Chapter 4
Variational Formulation of Elastostatics

In this chapter the variational characterizations of a solution to a boundary value prob-
lem of elastostatics are recalled. They include the principle of minimum potential
energy, the principle of minimum complementary energy, the Hu-Washizu princi-
ple, and the compatibility related principle for a traction problem. The variational
principles are then used to solve typical problems of elastostatics.

4.1 Minimum Principles

To formulate the Principle of Minimum Potential Energy we recall the concept of
the strain energy, of the stress energy, and of a kinematically admissible state.
By the strain energy of a body B we mean the integral

Uc(E} = %/E C[E]dv A.1)
B

and by the stress energy of a body B we mean
1
Uk (S} = 3 / S K[S]dv 4.2)
B

Since S = C[E], therefore,
Uk (S} = Uc{E} 4.3)

By a kinematically admissible state we mean a state s = [u, E, S] that satisfies

(1) the strain-displacement relation
- 1 T
E:Vu:E(Vu—}—Vu ) on B 4.4)
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104 4 Variational Formulation of Elastostatics

(2) the stress-strain relation
S=CI|E] on B 4.5)

(3) the displacement boundary condition
u=1u on 0B (4.6)

where W is prescribed on 9B;.
The Principle of Minimum Potential Energy is related to a mixed boundary value
problem of elastostatics [see Chap.3 on Formulation of Problems of Elasticity].

The Principle of Minimum Potential Energy
Let R be the set of all kinematically admissible states. Define a functional F = F{.}
on R by

F{s} = Uc{E} /b udv /§ uda 4.7)

B 3B,

forevery s = [u, E, S] € R. Lets be a solution to the mixed problem of elastostatics.
Then
F{s} < F{s} forevery S €R (4.8)

and the equality holds true if s and s differ by a rigid displacement.

By letting E = Vu in (4.7) an alternative form of the Principle of Minimum
Potential Energy is obtained.

Let Ry denote a set of displacement fields that satisfy the boundary conditions
(4.6), and define a functional F1{.} on Ry by

Fi{u} = %/(Vu) C[Vu]dv /b udv /§ uda YueR; 4.9)
B B 9B,

If u corresponds to a solution to the mixed problem, then
Fi{u} <F{u} VaeR; (4.10)

To formulate the Principle of Minimum Complementary Energy, we introduce a
concept of a statically admissible stress field. By such a field we mean a symmetric
second-order tensor field S that satisfies

(1) the equation of equilibrium
divS+b=0 on B 4.11)
(2) the traction boundary condition

Sn=7S on 0B, (4.12)
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The Principle of Minimum Complementary Energy
Let P denote a set of all statically admissible stress fields, and let G = G{.} be a
functional on P defined by

G{S} = Ux{S} / s uda VSeP (4.13)
0B}
If S is a stress field corresponding to a solution to the mixed problem, then
G{S} <G{S} YSeP (4.14)

and the equality holds if § = S.

The Principle of Minimum Complementary Energy for Nonisothermal Elasto-
statics
The fundamental field equations of nonisothermal elastostatics may be written as

E=Vu= %(Vu +vu') on B 4.15)
divS'+b =0 on B (4.16)
S"=CI[E] on B (4.17)
where
b’ = b + div(TM) (4.18)
=S8 T™ (4.19)
s =Sn (4.20)

The Principle of Minimum Complementary Energy of nonisothermal Elastostatics
reads: Let P denote a set of all statically admissible stress fields, and let Gt = Gr{.}
be a functional on P defined by

Gr{S} = Uk(S'} / s Uda VYSeP “4.21)
dB1

If Sis astress field corresponding to a solution to the mixed problem of nonisothermal
elastostatics, then ; :
Gr{S} <Gr{S} vSeP (4.22)

and the equality holds true if § = S.
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Note. The functional Gt = Gr{.} in Eq. (4.21) can be replaced by

G:}{S}:UK{SH/TS Adv /s tda (4.23)
B 9B,

where A is the thermal expansion tensor.

4.2 The Rayleigh-Ritz Method

The functional F; = Fi{u} [see Eq.(4.9)] can be minimized by looking for u in an
approximate form

N
u=u®™ =™+ > afi on B (4.24)
k=1
where @™ is a function on B such that
™ =@ on 9B, (4.25)

and {fi } stands for a set of functions on B such that

fy =0 on 9B, (4.26)
and ax are unknown constants to be determined from the condition that F; =
F1{u™} = ¢(a, 2, a3, ..., ay) attains a minimum, that is, from the conditions

ap .
a—(al,ag,ag,...,aN)zo i=1,2,3,...,N 4.27)
aj

One can show that Egs. (4.27) represent a linear nonhomogeneous system of algebraic
equations for which there is a unique solution (aj, az, az, ..., aN).

Similarly, if 0B; = &, the functional G = G{.} [see Eq. (4.13)] can be minimized
by letting S in the form

N
S=SNM =84+ > uS on B (4.28)
k=1

where S™ is selected in such a way that

divS™ +b=0 on B (4.29)
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and N
S™n=% on 4B (4.30)

while Sk are to satisfy the equations
divSy =0 on B 4.31)

and
Skcn=0 on 0B (4.32)

The unknown coefficients ax are obtained by solving the linear algebraic equations

0
81//(a1,a2,a3,...,aN):O i=1,2,3,...,N (4.33)
aj

where
V(ar, az, a3, ..., an) = G(S™) (4.34)

The method of minimizing F; = Fi{u} and G = G{S} by postulating u and S by
formulas (4.24) and (4.28), respectively, is called the Rayleigh-Ritz Method.

4.3 Variational Principles

Let H{s} be a functional on A, where A is a set of admissible states s = [u, E, S].
By the first variation of H{s} we mean the number

S<H{s) = %H{s + w3} (4.35)
w=0

where sand s € A, and s + w s € A for every scalar w, and we say that
8;H{s} =8 H{s} =0 (4.36)

if zH{s} exists and equals zero for any § consistent with the relation s + w § € A.

Hu-Washizu Principle
Let A denote the set of all admissible states of elastostatics, and let H{s} be the
functional on A defined by

H{s} = Uc{E} /S Edv /(divS+b) udv—l—/s uda +/(s S) uda
B B B 9B
Vs=[u,E, S| €A 4.37)
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Then
§H{s} =0 (4.38)

if and only if s is a solution to the mixed problem.

Note 1. If the set A in Hu-Washizu Principle is restricted to the set of all kinemat-
ically admissible states R [see the Principle of Minimum Potential Energy] then
Hu-Washizu Principle reduces to that of Minimum Potential Energy.

Hellinger-Reissner Principle
Let A; denote the set of all admissible states that satisfy the strain-displacement
relation, and let H; = H;{s} be the functional on A; defined by

H;{s} = Uk{S} /S Edv+/b udv+/s (u ﬁ)da+/§ uda
B

B 0B 0B>
Vs=[u,E,S] €A 4.39)
Then
SHi{s} =0 (4.40)

if and only if s is a solution to the mixed problem.

Note 2. By restricting A; to the set Ay = A; N P, where P is the set of all statically
admissible states, we reduce Hellinger-Reissner Principle to that of the Principle of
Minimum Complementary Energy.

4.4 Compatibility-Related Principle

Consider a traction problem for a body B subject to an external load [b,s]. Let
Q denote the set of all admissible states that satisfy the equation of equilibrium,
the stress-strain relations, and the traction boundary condition; and let I{.} be the
functional on Q defined by

I{s} = Ux{S} = %/S K[S]dv Vs=[u,E,S]€Q (4.41)
B

Then
§{s} =0 (4.42)

if and only if s is a solution to the mixed problem.
A proof of the above variational principles is based on the Fundamental Lemma
of Calculus of Variations which states that for every smooth function g = g(x) on
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B that vanishes near 3B, and for a fixed continuous function f = f(x) on B, the

condition f f(x)g(x) dv(x) = 0 is equivalent to f(x) = 0 on B.
B

4.5 Problems and Solutions Related to Variational
Formulation of Elastostatics

Problem 4.1. Consider a generalized plane stress traction problem of homogeneous
isotropic elastostatics for a region Cp of (x1, x2) plane (see Sect.7). For such a
problem the stress energy is represented by the integral

Uk{S} = % / S K[S]da (4.43)
Co

where S is the stress tensor corresponding to a solution 5 = [u, E, §] of the traction
problem, and

E = K[S] = % [E 1 iv (trS) 1} on Co (4.44)
divS+b=0 on Cp (4.45)
E=Vu on Cp (4.46)
and _
Sn=35 on 9Co (4.47)

Let Q denote the set of all admissible states that satisfy Eq.(4.44) through (4.47)
except for Eq. (4.46). Define the functional /{.} on Q by

1{5} = Ug(S} foreverys e Q (4.48)

Show that

§I{5}=0 (4.49)

if and only if S is a solution to the traction problem.

Hint: The proof is similar to that of the compatibility-related principle of Sect.4.4.
First, we note that if s € Q and § € Q then 5§ + wS € Q for every scalar w, and

SI{s) = / S Eda (4.50)

Co
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Next, by letting B ~
Sap = €ay3 eps3 Fys 4.51)

where F is an Airy stress function such that F, ﬁ,a, and ﬁ,aﬁ (a0, B = 1, 2) vanish
near d Co, w find that

§T{s) = / F eay3 €883 Eap.ys da (4.52)
Co

The proof then follows from (4.52).

Solution. We are to show that

(A) If5 is a solution to the traction problem then
§I(5) =0 (4.53)

and

(B) If 5TG) =0 forse 0 (4.54)

then s is a solution to the traction problem.

Proof of (A). Using (4.52) we obtain

57(5) = / i«“eay3 €853 Eaﬂyyg da (4.55)
Co

Since 5 = [u, E, S] is a solution to the fraction problem, Eqs. (4.44)—(4.47) are
satisfied, and in particular o
Eug = U(a,p) (4.56)

Substituting (4.56) into the RHS of (4.55) we obtain (4.53), and this completes proof
of (A).
Proof of (B). We assume that

§1(5) =0 forse Q 4.57)

or
/ Feqy3 egs3 Eqpys da =0 (4.58)
Co

where F is an arbitrary function on Cy that vanishes near dC, and Edlg is a symmetric
second order tensor field on Cp that complies with Eqs. (4.44), (4.45), and (4.47). It
follows from (4.58) and the Fundamental Lemma of calculus of variations that
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X2
X2
F F
X 3
le o
BOF ! 1 A
Fig. 4.1 The prismatic bar in simple tension
Eay3 €853 Eaﬁ,y& =0 on Cy (4.59)
This implies that there is u, such that
Eaﬁ = U(a,p) (4.60)

As aresult 5 = [u, E, S] satisfies Eqgs. (4.44)—(4.47), that is, 5 is a solution to the
traction problem. This completes proof of (B).

Problem 4.2. Consider an elastic prismatic bar in simple tension shown in Fig. 4.1.
The stress energy of the bar takes the form

l 1, 1R F2l
UK{S} 2/ /ﬁSn da dX] = ﬁ/ Z Adx = m (461)
0 A 0

where A is the cross section of the bar, and E denotes Young’s modulus.
The strain energy of the bar is obtained from

EAe?

21

Uc{E} = Ug(S} = (4.62)

where e is an elongation of the bar produced by the force F = AEE|| = AEe/l.
The elastic state of the bar is then represented by

s = [uy, Eq1, S11]l = [e, e/1, F/A] (4.63)
(i) Define a potential energy of the bar as ﬁ{s} = ¢(e) and show that the relation

Sp(e) =0 (4.64)
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is equivalent to the condition
o Uc

=F 4.65
P (4.65)

(ii) Define a complementary energy of the bar as G{s} = Y (F) and show that the

condition
SY(F)=0 (4.66)
is equivalent to the equation
U
X (4.67)
oF

Hint: The functions ¢ = @(e) and v = (F) are given by

EA ,
ple) = —e Fe

21
and
W (F) = LFZ Fe
- 2EA
respectively.

Note: Equations (4.65) and (4.67) constitute the Castigliano theorem.

Solution. The potential energy of the bar is given by

pe)=U:e) Fe (4.68)
where
V(e = EAC (4.69)
e) = .
¢ 21
Hence, the relation
Sp(e) =¢'(e) =0 (4.70)
takes the form
U,
=F 4.71)
de

Equations (4.69) and (4.71) imply that

EAe
l

F = (4.72)

which is consistent with the definition of F. This shows that (i) holds true. To prove
(ii) we define the complementary energy of the bar as
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Y(F)=U(F) Fe

where
F?l

Ur(F) = 2EA

and from the relation

Sy (F)=y'(F)=0

we obtain
aUy _
oF

Equations (4.74) and (4.76) imply that

Fl
e=—
EA

113

(4.73)

(4.74)

(4.75)

(4.76)

4.77)

which is consistent with the definition of e. This shows that (ii) holds true. Hence,

a solution to Problem 4.2 is complete.

Problem 4.3. The complementary energy of a cantilever beam loaded at the end by

force P takes the form (see Fig. 4.2)

1
v (P) = ﬁ/sfl dv  Pux(l)
B

[
! /Mz(’”) 2qA  dx,  Pus(D)
= — —_— X X u
2F 2 2 ! 2
0 A

X2

X2

X3

X3 X 1 —x,

Fig. 4.2 The cantilever beam loaded at the end

(4.78)
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where M = M (x1) and [ stand for the bending moment and the moment of inertia
of the area A with respect to the x3 axis, respectively, given by

M) =Pl x1), I :/x%da (4.79)
A

Use the minimum complementary energy principle for the cantilever beam in the
form
SY(P)=0 (4.80)

to show that the magnitude of deflection at the end of the beam is

W= 2L @381)
2 = 3Er :

Solution. Substituting M = M (x1) and I from (4.79) into (4.78) and performing
the integration we obtain.
PZ l3
P)=—— Pu(l 4.82
Y (P) 2F1 3 uz(l) (4.82)

Finally, using the minimum complementary energy principle
Sy (P)=y'(P)=0 (4.83)

we arrive at (4.81), and this completes a solution to Problem 4.3.

Problem 4.4. An elastic beam which is clamped at one end and simply supported
at the other end is loaded at an internal point x; = & by force P (see Fig.4.3)

The potential energy of the beam, treated as a functional depending on a deflection
of the beam uy = u,(x), takes the form

EIl / d%u, g
olur) = 2 / dx1 Pus(®) 4.84)
0

2
2 dxj

anduy € P = {ux = us(x1) : u2(0) = ub(0) = 0; wur(l) = uy(l) = 0}. Let
uy = uy(x1) be a solution of the equation

d4
El d“j — PS(x; &) for 0<xy <l (4.85)
X1
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X2

X2

X1

i \
!

Fig. 4.3 The beam clamped at one end and simply supported at the other end

subject to the conditions
u2(0) = u5(0) = 05 uz(l) = us(1) =0

Show that
Sp{ur} =0

/

L

if and only if u» is a solution to the boundary value problem (4.85)—(4.86).

Solution. Since

d -
dplur} = %Muz + wil)}

=0

where
i2(0) = a3 (0) =0

and
() =" (1)=0
therefore, Eq. (4.88) takes the form

1

Sp{uz} = El/uz”(X)ﬁz”(X)dx P s (§)
0

115

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

4.91)
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Integrating by parts we obtain

1
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l

=l
[utwiswar = uswiw| ) wine| 4 [ wmned
0 0
i i (4.92)
Since up € P and i1p € P, Eq. (4.92) reduces to
1 1
/ ud! (0)iid (x)dx = / uS? ()it (x)dx (4.93)
0 0
and Eq. (4.91) takes the form
[
Solus} = / [EI uSP(x)  P(x 5)] iir (x)dx (4.94)

0

Equation (4.94) together with the Fundamental Lemma of calculus of variations
imply that Eq. (4.87) is satisfied if and only if u; is a solution to problem (4.85)—
(4.86). And this completes a solution to Problem 4.4.

Problem 4.5. Use the Rayleigh-Ritz method to show that an approximate deflection
of the beam of Problem 4.4 takes the form (x; = x)

ww- (50 (1 35) (@95)
_ 27 €Y’ 1 s 1 25) 4.96)
©= zE—<7> ( 7)( 37 *

Also, show that for & = [/2 we obtain

where

Bp
ur(1/2) = 0. 0086— (4.97)

Solution. Note that u» = us(x) given by Eq. (4.95) can be written in the form

()= clPf G) (4.98)

-0 ) e

where
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and

fO=fO=f0=f"1=0 (4.100)

Hence _
u(x) e P (4.101)

where P is the domain of the functional ¢{uy} from Problem 4.4, and substituting
(4.98) into Eq. (4.95) of Problem 4.4 we obtain

1
pluz} =1 %cz/[f”(u)]zdu +Pcf (%) = ¥(c) (4.102)
0
The condition
Spfuay = ¥'(c) =0 (4.103)
is satisfied if and only if
1 » :
17\2 _ S
c/(f)du_ Elf(l) (4.104)
0
Since
) =2@4u*  Su+1) (4.105)
and
1
1IN2 4
/(f )du = 3 (4.106)
0

it follows from Eq. (4.104) that c is given by Eq. (4.96). Finally, by letting x = [/2
and £ =//2 in Egs. (4.95) and (4.96), respectively, we obtain (4.97). This completes
a solution to Problem 4.5.

Problem 4.6. The potential energy of a rectangular thin elastic membrane fixed at
its boundary and subject to a vertical load f = f(x1, x2) is

ay a
T
I{M}Z//(T‘)u,au,a fu)dxldxz (4.107)
ay a
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Fig. 4.4 The thin membrane x;
fixed at its boundary
S
/ 4
—a,
0 a, Xa
7
X1
where u € P, , and
P= {u=ulx1,x2) : u(+a,xp) =0 for |x2| < an;
u(xy, xar) =0 for |x1| <ay} (4.108)
Here, u = u(xy,x2) is a deflection of the membrane in the x3 direction, and

Ty is a uniform tension of the membrane (see Fig. 4.4). Let the load function
f = f(x1, x2) be represented by the series

o
. omu(xy ap) . nm(xp az)
X)) = 4.109
fxr, x2) mEHZIfmn sin —— sin ——— ( )

Use the Rayleigh-Ritz method to show that the functional /{u} attains a minimum
over P at

o
.omu(xy ap) . nm(xy  az)
u(xy, x2) = Z Uppp SID o sin ——— (4.110)
m,n=1
where
1
Upn = — zf’"" = mon=123... (4.111)
Ty [(m7/2a1)* + (n7/2a2)"]
Solution. Let C stand for the interior of rectangular region
Co ={(x1, x2)  |x1] < a1, |x2| < a2} (4.112)

and let dCy denote its boundary.
Then R
P={u:u=0 on dCp} 4.113)
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letu € P and u +owi € ﬁ, where w is a scalar. Then
iieP, thatis, =0 ondCy (4.114)

Computing the first variation of 7{u} we obtain

d
81{u) = ——I{u + 0ii)|p-o = /(Tou,a iy fi)da (4.115)
w
Co
Since
U, 1’770(: (uaa ﬁ),a U,qu ﬁ (4.116)

therefore, using the divergence theorem, from Eqgs. (4.115) and (4.116) we obtain

§1{u} = /(Tou,aa +fHuda 4.117)
Co
and R
81{u} =0 foreveryu € P (4.118)

if and only if u = u(x1, x;) is a solution to the boundary value problem

1
U, = —f on C 4.119)
To

u=0 on 9Cy (4.120)

Therefore, the Rayleigh Ritz method applied to the functional / = I{u} leads to a
solution of problem (4.119)—(4.120). It is easy to show, by substituting (4.110) into
Eq. (4.119), that u = u(x1, x2) given by (4.110) is a solution to problem (4.119)—
(4.120).

To obtain the formula (4.110) by the Rayleigh Ritz method we look for u =
u(xy, x,) that minimizes I {«} in the form

(1, X2) = D Cnnm (1) Y (x2) 4.121)
mn
where
. mmu(x; ap)
Om(x1) = sin ——= (4.122)
2ay
and

Yn(x2) = sin %‘2“2) 4.123)
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Substituting u# from (4.121) into (4.107) and using f given by (4.109) we obtain

ap ax 2
1) = Flon) = [ dni [ dns %[%cmn%(xnm(xz)}
ay ap
2
?0 |:Z Cmn®m (X1) Ilf (x2):| |:Z Crn®Pm (X1) l[’n(XZ):|

[Z Jpa9p(x1) x/fq(xz)“ (4.124)

The conditions

=0 m,n=1,2,... (4.125)

together with the orthogonality relations

ap

1

o / Om(x1) pr(x1)dx1 = Sk (4.126)
aj

17

. / Y (x2) i (x2)dx2 = Sk 4.127)

lead to the simple algebraic equation for ¢,
Tocmnl(m/2a1)* + (07/2a2)*) foun =0 (4.128)

Therefore, ¢, = un, Where u,,, is given by (4.111). This completes a solution to
Problem 4.6.

Problem 4.7. Use the solution obtained in Problem 4.6 to find the deflection of a
square membrane of side a that is held fixed at its boundary and is vertically loaded
by aload f of the form

fOr,x) = folHx1+¢) Hxp ol[Hx2+e) H(xz )] (4.129)

where H = H(x) is the Heaviside function, and fy and ¢ are positive constants
(0 < & < a). Also, compute a deflection of the square membrane at its center when
e=a/8.

Solution. Let f be a function represented by the double series [see (4.109) of
Problem 4.6]

FO1,x2) = D fnm (¥1) Y (x2) (4.130)
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where ¢, and V,, are given by Egs. (4.122) and (4.123), respectively, of Problem 4.6.
Using the orthogonality conditions (4.126) and (4.127) of Problem 4.6, we find that
ap ar
1
Jfmn = —— [ dxi [ dxa f(x1,x2) ¢m(x1) ¥n(x2) (4.131)

apaz
aj az

For a square membrane of side a

a=a =a (4.132)
and
om(x1) = sin P& @) (4.133)
2a
. nx(xy a)
Yn(x2) = sin — (4.134)
a

Substituting f from (4.129) into (4.131) we obtain

fom = 5—2 / dx, / dx2 om (61 Y (2) 4.135)
& £
16 1 . o/mmwN . (M E
= 2 fopsin (55 )sin (55 2)
. /nm . (N &
X sin (7) sin (7 2) (4.136)

Therefore, for aload f of the form (4.129) the deflection of the membrane is given by

o0
W, x2) = D wpn@m(x1) @a(x2) (4.137)
m,n=1
where
1 4a>  fom

(4.138)

Upn = — —=
" Ty w2 om2 4 n?

and f,,, is given by (4.136).
Letting x; = 0 and x> = 0 in (4.137) we obtain

64a> fo > mm mm (€
0,0) = = x ————sin® — sin® — (—)
u(0,0) 74 Ty mnz_l mn(m? + n?) 2 2 \a

. oM N (€
X sin N sin EN (;) (4.139)
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Since

., mm 1 1 ()"

sin - = 5(1 cosmim) = — (4.140)
and . . ;

sin? % —5(1 cosnz) = % (4.141)

therefore, (4.139) can be written as

64a* fo > 1 e nw /&
R SRR ORED
u(©,0) a4 Ty x z mn(m? + n?) - 2 \a st 2 \a
m,n=1,3,5,...
(4.142)
Using the orthogonality relations
/ 1
/sinmn; sinnw¢ d¢ = > Smn (4.143)
0
it is easy to show that
b3 [1 cos h[%-(1 2{)]:| i sinmm¢
1.2 nm - 2. 2
4n cos h = M35, m(m+ + n*)
for 0 <¢ <1 (4.144)

Since
& < 2a

therefore, letting { = ¢/2a < 1 into (4.144) we reduce the double series (4.142) to
the single one

16a ad 1 . /nm e cos h%F (1 £)
u(0,0) = x > n—351n (7 5) [1 — | (@14)
n=13,5,. 2
Finally, letting ¢ /a = 1/8 in (4.145) we get
1642 fo <= 1 naw cos h ({znm)
0,0) = J0 —osin % |1 22t 4.146
u(0, 0) =T :123: 3 sin e X o h(% 3 ( )

This completes a solution to Problem 4.7.

Problem 4.8. The potential energy of a rectangular thin elastic plate that is simply
supported along all the edges and is vertically loaded by a force P at a point (&1, &)
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X3

X2
Fig. 4.5 The rectangular thin plate simply supported along all edges
takes the form
ay ap
-~ 1
Iwy=5D / (V2w)2dxidxs  Pw(&, &) (4.147)
ay ap

where w € 13, and

P = {w=w(x1, x2) : w(tay, x2) =0, Vzw(ial,xz) =0 for |x3| < ap;

wxi, £a2) =0, V2w(x1, ar) =0 for |xi| < a1}
(4.148)

Here w = w(x1, x7) is a deflection of the plate, and D is the bending rigidity of the
plate (see Fig.4.5).

Show that a minimum of the functional T{.} over P is attained at a function
w = w(x1, xp) represented by the series

o0
. omm(xy a)) . nm(xy  az)
w(xy, xp) = Z Wi SIN 2 sin 23 (4.149)
m,n=1
where
. mw . nmw
sin—(& ap)sin—(& a»)
p 2a1 2(12
Win m,n=12,3,... (4.150)

"~ Dajay  [(mm/2a1)* + (n7w)2a2)*]?
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Hint: Use the series representation of the concentrated load P

Pé(x1 &Dé(x2 &)

P ad . mm . nmw . mm
=—— D> sin_—(E a)sing (2 a)sin_—(1 ap)
ayaz 2a1 2a; 2a,
m,n=1

. nm
x sin — (x2  ap)

2ay

for every |x1| < a1, |x2| <az, &1l <ai, |&] < as. (4.151)

§0]ution. Letw € Pandw € P. Then w + ww € 15, and the first variation of
I{w}s takes the form

~ d ~ -
SI1{w} =T I {w+ ow}w=0

aj ap
=D / dxi / dxr(V2w)(VZW)  Pw(E) (4.152)
a ap

Let Cg be an interior of the rectangular region, and let dCp denote its boundary. Then
Eq. (4.152) can be written as

sT{wy=D / Woaa Wopp da  Pin(E) (4.153)
Co

Since

W,aa w7ﬂﬂ = (WaOtOl waﬂ)’ﬂ Waotolﬂ ﬂ}aﬂ
= (Wsoux ‘X)aﬂ WvO{Dt,B ﬁ))rﬁ +W’Dtot/3ﬁ ﬂ} (4154)

therefore, integrating (4.154) over Cp, using the divergence theorem, and the relations
W,ae =0, Ww=0 onadCo (4.155)

we reduce (4.153) to the form

STiw) = / [DV*w  PS(x  E)w(E)da (4.156)
Co

A minimum of the functional T{w} over P is attained at w that satisfies the field
equation

4, _ P
Viw= 586§ onC (4.157)



4.5 Problems and Solutions Related to Variational Formulation of Elastostatics 125
subject to the homogeneous b conditions
w=0, V2w=0 ondCy (4.158)

To obtain a solution to problem (4.157)—(4.158) we use the representation of §(x &)

1 o0
s(x §= wa D (X)) om(ED) Y (x2) Y () (4.159)

m,n=1

where ¢, (x1) and ¥, (x2), respectively, are given by Eqs. (4.122) and (4.123) of
Problem 4.6 Since

) - mx 2 nr 2
Voom (x1) Y (x2) = a1 + Pm(x1) Yn(x2) (4.160)

2a>

therefore, by looking for a solution of Eq. (4.157) in the form

W, X2) = > Won @m(xX1) Y (x2) (4.161)

m,n=1

and substituting (4.159) and (4.161) into (4.157) we find that

mi 2 niw 27? P
Winn [(%) + (2—02) } = Dars em(§1) Yn(62) (4.162)

This completes a solution to Problem 4.8.

Problem 4.9. Show that the central deflection of a square plate of side a that is
simply supported along all the edges, and is loaded by a force P at its center, takes
the form

Pa’®
w(0, 0) ~ 0.04597 (4.163)
Hint: Use the result obtained in Problem 4.8 when &) = & =0,x1 =x =0,a; =
a) =a

oo

0.0y 16Pa” > : 4.164
w00 =73 [(@m 12 +@n 12 (4.164)

m,n=1
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Also, by taking advantage of the formula

> 1 T TX  TX
Z =— (tanh— —sech? ) forevery x >0
— [2m  1)2+x2]2  8x3 2 2 2

(4.165)
which is obtained by differentiating with respect to x the formula
o0
S = T (4.166)
(2k 1)2 +x2  4x 2 '

k=1

we reduce Eq. (4.164) to the simple form

2P? & [
D3 2n 1)3
n=1

w(0, 0) = tanh%(Zn 1 %(2;1 l)sechZ%(Zn 1)]

(4.167)
The result (4.163) then follows by truncating the series (4.167).

Solution. By letting aj = ap = a, x; = x =0, & = & = 0in Eq.(4.165) of
Problem 4.8 we obtain

w(0,0) = i Wynn Sin (%) sin (%) (4.168)
mon=1
where
W = DI;Z (mzjslzr;i; ls;nftzz/z‘az)z (4.169)
Hence N 2
w(0,0) = tone Z s (m? er,l;)z( 7) (4.170)
or

o0

(0, 0y = 16 > ! 4.171)
Dr4 [Cm  1)2+@2n 1?22

m,n=1

which is equivalent to Eq. (4.164).
Finally, using (4.165) with x = 2n 1, we reduce (4.171) to the single series
formula (4.167). This completes solution to Problem 4.9.



	4 Variational Formulation of Elastostatics
	4.1 Minimum Principles
	4.2 The Rayleigh-Ritz Method
	4.3 Variational Principles
	4.4 Compatibility-Related Principle
	4.5 Problems and Solutions Related to Variational  Formulation of Elastostatics


