x [0, .
232)?

subject to the homogeneous initial conditions
9(x,0)=9¢x,0)=0 (6.283)

Solution. To show that S given by
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Sx, 1) =p 'K '[Vv+B]x*1¢ (6.284)

satisfies Egs. (6.273)—(6.274), we note that
Sx,0) =0, S(x,0)=0 (6.285)

Hence, S given by (6.284), satisfies Eqs. (6.274). To show that S given by (6.284)
satisfies (6.273) we substitute S given by (6.284) to (6.273) and obtain

VdivS) pK[S]=V@ivS) Vv B= B (6.286)

In the following we prove that
v=divS (6.287)

This implies that S given by (6.284) meets (6.273). To this end we note that from
Eqgs. (6.276)—(6.277) we obtain

2
Bv= f= [(—% 1) Vg + pLC%div K 1[131] (6.288)
v(x,0) =0, v(x,0)=0 (6.289)

Also, Egs. (6.278)—(6.280) imply that

1
Pg= h= Pdiv divK '[B] (6.290)
1

g(x,0) =g(x,0) =0 (6.291)

By taking the div operator of (6.288) we get

(S}

2

1

Ddivv= {(Z 1)v2e+— divdivK '[B] (6.292)
“ pPe

By eliminating div div K 1[B] from Egs. (6.290) and (6.292), we obtain
2 2
2 (div v) = T oa)ve S
) )
1
= { Vg + —24 = +03¢ (6.293)
)

Hence
(B(divy g =0 (6.294)
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Since, v and g satisfy the homogeneous initial conditions (6.289) and (6.291), respec-
tively, Eq. (6.294) implies that

divv=yg (6.295)

Substituting g from (6.295) into the RHS of (6.288), we obtain

V=AV2v+ (c% cg) Vdivv+p divK '[B] (6.296)
Since R
Vv = 2div (Vv) Vdivyv (6.297)
and N
Vdiv v = div [1tr (Vv)] (6.298)

therefore, Eq. (6.296) can be written as
i=div[230v + (. 23) 10 @v +p 'K "B (6.299)

or, in view of (6.284), .
Vv=divS (6.300)

Integrating (6.300) with respect to time twice, and using the homogeneous initial
conditions for v and S, given by Egs. (6.285) and (6.289), respectively, we arrive at
Eq.(6.287). This completes a solution to Problem 6.10.

Note that the solution to Problem 6.10 provides an effective solution of the incom-
patible elastodynamics when B represents a space-time distribution of defects on
B x [0, 00).
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