
Chapter 5
Variational Principles of Elastodynamics

In this chapter both the classical Hamilton-Kirchhoff Principle and a convolutional
variational principle of Gurtin’s type that describes completely a solution to an initial-
boundary value problem of elastodynamics are used to solve a number of typical
problems of elastodynamics.

5.1 The Hamilton-Kirchhoff Principle

To formulate H-K principle we introduce a notion of kinematically admissible
process, and by this we mean an admissible process that satisfies the strain-
displacement relation, the stress-strain relation, and the displacement boundary con-
dition.

(H-K) The Hamilton-Kirchhoff Principle. Let P denote the set of all kinemat-
ically admissible processes p = [u, E, S] on B × [0,∞) satisfying the conditions

u(x, t1) = u1(x), u(x, t2) = u2(x) on B (5.1)

where t1 and t2 are two arbitrary points on the t-axis such that 0 ≤ t1 < t2 < ∞,
and u1(x) and u2(x) are prescribed fields on B. Let K = K{p} be the functional on
P defined by

K{p} =
t2∫

t1

[F(t) − K(t)] dt (5.2)

where

F(t) = UC{E} −
∫

B

b · u dv −
∫

∂B2

ŝ · u da (5.3)
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and

K (t) = 1

2

∫

B

ρ u̇2dv (5.4)

for every p = [u, E, S] ∈ P . Then

δ K{p} = 0 (5.5)

if and only if p satisfies the equation of motion and the traction boundary condition.
Clearly, in the (H-K) principle a displacement vector u = u(x, t) needs to be

prescribed at two points t1 and t2 of the time axis. If t1 = 0, then u(x, 0) may be
identified with the initial value of the displacement vector in the formulation of an
initial-boundary value problem, however, the value u(x, t2) is not available in this
formulation. This is the reason why the (H-K) principle can not be used to describe
the initial-boundary value problem. A full variational characterization of an initial-
boundary value problem of elastodynamics is due to Gurtin, and it has the form of a
convolutional variational principle. The idea of a convolutional variational principle
of elastodynamics is now explained using a traction initial-boundary value problem of
incompatible elastodynamics. In such a problem we are to find a symmetric second-
order tensor field S = S(x, t) on B × [0,∞) that satisfies the field equation

∇̂[ρ−1(div S)] − K[S̈] = −B on B × [0,∞) (5.6)

subject to the initial conditions

S(x, 0) = S0(x), Ṡ(x, 0) = Ṡ0(x) for x ∈ B (5.7)

and the boundary condition

s = Sn = ŝ on ∂B × [0,∞) (5.8)

Here S0 and Ṡ0 are arbitrary symmetric tensor fields on B, and B is a prescribed
symmetric second-order tensor field on B × [0,∞). Moreover, ρ, K, and ŝ have the
same meaning as in classical elastodynamics.

First, we note that the problem is equivalent to the following one. Find a symmetric
second-order tensor field on B×[0,∞) that satisfies the integro-differential equation

∇̂[ρ−1t ∗ (div S)] − K[S] = −B̂ on B × [0,∞) (5.9)

subject to the boundary condition

s = Sn = ŝ on ∂B × [0,∞) (5.10)
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where
B̂ = t ∗ B + K[S0 + t Ṡ0] (5.11)

and ∗ stands for the convolution product, that is, for any two scalar functions a =
a(x, t) and b = b(x, t)

(a ∗ b)(x, t) =
t∫

0

a(x, τ )b(x, t − τ) dτ (5.12)

Next, the convolutional variational principle is formulated for the problem described
by Eqs. (5.9)–(5.10).

Principle of Incompatible Elastodynamics. Let N denote the set of all sym-
metric second-order tensor fields S on B × [0,∞) that satisfy the traction boundary
condition (5.8) ≡ (5.10). Let It {S} be the functional on N defined by

It {S} = 1

2

∫

B

{ ρ−1t ∗ (div S) ∗ (div S) + S ∗ K[S] − 2 S ∗ B̂ } dv (5.13)

Then
δ It{S} = 0 (5.14)

at a particular S ∈ N if and only if S is a solution to the traction problem described
by Eqs. (5.6)–(5.8).

Note. When the fields B, S0, and Ṡ0 are arbitrarily prescribed, the principle of incom-
patible elastodynamics may be useful in a study of elastic waves in bodies with various
types of defects.

5.2 Problems and Solutions Related to Variational Principles
of Elastodynamics

Problem 5.1. A symmetrical elastic beam of flexural rigidity E I , density ρ, and
length L , is acted upon by: (i) the transverse force F = F(x1, t), (ii) the end shear
forces V0 and VL , and (iii) the end bending moments M0 and ML shown in Fig. 5.1.
The strain energy of the beam is

F(t) = 1

2

L∫

0

E I (u′′
2)

2 dx1 (5.15)

the kinetic energy of the beam is
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Fig. 5.1 The symmetrical beam

K (t) = 1

2

L∫

0

ρ (u̇2)
2 dx1 (5.16)

and the energy of external forces is

V (t) = −
L∫

0

F(x1, t) u2(x1, t) dx1 + V0u2(0, t)

+ M0u′
2(0, t) − VL u2(L , t) − MLu′

2(L , t) (5.17)

where the prime denotes differentiation with respect to x1. Let U be the set of
functions u2 = u2(x1, t) that satisfies the conditions

u2(x1, t1) = u(x1), u2(x1, t2) = v(x1) (5.18)

where t1 and t2 are two arbitrary points on the t-axis such that 0 ≤ t1 < t2 < ∞,
and u(x1) and v(x1) are prescribed fields on [0, L]. Define a functional K̂ {u2} on U
by

K̂ {u2} =
t2∫

t1

[F(t) + V (t) − K (t)] dt (5.19)

Show that
δ K̂ {u2} = 0 (5.20)

if and only if u2 satisfies the equation of motion

(E I u′′
2)

′′ + ρ ü2 = F on [0, L] × [0,∞) (5.21)
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and the boundary conditions

[(E I u′′
2)

′] (0, t) = −V0 on [0,∞) (5.22)

[(E I u′′
2)] (0, t) = M0 on [0,∞) (5.23)

[(E I u′′
2)

′] (L , t) = −VL on [0,∞) (5.24)

[(E I u′′
2)] (L , t) = ML on [0,∞) (5.25)

The field equaton (5.21) and the boundary conditions (5.22) through (5.25) describe
flexural waves in the beam.

Solution. Introduce the notation

u2(x1, t) ≡ u(x, t) (5.26)

Then the functional K̂ {u2} takes the form

K̂ {u} = 1

2

t2∫

t1

dt

L∫

0

dx [E I (u′′)2 − ρ(u̇)2]

+
t2∫

t1

⎧⎨
⎩−

L∫

0

Fu dx + V0u(0, t) + M0u′(0, t) − VLu(L , t) − MLu′(L , t)

⎫⎬
⎭dt

(5.27)

Let u ∈ U and u + ωũ ∈ U . Then

ũ(x, t1) = ũ(x, t2) = 0 x ∈ [0, L] (5.28)

Computing δ K̂ {u} we obtain

δ K̂ {u} = d

dω
K̂ {u + ωũ}

∣∣∣∣
ω=0

=
t2∫

t1

dt

L∫

0

dx [E I u′′ ũ ′′ − ρ u̇ ˙̃u]

+
t2∫

t1

dt

⎧⎨
⎩−

L∫

0

Fũ dx + V0ũ(0, t) + M0ũ′(0, t)

−VL ũ(L , t) − MLũ′(L , t)

⎫⎬
⎭ (5.29)

Next, note that integrating by parts we obtain
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L∫

0

dx(E I u′′ũ ′′) = (E I u′′)ũ ′∣∣x = L
x = 0 −

L∫

0

dx(E I u′′)′ũ ′

= (E I u′′)ũ ′∣∣x = L
x = 0 −(E I u′′)′ũ

∣∣x = L
x = 0 +

L∫

0

dx(E I u′′)′′ũ (5.30)

and

−
t2∫

t1

ρu̇ ˙̃u dt = −ρu̇ũ

∣∣∣∣
t = t2

t = t1

+
t2∫

t1

ρüũ dt (5.31)

Hence, using the homogeneous conditions (5.28) we reduce (5.29) to the form

δ K̂ {u} =
t2∫

t1

dt

L∫

0

dx [(E I u′′)′′ + ρü − F]ũ(x, t)

+
t2∫

t1

dt{[V0 + (E I u′′)′(0, t)]ũ(0, t) − [VL + (E I u′′)′(L , t)]ũ(L , t)

+ [M0 − (E I u′′)(0, t)]ũ ′(0, t) − [ML − (E I u′′)(L , t)]ũ ′(L , t)} (5.32)

Now, if u = u(x, t) satisfies (5.21)–(5.25) then δ K̂ {u} = 0. Conversely, if
δ K̂ {u} = 0 then selecting ũ = ũ(x, t) in such a way that ũ = ũ(x, t) is an arbi-
trary smooth function on [0, L] × [t1, t2] and such that ũ(0, t) = ũ(L , t) = 0 on
[t1, t2] and ũ′(0, t) = ũ ′(L , t) = 0 on [t1, t2], from Eq. (5.32) we obtain

t2∫

t1

L∫

0

[(E I u′′)′′ + ρü − F]ũ dtdx = 0 (5.33)

and by the Fundamental Lemma of the calculus of variations we obtain

(E I u′′)′′ + ρü = F (5.34)

Next, by selecting ũ = ũ(x, t) in such a way that ũ is an arbitrary smooth function on
[0, L]×[t1, t2] that complies with the conditions ũ(0, t) 	= 0 on [t1, t2], ũ(L , t) = 0,

ũ ′(0, t) = ũ ′(L , t) = 0 on [t1, t2], and by using (5.32) and (5.34), we obtain

t2∫

t1

[V0 + (E I u′′)′(0, t)]ũ(0, t) = 0 (5.35)
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This together with the Fundamental Lemma of calculus of variations yields

(E I u′′)′(0, t) = −V0 (5.36)

Next, by selecting ũ to be an arbitrary smooth function on [0, L]×[t1, t2] that satisfies
the conditions ũ(L , t) 	= 0 on [t1, t2], ũ ′(0, t) = 0, and ũ ′(L , t) = 0 on [t1, t2], we
find from Eqs. (5.34), (5.36), and (5.32) that

t2∫

t1

[VL + (E I u′′)′(L , t)]ũ(L , t)dt = 0 (5.37)

Equation (5.37) together with the Fundamental Lemma of calculus of variations
imply that

(E I u′′)′(L , t) = −VL (5.38)

Next, by selecting ũ to be an arbitrary smooth function on [0, L]× [t1, t2] that meets
the conditions ũ ′(0, t) 	= 0 on [t1, t2], and ũ ′(L , t) = 0 on [t1, t2], by virtue of
Eqs. (5.34), (5.36), (5.38), and (5.32), we obtain

t2∫

t1

[M0 − (E I u′′)(0, t)]ũ ′(0, t)dt = 0 (5.39)

This together with the Fundamental Lemma of calculus of variations yields

(E I u′′)(0, t) = M0 (5.40)

Finally, by letting ũ to be an arbitrary smooth function on [0, L] × [t1, t2] and such
that ũ ′(L , t) 	= 0, from Eqs. (5.34), (5.36), (5.38), (5.40), and (5.32) we obtain

t2∫

t1

[ML − (E I u′′)(L , t)]ũ ′(L , t) = 0 (5.41)

Equation (5.41) together with the Fundamental Lemma of calculus of variations
yields

(E I u′′)(L , t) = ML (5.42)

This completes a solution to Problem 5.1.

Problem 5.2. A thin elastic membrane of uniform area density ρ̂ is stretched to a
uniform tension T̂ over a region C0 of the x1, x2 plane. The membrane is subject to
a vertical load f = f (x, t) on C0 × [0,∞) and the initial conditions
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u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) for x ∈ C0

where u = u(x, t) is a vertical deflection of the membrane on C0 × [0,∞), and
u0(x) and u̇0(x) are prescribed functions on C0. Also, u = u(x, t) on ∂C0 × [0,∞)

is represented by a given function g = g(x, t). The strain energy of the membrane is

F(t) = T̂

2

∫

C0

u,αu,α da (5.43)

The kinetic energy of the membrane is

K (t) = ρ̂

2

∫

C0

(u̇)2 da (5.44)

The external load energy is

V (t) = −
∫

C0

f u da (5.45)

Let U be the set of functions u = u(x, t) on C0 × [0,∞) that satisfy the conditions

u(x, t1) = a(x), u(x, t2) = b(x) for x ∈ C0 (5.46)

and
u(x, t) = g(x, t) on ∂C0 × [0,∞) (5.47)

where t1 and t2 have the same meaning as in Problem 5.1, and a(x) and b(x) are
prescribed functions on C0. Define a functional K̂ {.} on U by

K̂ {u} =
t2∫

t1

[F(t) + V (t) − K (t)] dt (5.48)

Show that the condition
δ K̂ {u} = 0 on U (5.49)

implies the wave equation

(
∇2 − 1

c2

∂2

∂t2

)
u = − f

T̂
on C0 × [0,∞) (5.50)
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where

c =
√

T̂

ρ̂
(5.51)

Note that [T̂ ] = [Force × L−1], [ρ̂] = [Density × L], [c] = [LT −1], where L and
T are the length and time units, respectively.

Solution. The functional K̂ = K̂ {u} takes the form

K̂ {u} =
t2∫

t1

dt
∫

C0

(
T̂

2
u,α u,α − ρ̂

2
u̇2 − f u

)
da

for every u ∈ U (5.52)

Let u ∈ U and u + ωũ ∈ U . Then

ũ(x, t1) = ũ(x, t2) = 0 for x ∈ C0 (5.53)

and
ũ(x, t) = 0 on ∂C0 × [0,∞) (5.54)

Computing δ K̂ {u} we obtain

δ K̂ {u} = d

dω
K̂ {u + ωũ}|ω = 0

=
t2∫

t1

dt
∫

C0

(T̂ u,α ũ,α −ρ̂u̇ ˙̃u − f ũ)da (5.55)

Since
u,α ũ,α = (u,α ũ),α −u,αα ũ (5.56)

and
u̇ ˙̃u = (u̇ũ). − üũ (5.57)

therefore, using the divergence theorem and the homogeneous conditions (5.53) and
(5.54), we reduce (5.55) into the form

δ K̂ {u} =
t2∫

t1

dt
∫

C0

(−T̂ u,αα +ρ̂ü − f )ũ da (5.58)

Hence, the condition
δ K̂ {u} = 0 on U (5.59)
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together with the Fundamental Lemma of calculus of variations imply Eq. (5.50).
This completes a solution to Problem 5.2.

Problem 5.3. Transverse waves propagating in a thin elastic membrane are described
by the field equation (see Problem 5.2.)

(
∇2 − 1

c2

∂2

∂t2

)
u = − f

T̂
on C0 × [0,∞) (5.60)

the initial conditions

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) for x ∈ C0 (5.61)

and the boundary condition

u(x, t) = g(x, t) on ∂C0 × [0,∞) (5.62)

Let Û be a set of functions u = u(x, t) on C0 × [0,∞) that satisfy the boundary
condition (5.62). Define a functional Ft {.} on Û in such a way that

δFt {u} = 0 (5.63)

if and only if u = u(x, t) is a solution to the initial-boundary value problem (5.60)
through (5.62).

Solution. By transforming the initial-boundary value problem (5.60)–(5.62) to an
equivalent integro-differential boundary-value problem in a way similar to that of
the Principle of Incompatible Elastodynamics [see Eqs. (5.6)–(5.12)] we find that the
functional Ft {u} on Û takes the form

Ft {u} = 1

2

∫

C0

(i ∗ u,α ∗ u,α + 1

c2 u ∗ u − 2g ∗ u)da (5.64)

where
i = i(t) = t (5.65)

and

g = i ∗ f

T̂
+ 1

c2 (u0 + t u̇0) (5.66)

The associated variational principle reads:

δFt {u} = 0 on Û (5.67)
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if and only if u is a solution to the initial-boundary value problem (5.60)–(5.62). This
completes a solution to Problem 5.3.

Problem 5.4. A homogeneous isotropic thin elastic plate defined over a region C0
of the x1, x2 plane, and clamped on its boundary ∂C0, is subject to a transverse load
p = p(x, t) on C0 × [0,∞). The strain energy of the plate is

F(t) = D

2

∫

C0

(∇2w)2 da (5.68)

The kinetic energy of the plate is

K (t) = ρ̂

2

∫

C0

(ẇ)2 da (5.69)

The external energy is

V (t) = −
∫

C0

p w da (5.70)

Here, w = w(x, t) is a transverse deflection of the plate on C0 × [0,∞), D is the
bending rigidity of the plate ([D] = [Force × Length]), and ρ̂ is the area density of
the plate ([ρ̂] = [Density × Length]).

Let W be the set of functions w = w(x, t) on C0×[0,∞) that satisfy the conditions

w(x, t1) = a(x), w(x, t2) = b(x) for x ∈ C0 (5.71)

and

w = 0,
∂w

∂n
= 0 on ∂C0 × [0,∞) (5.72)

where t1, t2, a(x) and b(x) have the same meaning as in Problem 5.2, and ∂/∂n is
the normal derivative on ∂C0. Define a functional K̂ {.} on W by

K̂ {w} =
t2∫

t1

[F(t) + V (t) − K (t)] dt (5.73)

Show that
δ K̂ {w} = 0 on W (5.74)

if and only if w = w(x, t) satisfies the differential equation

∇2∇2w + ρ̂

D

∂2w

∂t2 = p

D
on C0 × [0,∞) (5.75)
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and the boundary conditions

w = 0,
∂w

∂n
= 0 on ∂C0 × [0,∞) (5.76)

Solution. The functional K̂ = K̂ {w} on W takes the form

K̂ {w} = 1

2

t2∫

t1

dt
∫

C0

[D(∇2w)2 − ρ̂ẇ2 − 2pw]da (5.77)

Let w ∈ W, w + ωw̃ ∈ W . Then

w̃(x, t1) = w̃(x, t2) = 0 for x ∈ C0 (5.78)

and

w̃ = 0,
∂w̃

∂n
= 0 on ∂C0 × [0,∞) (5.79)

Hence, we obtain

δ K̂ {w} = d

dω
K̂ {w + ωw̃}|ω = 0

=
t2∫

t1

dt
∫

C0

[D(∇2w)(∇2w̃) − ρ̂ẇ ˙̃w − pw̃]da (5.80)

Since

(∇2w)(∇2w̃) = w,αα w̃,ββ = (w,αα w̃,β ),β

−w,ααβ w̃,β = (w,αα w̃,β −w,ααβ w̃),β +w,ααββ w̃ (5.81)

and
ẇ ˙̃w = (ẇw̃). − ẅw̃ (5.82)

therefore, using the divergence theorem as well as the homogeneous conditions (5.78)
and (5.79), we reduce (5.80) to the form

δ K̂ {w} =
t2∫

t1

dt
∫

C0

(D∇4w + ρ̂ẅ − p)w̃da (5.83)

Hence, by virtue of the Fundamental Lemma of calculus of variations
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δ K̂ {w} = 0 on W (5.84)

if and only if w satisfies the differential equation

∇2∇2w + ρ̂

D

∂2w

∂t2 = p

D
on C0 × [0,∞) (5.85)

and the boundary conditions

w = ∂w

∂n
= 0 on ∂C0 × [0,∞) (5.86)

This completes a solution to Problem 5.4.

Problem 5.5. Transverse waves propagating in a clamped thin elastic plate are
described by the equations (see Problem 5.4)

∇2∇2w + ρ̂

D

∂2w

∂t2 = p

D
on C0 × [0,∞) (5.87)

w(x, 0) = w0(x), ẇ(x, 0) = ẇ0(x) for x ∈ C0 (5.88)

and

w = 0,
∂w

∂n
= 0 on ∂C0 × [0,∞) (5.89)

where w0(x) and ẇ0(x) are prescribed functions on C0. Let W ∗ denote the set of
functions w = w(x, t) that satisfy the homogeneous boundary conditions (5.89).
Find a functional F̂t {.} on W ∗ with the property that

δ F̂t {w} = 0 on W ∗ (5.90)

if and only if w is a solution to the initial-boundary value problem (5.87) through
(5.89).

Solution. First, we note that the initial-boundary value problem (5.87)–(5.89) is
equivalent to the following boundary-value problem. Find w = w(x, t) on C0 ×
[0,∞) that satisfies the integro-differential equation.

i ∗ ∇4w + 1

c2 w = h on C0 × [0,∞) (5.91)

subject to the boundary conditions

w = ∂w

∂n
= 0 on ∂C0 × [0,∞) (5.92)
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Here,

i = i(t) = t, h(x, t) = i ∗ p

D
+ 1

c2 (w0 + tẇ0),

and
1

c2 = ρ̂

D
(5.93)

Next, we define a functional F̂t {w} on W ∗ by

F̂t {w} = 1

2

∫

C0

(
i ∗ ∇2w ∗ ∇2w + 1

c2 w ∗ w − 2h ∗ w

)
da (5.94)

By computing δF̂t {w}, we obtain

δF̂t {w} =
∫

C0

(
i ∗ ∇4w + 1

c2 w − h

)
∗ w̃da (5.95)

where w̃ is an arbitrary smooth function on C0 such that

w̃ = ∂w̃

∂n
= 0 on ∂C0 × [0,∞) (5.96)

Therefore, using the Fundamental Lemma of calculus of variations, it follows from
Eq. (5.95) that the condition

δF̂t {w} = 0 on W ∗ (5.97)

holds true if and only if w is a solution to the initial-boundary value problem (5.87)–
(5.89). This completes a solution to Problem 5.5.

Problem 5.6. Free longitudinal vibrations of an elastic bar are defined as solutions
of the form

u(x, t) = φ(x) sin(ω t + γ ) (5.98)

to the homogeneous wave equation

∂

∂x

(
E

∂u

∂x

)
− ρ

∂2u

∂t2 = 0 on [0, L] × [0,∞) (5.99)

subject to the homogeneous boundary conditions

u(0, t) = u(L , t) = 0 on [0,∞) (5.100)



5.2 Problems and Solutions Related to Variational Principles of Elastodynamics 141

or
∂u

∂x
(0, t) = ∂u

∂x
(L , t) = 0 on [0,∞) (5.101)

Here, ω is a circular frequency of vibrations, γ is a dimensionless constant, and
φ = φ(x) is an unknown function that complies with Eqs. (5.99) and (5.100), or
Eqs. (5.99) and (5.101). Substituting u = u(x, t) from Eq. (5.98) into (5.99) through
(5.101) we obtain

d

dx

(
E

dφ

dx

)
+ λφ = 0 on [0, L] (5.102)

φ(0) = φ(L) = 0 (5.103)

or
φ′(0) = φ′(L) = 0 (5.104)

where the prime stands for derivative with respect to x , and

λ = ρω2 (5.105)

Therefore, introduction of (5.98) into (5.99) through (5.101) results in an eigenprob-
lem in which an eigenfunction φ = φ(x) corresponding to an eigenvalue λ is to be
found. An eigenproblem that covers both boundary conditions (5.100) and (5.101)
can be written as

d

dx

(
E

dφ

dx

)
+ λφ = 0 on [0, L] (5.106)

φ′(0) − α φ(0) = 0, φ′(L) + β φ(L) = 0 (5.107)

where |α| + |β| > 0. Let U be the set of functions φ = φ(x) on [0, L] that satisfy
the boundary conditions (5.107). Define a functional π{.} on U by

π{φ} = 1

2

L∫

0

[
E

(
dφ

dx

)2

− λφ2

]
dx + 1

2
α E(0) [φ(0)]2 + 1

2
β E(L) [φ(L)]2

(5.108)
Show that

δ π{φ} = 0 over U (5.109)

if and only if φ = φ(x) is an eigenfunction corresponding to an eigenvalue λ in the
eigenproblem (5.106) and (5.107).

Solution. Let φ ∈ U and φ + ω φ̃ ∈ U . Then

φ̃′(0) − αφ̃(0) = 0, φ̃′(L) + βφ̃(L) = 0 (5.110)
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and

π{φ + ωφ̃} = 1

2

L∫

0

[E(φ′ + ωφ̃′)2 − λ(φ + ωφ̃)2]dx

+ 1

2
αE(0)[φ(0) + ωφ̃(0)]2 + 1

2
βE(L)[φ(L) + ωφ̃(L)]2

(5.111)

Hence, we obtain

δπ{φ} = d

dω
π{φ + ωφ̃}

∣∣∣∣
ω = 0

=
L∫

0

[Eφ′φ̃′ − λφφ̃] dx + αE(0) φ(0) φ̃(0) + βE(L) φ(L) φ̃(L) (5.112)

Since
L∫

0

Eφ′φ̃′dx = Eφ′φ̃
∣∣∣x = L

x = 0
−

L∫

0

(Eφ′)′φ̃dx (5.113)

therefore, Eq. (5.112) takes the form

δπ{φ} = −
L∫

0

[(Eφ′)′ + λφ]φ̃dx − E(0)[φ′(0) − αφ(0)] φ̃(0)

+ E(L)[φ′(L) + βφ(L)]φ̃(L) (5.114)

Now, if φ = φ(x) is an eigenfunction corresponding to an eigenvalue λ in the
problem (5.106)–(5.107), then by virtue of (5.114) δπ{φ} = 0 over U . Conversely,
if δπ{φ} = 0 then selecting φ̃ = φ̃(x) to be a smooth function on [0, L] such that
φ̃(0) = φ̃(L) = 0, and using the Fundamental Lemma of calculus of variations, we
obtain

(Eφ′)′ + λφ = 0 on [0, L] (5.115)

Next, if δπ{φ} = 0 then selecting φ̃ = φ̃(x) to be a smooth function on [0, L] and
such that φ̃(L) = 0, and φ̃(0) 	= 0, by virtue of (5.115), we obtain

E(0)[φ′(0) − αφ(0)]φ̃(0) = 0 (5.116)

Since
E(0) > 0 (5.117)
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Equation (5.116) implies that φ = φ(x) satisfies the boundary condition

φ′(0) − αφ(0) = 0 (5.118)

Finally, if δπ{φ} = 0 then selecting φ̃ to be a smooth function on [0, L] and such
that φ̃(L) 	= 0, by virtue of (5.115) and (5.118), we obtain

E(L)[φ′(L) + βφ(L)]φ̃(L) = 0 (5.119)

Since E(L) > 0, Eq. (5.119) implies that

φ′(L) + βφ(L) = 0 (5.120)

This shows that if Eq. (5.110) holds true then (φ, λ) is an eigenpair for the problem
(5.106)–(5.107). This completes a solution to Problem 5.6.

Problem 5.7. Free lateral vibrations of an elastic bar clamped at the end x = 0 and
supported by a spring of stiffness k at the end x = L are defined as solutions of the
form

u(x, t) = φ(x) sin(ωt + γ ) (5.121)

to the equation [see Problem 5.1, Eq. (5.127) in which u2 = u, and F = 0]

∂2

∂x2

(
E I

∂2u

∂x2

)
+ ρ

∂2u

∂t2 = 0 on [0, L] × [0,∞) (5.122)

subject to the boundary conditions

u(0, t) = u′(0, t) = 0 on [0,∞) (5.123)

u′′(L , t) = 0, (E I u′′)′(L , t) − k u(L , t) = 0 on [0,∞) (5.124)

Let ρ = const, and λ = ρ ω2. Then the associated eigenproblem reads

(E I φ′′)′′ − λφ = 0 on [0, L] (5.125)

φ(0) = φ′(0) = 0 (5.126)

φ′′(L) = 0, (E Iφ′′)′(L) − kφ(L) = 0 (5.127)

Let V denote the set of functions φ = φ(x) on [0, L] that satisfy the boundary
conditions (5.126) and (5.127). Define a functional π{.} on V by
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π{φ} = 1

2

L∫

0

E I (φ′′)2dx + 1

2
k[φ(L)]2 − λ

2

L∫

0

φ2dx (5.128)

Show that
δ π{φ} = 0 over V (5.129)

if and only if (λ, φ) is a solution to the eigenproblem (5.125) through (5.127).

Solution. Let φ ∈ V and φ + ωφ̃ ∈ V . Then

φ̃(0) = 0, φ̃′(0) = 0 (5.130)

Computing the first variation of the functional π{φ} given by (5.128), we obtain

δπ{φ} = d

dω
π {φ + ωφ̃}

∣∣∣
ω = 0

=
L∫

0

(E I φ′′φ̃′′ − λφφ̃)dx + kφ(L) φ̃(L) (5.131)

Since

L∫

0

E I φ′′φ̃′′dx = (E I φ′′)φ̃′
∣∣∣∣
x = L

x = 0
− (E I φ′′)′φ̃

∣∣∣∣
x = L

x = 0
+

L∫

0

(E I φ′′)′′ φ̃dx (5.132)

therefore, using (5.130) we reduce (5.131) into the form

δπ{φ} =
L∫

0

[(E I φ′′)′′−λφ]φ̃dx +(E I φ′′)(L)φ̃′(L)−[(E I φ′′)′(L)−kφ(L)]φ̃(L)

(5.133)
Now, if (λ, φ) is a solution to the eigenproblem (5.125)–(5.127), then δπ{φ} = 0.
Conversely, if δπ{φ} = 0 over V , then selecting φ̃ to be an arbitrary smooth function
on [0, L] such that φ̃(x) 	≡ 0 for x ∈ (0, L), φ̃′(L) = 0, φ̃(L) = 0, we obtain

L∫

0

[(E I φ′′)′′ − λφ] φ̃ dx = 0 (5.134)

Equation (5.134) together with the Fundamental Lemma of calculus of variations
implies

(E I φ′′)′′ − λφ = 0 on [0, L] (5.135)
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Next, by selecting φ̃ on [0, L] in such a way that

φ̃′(L) 	= 0, φ̃(L) = 0 (5.136)

we find that the condition δπ{φ} = 0 and Eq. (5.135) imply that

(E I φ′′)(L) = 0 (5.137)

Since
E(L) > 0, I (L) > 0 (5.138)

we obtain
φ′′(L) = 0 (5.139)

Finally, by selecting φ̃ on [0, L] in such a way that

φ̃(L) 	= 0 (5.140)

we conclude that the condition δπ{φ} = 0 together with Eqs. (5.135), and (5.139)
lead to the boundary condition

(E I φ′′)′(L) − k φ(L) = 0 (5.141)

This completes a solution to Problem 5.7.

Problem 5.8. Show that the eigenvalues λi and the eigenfunctions φi = φi (x) for
the longitudinal vibrations of a uniform elastic bar having one end clamped and the
other end free are given by the relations

ωi =
√

λi

ρ
= (2i − 1)

2L

√
E

ρ

φi(x) = sin
(2i − 1)π x

2L
, i = 1, 2, 3, . . . , 0 ≤ x ≤ L

(see Problem 5.6).

Solution. For an elastic bar that is clamped at x = 0 and free at x = L the
eigenproblem reads

Eφ′′(x) + λφ(x) = 0 x ∈ [0, L] (5.142)

φ(0) = 0, φ′(L) = 0 (5.143)

where
λ = ω2ρ (5.144)
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There is an infinite sequence of eigensolutions (λi , φi ) to the problem (5.142)–(5.143)
of the form

λi = (2i − 1)2π2

4L2 E (5.145)

φi (x) = sin
(2i − 1)πx

2L
, i = 1, 2, 3, . . . (5.146)

This can be shown by substituting (5.145) and (5.146) into (5.142), and by showing
that φi (x) satisfies (5.143). By combining (5.144) and (5.145) we obtain

ωi ≡
√

λi

ρ
= (2i − 1)π

2L

√
E

ρ
(5.147)

This completes a solution to Problem 5.8.

Problem 5.9. Show that the eigenvalues λi and the eigenfunctions φi = φi (x) for
the lateral vibrations of a uniform, simply supported elastic beam are given by the
relations

ωi =
√

λi

ρ
= π2i2

L2

√
E I

ρ

φi (x) = sin
i π x

L
, i = 1, 2, 3 . . . , 0 ≤ x ≤ L

(see Problem 5.1).

Solution. For a uniform, simply supported beam with the lateral vibrations, the
eigenproblem takes the form

E Iφ(4) − λφ = 0 on [0, L] (5.148)

φ(0) = φ′′(0) = 0, φ(L) = φ′′(L) = 0 (5.149)

where
λ = ω2ρ (5.150)

There is an infinite sequence of eigensolutions (λi , φi ) to the problem (5.148)–(5.149)
of the form

λi = E I

(
iπ

L

)4

(5.151)

φi (x) = sin
iπx

L
i = 1, 2, 3, . . . (5.152)
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To prove that (λi , φi ) given by (5.151)–(5.152) satisfies Eqs. (5.148)–(5.149), we
note that

φ′′
i (x) = −

(
iπ

L

)2

φi (x) (5.153)

and

φ
(4)
i (x) =

(
iπ

L

)4

φi (x) (5.154)

Substituting (5.151) and (5.152) into (5.148) and using (5.154) we find that φi =
φi (x) satisfies Eq. (5.148) on [0, L]. Also, it follows from Eqs. (5.152) and (5.153) that
the boundary conditions (5.149) are satisfied; and Eqs. (5.150) and (5.151) imply that

ωi =
√

λi

ρ
= π2i2

L2

√
E I

ρ
(5.155)

These steps complete a solution to Problem 5.9.

Problem 5.10. Show that the eigenvalues λmn and the eigenfunctions φmn =
φmn(x) for the transversal vibrations of a rectangular elastic membrane: 0 ≤ x1 ≤
a1, 0 ≤ x2 ≤ a2, that is clamped on its boundary, are given by

ωmn =
√

λmn

ρ̂
= π

√√√√ T̂

ρ̂

(
m2

a2
1

+ n2

a2
2

)

φmn(x1, x2) = sin
m π x1

a1
sin

n π x2

a2
,

m, n = 1, 2, 3, . . . , 0 ≤ x1 ≤ a1, 0 ≤ x2 ≤ a2

(See Problem 5.2).

Solution. Let C0 denote the rectangular region

0 < x1 < a1, 0 < x2 < a2 (5.156)

and let ∂C0 be its boundary. Then the associated eigenproblem reads. Find an eigen-
pair (λ, φ) such that

T̂ ∇2φ + λφ = 0 on C0 (5.157)

and
φ = 0 on ∂C0 (5.158)
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where
λ = ω2ρ̂ (5.159)

There is an infinite number of eigenpairs (λmn, φmn), m, n = 1, 2, 3, . . . that satisfy
Eqs. (5.157) and (5.158), and they are given by Equation

λmn = π2T̂

(
m2

a2
1

+ n2

a2
2

)
(5.160)

φmn(x1, x2) = sin

(
mπx1

a1

)
sin

(
nπx2

a2

)
(5.161)

This can be proved by substituting (5.152) and (5.153) into (5.149) and (5.150).
Also, the eigenvalues λmn generate the eigenfrequencies ωmn by the formulas

ωmn =
√

λmn

ρ̂
= π

√
T̂

ρ̂

√√√√
(

m2

a2
1

)
+

(
n2

a2
2

)
(5.162)

This completes a solution to Problem 5.10.

Problem 5.11. Show that the eigenvalues λmn and the eigenfunctions φmn =
φmn(x1, x2) for the transversal vibrations of a thin elastic rectangular plate:
0 ≤ x1 ≤ a1, 0 ≤ x2 ≤ a2, that is simply supported on its boundary are given by
the relations

ωmn =
√

λmn

ρ̂
= π2

(
m2

a2
1

+ n2

a2
2

)√
D

ρ̂

φmn(x1, x2) = sin
m π x1

a1
sin

n π x2

a2
,

m, n = 1, 2, 3, . . . , 0 ≤ x1 ≤ a1, 0 ≤ x2 ≤ a2

(See Problem 5.4).

Solution. The eigenproblem associated with the transversal vibrations of a thin
elastic rectangular plate that is simply supported on its boundary, reads [see Eq. (5.85)
of Problem 5.4]

D ∇2∇2 φ − λφ = 0 on C0 (5.163)

φ = ∇2φ = 0 on ∂C0 (5.164)

where
λ = ω2ρ̂ (5.165)

and C0 and ∂C0 are the same as in Problem 5.10.
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There are an infinite number of eigenpairs (λmn, φmn) that satisfy Eqs. (5.163)
and (5.164), and the eigenpairs are given by

λmn = π4 D

(
m2

a2
1

+ n2

a2
2

)2

(5.166)

φmn(x1, x2) = sin

(
mπx1

a1

)
sin

(
nπx2

a2

)
m, n = 1, 2, 3, . . . (5.167)

This is proved by substituting (5.166) and (5.167) into (5.163) and (5.164).
Also, by using (5.165) the eigenfrequencies ωmn are obtained

ωmn =
√

λmn

ρ̂
= π2

(
m2

a2
1

+ n2

a2
2

)√
D

ρ̂
(5.168)

This completes a solution to Problem 5.11.
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