
Chapter 3
Formulation of Problems of Elasticity

In this chapter both the basic boundary value problems of elastostatics and
initial-boundary value problems of elastodynamics are recalled; in particular, the
mixed boundary value problems of isothermal and nonisothermal elastostatics, as
well as the pure displacement and the pure stress problems of classical elastodynam-
ics are discussed. The Betti reciprocal theorem of elastostatics and Graffi’s reciprocal
theorem of elastodynamics together with the uniqueness theorems are also presented.
An emphasis is made on a pure stress initial-boundary value problem of incompati-
ble elastodynamics in which a body possesses initially distributed defects. [See also
Chap. 16.]

3.1 Boundary Value Problems of Elastostatics

Field Equations of Isothermal Elastostatics

The strain-displacement relation

E = ̂∇u = 1

2
(∇u + ∇uT) (3.1)

The equations of equilibrium

div S + b = 0, S = ST (3.2)

The stress-strain relation
S = C [E] (3.3)

By eliminating E and S from Eqs. (3.1)–(3.3) we obtain the displacement equation
of equilibrium

div C [∇u] + b = 0 (3.4)
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For a homogeneous isotropic body the displacement equation of equilibrium (3.4)
reduces to

μ∇2u + (λ + μ)∇(div u) + b = 0 (3.5)

or

∇2u + 1

1 − 2ν
∇(div u) + b

μ
= 0 (3.6)

or
(λ + 2μ)∇(div u) − μ curl curl u + b = 0 (3.7)

An equivalent form of the stress-strain relation (3.3) reads

E = K [S] (3.8)

Therefore, by eliminating u and E from Eqs. (3.1), (3.2), and (3.8) the stress equations
of equilibrium are obtained

div S + b = 0, S = ST (3.9)

curl curl K[S] = 0 (3.10)

For a homogeneous isotropic body, the stress equations of equilibrium (3.9)–(3.10)
reduce to

div S + b = 0, S = ST (3.11)

∇2S + 1

1 + ν
∇∇(tr S) + ν

1 − ν
(div b)1 + 2̂∇b = 0 (3.12)

Field Equations of nonisothermal Elastostatics

The strain-displacement relation

E = ̂∇u = 1

2
(∇u + ∇uT) (3.13)

The equations of equilibrium

div S + b = 0, S = ST (3.14)

The stress-strain-temperature relation

S = C [E] + T M (3.15)
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or, the strain-stress-temperature relation

E = K [S] + T A (3.16)

In Eqs. (3.15) T stands for a temperature change; while M = MT and A = AT are
the stress-temperature and thermal expansion tensors, respectively.

For an isotropic body Eqs. (3.15) and (3.16), respectively, take the form

S = 2μ E + λ (tr E) 1 − (3λ + 2μ) α T 1 (3.17)

and

E = 1

2μ

[

S − λ

3λ + 2μ
(tr S) 1

]

+ α T 1 (3.18)

By eliminating E and S from Eqs. (3.13)–(3.15) the displacement-temperature equa-
tion of nonisothermal elastostatics is obtained

div{C [∇u] + T M} + b = 0 (3.19)

Also, by eliminating u and E from Eqs. (3.13), (3.14), and (3.16), the stress-
temperature equations of nonisothermal elastostatics are obtained

div S + b = 0, S = ST (3.20)

curl curl {K[S] + T A} = 0 (3.21)

For an isotropic homogeneous body, Eqs. (3.19) and (3.20)–(3.21), respectively, take
the form

μ∇2u + (λ + μ)∇(div u) − (3λ + 2μ) α ∇ T + b = 0 (3.22)

and
div S + b = 0, S = ST (3.23)

∇2S+ 1

1 + ν
∇∇(tr S)+ Eα

1 + ν

(

∇∇T + 1 + ν

1 − ν
∇2T 1

)

+ ν

1 − ν
(div b)1+2̂∇b = 0

(3.24)

3.2 Concept of an Elastic State

An ordered array of functions s = [u, E, S] is called an elastic state corresponding
to the body force b if the functions u, E, and S satisfy the system of fundamental
field equations (3.1)–(3.3) on B.
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An external force system for s is defined as a pair [b, s] where s = Sn with n
being an outward unit vector normal to ∂B.

Theorem of work and energy. If s = [u, E, S] is an elastic state corresponding to
the external force system [b, s] then

∫

∂B

s · u da +
∫

B

b · u dv = 2UC(E) (3.25)

where UC(E) is the total strain energy of body B

UC(E) = 1

2

∫

B

E · C [E] dv (3.26)

The Betti reciprocal theorem. Let the elasticity tensor C be symmetric, and let

s = [u, E, S] and s̃ = [̃u,˜E,˜S] (3.27)

be elastic states corresponding to the external force systems [b, s] and [˜b,˜S], respec-
tively. Then the following reciprocity relation holds

∫

∂B

s · ũ da +
∫

B

b · ũ dv =
∫

∂B

s̃ · u da +
∫

B

˜b · u dv =
∫

B

S ·˜E dv =
∫

B

˜S · E dv

(3.28)

3.3 Concept of a Thermoelastic State

An ordered array of functions s = [u, E, S] is called a thermoelastic state corre-
sponding to an external force system [b, s, T ] if the functions u, E, and S satisfy the
field equations of thermoelastostatics (3.13)–(3.15) on B.

Thermoelastic reciprocal theorem. Let s = [u, E, S] and s̃ = [̃u,˜E,˜S] be ther-
moelastic states corresponding to the external force-temperature systems [b, s, T ]
and [˜b, s̃, ˜T ], respectively. Then

∫

∂B

s · ũ da+
∫

B

b · ũ dv −
∫

B

T M · ˜E dv =
∫

∂B

s̃ · u da+
∫

B

˜b · u dv −
∫

B

˜T M · E dv

(3.29)
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3.4 Formulation of Boundary Value Problems

Mixed problems of elastostatics. By a mixed boundary value problem of elastosta-
tics we mean the problem of finding an elastic state s = [u, E, S] corresponding to
a body force b and satisfying the boundary conditions: the displacement condition

u = û on ∂B1 (3.30)

and the traction condition
Sn = ŝ on ∂B2 (3.31)

where
∂B1 ∪ ∂B2 = ∂B; ∂B1 ∩ ∂B2 = ∅ (3.32)

while û and ŝ are prescribed functions.
An elastic state s that satisfies the boundary conditions (3.30)–(3.31) is called a

solution to the mixed problem.
If ∂B2 = ∅, the mixed problem becomes a displacement boundary value problem.

If ∂B1 = ∅, the mixed problem becomes a traction boundary value problem.

A displacement field corresponding to a solution to a mixed problem is a vector
field u with the property that there are symmetric tensor fields E and S such that
s = [u, E, S] is a solution to the mixed problem.

A stress field corresponding to a solution to a mixed problem is a tensor field S
with the property that there are u and E such that s = [u, E, S] is a solution to the
mixed problem.

Mixed Problem in Terms of Displacements

A vector field u corresponds to a solution to the mixed problem if and only if

div C [∇u] + b = 0 on B (3.33)

u = û on ∂B1 (3.34)

(C [∇u] ) n = ŝ on ∂B2 (3.35)

Displacement Problem in Terms of Displacements

A vector field u corresponds to a solution to the displacement problem if and only if

div C [∇u] + b = 0 on B (3.36)

u = û on ∂B (3.37)
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Traction Problem in Terms of Stresses

A tensor field S corresponds to a solution to the traction problem if and only if

div S + b = 0 on B (3.38)

curl curl K[S] = 0 on B (3.39)

Sn = ŝ on ∂B (3.40)

3.5 Uniqueness

Uniqueness Theorem for the Mixed Problem. If the elasticity tensor C is positive
definite, then any two solutions of the mixed problem of elastostatics are equal to
within a rigid displacement. If ∂B1 �= ∅ then the rigid displacement vanishes.

3.6 Formulation of Problems of Nonisothermal Elastostatics

By a mixed problem of nonisothermal elastostatics we mean the problem of finding
a thermoelastic state s = [u, E, S] that satisfies the field equations (3.13)–(3.15) on
B subject to the boundary conditions (3.30)–(3.31).

Mixed Thermoelastic Problem in Terms of Displacements

A vector field u corresponds to a solution to the mixed thermoelastic problem if and
only if

div{C [∇u] + T M} + b = 0 on B (3.41)

u = û on ∂B1 (3.42)

(C [∇u] + T M) n = ŝ on ∂B2 (3.43)

Traction Thermoelastic Problem in Terms of Stresses

A tensor field S corresponds to a solution to the traction thermoelastic problem if
and only if

div S + b = 0 on B (3.44)

curl curl {K[S] + T A} = 0 on B (3.45)

Sn = ŝ on ∂B (3.46)
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3.7 Initial-Boundary Value Problems of Elastodynamics

Field Equations of Isothermal Elastodynamics

The strain-displacement relation

E = ̂∇u = 1

2
(∇u + ∇uT) (3.47)

The equations of motion

div S + b = ρ ü, S = ST (3.48)

The stress-strain relation
S = C [E] (3.49)

or equivalently
E = K [S] (3.50)

By eliminating E and S from Eqs. (3.47)–(3.49) we obtain the displacement equation
of motion

div C [∇u] + b = ρ ü (3.51)

By eliminating u and E from Eqs. (3.47), (3.48), and (3.50) the stress equation of
motion is obtained

̂∇[ρ−1(div S)] − K[S̈] = −B (3.52)

where
B = ̂∇(ρ−1b) (3.53)

For a homogeneous isotropic elastic body Eqs. (3.51) and (3.52), respectively, reduce
to

μ∇2u + (λ + μ)∇(div u) + b = ρ ü (3.54)

and
̂∇(div S) − ρ

2μ

[

S̈ − λ

3λ + 2μ
(tr S̈) 1

]

= −̂∇ b (3.55)

Field Equations of nonisothermal Elastodynamics

The strain-displacement relation

E = ̂∇u = 1

2
(∇u + ∇uT) (3.56)
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The equations of motion

div S + b = ρ ü, S = ST (3.57)

The stress-strain-temperature relation

S = C [E] + T M (3.58)

or, the strain-stress-temperature relation

E = K [S] + T A (3.59)

By eliminating E and S from Eqs. (3.56)–(3.58) we obtain the displacement-
temperature equation of motion

div (C [∇u] + T M) + b = ρ ü (3.60)

By eliminating u and E from Eqs. (3.56), (3.57), and (3.59) the stress-temperature
equation of motion is obtained

̂∇[ρ−1(div S)] − K[S̈] = −˜B (3.61)

where
˜B = ̂∇(ρ−1b) + T̈ A (3.62)

Here, M and A are the stress-temperature and the thermal expansion tensors, respec-
tively.

3.8 Concept of an Elastic Process

An elastic process corresponding to a body force b is defined as an ordered set of
functions p = [u, E, S] that complies with the fundamental system of field equations
of isothermal elastodynamics (3.47)–(3.49).

An external force system for p is defined as a pair [b, s] in which s = Sn.

Graffi’s Reciprocal Theorem. Let p = [u, E, S] be an elastic process corresponding
to the external force system [b, s] and to the initial data [u0, u̇0], Let p̃ = [̃u,˜E,˜S]
be another elastic process corresponding to [˜b, s̃] and [̃u0, ˙̃u0]. Then the following
integral relations hold true

i ∗
∫

∂B

s ∗ ũ da +
∫

B

f ∗ ũ dv = i ∗
∫

∂B

s̃ ∗ u da +
∫

B

˜f ∗ u dv (3.63)
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∫

∂B

s ∗ ũ da +
∫

B

b ∗ ũ dv +
∫

B

ρ (u0 · ˙̃u + u̇0 · ũ) dv

=
∫

∂B

s̃ ∗ u da +
∫

B

˜b ∗ u dv +
∫

B

ρ (̃u0 · u̇ + ˙̃u0 · u) dv (3.64)

Here
i = i(t) = t, t ≥ 0 (3.65)

and f and ˜f are pseudo-body forces corresponding to p = [u, E, S] and p̃ =
[̃u,˜E,˜S], respectively, defined by

f = i ∗ b(x, t) + ρ[u0(x) + t u̇0(x)]
˜f = i ∗˜b(x, t) + ρ [̃u0(x) + t ˙̃u0(x)] (3.66)

3.9 Formulation of Problems of Isothermal Elastodynamics

Mixed Problem in Terms of Displacements

A vector field u corresponds to a solution to a mixed problem of isothermal elasto-
dynamics if and only if

div C [∇u] + b = ρ ü on B × [0,∞) (3.67)

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) on B (3.68)

u = û on ∂B1 × [0,∞) (3.69)

(C [∇u] ) n = ŝ on ∂B2 × [0,∞) (3.70)

Traction Problem in Terms of Stresses

A tensor field S corresponds to a solution to a traction problem of isothermal elasto-
dynamics if and only if

̂∇[ρ−1(div S)] − K[S̈] = −B on B × [0,∞) (3.71)

S(x, 0) = C [∇u0], Ṡ(x, 0) = C [∇u̇0] on B (3.72)

Sn = ŝ on ∂B × [0,∞) (3.73)

where
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B = ̂∇(ρ−1b) on B × [0,∞) (3.74)

Mixed Problem in Terms of Stresses

A tensor field S corresponds to a solution to a mixed problem of isothermal elasto-
dynamics if and only if

̂∇[ρ−1(i ∗ div S + f)] − K[S] = 0 on B × [0,∞) (3.75)

ρ−1(i ∗ div S + f) = û on ∂B1 × [0,∞) (3.76)

Sn = ŝ on ∂B2 × [0,∞) (3.77)

where f is the pseudo-body force given by (3.66)1.

Nonconventional Traction Problem in Terms of Stresses (Uniqueness). Let S be a
solution to the following initial-boundary value problem. Find a symmetric second-
order tensor field S on 	B × [0,∞) that satisfies the field equation

̂∇[ρ−1(div S)] − K[S̈] = −F on B × [0,∞) (3.78)

the initial conditions

S(x, 0) = S0(x), Ṡ(x, 0) = Ṡ0(x) for x ∈ B (3.79)

and the boundary condition

Sn = ŝ on ∂B × [0,∞) (3.80)

Here, F is an arbitrary symmetric second-order tensor field prescribed on 	B×[0,∞),
S0 and Ṡ0 are prescribed symmetric tensor fields on B, and ŝ is a prescribed vector
field on ∂B × [0,∞). Then the problem described by Eqs. (3.78)–(3.80) has at most
one solution (Uniqueness).

If F �= B, where B is given by (3.74), S0 and Ṡ0 are not given by Eqs. (3.72),
then the problem (3.78)–(3.80) describes stress waves in an elastic body with time-
dependent continuously distributed defects.

3.10 Problems and Solutions Related to the Formulation
of Problems of Elasticity

Problem 3.1. For a homogeneous isotropic elastic body occupying a region
B ⊂ E3 subject to zero body forces, the displacement equation of equilibrium takes
the form [see Eq. (3.6) with b = 0]
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∇2u + 1

1 − 2ν
∇(div u) = 0 on B (3.81)

where ν is Poisson’s ratio. Show that if u = u(x) is a solution to Eq. (3.81) then u
also satisfies the equation

∇2
[

u + x
2(1 − 2ν)

(div u)

]

= 0 on B (3.82)

Solution. Equations (3.81) and (3.82) in components take the forms

ui,kk + 1

1 − 2ν
uk,ki = 0 on B (3.83)

and
[

ui + xi

2(1 − 2ν)
uk,k

]

, j j = 0 on B (3.84)

respectively.
It follows from (3.83) that

ui,ikk + 1

1 − 2ν
uk,kii = 0 on B (3.85)

or
2(1 − ν)

1 − 2ν
ui,ikk = 0 on B (3.86)

Since −1 < ν < 1/2 < 1 [see Eq. (2.50)]

2 − 2ν

1 − 2ν
> 0 (3.87)

and (3.86) implies that
ui,ikk = 0 on B (3.88)

In addition

(xi uk,k), j j = (δi j uk,k + xi uk,k j ), j = 2δi j uk,k j + xi uk,k j j (3.89)

Hence, it follows from Eqs. (3.88) and (3.89) that

(xi uk,k), j j = 2uk,ki (3.90)

Substituting (3.90) into (3.84) we obtain (3.83), and this completes solution of Prob-
lem 3.1.

http://dx.doi.org/10.1007/978-94-007-6356-2_2
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Problem 3.2. An alternative form of Eq. (3.81) in Problem 3.1 reads [see Eq. (3.7)
in which λ = 2μν /(1 − 2ν) and b = 0]

∇(div u) − 1 − 2ν

2 − 2ν
curl curl u = 0 on B (3.91)

Show that if u = u(x) is a solution to Eq. (3.91) then

∫

B

[

div u)2 + 1 − 2ν

2 − 2ν
(curl u)2

]

dv

=
∫

∂B

u ·
[

(div u) n + 1 − 2ν

2 − 2ν
(curl u) × n

]

da (3.92)

where n is the unit outward normal vector field on ∂B.

Hint. Multiply Eq. (3.91) by u in the dot product sense, integrate the result over B,
and use the divergence theorem.

Note. Since −1 < ν < 1/2 [see Eq. (2.50)] then Eq. (3.92) implies that a displace-
ment boundary value problem of homogeneous isotropic elastostatics may have at
most one solution.

Solution. In components Eq. (3.91) takes the form

uk,ki − 1 − 2ν

2 − 2ν
εiab εbcd ud,ca = 0 (3.93)

Since

ui uk,ki = (ui uk,k),i − (ui,i )
2 (3.94)

ui εiab εbcd ud,ca = εiab εbcd [(ud,c ui ),a − ud,c ui,a] (3.95)

and
εiab εbcd ud,c ui,a = −(εbai ui,a)(εbcd ud,c) (3.96)

therefore, multiplying (3.93) by ui we obtain

(ui,i )
2 + 1 − 2ν

2 − 2ν
(εbai ui,a)(εbcd ud,c) =

(

uk,k ua + 1 − 2ν

2 − 2ν
εiab εbcd ud,c ui

)

,a

(3.97)

Finally, integrating (3.97) over B and using the divergence theorem we obtain

http://dx.doi.org/10.1007/978-94-007-6356-2_2
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∫

B

[

(ui,i )
2 + 1 − 2ν

2 − 2ν
(εbai ui,a)(εbcd ud,c)

]

dv

=
∫

∂ B

ua

[

uk,k na + 1 − 2ν

2 − 2ν
εabi (εbcd ud,c)ni

]

da (3.98)

Equation (3.98) is equivalent to (3.92), and this completes solution of Problem 3.2.

Problem 3.3. Show that for a homogeneous isotropic infinite elastic body subject
to a temperature change T = T (x) its volume change is represented by the formula

tr E(x) = 1 + ν

1 − ν
α T (x) for x ∈ E3 (3.99)

where ν and α denote Poisson’s ratio and coefficient of thermal expansion, respec-
tively.

Hint. Apply the reciprocal relation (3.28) to the external force-temperature systems
[b, s, T ] = [0, 0, T ] and [˜b, s̃, ˜T ] = [0, 0, δ(x − ξ)] on E3. Also note that for an
isotropic body M = −(3λ + 2μ)α 1 and tr ˜E = [(3λ + 2μ) /(λ + 2μ)]α ˜T .

Solution. Let s = [u, E, S] and s̃ = [̃u,˜E,˜S] be the thermoelastic states pro-
duced on E3 by the external thermomechanical loads [b, s, T ] = [0, 0, T (x)] and
[˜b, s̃, ˜T ] = [0, 0, δ(x − ξ)], respectively. Applying Eq. (3.29) to the states s and ˜S
we obtain

∫

E3

T M · ˜E dv =
∫

E3

˜T M · E dv (3.100)

For a homogeneous isotropic thermoelastic solid

M = −(3λ + 2μ)α1 (3.101)

Therefore,
M · ˜E = −(3λ + 2μ)α(tr ˜E) (3.102)

and
M · E = −(3λ + 2μ)α(tr E) (3.103)

where λ and μ are Lamé constants. Substituting (3.102) and (3.103) into (3.100) we
get

∫

E3

T (tr ˜E)dv =
∫

E3

˜T (tr E)dv (3.104)

Since s̃ is the thermoelastic state produced by the temperature ˜T on E3, ũ takes the
form
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ũ = ∇˜φ (3.105)

where the thermoelastic potential ˜φ satisfies Poisson’s equation

∇2
˜φ = 1 + ν

1 − ν
α˜T (3.106)

Hence

tr ˜E = ∇2
˜φ = 1 + ν

1 − ν
α˜T (3.107)

Therefore, substituting (3.107) into (3.104) we obtain

1 + ν

1 − ν
α

∫

E3

T (ξ)δ(x − ξ)dv(ξ) =
∫

E3

δ(x − ξ)[tr E(ξ)]dv(ξ) (3.108)

or using the filtrating property of the delta function we arrive at Eq. (3.99). This
completes solution of Problem 3.3.

Problem 3.4. Assume T0 to be a constant temperature, and let ai (i = 1, 2, 3) be
positive constants of the length dimension. Show that for a homogeneous isotropic
infinite elastic body subject to the temperature change

T (x) = T0[H(x1 + a1) − H(x1 − a1)] × [H(x2 + a2) − H(x2 − a2)]
× [H(x3 + a3) − H(x3 − a3)] (3.109)

where H = H(x) denotes the Heaviside function defined by: H(x) = 1 for x > 0
and H(x) = 0 for x < 0; the stress components Si j are represented by the formulas

Si j (x) = A0

a1
∫

−a1

dξ1

a2
∫

−a2

dξ2

a3
∫

−a3

dξ3
∂2

∂ξi∂ξ j

[

(x1 − ξ1)
2 + (x2 − ξ2)

2 + (x3 − ξ3)
2
]−1/2

+ 4πδi j A0

a1
∫

−a1

dξ1

a2
∫

−a2

dξ2

a3
∫

−a3

dξ3 δ(x1 − ξ1)δ(x2 − ξ2)δ(x3 − ξ3)

(3.110)

where

A0 = − μ

2π

1 + ν

1 − ν
α T0 (3.111)

Also, show that the integrals on the RHS of Eq. (3.110) can be calculated in terms of
elementary functions, and for the exterior of the parallelepiped

|x1| ≤ a1, |x2| ≤ a2 |x3| ≤ a3 (3.112)
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we obtain

S12 = A0 ln

[

(x3 + a3 + r+1.+2.−3)

(x3 − a3 + r+1.+2.+3)

(x3 − a3 + r+1.−2.+3)

(x3 + a3 + r+1.−2.−3)

× (x3 − a3 + r−1.+2.+3)

(x3 + a3 + r−1.+2.−3)

(x3 + a3 + r−1.−2.−3)

(x3 − a3 + r−1.−2.+3)

]

(3.113)

S23 = A0 ln

[

(x1 + a1 + r−1.+2.+3)

(x1 − a1 + r+1.+2.+3)

(x1 − a1 + r+1.+2.−3)

(x1 + a1 + r−1.+2.−3)

× (x1 − a1 + r+1.−2.+3)

(x1 + a1 + r−1.−2.+3)

(x1 + a1 + r−1.−2.−3)

(x1 − a1 + r+1.−2.−3)

]

(3.114)

S31 = A0 ln

[

(x2 + a2 + r+1.−2.+3)

(x2 − a2 + r+1.+2.+3)

(x2 − a2 + r−1.+2.+3)

(x2 + a2 + r−1.−2.+3)

× (x2 − a2 + r+1.+2.−3)

(x2 + a2 + r+1.−2.−3)

(x2 + a2 + r−1.−2.−3)

(x2 − a2 + r−1.+2.−3)

]

(3.115)

and

S11 = A0

[

tan−1
(

x2 + a2

x1 − a1

x3 + a3

r+1.−2.−3

)

− tan−1
(

x2 + a2

x1 − a1

x3 − a3

r+1.−2.+3

)

− tan−1
(

x2 − a2

x1 − a1

x3 + a3

r+1.+2.−3

)

+ tan−1
(

x2 − a2

x1 − a1

x3 − a3

r+1.+2.+3

)

− tan−1
(

x2 + a2

x1 + a1

x3 + a3

r−1.−2.−3

)

+ tan−1
(

x2 + a2

x1 + a1

x3 − a3

r−1.−2.+3

)

+ tan−1
(

x2 − a2

x1 + a1

x3 + a3

r−1.+2.−3

)

− tan−1
(

x2 − a2

x1 + a1

x3 − a3

r−1.+2.+3

)]

(3.116)

S22 = A0

[

tan−1
(

x3 + a3

x2 − a2

x1 + a1

r−1.+2.−3

)

− tan−1
(

x3 + a3

x2 − a2

x1 − a1

r+1.+2.−3

)

− tan−1
(

x3 − a3

x2 − a2

x1 + a1

r−1.+2.+3

)

+ tan−1
(

x3 − a3

x2 − a2

x1 − a1

r+1.+2.+3

)

− tan−1
(

x3 + a3

x2 + a2

x1 + a1

r−1.−2.−3

)

+ tan−1
(

x3 + a3

x2 + a2

x1 − a1

r+1.−2.−3

)

+ tan−1
(

x3 − a3

x2 + a2

x1 + a1

r−1.−2.+3

)

− tan−1
(

x3 − a3

x2 + a2

x1 − a1

r+1.−2.+3

)]

(3.117)
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S33 = A0

[

tan−1
(

x1 + a1

x3 − a3

x2 + a2

r−1.−2.+3

)

− tan−1
(

x1 + a1

x3 − a3

x2 − a2

r−1.+2.+3

)

− tan−1
(

x1 − a1

x3 − a3

x2 + a2

r+1.−2.−3

)

+ tan−1
(

x1 − a1

x3 − a3

x2 − a2

r+1.+2.+3

)

− tan−1
(

x1 + a1

x3 + a3

x2 + a2

r−1.−2.−3

)

+ tan−1
(

x1 + a1

x3 + a3

x2 − a2

r−1.+2.−3

)

+ tan−1
(

x1 − a1

x3 + a3

x2 + a2

r+1.−2.−3

)

− tan−1
(

x1 − a1

x3 + a3

x2 − a2

r+1.+2.−3

)]

(3.118)

where
r±1.±2.±3 = [(x1 ∓ a1)

2 + (x2 ∓ a2)
2 + (x3 ∓ a3)

2]1/2 (3.119)

Note that Eq. (3.114) follows from Eq. (3.113) by the transformation of indices

1 → 2, 2 → 3, 3 → 1

and Eq. (3.115) follows from Eq. (3.114) by the transformation of indices

2 → 3, 3 → 1, 1 → 2

Also, Eq. (3.117) follows from Eq. (3.116) by the transformation of indices

1 → 2, 2 → 3, 3 → 1

and Eq. (3.118) follows from Eq. (3.117) by the transformation of indices

2 → 3, 3 → 1, 1 → 2.

Hint. To find S12 use the formula

∫

du√
u2 + a2

= ln
(

u +
√

u2 + a2
)

(3.120)

and to calculate S11 take advantage of the formulas

∫

du

(
√

u2 + a2)3
= 1

a2

u√
u2 + a2

(3.121)

and

∫

du

(u2 + b2)
√

u2 + a2
= 1

b
√

a2 − b2
tan−1

(

u
√

a2 − b2

b
√

u2 + a2

)

(3.122)
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where a and b are constants subject to the conditions

a �= 0, b �= 0, |a| > |b| (3.123)

Solution. To show (3.110) we note that

Si j (x) =
a1

∫

−a1

dξ1

a2
∫

−a2

dξ2

a3
∫

−a3

dξ3 S∗
i j (xξ) (3.124)

where
S∗

i j (x, ξ) = 2μ
(

φ∗
,i j − δi jφ

∗
,kk

)

(3.125)

and

φ∗
,kk = 1 + ν

1 − ν
α δ(x1 − ξ1)δ(x2 − ξ2)δ(x3 − ξ3) (3.126)

Since

φ∗(x, ξ) = − 1

4π

1 + ν

1 − ν
α

1

|x − ξ |
therefore

S∗
i j (x ξ) = A0

{

∂2

∂ξi∂ξ j

1

|x − ξ | + 4πδi jδ(x1 − ξ1)δ(x2 − ξ2)δ(x3 − ξ3)

}

where A0 is given by (3.111). Hence, substituting S∗
i j into Eq. (3.124) we obtain

(3.110).

To show (3.113)–(3.118) we note that for the exterior of the parallelepiped

|x1| ≤ a1, |x2| ≤ a2, |x3| ≤ a3 (3.127)

Equation (3.110) reduces to

Si j (x) = A0

a1
∫

−a1

dξ1

a2
∫

−a2

dξ2

a3
∫

−a3

dξ3

× ∂2

∂ξi ∂ξ j
[(x1 − ξ1)

2 + (x2 − ξ2)
2 + (x3 − ξ3)

2]−1/2

i, j = 1, 2, 3. (3.128)

Letting i = 1, j = 2 in (3.128) we obtain
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S12(x) = A0

a3
∫

−a3

dξ3

a2
∫

−a2

dξ2
∂

∂ξ2

×
{

[(x1 − a1)
2 + (x2 − ξ2)

2 + (x3 − ξ3)
2]−1/2

− [(x1 + a1)
2 + (x2 − ξ2)

2 + (x3 − ξ3)
2]−1/2

}

(3.129)

or

S12(x) = A0

a3
∫

−a3

dξ3 ×
{

[(x1 − a1)
2 + (x2 − a2)

2 + (x3 − ξ3)
2]−1/2

− [(x1 − a1)
2 + (x2 + a2)

2 + (x3 − ξ3)
2]−1/2

− [(x1 + a1)
2 + (x2 − a2)

2 + (x3 − ξ3)
2]−1/2

+ [(x1 + a1)
2 + (x2 + a2)

2 + (x3 − ξ3)
2]−1/2

}

(3.130)

Since for every b > 0

a3
∫

−a3

[b2 + (x3 − ξ3)
2]−1/2 dξ3 =

x3+a3
∫

x3−a3

(b2 + u2)−1/2 du (3.131)

and by virtue of (3.121)

∫

(b2 + u2)−1/2 du = ln
(

u +
√

u2 + b2
)

(3.132)

if follows from (3.130) that

S12 = A0 ln

{

(x3 + a3 + r+1.+2.−3)

(x3 − a3 + r+1.+2.+3)

(x3 − a3 + r+1.−2.+3)

(x3 + a3 + r+1.−2.−3)

× (x3 − a3 + r−1.+2.+3)

(x3 + a3 + r−1.+2.−3)

(x3 + a3 + r−1.−2.−3)

(x3 − a3 + r−1.−2.+3)

}

(3.133)

where r±1.±2.±3 is defined by (3.119). This completes proof of (3.113). The com-
ponents S23 and S31, respectively, are obtained from (3.113) by the transformation
of the indices

1 → 2, 2 → 3, 3 → 1 (3.134)

and
2 → 3, 3 → 1, 1 → 2 (3.135)
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By letting i = 1, j = 1 in (3.128) we obtain

S11(x) = A0

a2
∫

−a2

dξ2

a3
∫

−a3

dξ3

a1
∫

−a1

dξ1
∂2

∂ξ2
1

× [(x2 − ξ2)
2 + (x3 − ξ3)

2 + (x1 − ξ1)
2]−1/2 (3.136)

Since

∂

∂ξ1
[(x1 − ξ1)

2 + α2]−1/2 = (x1 − ξ1)[(x1 − ξ1)
2 + α2]−3/2 (3.137)

where
α2 = (x2 − ξ2)

2 + (x3 − ξ3)
2 (3.138)

therefore Eq. (3.136) takes the form

S11(x) = A0

a2
∫

−a2

dξ2

a3
∫

−a3

dξ3 ×
{

(x1 − a1)

[(x1 − a1)2 + α2]3/2 − (x1 + a1)

[(x1 + a1)2 + α2]3/2

}

(3.139)
Now, because of (3.121),

a3
∫

−a3

dξ3
1

[(x1 − a1)2 + α2]3/2 =
x3+a3
∫

x3−a3

du

[(x1 − a1)2 + (x2 − ξ2)2 + u2]3/2

= 1

(x1 − a1)2 + (x2 − ξ2)2

{

(x3 + a3)

[(x1 − a1)2 + (x2 − ξ2)2 + (x3 + a3)2]1/2

− (x3 − a3)

[(x1 − a1)2 + (x2 − ξ2)2 + (x3 − a3)2]1/2

}

(3.140)

Also, using (3.122), we obtain

a2
∫

−a2

dξ2
1

(x2 − ξ2)2 + (x1 − a1)2

1

[(x1 − a1)2 + (x3 + a3)2 + (x2 − ξ2)2]1/2

=
a2

∫

−a2

dξ2
1

(x2 − ξ2)2 + b2

1

[(x2 − ξ2)2 + a2]1/2 =
x2+a2
∫

x2−a2

1

u2 + b2

1√
u2 + a2

du

= 1

b
√

a2 − b2

{

tan−1 u
√

a2 − b2

b
√

u2 + a2

}u=x2+a2

u=x2−a2

(3.141)
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where
b2 = (x1 − a1)

2, a2 = (x1 − a1)
2 + (x3 + a3)

2 (3.142)

By letting x1 > a1 and x3 > −a3 we receive

b = x1 − a1,
√

a2 − b2 = x3 + a3 (3.143)

and reduce Eq. (3.141) to

a2
∫

−a2

dξ2
1

(x2 − ξ2)2 + b2

1

[(x2 − ξ2)2 + a2]1/2

= 1

(x1 − a1)(x3 + a3)

{

tan−1 x2 + a2

x1 − a1

x3 + a3

r+1.−2.−3
− tan−1 x2 − a2

x1 − a1

x3 + a3

r+1.+2.−3

}

(3.144)

It follows from Eq. (3.139) that

S11(x) = A0

a2
∫

−a2

dξ2 (x1 − a1)
1

(x1 − a1)2 + (x2 − ξ2)2

×
{

(x3 + a3)

[(x2 − ξ2)2 + (x1 − a1)2 + (x3 + a3)2]1/2

− (x3 − a3)

[(x2 − ξ2)2 + (x1 − a1)2 + (x3 − a3)2]1/2

}

− A0

a2
∫

−a2

dξ2 (x1 + a1)
1

(x1 + a1)2 + (

x2 − ξ2
2

)2

×
{

(x3 + a3)

[(x2 − ξ2)2 + (x1 + a1)2 + (x3 + a3)2]1/2

− (x3 − a3)

[(x2 − ξ2)2 + (x1 + a1)2 + (x3 − a3)2]1/2

}

(3.145)

Therefore, using Eq. (3.141) as well as equations obtained from Eq. (3.141) by suit-
able choice of a and b, we obtain (3.116).

The components S22 and S33 are obtained from Eq. (3.116) by suitable transfor-
mation of indices.

Problem 3.5. Let u = u(x, t) be a solution of the vector equation

∇2u − 1

c2

∂2u
∂t2 = − f

c2 on B × (0,∞) (3.146)
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subject to the initial conditions

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) for x ∈ 	B (3.147)

where f = f(x, t) is a prescribed vector field on 	B × [0,∞); and u0(x) and u̇0(x)

are prescribed vector fields on 	B; and c > 0.
Also, let ũ = ũ(x, t) be a solution of the vector equation

∇2ũ − 1

c2

∂2ũ
∂t2 = − ˜f

c2 on B × (0,∞) (3.148)

subject to the initial conditions

ũ(x, 0) = ũ0(x), ˙̃u(x, 0) = ˙̃u0(x) for x ∈ 	B (3.149)

where ˜f = ˜f(x, t) �= f(x, t), ũ0(x) �= u0(x), and ˙̃u0(x) �= u̇0(x) are prescribed
functions on 	B × [0,∞), B, and 	B, respectively. Show that the following reciprocal
relation holds true

1

c2

∫

B

(u ∗˜f + u · ˙̃u0 + u̇ · ũ0) dv +
∫

∂B

u ∗ ∂ũ
∂n

da

= 1

c2

∫

B

(̃u ∗ f + ũ · u̇0 + ˙̃u · u0) dv +
∫

∂B

ũ ∗ ∂u
∂n

da (3.150)

where ∗ represents the inner convolutional product, that is, for any two vector fields
a = a(x, t) and b = b(x, t) on 	B × [0,∞)

a ∗ b =
t

∫

0

a(x, t − τ) · b(x, τ ) dτ (3.151)

Solution. Let f (x, p) denote the Laplace transform of a function f = f (x, t)
defined by

L f ≡ 	f (x, p) =
∞

∫

0

e−pt f (x, t)dt (3.152)

Then

ḟ (x, t) = p 	f (x, p) − f (x, 0) (3.153)

f̈ (x, t) = p2 	f (x, p) − ḟ (x, 0) − p f (x, 0) (3.154)

Now, Eqs. (3.146) and (3.147) in components take the forms
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ui,kk − 1

c2 üi = − fi

c2 (3.155)

and
ui (x, 0) = u0i (x), u̇i (x, 0) = u̇0i (x) (3.156)

Taking the Laplace transform of Eq. (3.155) and using (3.156) we obtain

	ui,kk − 1

c2 (p2	ui − u̇0i − p u0i ) = − 	fi

c2 (3.157)

Similarly, Eqs. (3.148) and (3.149) imply that

	̃ui,kk − 1

c2 (p2	̃ui − ˙̃u0i − p ũ0i ) =
	̃f i

c2 (3.158)

Multiplying (3.157) by ũi and (3.158) by ui , respectively, we obtain

	̃ui 	ui,kk − 1

c2 (p2	̃ui	ui −	̃ui u̇0i − p 	̃ui u0i ) = − 	fi 	̃ui

c2 (3.159)

	ui 	̃ui,kk − 1

c2 (p2	ui	̃ui −	ui ˙̃u0i − p 	ui ũ0i ) = −
	̃f i 	ui

c2 (3.160)

Since
	̃ui	ui,kk = (	̃ui	ui,k),k −	̃ui,k	ui,k (3.161)

and
	ui	̃ui,kk = (	ui	̃ui,k),k −	ui,k	̃ui,k (3.162)

therefore, subtracting (3.160) from (3.159), and using the divergence theorem we
obtain

∫

∂ B

(	̃ui	ui,k nk −	ui	̃ui,k nk)da + 1

c2

∫

B

(u̇0i	̃ui + p u0i	̃ui − ˙̃u0i	ui − pũ0i	ui )dv

= − 1

c2

∫

B

( 	fi	̃ui − 	̃f i	ui )dv (3.163)

or
∫

∂ B

	ui	̃ui,knk da + 1

c2

∫

B

[	ui
	̃f i +	ui ˙̃u0i + (p	ui − u0i )̃u0i + u0i ũ0i ]dv
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=
∫

∂ B

	̃ui	ui,k nk da + 1

c2

∫

B

[	̃ui 	fi +	̃ui u̇0i + (p	̃ui − ũ0i )u0i + ũ0i u0i ]dv

(3.164)

Using the formula
L−1( 	f 	g) = f ∗ g (3.165)

and applying the operator L−1 to Eq. (3.164) we arrive at Eq. (3.150). This completes
solution of Problem 3.5.

Problem 3.6. Let ˜U = ˜U(x, t) be a symmetric second-order tensor field that satisfies
the wave equation

(

∇2 − 1

c2

∂2

∂t2

)

˜U = − ˜F
c2 on B × (0,∞) (3.166)

subject to the initial conditions

˜U(x, 0) = ˜U0(x), ˙̃U(x, 0) = ˙̃U0(x) for x ∈ 	B (3.167)

where˜F = ˜F(x, t), ˜U0(x), and ˙̃U0(x) are prescribed functions on 	B×[0,∞), 	B, and
	B, respectively. Let u = u(x, t) be a solution to Eq. (3.166) and (3.167) of Problem
3.5. Show that

1

c2

∫

B

(˜F ∗ u + ˙̃U0u + ˜U0u̇) dv +
∫

∂B

∂˜U
∂n

∗ u da

= 1

c2

∫

B

(˜U ∗ f + ˙̃Uu0 + ˜Uu̇0) dv +
∫

∂B

˜U ∗ ∂u
∂n

da (3.168)

where for any tensor field T = T(x, t) on 	B × [0,∞) and for any vector field
v = v(x, t) on 	B × [0,∞)

T ∗ v =
t

∫

0

T(x, t − τ)v(x, τ ) dτ (3.169)

Solution. Equation (3.150) of Problem 3.5 in components takes the form

1

c2

∫

B

( ˜fi ∗ ui + ˙̃u0i ui + ũ0i u̇i )dv +
∫

∂ B

∂ ũi

∂n
∗ ui da

= 1

c2

∫

B

( fi ∗ ũi + u̇0i ũi + u0i ˙̃ui )dv +
∫

∂ B

∂ui

∂n
∗ ũi da (3.170)
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It follows from the formulation of Problems 3.5 and 3.6 that Eq. (3.170) holds also
true if for a fixed index j we let

ũi = ˜Ui j , ũ0i = ˜U0i j , ˙̃u0i = ˙̃U 0i j , ˜fi = ˜Fi j (3.171)

Therefore, substituting (3.171) into (3.170) we obtain

1

c2

∫

B

(˜Fi j ∗ ui + ˙̃U 0i j ui + ˜U0i j u̇i )dv +
∫

B

∂ ˜Ui j

∂n
∗ ui da

= 1

c2

∫

B

( fi ∗ ˜Ui j + u̇0i ˜Ui j + u0i
˙̃Ui j )dv +

∫

B

∂ui

∂n
∗ ˜Ui j da (3.172)

Finally, the symmetry of tensors ˜Ui j , ˜Fi j , ˜U0i j , and ˙̃U 0i j , as well as the relation

a ∗ b = b ∗ a (3.173)

valid for arbitrary functions a = a(x, t) and b = b(x, t), imply that Eq. (3.172) is
equivalent to Eq. (3.168). This completes solution to Problem 3.6.

Problem 3.7. Let G = G(x, ξ ; t) be a symmetric second-order tensor field that
satisfies the wave equation

�2
0G = −1δ(x − ξ)δ(t) for x ∈ E3, ξ ∈ E3, t > 0 (3.174)

subject to the homogeneous initial conditions

G(x, ξ ; 0) = 0, Ġ(x, ξ ; 0) = 0 for x ∈ E3, ξ ∈ E3 (3.175)

where

�2
0 = ∂2

∂xk∂xk
− 1

c2

∂2

∂t2 (k = 1, 2, 3) (3.176)

Show that a solution u to Eqs. (3.146) and (3.147) of Problem 3.5 admits the integral
representation

u(x, t) = 1

c2

∫

B

(G ∗ f + Ġu0 + Gu̇0) dv(ξ)

+
∫

∂B

(

G ∗ ∂u
∂n

− ∂G
∂n

∗ u
)

da(ξ) (3.177)

Hint. Apply the reciprocal relation (3.168) of Problem 3.6 in which ˜F/c2 =
1δ(x − ξ)δ(t) and ˜U = G(x, ξ ; t).
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Solution. To solve this problem we let in Eq. (3.168) of Problem 3.6 the following

˜U = G(x, ξ; t), ˜U0 = G(x, ξ; 0) = 0
˙̃U0 = Ġ(x, ξ; 0) = 0, ˜F/c2 = 1δ(x − ξ) δ(t) (3.178)

and
dv = dv(ξ), da = da(ξ) (3.179)

and obtain
∫

B

[1 δ(x − ξ)δ(t)] ∗ u(ξ; t)dv(ξ) +
∫

∂ B

(

∂G
∂n

)

∗ u da(ξ)

= 1

c2

∫

B

(G ∗ f + Ġ u0 + G u̇0)dv(ξ) +
∫

∂ B

G ∗ ∂u
∂n

da(ξ) (3.180)

Finally, using the filtrating property of the delta function we find that (3.180) is
equivalent to (3.177). This completes solution to Problem 3.7.

Problem 3.8. Show that a unique solution to Eqs. (3.174) and (3.175) of Problem
3.7 takes the form

G(x, ξ ; t) = 1

4π |x − ξ |δ
(

t − |x − ξ |
c

)

1 (3.181)

and, hence, reduce Eq. (3.177) from Problem 3.7 to the Poisson-Kirchhoff integral
representation

u(x, t) = 1

4π c2

∫

B

f(ξ, t − |x − ξ | /c)

|x − ξ | dv(ξ) + ∂

∂t
[t Mx,ct (u0)] + t Mx,ct (u̇0)

+ 1

4π

∫

∂B

{

1

|x − ξ |
∂u
∂n

(ξ, t − |x − ξ | /c) − u(ξ, t − |x − ξ | /c)
∂

∂n

1

|x − ξ |

+ 1

c |x − ξ |
[

∂

∂n
|x − ξ |

] [

∂u
∂t

(ξ, t − |x − ξ | /c)

] }

da(ξ)

(3.182)

where for any vector field v = v(x) on B ⊂ E3 the symbol Mx,ct (v) represents the
mean value of v over the spherical surface with a center at x and of radius ct, that is,
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Mx,ct (v) = 1

4π

2π
∫

0

dϕ

π
∫

0

dθ sin θ

× v(x1 + ct sin θ cos ϕ, x2 + ct sin θ sin ϕ, x3 + ct cos θ) (3.183)

and we adopt the convention that all relevant quantities vanish for negative time
arguments.

Note. If B = E3 and f = 0 on E3 × [0,∞) then Eq. (3.182) reduces to the form

u(x, t) = ∂

∂t
[t Mx,ct (u0)] + t Mx,ct(u̇0) (3.184)

Solution. Equation (3.174) of Problem 3.7 takes the form

(

∇2 − 1

c2

∂2

∂t2

)

G = −1 δ(x − ξ) δ(t) (3.185)

Applying the Laplace transform to this equation and using the homogeneous initial
conditions (3.175) of Problem 3.7 we obtain

[

∇2 −
( p

c

)2
]

	G = −1 δ(x − ξ) (3.186)

where

	G = 	G(x, ξ; p) =
∞

∫

0

e−pt G(x, ξ, t)dt (3.187)

The only solution to Eq. (3.186) in E3 that vanishes as |x| → ∞, |ξ| < ∞, takes
the form (p > 0)

	G = 1

4π

1

|x − ξ| e− p
c |x−ξ|1 (3.188)

Hence, applying the operator L−1 to (3.188) we obtain

G(x, ξ; t) = 1

4π |x − ξ| δ

(

t − 1

c
|x − ξ|

)

1 (3.189)

This completes proof of (3.181). To show that (3.182) holds true, we split (3.177) of
Problem 3.7 into the sum

u(x, t) = u(1)(x, t) + u(2)(x, t) + u(3)(x, t) (3.190)



3.10 Problems and Solutions Related to the Formulation of Problems of Elasticity 91

where

u(1)(x, t) = 1

c2

∫

B

G ∗ f dv(ξ) (3.191)

u(2)(x, t) =
∫

∂ B

(

G ∗ ∂u
∂n

− ∂G
∂n

∗ u
)

da(ξ) (3.192)

u(3)(x, t) = 1

c2

∫

B

(Ġ u0 + G u̇0) dv(ξ) (3.193)

If G from Eq. (3.189) is substituted into Eq. (3.191) we obtain

u(1)(x, t) = 1

4π c2

∫

B

dv(ξ)

t
∫

0

dτ
1

|x − ξ| f(ξ, t − τ) δ

(

τ − 1

c
|x − ξ|

)

(3.194)

Using the filtrating property of the delta function

t
∫

0

δ(τ − t0) g(t − τ)dτ = g(t − t0)H(t − t0) (3.195)

where g = g(t) is an arbitrary function and H = H(t) is the Heaviside function

H(t) =
{

1 t > 0
0 t < 0

}

(3.196)

we reduce Eq. (3.194) to the form

u(1)(x, t) = 1

4π c2

∫

B

f
(

ξ, t − R
c

)

R
H

(

t − R

c

)

dv(ξ) (3.197)

where
R = |x − ξ| (3.198)

The function u(1)(x, t) given by (3.197) is identical to the first integral on the RHS
of Eq. (3.182) when the convention that f(x, t) vanishes for t ≤ 0 is adopted.

An alternative form of (3.197) reads

u(1)(x, t) = 1

4π c2

∫

B∩S(x,ct)

1

|x − ξ| f
(

ξ, t − 1

c
|x − ξ|

)

dv(ξ) (3.199)
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where
S(x, ct) = {ξ : |ξ − x| < ct}.

To show that u(2)(x, t) is identical to the last integral on the RHS of (3.182), we
apply the Laplace transform to Eq. (3.192), use Eq. (3.188), and obtain

	u(2)(x, p) = 1

4π

∫

∂ B

{

1

R
e− p

c R ∂	u
∂n

−
[

∂

∂n

(

1

R

)

e− p
c R − 1

cR

∂ R

∂n
e− p

c R p

]

	u
}

da(ξ)

(3.200)
Applying the inverse Laplace transform to Eq. (3.200) we obtain

u(2)(x, t) = 1

4π

∫

∂ B

{

1

R

∂u
∂n

(

ξ, t − R

c

)

− ∂

∂n

(

1

R

)

u
(

ξ, t − R

c

)

+ 1

cR

∂ R

∂n
u̇

(

ξ, t − R

c

)}

H

(

t − R

c

)

da(ξ) (3.201)

The function u(2) given by (3.201) is equivalent to the last integral on the RHS of
(3.182), if the convention that u(x, t) = 0 for t ≤ 0 is adopted. An equivalent form
of (3.201) reads

u(2)(x, t) = 1

4π

∫

∂ B∩S(x,ct)

{

1

R

∂u
∂n

(

ξ, t − R

c

)

− ∂

∂n

(

1

R

)

u
(

ξ, t − R

c

)

+ 1

cR

∂ R

∂n
u̇

(

ξ, t − R

c

)}

da(ξ) (3.202)

To show that u(3)(x, t) given by (3.193) is equal to a sum of the second and third
terms on the RHS of (3.182), consider the integral

h(x, t) = 1

c2

∫

B

G u̇0 dv(ξ) (3.203)

Since
1

R
δ

(

t − R

c

)

= tc2

R2 δ(R − ct) (3.204)

therefore, an alternative form of G given by (3.189) reads

G(x, ξ, t) = tc2

4πR2 δ(R − ct)1 (3.205)

and the function h = h(x, t) takes the form
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h(x, t) = t

4π

∫

B

u̇0(ξ)

|x − ξ|2 δ(|x − ξ| − ct)dv(ξ) (3.206)

Next, we let
R = ξ − x (3.207)

and introduce the spherical coordinates (R, ϕ, θ) with a center at x

R1 = R cos ϕ sin θ

R2 = R sin ϕ sin θ

R3 = R cos θ (3.208)

0 ≤ R < ∞, 0 ≤ ϕ ≤ 2π, 0 ≤ θ < π (3.209)

Then the integral (3.206) takes the form

h(x, t) = t

4π

∫

B∗

u̇0(R + x)

R2 δ(R − ct)dv(R) (3.210)

where
dv(R) = R2 sin θ dϕ dθ d R (3.211)

and
B∗ = {(R, ϕ, θ) : Ra < R < Rb; 0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π} (3.212)

The domain B∗ is a mapping of B under the transformation defined by Eqs. (3.207)
and (3.208), and Ra and Rb are uniquely defined nonnegative numbers. Hence,
Eq. (3.210) can also be written as

h(x, t) = t

4π

Rb
∫

Ra

dR δ(R − ct)

2π
∫

0

dϕ

π
∫

0

dθ sin θ

× u̇0(x1 + R cos ϕ sin θ, x2 + R sin ϕ sin θ, x3 + R cos θ) (3.213)

or

h(x, t) = t

4π

2π
∫

0

dϕ

π
∫

0

dθ sin θ

× u̇0(x1 + ct cos ϕ sin θ, x2 + ct sin ϕ sin θ, x3 + ct cos θ) (3.214)

or
h(x, t) = t Mx,ct (u̇0) (3.215)
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where Mx,ct (u̇0) is defined by (3.183). Finally, if we note that

g(x, t)
df= 1

c2

∫

B

Ġu0 dv(ξ) (3.216)

can be written as

g(x, t) = ∂

∂t

⎧

⎨

⎩

1

c2

∫

B

Gu0 dv(ξ)

⎫

⎬

⎭

(3.217)

then computing the integral on the RHS of (3.217) in a way similar to that of the
integral h = h(x, t), and taking into account Eq. (3.193) we obtain

u(3)(x, t) = ∂

∂t

[

tMx,ct (u0)
] + tMx,ct (u̇0) (3.218)

This completes proof of (3.182).

Problem 3.9. Let G∗ = G∗(x, ξ ; t) be a solution to the initial-boundary value
problem:

�2
0G∗ = −1δ(x − ξ)δ(t) for x, ξ ∈ B, t > 0 (3.219)

G∗(x, ξ ; 0) = 0, Ġ∗(x, ξ ; 0) = 0 for x, ξ ∈ B (3.220)

and
G∗(x, ξ ; t) = 0 for x ∈ ∂B, t > 0, ξ ∈ 	B (3.221)

and let u = u(x, t) be a solution to the initial-boundary value problem

�2
0u = − f

c2 on B × (0,∞) (3.222)

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) for x ∈ 	B (3.223)

u(x, t) = g(x, t) on ∂B × [0,∞) (3.224)

where the functions f, u0, u̇0, and g are prescribed. Use the representation formula
(3.177) of Problem 3.7 to show that

u(x, t) = 1

c2

∫

B

(G∗ ∗ f + Ġ∗u0 + G∗u̇0) dv(ξ)

−
∫

∂B

(

∂G∗

∂n
∗ g

)

da(ξ) (3.225)
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Solution. The representation formula (3.177) of Problem 3.7 reads

u(x, t) = 1

c2

∫

B

(G ∗ f + Ġu0 + Gu̇0) dv(ξ)

+
∫

∂B

(

G ∗ ∂u
∂n

− ∂G
∂n

∗ u
)

da(ξ) (3.226)

where G satisfies Eqs. (3.174) and (3.175) of Problem 3.7, and u satisfies Eqs. (3.146)
and (3.147) of Problem 3.5.

By letting G = G∗ in Eq. (3.226) and using the boundary conditions (3.221) and
(3.224) we obtain (3.225).

This completes a solution to Problem 3.9.

Problem 3.10. A tensor field S corresponds to the solution of a traction problem of
classical elastodynamics if and only if

̂∇[ρ−1(div S)] − K[S̈] = −B on B × [0,∞) (3.227)

S(x, 0) = S(0)(x), Ṡ(x, 0) = Ṡ(0)(x) for x ∈ B (3.228)

Sn = ŝ on ∂B × [0,∞) (3.229)

[see Eqs. (3.71)–(3.73)] in which B is expressed in terms of a body force b, and S(0)

and Ṡ(0) are defined in terms of two vector fields. A tensor field S corresponding to
an external load [B, S(0), Ṡ(0), ŝ] is said to be of a σ -type if S satisfies Eqs. (3.227)
through (3.229) with an arbitrary symmetric second-order tensor field B and arbitrary
symmetric initial tensor fields S(0) and Ṡ(0), not necessarily related to the data of
classic elastodynamics. Show that if S and ˜S are two different tensorial fields of

σ -type corresponding to the external loads [B, S(0), Ṡ(0), ŝ] and [˜B,˜S(0), ˙̃S(0)
,̂s̃],

respectively, then the following reciprocal relation holds true

∫

B

{

˜B ∗ S +˜S(0) · K[Ṡ] + ˙̃S(0) · K[S]
}

dv +
∫

∂B

ρ−1(div˜S) ∗ (Sn) da

=
∫

B

{

B ∗˜S + S(0) · K[ ˙̃S] + Ṡ(0) · K[˜S]
}

dv +
∫

∂B

ρ−1(div S) ∗ (˜Sn) da
(3.230)

Solution. The tensor fields Si j and ˜Si j , respectively, satisfy the equations

(ρ−1S(ik,k), j ) − Ki jkl S̈kl = −Bi j on B × (0,∞) (3.231)

Si j (x, 0) = S(0)
i j (x), Ṡi j (x, 0) = Ṡ(0)

i j (x) on B (3.232)

Si j n j = ŝi on ∂ B × (0,∞) (3.233)
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and

(ρ−1
˜S(ik,k), j ) − Ki jkl

¨̃Skl = −˜Bi j on B × (0,∞) (3.234)

˜Si j (x, 0) = ˜S(0)
i j (x), ˙̃Si j (x, 0) = ˙̃S(0)

i j (x) on B (3.235)

˜Si j n j = ̂
˜Si on ∂ B × (0,∞) (3.236)

Applying the Laplace transform to Eqs. (3.231) and (3.234), and using the initial
conditions (3.232) and (3.235), respectively, we obtain

(ρ−1	S(ik,k), j ) − Ki jkl

(

p2	Skl − Ṡ(0)
kl − pS(0)

kl

)

= −Bi j (3.237)

and

(ρ−1	̃S(ik,k), j ) − Ki jkl

(

p2	̃Skl − ˙̃S(0)

kl − p˜S(0)
kl

)

= −˜Bi j (3.238)

Next, multiplying (3.237) by 	̃Si j and (3.238) by −	Si j , and adding up the results we
obtain

	̃Si j (ρ
−1	Sik,k), j −	̃Si j Ki jkl

(

p2	Skl − Ṡ(0)
kl − pS(0)

kl

)

− 	Si j (ρ
−1	̃Sik,k), j

+ 	Si j Ki jkl

(

p2	̃Skl − ˙̃S(0)

kl − p˜S(0)
kl

)

+ 	Bi j
	̃Si j − 	̃Bi j 	Si j = 0 (3.239)

Since

	̃Si j (ρ
−1	Sik,k), j −	Si j (ρ

−1	̃Sik,k), j = (	̃Si jρ
−1	Sik,k − 	Si jρ

−1	̃Sik,k), j (3.240)

and
Ki jkl

	̃Si j 	Skl = Ki jkl 	Si j
	̃Skl (3.241)

therefore, by integrating (3.239) over B and using the divergence theorem, we obtain

∫

B

(	Bi j
	̃Si j − 	̃Bi j 	Si j

)

dv(ξ) +
∫

B

Ki jkl

[	̃Si j Ṡ(0)
kl +

(

p	̃Si j − ˜S(0)
i j

)

S(0)
kl + ˜S0

i j S(0)
kl

− 	Si j
˙̃S(0)

kl −
(

p	Si j − S(0)
i j

)

˜S(0)
kl − S(0)

i j
˜S(0)

kl

]

dv

+
∫

∂ B

ρ−1
(	̃Si j 	Sik,k − 	Si j

	̃Sik,k

)

n j da(ξ) = 0 (3.242)

Finally, applying the inverse Laplace transform to (3.242), using the convolution
theorem

f ∗ g = 	f 	g (3.243)



3.10 Problems and Solutions Related to the Formulation of Problems of Elasticity 97

as well as the relation
Ki jkl ˜S(0)

i j S(0)
kl = Ki jkl S(0)

i j
˜S(0)

kl (3.244)

we obtain
∫

B

(B ∗˜S −˜B ∗ S)dv(ξ)+
∫

B

{

˜S · K[Ṡ(0)] + ˙̃S · K[S(0)] − S · K[ ˙̃S(0)] − Ṡ · K[˜S(0)]
}

dv(ξ)

+
∫

B

ρ−1 [

(div S) ∗ (˜Sn) − (div ˜S) ∗ (Sn)
]

da(ξ) = 0 (3.245)

Since K is symmetric

A · K[B] = B · K[A] ∀ A and B (3.246)

therefore, Eq. (3.245) is equivalent to Eq. (3.230), and this completes a solution to
Problem 3.10.

Problem 3.11. Let S(kl)
i j = S(kl)

i j (x, ξ ; t) be a solution of the following equation

(ρ−1S(kl)
(ik,k), j ) − Ki jpq S̈(kl)

pq = 0

for x ∈ E3, ξ ∈ E3; i, j, k, l = 1, 2, 3 (3.247)

subject to the initial conditions

S(kl)
i j (x, ξ ; 0) = 0, Ṡ(kl)

i j (x, ξ ; 0) = Ci jklδ(x − ξ)

for x ∈ E3, ξ ∈ E3; i, j, k, l = 1, 2, 3 (3.248)

where Ki jkl denotes the components of the compliance tensor K, and Ci jkl stands
for the components of elasticity tensor C, that is,

Ci jkl Kklmn = δ(imδnj) (3.249)

Let Si j = Si j (x, t) be a solution of the equation

(ρ−1S(ik,k), j ) − Ki jkl S̈kl = 0 for x ∈ B, t > 0 (3.250)

subject to the homogeneous initial conditions

Si j (x, 0) = 0, Ṡi j (x, 0) = 0 for x ∈ B (3.251)

and the boundary condition

Si j n j = ŝi on ∂B × [0,∞) (3.252)
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Use the reciprocal relation (3.230) of Problem 3.10 to show that

Skl(x, t) =
∫

∂B

ρ−1
(

Sim,m ∗ S(kl)
i j n j − ŝi ∗ S(kl)

im,m

)

da(ξ) (3.253)

Note. Equation (3.253) provides a solution to the traction initial-boundary value
problem of classical elastodynamics if the field Sim,m on ∂B × [0,∞) is found
from an associated integral equation on ∂B × [0,∞). The idea of solving a traction
problem of elastodynamics in terms of displacements through an associated boundary
integral equation is due to V.D. Kupradze.

Solution. Note that for a fixed pair (k, l) ˜Si j = S(kl)
i j (x, ξ; t) is a tensor field of

σ -type corresponding to the data: ˜Bi j = 0, ̂s̃i �= 0, ˜S(0)
i j = 0, and ˙̃S(0)

i j = Ci jklδ(x−
ξ); and Si j = Si j (x, t) is a tensor field of σ -type corresponding to the data: Bi j = 0,

ŝi �= 0, S(0)
i j = 0, and Ṡ(0)

i j = 0. Therefore, using the reciprocal relation (3.230) of

Problem 3.10. in which ˜Si j = S(kl)
i j (x, ξ; t) and Si j = Si j (x, t), we obtain

∫

B

˙̃S(0)

i j Ki jpq Spqdv(ξ) =
∫

∂ B

ρ−1(Sim, m ∗ ˜Si j n j − ŝi ∗ ˜Sim, m) da(ξ) (3.254)

where

˙̃S(0)

i j = Ṡ(kl)
i j (x, ξ; 0) = Ci jkl δ(x − ξ) (3.255)

˜Si j n j = S(kl)
i j (x, ξ; t)n j (ξ) (3.256)

˜Sim, m = S(kl)
im, m(x, ξ; t) (3.257)

Since

˙̃S(0)

i j Ki jpq Spq = Ci jkl Ki jpq Spq δ(x − ξ) = Ckli j Ki jpq Spq δ(x − ξ)

= δ(kp δql) Spq δ(x − ξ) = Skl(ξ, t)δ(x − ξ) (3.258)

therefore, Eq. (3.254) takes the form

∫

B

Skl(ξ, t)δ(x − ξ)dv(ξ) =
∫

∂ B

ρ−1
(

Sim, m ∗ S(kl)
i j n j − ŝi ∗ S(kl)

im, m

)

da(ξ)

(3.259)

Finally, using the filtrating property of the delta function we obtain (3.253). This
completes a solution to Problem 3.11.
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Problem 3.12. Consider the pure stress initial-boundary value problem of linear
elastodynamics for a homogeneous isotropic incompressible elastic body B [see
Eq. (3.55) with μ > 0 and λ → ∞]. Find a tensor field S = S(x, t) on
B × [0,∞) that satisfies the equation

̂∇(div S) − ρ

2μ

[

S̈ − 1

3
(tr S̈) 1

]

= −̂∇b on B × [0,∞) (3.260)

subject to the initial conditions

S(x, 0) = S0(x), Ṡ(x, 0) = Ṡ0(x) for x ∈ B (3.261)

and the traction boundary condition

Sn = ŝ on ∂B × [0,∞) (3.262)

Here, b, ŝ, S0, and Ṡ0, are prescribed functions (μ > 0, ρ > 0). Show that the
problem (3.260) through (3.262) may have at most one solution.

Solution. We are to show that the field equation

S(ik,k j) − ρ

2μ

(

S̈i j − 1

3
S̈kk δi j

)

= 0 on B × [0,∞) (3.263)

subject to the homogeneous initial conditions

Si j (x, 0) = 0, Ṡi j (x, 0) = 0 on B (3.264)

and the homogeneous traction boundary condition

Si j n j = 0 on ∂ B × [0,∞) (3.265)

imply that
Si j = 0 on 	B × [0,∞) (3.266)

To this end we multiply (3.263) by Ṡi j and obtain

S(ik,k j) Ṡi j − ρ

2μ

(

S̈i j Ṡi j − 1

3
S̈kk Ṡii

)

= 0 (3.267)

Since
S(ik,k j) Ṡi j = Sik,k j Ṡi j = (Sik,k Ṡi j ), j −Sik,k Ṡi j, j (3.268)
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therefore (3.267) can be written in the form

(Sik,k Ṡi j ), j − Sik,k Ṡi j, j − ρ

2μ

[

1

2

∂

∂t
(Ṡi j Ṡi j ) − 1

3

1

2

∂

∂t
(Ṡaa)2

]

= 0 (3.269)

or

(Sik,k Ṡi j ), j − 1

2

∂

∂t
(Sik,k Si j, j )− ρ

2μ

[

1

2

∂

∂t
(Ṡi j Ṡi j ) − 1

3

1

2

∂

∂t
(Ṡaa)2

]

= 0 (3.270)

Integrating Eq. (3.270) over the cartesian product B × [0, t], using the divergence
theorem, the homogeneous initial conditions (3.264) as well as the boundary condi-
tion

Ṡi j n j = 0 on ∂ B × [0,∞) (3.271)

obtained by differentiation of (3.265) with respect to time, we obtain

∫

B

{

Sik,k Si j, j + ρ

2μ

[

Ṡi j Ṡi j − 1

3
(Ṡaa)2

] }

dv = 0 (3.272)

Since

Ṡi j = Ṡ(d)
i j + 1

3
Ṡaa δi j (3.273)

where

Ṡ(d)
i j = Ṡi j − 1

3
Ṡaa δi j (3.274)

and

Ṡi j Ṡi j = Ṡ(d)
i j Ṡ(d)

i j + 1

3
(Ṡaa)2 (3.275)

therefore, Eq. (3.272) can be written as

∫

B

(

Sik,k Si j, j + ρ

2μ
Ṡ(d)

i j Ṡ(d)
i j

)

dv = 0 (3.276)

Equation (3.276) implies that

Sik,k = 0, Ṡ(d)
i j = 0 on 	B × [0,∞) (3.277)

Equation (3.277)2 together with the homogeneous initial conditions (3.264)1 imply
that

Si j = 1

3
Saa δi j on 	B × [0,∞) (3.278)
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Equations (3.278) and (3.277)1 imply that

Saa,i = 0 on 	B × [0,∞) (3.279)

which is equivalent to

Saa(x, t) = c(t) on 	B × [0,∞) (3.280)

where c = c(t) is an arbitrary function of time.
Finally, Eqs. (3.265), (3.278), and (3.280) lead to

c(t)ni (x) = 0 on ∂ B × [0,∞) (3.281)

Since |ni ni | = 1 on ∂ B, therefore Eq. (3.281) implies that

|c(t)| = 0 (3.282)

Equation (3.282) together with Eq. (3.278) implies Eq. (3.266), and this completes a
solution to Problem 3.12.
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