
Chapter 4
Variational Formulation of Elastostatics

In this chapter the variational characterizations of a solution to a boundary value prob-
lem of elastostatics are recalled. They include the principle of minimum potential
energy, the principle of minimum complementary energy, the Hu-Washizu princi-
ple, and the compatibility related principle for a traction problem. The variational
principles are then used to solve typical problems of elastostatics.

4.1 Minimum Principles

To formulate the Principle of Minimum Potential Energy we recall the concept of
the strain energy, of the stress energy, and of a kinematically admissible state.

By the strain energy of a body B we mean the integral

UC�E� �
1

2

�
B

E � C�E� dv (4.1)

and by the stress energy of a body B we mean

UK�S� �
1

2

�
B

S � K�S� dv (4.2)

Since S � C�E�, therefore,
UK�S� � UC�E� (4.3)

By a kinematically admissible state we mean a state s � �u,E,S� that satisfies

(1) the strain-displacement relation

E � ��u �
1

2
(�u ��uT) on B (4.4)
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(2) the stress-strain relation
S � C �E� on B (4.5)

(3) the displacement boundary condition

u ��u on ∂B1 (4.6)

where �u is prescribed on ∂B1.
The Principle of Minimum Potential Energy is related to a mixed boundary value

problem of elastostatics [see Chap. 3 on Formulation of Problems of Elasticity].

The Principle of Minimum Potential Energy
Let R be the set of all kinematically admissible states. Define a functional F � F�.�
on R by

F�s� � UC�E� 	
�
B

b � u dv	

�
∂B2

�s � u da (4.7)

for every s � �u, E, S� 
 R. Let s be a solution to the mixed problem of elastostatics.
Then

F�s� � F��s� for every �s 
 R (4.8)

and the equality holds true if s and �s differ by a rigid displacement.
By letting E � ��u in ( 4.7) an alternative form of the Principle of Minimum

Potential Energy is obtained.
Let R1 denote a set of displacement fields that satisfy the boundary conditions

( 4.6), and define a functional F1�.� on R1 by

F1�u� �
1

2

�
B

(�u) � C ��u� dv	

�
B

b � u dv	

�
∂B2

�s � u da u 
 R1 (4.9)

If u corresponds to a solution to the mixed problem, then

F1�u� � F1� �u� �u 
 R1 (4.10)

To formulate the Principle of Minimum Complementary Energy, we introduce a
concept of a statically admissible stress field. By such a field we mean a symmetric
second-order tensor field S that satisfies

(1) the equation of equilibrium

div S � b � 0 on B (4.11)

(2) the traction boundary condition

Sn ��s on ∂B2 (4.12)

http://dx.doi.org/10.1007/978-94-007-6356-2_3
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The Principle of Minimum Complementary Energy
Let P denote a set of all statically admissible stress fields, and let G � G�.� be a
functional on P defined by

G�S� � UK�S� 	
�
∂B1

s ��u da S 
 P (4.13)

If S is a stress field corresponding to a solution to the mixed problem, then

G�S� � G� �S� �S 
 P (4.14)

and the equality holds if S � �S.

The Principle of Minimum Complementary Energy for Nonisothermal Elasto-
statics
The fundamental field equations of nonisothermal elastostatics may be written as

E � ��u �
1

2
(�u ��uT) on B (4.15)

div S� � b� � 0 on B (4.16)

S� � C �E� on B (4.17)

where
b� � b � div (T M) (4.18)

S� � S 	 T M (4.19)

s� � S�n (4.20)

The Principle of Minimum Complementary Energy of nonisothermal Elastostatics
reads: Let P denote a set of all statically admissible stress fields, and let GT � GT�.�

be a functional on P defined by

GT�S� � UK�S�� 	
�
∂B1

s� ��u da S 
 P (4.21)

If S is a stress field corresponding to a solution to the mixed problem of nonisothermal
elastostatics, then

GT�S� � GT� �S� �S 
 P (4.22)

and the equality holds true if S � �S.
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Note. The functional GT � GT�.� in Eq. (4.21) can be replaced by

G�
T�S� � UK�S� �

�
B

T S � A dv 	
�
∂B1

s ��u da (4.23)

where A is the thermal expansion tensor.

4.2 The Rayleigh-Ritz Method

The functional F1 � F1�u� [see Eq. (4.9)] can be minimized by looking for u in an
approximate form

u �� u(N) ��u(N) � N�
k�1

akfk on B (4.24)

where �u(N) is a function on B such that

�u(N) ��u on ∂B1 (4.25)

and {fk} stands for a set of functions on B such that

fk � 0 on ∂B1 (4.26)

and ak are unknown constants to be determined from the condition that F1 �

F1�u(N)� � ϕ(a1, a2, a3, . . . , aN) attains a minimum, that is, from the conditions

∂ϕ

∂ ai
(a1, a2, a3, . . . , aN) � 0 i � 1, 2, 3, . . . ,N (4.27)

One can show that Eqs. (4.27) represent a linear nonhomogeneous system of algebraic
equations for which there is a unique solution (a1, a2, a3, . . . , aN).

Similarly, if ∂B1 � ∅, the functional G � G�.� [see Eq. (4.13)] can be minimized
by letting S in the form

S �� S(N) ��S(N) � N�
k�1

akSk on B (4.28)

where�S(N) is selected in such a way that

div�S(N) � b � 0 on B (4.29)
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and �S(N)n ��s on ∂B (4.30)

while Sk are to satisfy the equations

div Sk � 0 on B (4.31)

and
Skn � 0 on ∂B (4.32)

The unknown coefficients ak are obtained by solving the linear algebraic equations

∂ψ

∂ ai
(a1, a2, a3, . . . , aN) � 0 i � 1, 2, 3, . . . ,N (4.33)

where
ψ(a1, a2, a3, . . . , aN) � G�S(N)� (4.34)

The method of minimizing F1 � F1�u� and G � G�S� by postulating u and S by
formulas ( 4.24) and ( 4.28), respectively, is called the Rayleigh-Ritz Method.

4.3 Variational Principles

Let H�s� be a functional on A, where A is a set of admissible states s � �u,E,S�.
By the first variation of H�s� we mean the number

δ�sH�s� �
d

dω
H�s � ω �s�

����
ω�0

(4.35)

where s and �s 
 A, and s � ω �s 
 A for every scalar ω, and we say that

δ�sH�s� � δH�s� � 0 (4.36)

if δ�sH�s� exists and equals zero for any �s consistent with the relation s � ω �s 
 A.

Hu-Washizu Principle
Let A denote the set of all admissible states of elastostatics, and let H�s� be the
functional on A defined by

H�s� � UC�E� 	
�
B

S � E dv 	
�
B

(div S � b) � u dv �
�
∂B1

s ��u da �
�
∂B2

(s 	�s) � u da

 s � �u,E,S� 
 A (4.37)
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Then
δH�s� � 0 (4.38)

if and only if s is a solution to the mixed problem.

Note 1. If the set A in Hu-Washizu Principle is restricted to the set of all kinemat-
ically admissible states R [see the Principle of Minimum Potential Energy] then
Hu-Washizu Principle reduces to that of Minimum Potential Energy.

Hellinger-Reissner Principle
Let A1 denote the set of all admissible states that satisfy the strain-displacement
relation, and let H1 � H1�s� be the functional on A1 defined by

H1�s� � UK�S� 	
�
B

S � E dv�
�
B

b � u dv �
�
∂B1

s � (u 	�u) da �
�
∂B2

�s � u da

 s � �u,E,S� 
 A1 (4.39)

Then
δH1�s� � 0 (4.40)

if and only if s is a solution to the mixed problem.

Note 2. By restricting A1 to the set A2 � A1 � P, where P is the set of all statically
admissible states, we reduce Hellinger-Reissner Principle to that of the Principle of
Minimum Complementary Energy.

4.4 Compatibility-Related Principle

Consider a traction problem for a body B subject to an external load �b,�s�. Let
Q denote the set of all admissible states that satisfy the equation of equilibrium,
the stress-strain relations, and the traction boundary condition; and let I�.� be the
functional on Q defined by

I�s� � UK�S� �
1

2

�
B

S � K�S� dv  s � �u,E,S� 
 Q (4.41)

Then
δ I�s� � 0 (4.42)

if and only if s is a solution to the mixed problem.
A proof of the above variational principles is based on the Fundamental Lemma

of Calculus of Variations which states that for every smooth function �g � �g(x) on
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B that vanishes near ∂B, and for a fixed continuous function f � f(x) on B, the
condition

�
B

f(x)�g(x) dv(x) � 0 is equivalent to f(x) � 0 on B.

4.5 Problems and Solutions Related to Variational
Formulation of Elastostatics

Problem 4.1. Consider a generalized plane stress traction problem of homogeneous
isotropic elastostatics for a region C0 of (x1, x2) plane (see Sect. 7). For such a
problem the stress energy is represented by the integral

UK�S� �
1

2

�
C0

S � K�S� da (4.43)

where S is the stress tensor corresponding to a solution s � �u,E,S� of the traction
problem, and

E � K�S� �
1

2μ

�
S 	

ν

1 � ν
(tr S) 1

�
on C0 (4.44)

div S � b � 0 on C0 (4.45)

E � ��u on C0 (4.46)

and
Sn ��s on ∂C0 (4.47)

Let Q denote the set of all admissible states that satisfy Eq. (4.44) through (4.47)
except for Eq. (4.46). Define the functional I �.� on Q by

I �s� � UK�S� for every s 
 Q (4.48)

Show that
δ I �s� � 0 (4.49)

if and only if s is a solution to the traction problem.

Hint: The proof is similar to that of the compatibility-related principle of Sect. 4.4.
First, we note that if s 
 Q and �s 
 Q then s � ω�s 
 Q for every scalar ω, and

δ I �s� �
�
C0

�S � E da (4.50)

http://dx.doi.org/10.1007/978-94-007-6356-2_7
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Next, by letting
�Sαβ � εαγ 3 εβδ3 �F,γ δ (4.51)

where �F is an Airy stress function such that �F, �F,α, and �F,αβ (α, β � 1, 2) vanish
near ∂ C0, w find that

δ I �s� �
�
C0

�F εαγ 3 εβδ3 Eαβ,γ δ da (4.52)

The proof then follows from (4.52).

Solution. We are to show that

(A) If s is a solution to the traction problem then

δ I (s) � 0 (4.53)

and
(B) If

δ I (s) � 0 for s 
 Q (4.54)

then s is a solution to the traction problem.

Proof of (A). Using (4.52) we obtain

δ I (s) �
�
C0

�Fεαγ 3 εβδ3 Eαβ,γ δ da (4.55)

Since s � �u, E, S� is a solution to the fraction problem, Eqs. (4.44)–(4.47) are
satisfied, and in particular

Eαβ � u(α,β) (4.56)

Substituting ( 4.56) into the RHS of ( 4.55) we obtain ( 4.53), and this completes proof
of (A).

Proof of (B). We assume that

δ I (s) � 0 for s 
 Q (4.57)

or �
C0

�Fεαγ 3 εβδ3 Eαβ,γ δ da � 0 (4.58)

where �F is an arbitrary function on C0 that vanishes near ∂C0, and Eαβ is a symmetric
second order tensor field on C0 that complies with Eqs. (4.44), (4.45), and (4.47). It
follows from ( 4.58) and the Fundamental Lemma of calculus of variations that
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lx 3
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F

x 2

A
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x 2

Fig. 4.1 The prismatic bar in simple tension

εαγ 3 εβδ3 Eαβ,γ δ � 0 on C0 (4.59)

This implies that there is uα such that

Eαβ � u(α,β) (4.60)

As a result s � �u, E, S� satisfies Eqs. (4.44)–(4.47), that is, s is a solution to the
traction problem. This completes proof of (B).

Problem 4.2. Consider an elastic prismatic bar in simple tension shown in Fig. 4.1.
The stress energy of the bar takes the form

UK�S� �

l�
0

�	�
A

1

2E
S2

11 da


� dx1 �
1

2E

l�
0

�
F

A

2

A dx �
F2l

2E A
(4.61)

where A is the cross section of the bar, and E denotes Young’s modulus.
The strain energy of the bar is obtained from

UC�E� � UK�S� �
E Ae2

2l
(4.62)

where e is an elongation of the bar produced by the force F � AE E11 � AEe/ l.
The elastic state of the bar is then represented by

s � �u1, E11, S11� � �e, e/ l, F/A� (4.63)

(i) Define a potential energy of the bar as �F�s� � ϕ(e) and show that the relation

δϕ(e) � 0 (4.64)
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is equivalent to the condition
∂ UC

∂ e
� F (4.65)

(ii) Define a complementary energy of the bar as �G�s� � ψ(F) and show that the
condition

δψ(F) � 0 (4.66)

is equivalent to the equation
∂ UK

∂ F
� e (4.67)

Hint: The functions ϕ � ϕ(e) and ψ � ψ(F) are given by

ϕ(e) �
E A

2l
e2 	 Fe

and

ψ(F) �
l

2E A
F2 	 Fe

respectively.

Note: Equations (4.65) and (4.67) constitute the Castigliano theorem.

Solution. The potential energy of the bar is given by

ϕ(e) � Uc(e)	 Fe (4.68)

where

Uc(e) �
E Ae2

2l
(4.69)

Hence, the relation
δϕ(e) � ϕ�(e) � 0 (4.70)

takes the form
∂Uc

∂e
� F (4.71)

Equations (4.69) and (4.71) imply that

F �
E Ae

l
(4.72)

which is consistent with the definition of F . This shows that (i) holds true. To prove
(ii) we define the complementary energy of the bar as
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ψ(F) � Uk(F)	 Fe (4.73)

where

Uk(F) �
F2l

2E A
(4.74)

and from the relation
δψ(F) � ψ �(F) � 0 (4.75)

we obtain
∂Uk

∂F
� e (4.76)

Equations (4.74) and (4.76) imply that

e �
Fl

E A
(4.77)

which is consistent with the definition of e. This shows that (ii) holds true. Hence,
a solution to Problem 4.2 is complete.

Problem 4.3. The complementary energy of a cantilever beam loaded at the end by
force P takes the form (see Fig. 4.2)

ψ(P) �
1

2E

�
B

S2
11 dv 	 Pu2(l)

�
1

2E

l�
0

���
�
A

M2(x1)

I 2 x2
2 d A

��� dx1 	 Pu2(l) (4.78)

l − x 1
x 3

P

x 1

x 2

A

x 3

x 2

0

Fig. 4.2 The cantilever beam loaded at the end
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where M � M(x1) and I stand for the bending moment and the moment of inertia
of the area A with respect to the x3 axis, respectively, given by

M(x1) � P(l 	 x1), I �
�
A

x2
2 da (4.79)

Use the minimum complementary energy principle for the cantilever beam in the
form

δψ(P) � 0 (4.80)

to show that the magnitude of deflection at the end of the beam is

u2(l) �
Pl3

3E I
(4.81)

Solution. Substituting M � M(x1) and I from (4.79) into (4.78) and performing
the integration we obtain.

ψ(P) �
P2

2EI

l3

3
	 P u2(l) (4.82)

Finally, using the minimum complementary energy principle

δψ(P) � ψ �(P) � 0 (4.83)

we arrive at (4.81), and this completes a solution to Problem 4.3.

Problem 4.4. An elastic beam which is clamped at one end and simply supported
at the other end is loaded at an internal point x1 � ξ by force P (see Fig. 4.3)

The potential energy of the beam, treated as a functional depending on a deflection
of the beam u2 � u2(x1), takes the form

ϕ�u2� �
E I

2

l�
0

�
d2u2

dx2
1

�2

dx1 	 Pu2(ξ) (4.84)

and u2 
 �P � �u2 � u2(x1) � u2(0) � u�2(0) � 0� u2(l) � u��2(l) � 0 �. Let
u2 � u2(x1) be a solution of the equation

E I
d4u2

dx4
1

� Pδ(x1 	 ξ) for 0 < x1 < l (4.85)
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l
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P

x 1

ξ

x 2

A

x 3

x 2

Fig. 4.3 The beam clamped at one end and simply supported at the other end

subject to the conditions

u2(0) � u�2(0) � 0� u2(l) � u��2(l) � 0 (4.86)

Show that
δϕ�u2� � 0 (4.87)

if and only if u2 is a solution to the boundary value problem (4.85)–(4.86).

Solution. Since

δϕ�u2� �
d

dω
ϕ�u2 � ω �u2�

����
ω�0

(4.88)

where
�u2(0) � �u2

�(0) � 0 (4.89)

and

�u2(l) � �u2
��(l) � 0 (4.90)

therefore, Eq. (4.88) takes the form

δϕ�u2� � E I

l�
0

u2
��(x) �u2

��(x)dx 	 P �u2(ξ) (4.91)
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Integrating by parts we obtain

l�
0

u2
��(x) �u2

��(x)dx � u2
��(x) �u�2(x)

���x�l

x�0
	 u���2 (x) �u2(x)

���x�l

x�0
�

l�
0

u(4)2 (x) �u2(x)dx

(4.92)
Since u2 
 �P and �u2 
 �P , Eq. (4.92) reduces to

l�
0

u2
��(x) �u2

��(x)dx �

l�
0

u(4)2 (x) �u2(x)dx (4.93)

and Eq. (4.91) takes the form

δϕ�u2� �

l�
0

�
E I u(4)2 (x)	 Pδ(x 	 ξ)

�
�u2(x)dx (4.94)

Equation (4.94) together with the Fundamental Lemma of calculus of variations
imply that Eq. (4.87) is satisfied if and only if u2 is a solution to problem (4.85)–
(4.86). And this completes a solution to Problem 4.4.

Problem 4.5. Use the Rayleigh-Ritz method to show that an approximate deflection
of the beam of Problem 4.4 takes the form (x1 � x)

u2(x) � 	cl3
� x

l

�2 �
1 	

x

l

��
1 	

2

3

x

l


(4.95)

where

c � 	
5

4

P

E I

�
ξ

l

2 �
1 	

ξ

l

�
1 	

2

3

ξ

l


(4.96)

Also, show that for ξ � l/2 we obtain

u2(l/2) � 0.0086
l3 P

E I
(4.97)

Solution. Note that u2 � u2(x) given by Eq. (4.95) can be written in the form

u2(x) � 	cl3 f
� x

l

�
(4.98)

where

f
� x

l

�
�

� x

l

�2 �
1 	

x

l

��
1 	

2

3

x

l


(4.99)
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and
f (0) � f �(0) � f (1) � f ��(1) � 0 (4.100)

Hence
u2(x) 
 �P (4.101)

where �P is the domain of the functional ϕ�u2� from Problem 4.4, and substituting
(4.98) into Eq. (4.95) of Problem 4.4 we obtain

ϕ�u2� � l3

��� E I

2
c2

1�
0

� f ��(u)�2du � P c f

�
ξ

l

��� � ψ(c) (4.102)

The condition
δϕ�u2� � ψ �(c) � 0 (4.103)

is satisfied if and only if

c

1�
0

( f ��)2du � 	
P

E I
f

�
ξ

l


(4.104)

Since
f ��(u) � 2(4u2 	 5u � 1) (4.105)

and
1�

0

( f ��)2du �
4

5
(4.106)

it follows from Eq. (4.104) that c is given by Eq. (4.96). Finally, by letting x � l/2
and ξ � l/2 in Eqs. (4.95) and (4.96), respectively, we obtain (4.97). This completes
a solution to Problem 4.5.

Problem 4.6. The potential energy of a rectangular thin elastic membrane fixed at
its boundary and subject to a vertical load f � f (x1, x2) is

I �u� �

a1�
�a1

a2�
�a2

�
T0

2
u,αu,α 	 f u


dx1dx2 (4.107)
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Fig. 4.4 The thin membrane
fixed at its boundary

0

a1

−a2

−a1

x 3

a2

f

x 2

x 1

where u 
 �P , and

�P � �u � u(x1, x2) � u(�a1, x2) � 0 for �x2� < a2�

u(x1,�a2) � 0 for �x1� < a1� (4.108)

Here, u � u(x1, x2) is a deflection of the membrane in the x3 direction, and
T0 is a uniform tension of the membrane (see Fig. 4.4). Let the load function
f � f (x1, x2) be represented by the series

f (x1, x2) �

��
m,n�1

fmn sin
mπ(x1 	 a1)

2a1
sin

nπ(x2 	 a2)

2a2
(4.109)

Use the Rayleigh-Ritz method to show that the functional I �u� attains a minimum
over �P at

u(x1, x2) �

��
m,n�1

umn sin
mπ(x1 	 a1)

2a1
sin

nπ(x2 	 a2)

2a2
(4.110)

where

umn �
1

T0

fmn

�(mπ/2a1)2 � (nπ/2a2)2�
m, n � 1, 2, 3, . . . (4.111)

Solution. Let C0 stand for the interior of rectangular region

C0 � �(x1, x2) � �x1� < a1, �x2� < a2� (4.112)

and let ∂C0 denote its boundary.
Then �P � �u � u � 0 on ∂C0� (4.113)
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let u 
 �P and u � ω �u 
 �P , where ω is a scalar. Then

�u 
 �P, that is, �u � 0 on ∂C0 (4.114)

Computing the first variation of I �u� we obtain

δ I �u� �
d

dω
I �u � ω �u��ω�0 �

�
C0

(T0u,α �u,α 	 f �u)da (4.115)

Since
u,α �u,α � (u,α �u),α 	 u,αα �u (4.116)

therefore, using the divergence theorem, from Eqs. (4.115) and (4.116) we obtain

δ I �u� � 	

�
C0

(T0u,αα � f ) �u da (4.117)

and
δ I �u� � 0 for every u 
 �P (4.118)

if and only if u � u(x1, x2) is a solution to the boundary value problem

u,αα � 	
1

T0
f on C0 (4.119)

u � 0 on ∂C0 (4.120)

Therefore, the Rayleigh Ritz method applied to the functional I � I �u� leads to a
solution of problem (4.119)–(4.120). It is easy to show, by substituting (4.110) into
Eq. (4.119), that u � u(x1, x2) given by (4.110) is a solution to problem (4.119)–
(4.120).

To obtain the formula (4.110) by the Rayleigh Ritz method we look for u �

u(x1, x2) that minimizes I �u� in the form

u(x1, x2) �
�
mn

cmnϕm(x1) ψn(x2) (4.121)

where

ϕm(x1) � sin
mπ(x1 	 a1)

2a1
(4.122)

and

ψn(x2) � sin
nπ(x2 	 a2)

2a2
(4.123)
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Substituting u from (4.121) into (4.107) and using f given by (4.109) we obtain

I �u� � F(cmn) �

a1�
�a1

dx1

a2�
�a2

dx2

���T0

2

��
mn

cmnϕ
�
m(x1) ψn(x2)

�2

�
T0

2

��
mn

cmnϕm(x1) ψ
�
n(x2)

�2

	

��
mn

cmnϕm(x1) ψn(x2)

�

�

��
pq

f pqϕp(x1) ψq(x2)

��
(4.124)

The conditions
∂F

∂cmn
� 0 m, n � 1, 2, . . . (4.125)

together with the orthogonality relations

1

a1

a1�
�a1

ϕm(x1) ϕk(x1)dx1 � δmk (4.126)

1

a2

a2�
�a2

ψm(x2) ψk(x2)dx2 � δmk (4.127)

lead to the simple algebraic equation for cmn

T0cmn�(mπ/2a1)
2 � (nπ/2a2)

2� 	 fmn � 0 (4.128)

Therefore, cmn � umn , where umn is given by (4.111). This completes a solution to
Problem 4.6.

Problem 4.7. Use the solution obtained in Problem 4.6 to find the deflection of a
square membrane of side a that is held fixed at its boundary and is vertically loaded
by a load f of the form

f (x1, x2) � f0�H(x1 � ε)	 H(x1 	 ε)��H(x2 � ε)	 H(x2 	 ε)� (4.129)

where H � H(x) is the Heaviside function, and f0 and ε are positive constants
(0 < ε < a). Also, compute a deflection of the square membrane at its center when
ε � a/8.

Solution. Let f be a function represented by the double series [see (4.109) of
Problem 4.6]

f (x1, x2) �
�
mn

fmnϕm(x1) ψn(x2) (4.130)
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where ϕm andψn are given by Eqs. (4.122) and (4.123), respectively, of Problem 4.6.
Using the orthogonality conditions (4.126) and (4.127) of Problem 4.6, we find that

fmn �
1

a1a2

a1�
�a1

dx1

a2�
�a2

dx2 f (x1, x2) ϕm(x1) ψn(x2) (4.131)

For a square membrane of side a

a1 � a2 � a (4.132)

and

ϕm(x1) � sin
mπ(x1 	 a)

2a
(4.133)

ψn(x2) � sin
nπ(x2 	 a)

2a
(4.134)

Substituting f from (4.129) into (4.131) we obtain

fmn �
f0

a2

ε�
�ε

dx1

ε�
�ε

dx2 ϕm(x1)ψn(x2) (4.135)

�
16

π2 f0
1

mn
sin

�mπ

2

�
sin

�mπ

2

ε

a

�
� sin

�nπ

2

�
sin

�nπ

2

ε

a

�
(4.136)

Therefore, for a load f of the form (4.129) the deflection of the membrane is given by

u(x1, x2) �

��
m,n�1

umnϕm(x1) ϕn(x2) (4.137)

where

umn �
1

T0

4a2

π2

fmn

m2 � n2 (4.138)

and fmn is given by (4.136).
Letting x1 � 0 and x2 � 0 in (4.137) we obtain

u(0, 0) �
64a2

π4

f0

T0
�

��
m,n�1

1

mn(m2 � n2)
sin2 mπ

2
sin2 mπ

2

� ε
a

�
� sin2 nπ

2
sin

nπ

2

� ε
a

�
(4.139)
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Since

sin2 mπ

2
�

1

2
(1 	 cos mπ) �

1 	 (	)m

2
(4.140)

and

sin2 nπ

2
�

1

2
(1 	 cos nπ) �

1 	 (	)n

2
(4.141)

therefore, (4.139) can be written as

u(0, 0) �
64a2

π4

f0

T0
�

��
m,n�1,3,5,...

1

mn(m2 � n2)
sin

mπ

2

� ε
a

�
sin

nπ

2

� ε
a

�
(4.142)

Using the orthogonality relations

1�
0

sin mπζ sin nπζ dζ �
1

2
δmn (4.143)

it is easy to show that

π

4n2

�
1 	

cos h
� nπ

2 (1 	 2ζ )
�

cos h nπ
2

�
�

��
m�1,3,5,...

sin mπζ

m(m2 � n2)

for 0 < ζ < 1 (4.144)

Since
ε < 2a

therefore, letting ζ � ε/2a < 1 into (4.144) we reduce the double series (4.142) to
the single one

u(0, 0) �
16a2

π3

f0

T0
�

��
n�1,3,5,...

1

n3 sin
�nπ

2

ε

a

� �
1 	

cos h nπ
2

�
1 	 ε

a

 
cosh nπ

2

�
(4.145)

Finally, letting ε/a � 1/8 in (4.145) we get

u(0, 0) �
16a2

π3

f0

T0

��
n�1,3,...

1

n3 sin
nπ

16
�

�
1 	

cos h
� 7

16 nπ
 

cos h
� 1

2 nπ
 �

(4.146)

This completes a solution to Problem 4.7.

Problem 4.8. The potential energy of a rectangular thin elastic plate that is simply
supported along all the edges and is vertically loaded by a force P at a point (ξ1, ξ2)
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−a2

−a1

x 2a2

a1

x 1

x 3

P

1ξ

2ξ

0

Fig. 4.5 The rectangular thin plate simply supported along all edges

takes the form

�I �w� � 1

2
D

a1�
�a1

a2�
�a2

(�2w)2dx1dx2 	 P w(ξ1, ξ2) (4.147)

where w 
 �P , and

�P � �w � w(x1, x2) � w(�a1, x2) � 0, �2w(�a1, x2) � 0 for �x2� < a2�

w(x1,�a2) � 0, �2w(x1,�a2) � 0 for �x1� < a1�

(4.148)

Here w � w(x1, x2) is a deflection of the plate, and D is the bending rigidity of the
plate (see Fig. 4.5).

Show that a minimum of the functional �I �.� over �P is attained at a function
w � w(x1, x2) represented by the series

w(x1, x2) �

��
m,n�1

wmn sin
mπ(x1 	 a1)

2a1
sin

nπ(x2 	 a2)

2a2
(4.149)

where

wmn �
P

Da1a2

sin
mπ

2a1
(ξ1 	 a1) sin

nπ

2a2
(ξ2 	 a2)

�(mπ/2a1)2 � (nπ/2a2)2�2
m, n � 1, 2, 3, . . . (4.150)
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Hint: Use the series representation of the concentrated load P

Pδ(x1 	 ξ1)δ(x2 	 ξ2)

�
P

a1a2

��
m,n�1

sin
mπ

2a1
(ξ1 	 a1) sin

nπ

2a2
(ξ2 	 a2) sin

mπ

2a1
(x1 	 a1)

� sin
nπ

2a2
(x2 	 a2)

for every �x1� < a1, �x2� < a2, �ξ1� < a1, �ξ2� < a2. (4.151)

Solution. Let w 
 �P and �w 
 �P . Then w � ω �w 
 �P , and the first variation of�I �w�s takes the form

δ�I �w� � d

dω
�I �w � ω �w��ω�0

�D

a1�
�a1

dx1

a2�
�a2

dx2(�
2w)(�2 �w)	 P �w(ξ) (4.152)

Let C0 be an interior of the rectangular region, and let ∂C0 denote its boundary. Then
Eq. (4.152) can be written as

δ�I �w� � D
�
C0

w,αα �w,ββ da 	 P �w(ξ) (4.153)

Since

w,αα �w,ββ � (w,αα �w,β ),β 	w,ααβ �w,β
� (w,αα �w,β 	w,ααβ �w),β �w,ααββ �w (4.154)

therefore, integrating (4.154) over C0, using the divergence theorem, and the relations

w,αα � 0, �w � 0 on ∂C0 (4.155)

we reduce (4.153) to the form

δ�I �w� � �
C0

�D�4w 	 Pδ(x 	 ξ)� �w(ξ)da (4.156)

A minimum of the functional �I �w� over �P is attained at w that satisfies the field
equation

�4w �
P

D
δ(x 	 ξ) on C0 (4.157)
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subject to the homogeneous b conditions

w � 0, �2w � 0 on ∂C0 (4.158)

To obtain a solution to problem (4.157)–(4.158) we use the representation of δ(x	ξ)

δ(x 	 ξ) �
1

a1a2

��
m,n�1

ϕm(x1) ϕm(ξ1) ψn(x2) ψn(ξ2) (4.159)

where ϕm(x1) and ψn(x2), respectively, are given by Eqs. (4.122) and (4.123) of
Problem 4.6 Since

�2ϕm(x1) ψn(x2) � 	

��
mπ

2a1

2

�

�
nπ

2a2

2
�
ϕm(x1) ψn(x2) (4.160)

therefore, by looking for a solution of Eq. (4.157) in the form

w(x1, x2) �

��
m,n�1

wmn ϕm(x1) ψn(x2) (4.161)

and substituting (4.159) and (4.161) into (4.157) we find that

wmn

��
mπ

2a1

2

�

�
nπ

2a2

2
�2

�
P

Da1a2
ϕm(ξ1) ψn(ξ2) (4.162)

This completes a solution to Problem 4.8.

Problem 4.9. Show that the central deflection of a square plate of side a that is
simply supported along all the edges, and is loaded by a force P at its center, takes
the form

w(0, 0) � 0.0459
Pa2

D
(4.163)

Hint: Use the result obtained in Problem 4.8 when ξ1 � ξ2 � 0, x1 � x2 � 0, a1 �

a2 � a

w(0, 0) �
16Pa2

Dπ4

��
m,n�1

1

�(2m 	 1)2 � (2n 	 1)2�2
(4.164)
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Also, by taking advantage of the formula

��
m�1

1

�(2m 	 1)2 � x2�2
�
π

8x3

�
tan h

πx

2
	
πx

2
sec h2πx

2

�
for every x > 0

(4.165)
which is obtained by differentiating with respect to x the formula

��
k�1

1

(2k 	 1)2 � x2 �
π

4x
tan h

πx

2
(4.166)

we reduce Eq. (4.164) to the simple form

w(0, 0) �
2Pa2

Dπ3

��
n�1

1

(2n 	 1)3

�
tan h

π

2
(2n 	 1)	

π

2
(2n 	 1)sec h2π

2
(2n 	 1)

�
(4.167)

The result (4.163) then follows by truncating the series (4.167).

Solution. By letting a1 � a2 � a, x1 � x2 � 0, ξ1 � ξ2 � 0 in Eq. (4.165) of
Problem 4.8 we obtain

w(0, 0) �
��

m,n�1

wmn sin
�mπ

2

�
sin

�nπ

2

�
(4.168)

where

wmn �
P

Da2

sin
�mπ

2

 
sin

� nπ
2

 
(m2π2/4a2 � n2π2/4a2)2

(4.169)

Hence

w(0, 0) �
16Pa2

Dπ4

��
m,n�1

sin2
�mπ

2

 
sin2

� nπ
2

 
(m2 � n2)2

(4.170)

or

w(0, 0) �
16Pa2

Dπ4

��
m,n�1

1

�(2m 	 1)2 � (2n 	 1)2�2
(4.171)

which is equivalent to Eq. (4.164).
Finally, using (4.165) with x � 2n 	 1, we reduce (4.171) to the single series

formula (4.167). This completes solution to Problem 4.9.
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