Chapter 3
Formulation of Problems of Elasticity

In this chapter both the basic boundary value problems of elastostatics and
initial-boundary value problems of elastodynamics are recalled; in particular, the
mixed boundary value problems of isothermal and nonisothermal elastostatics, as
well as the pure displacement and the pure stress problems of classical elastodynam-
ics are discussed. The Betti reciprocal theorem of elastostatics and Graffi’s reciprocal
theorem of elastodynamics together with the uniqueness theorems are also presented.
An emphasis is made on a pure stress initial-boundary value problem of incompati-
ble elastodynamics in which a body possesses initially distributed defects. [See also
Chap. 16.]

3.1 Boundary Value Problems of Elastostatics

Field Equations of Isothermal Elastostatics

The strain-displacement relation
—~ 1 T
E:Vu:E(Vu—i—Vu ) (3.1)
The equations of equilibrium
divS+b=0, S=S8" 3.2)

The stress-strain relation
S=CIE] (3.3)

By eliminating E and S from Egs. (3.1)—(3.3) we obtain the displacement equation
of equilibrium
divC[Vu]+b=0 3.4)
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For a homogeneous isotropic body the displacement equation of equilibrium (3.4)
reduces to

uViu+ (O + ) Vdiva) +b =0 (3.5)
or
5 1 , b
V‘u+ —V(diva)+ — =0 (3.6)
1—2v %
or
(A +2u)V(diva) — pcurlcurlu +b =0 (3.7

An equivalent form of the stress-strain relation (3.3) reads
E =K][S] (3.8)

Therefore, by eliminating u and E from Egs. (3.1), (3.2), and (3.8) the stress equations
of equilibrium are obtained

divS+b=0, S=S8" (3.9)
curl curl K[S]=0 (3.10)
For a homogeneous isotropic body, the stress equations of equilibrium (3.9)—(3.10)

reduce to
divS+b=0, S=S8T (3.11)

l o~
v2S 4 Vs + ﬁ(divb)l +2Vb =0 (3.12)

Field Equations of nonisothermal Elastostatics

The strain-displacement relation
E=Vu= %(Vu + vauT) (3.13)
The equations of equilibrium
divS+b=0, S=S8" (3.14)
The stress-strain-temperature relation

S=C[E|+TM (3.15)
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or, the strain-stress-temperature relation

E=KI[SI+TA (3.16)
In Eqgs.(3.15) T stands for a temperature change; while M = MT and A = AT are

the stress-temperature and thermal expansion tensors, respectively.
For an isotropic body Egs. (3.15) and (3.16), respectively, take the form

S=2uE+A(twE)1—-0GBr+2u)aT1 (3.17)
and
E ! S * uS)1|+aT1 (3.18)
=—|S— —(tr .
21 3r+2u

By eliminating E and S from Eqgs. (3.13)—(3.15) the displacement-temperature equa-
tion of nonisothermal elastostatics is obtained

div{C[Vu]+TM}+b =0 (3.19)

Also, by eliminating u and E from Egs.(3.13), (3.14), and (3.16), the stress-
temperature equations of nonisothermal elastostatics are obtained

divS+b=0, S=58T (3.20)

curl curl {K[S]+ TA} =0 (3.21)

For an isotropic homogeneous body, Egs. (3.19) and (3.20)—(3.21), respectively, take
the form

w V34 O+ ) Vdiva) — Gr+2)a VT +b=0 (3.22)

and
divS+b=0, S=ST (3.23)

1 E 1 _
V24— VY (r )+ — (VYT + ~ V92T 1 )+ —— (div b)142¥b = 0

1+v 14+v 1—v 1—v
(3.24)

3.2 Concept of an Elastic State

An ordered array of functions s = [u, E, S] is called an elastic state corresponding
to the body force b if the functions u, E, and S satisfy the system of fundamental
field equations (3.1)—(3.3) on B.
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An external force system for s is defined as a pair [b, s] where s = Sn with n
being an outward unit vector normal to 9B.

Theorem of work and energy. If s = [u, E, S] is an elastic state corresponding to
the external force system [b, s] then

/s-uda+/b~udv=2Uc(E) (3.25)
9B B
where Uc (E) is the total strain energy of body B
1
UcE) = E/E -C[E]dv (3.26)
B

The Betti reciprocal theorem. Let the elasticity tensor C be symmetric, and let
s=[wE,S] and §=[E,S] (3.27)

be elastic states corresponding to the external force systems [b, s] and [B, §], respec-
tively. Then the following reciprocity relation holds

/s.ﬁda+/b.ﬁdv=/§-uda+/E-udv=/sidv=/§-EdU
B B

B B 3B B
(3.28)

3.3 Concept of a Thermoelastic State

An ordered array of functions s = [u, E, S] is called a thermoelastic state corre-
sponding to an external force system [b, s, T'] if the functions u, E, and S satisfy the
field equations of thermoelastostatics (3.13)—(3.15) on B.

Thermoelastic reciprocal theorem. Let s = [u, E,S] and 5 = [u, fl, §] be ther-
moelastic states corresponding to the external force-temperature systems [b, s, 7']
and [b, s, T], respectively. Then

/s.ﬁda+/b-iidu—/TM.lT:du=/§-uda+/5-udv—/TM.Edu
B

9B B B B B
(3.29)
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3.4 Formulation of Boundary Value Problems

Mixed problems of elastostatics. By a mixed boundary value problem of elastosta-
tics we mean the problem of finding an elastic state s = [u, E, S] corresponding to
a body force b and satisfying the boundary conditions: the displacement condition

u=1u on 0B (3.30)
and the traction condition
Sn=7 on 9B, (3.31)
where
0B U0B, =0B; 9B NJiB, =g (3.32)

while U and S are prescribed functions.

An elastic state s that satisfies the boundary conditions (3.30)—(3.31) is called a
solution to the mixed problem.

If 0B, = &, the mixed problem becomes a displacement boundary value problem.
If 0B = &, the mixed problem becomes a traction boundary value problem.

A displacement field corresponding to a solution to a mixed problem is a vector
field u with the property that there are symmetric tensor fields E and S such that
s = [u, E, S] is a solution to the mixed problem.

A stress field corresponding to a solution to a mixed problem is a tensor field S
with the property that there are u and E such that s = [u, E, S] is a solution to the
mixed problem.

Mixed Problem in Terms of Displacements

A vector field u corresponds to a solution to the mixed problem if and only if

divC[Vu]+b=0 on B (3.33)
u=u on 0B (3.34)
(C[Vul)n=3% on 9B, (3.35)

Displacement Problem in Terms of Displacements

A vector field u corresponds to a solution to the displacement problem if and only if
divC[Vu]+b=0 on B (3.36)

u=u on 9JB (3.37)
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Traction Problem in Terms of Stresses

A tensor field S corresponds to a solution to the traction problem if and only if

divS+b=0 on B (3.38)
curlcurl K[S]=0 on B (3.39)
Sn=5 on 9B (3.40)

3.5 Uniqueness

Uniqueness Theorem for the Mixed Problem. If the elasticity tensor C is positive
definite, then any two solutions of the mixed problem of elastostatics are equal to
within a rigid displacement. If dB; # & then the rigid displacement vanishes.

3.6 Formulation of Problems of Nonisothermal Elastostatics

By a mixed problem of nonisothermal elastostatics we mean the problem of finding
a thermoelastic state s = [u, E, S] that satisfies the field equations (3.13)—(3.15) on
B subject to the boundary conditions (3.30)—(3.31).

Mixed Thermoelastic Problem in Terms of Displacements

A vector field u corresponds to a solution to the mixed thermoelastic problem if and
only if

diviC[Vu] + TM} +b=0 on B (3.41)
u=u on 9B (3.42)
(C[Vu] + TM)n =3 on 9B, (3.43)

Traction Thermoelastic Problem in Terms of Stresses

A tensor field S corresponds to a solution to the traction thermoelastic problem if
and only if

divS+b=0 on B (3.44)

curl curl {K[S]+ TA} =0 on B (3.45)

Sn=% on 9B (3.46)
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3.7 Initial-Boundary Value Problems of Elastodynamics

Field Equations of Isothermal Elastodynamics

The strain-displacement relation

~ 1
E=Vu=_(Vu+ vu') (3.47)
The equations of motion
divS+b=pii, S=8T (3.48)
The stress-strain relation
S =C [E] (3.49)
or equivalently
E=K][S] (3.50)

By eliminating E and S from Egs. (3.47)—(3.49) we obtain the displacement equation
of motion
divC[Vu]+b=pii (3.51)

By eliminating u and E from Eqgs. (3.47), (3.48), and (3.50) the stress equation of
motion is obtained R .
Vip~'(divS)] — KIS] = -B (3.52)

where R
B=V('b (3.53)

For a homogeneous isotropic elastic body Eqs. (3.51) and (3.52), respectively, reduce
to

wViu+ O+ p) V(diva) + b = pii (3.54)
and
S o | .. ~
VdivS) — — [S— ——— @S 1|=-Vb 3.55
(divS) 2M[ 3A+2M(r)} (3.55)

Field Equations of nonisothermal Elastodynamics

The strain-displacement relation

~ 1
E=Vu= E(Vu + vuh) (3.56)
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The equations of motion
divS+b=pii, S=8T (3.57)
The stress-strain-temperature relation
S=CI[E]+TM (3.58)
or, the strain-stress-temperature relation
E=K[S]I+TA (3.59)

By eliminating E and S from Eqgs.(3.56)—(3.58) we obtain the displacement-
temperature equation of motion

div(C[Vu] + TM) + b = pii (3.60)

By eliminating u and E from Egs. (3.56), (3.57), and (3.59) the stress-temperature
equation of motion is obtained

Vip~'(divS)] — K[S] = —B (3.61)

where L .
B=V(p 'b)+TA (3.62)

Here, M and A are the stress-temperature and the thermal expansion tensors, respec-
tively.

3.8 Concept of an Elastic Process

An elastic process corresponding to a body force b is defined as an ordered set of
functions p = [u, E, S] that complies with the fundamental system of field equations
of isothermal elastodynamics (3.47)—(3.49).

An external force system for p is defined as a pair [b, s] in which s = Sn.

Graffi’s Reciprocal Theorem. Let p = [u, E, S]be an elastic process corresponding
to the external force system [b, s] and to the initial data [ug, 4y], Let p = [u, E, S]
be another elastic process corresponding to [B, S| and [up, ﬁo]. Then the following
integral relations hold true

i*/s*ﬁda—i—/f*ﬁdv:i*/E*uda+/f*udv (3.63)

B B B B
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/s*ﬁda+/b*fidu+/p(uo-ﬁ+ﬁo~ﬁ)dv
B

9B B
=/§*uda+/5*udv+/,o(ﬁo-l'1+fio~u)dv (3.64)
B B B
Here
i=i(t)=t, t>0 (3.65)

and f and f are pseudo-body forces corresponding to p = [u, E,S] and p =
[u, E, S], respectively, defined by
=ixb(x, 1)+ plug(x) + 7up(x)]

=ixb(x, 1) + p[Uo(x) + ¢ Up(x)] (3.66)

3.9 Formulation of Problems of Isothermal Elastodynamics

Mixed Problem in Terms of Displacements

A vector field u corresponds to a solution to a mixed problem of isothermal elasto-
dynamics if and only if

div C[Vu]+b =pii on B x [0, c0) (3.67)
u(x,0) = up(x), u(x,0) =up(x) on B (3.68)
u=1u on 9B x [0, c0) (3.69)
(C[Vu])n=% on 9B, x [0, c0) (3.70)

Traction Problem in Terms of Stresses

A tensor field S corresponds to a solution to a traction problem of isothermal elasto-
dynamics if and only if

Vip~'(divS)] — K[S] = =B on B x [0, c0) (3.71)
S(x,0) = C[Vuy], S(x,0)=C[Viy] on B (3.72)
Sn=7% on 9B x [0, 00) (3.73)

where
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B=V(p 'b) on Bx[0,0c0) (3.74)

Mixed Problem in Terms of Stresses

A tensor field S corresponds to a solution to a mixed problem of isothermal elasto-
dynamics if and only if

6[,0_1(1 x*divS+£)] —K[S]=0 on B x [0, c0) (3.75)
p YixdivS+f)=u on 9B; x [0, o) (3.76)
Sn=7S on 9B; x [0, c0) (3.77)

where f is the pseudo-body force given by (3.66);.

Nonconventional Traction Problem in Terms of Stresses (Uniqueness). Let S be a
solution to the following initial-boundary value problem. Find a symmetric second-
order tensor field S on B x [0, co) that satisfies the field equation

Vip~'(divS)] — K[S] = —F on B x [0, c0) (3.78)
the initial conditions
S(x,0) = So(x), S(x,0) =Sp(x) for x B (3.79)
and the boundary condition
Sn =75 on 9B x [0, c0) (3.80)

Here, F is an arbitrary symmetric second-order tensor field prescribed on B x [0, 00),
So and Sy are prescribed symmetric tensor fields on B, and § is a prescribed vector
field on 0B x [0, c0). Then the problem described by Egs. (3.78)—(3.80) has at most
one solution (Uniqueness).

If F # B, where B is given by (3.74), Sp and So are not given by Egs. (3.72),
then the problem (3.78)—(3.80) describes stress waves in an elastic body with time-
dependent continuously distributed defects.

3.10 Problems and Solutions Related to the Formulation
of Problems of Elasticity

Problem 3.1. For a homogeneous isotropic elastic body occupying a region
B C E? subject to zero body forces, the displacement equation of equilibrium takes
the form [see Eq. (3.6) with b = 0]
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VZua + V(divu) =0 on B (3.81)

1—2v

where v is Poisson’s ratio. Show that if u = u(x) is a solution to Eq.(3.81) then u
also satisfies the equation

2 X . _
\Y |:u + 20— 20 (d1vu)i| =0 on B (3.82)

Solution. Equations (3.81) and (3.82) in components take the forms

Ui kk + Ui =0 onB (3.83)
’ 1—-2v ™
and
Xi
|:I/tl‘ + muk,k} s jj = 0 onB (384)
respectively.
It follows from (3.83) that
1
ujikk + ——uk ki =0 onB (3.85)
1—2v
or
2(1 —v)
—— ujikk =0 onB (3.86)
1—2v

Since —1 < v < 1/2 < 1 [see Eq.(2.50)]

27 (3.87)
> .
1—2v
and (3.86) implies that
uiikk =0 onB (3.88)
In addition
(X urr)sjj = Bij Uk k + Xi Uk kj)sj = 28ij Uk kj + Xi Uk kjj (3.89)

Hence, it follows from Eqgs. (3.88) and (3.89) that
(xi Uk k), jj = 2k ki (3.90)

Substituting (3.90) into (3.84) we obtain (3.83), and this completes solution of Prob-
lem 3.1.


http://dx.doi.org/10.1007/978-94-007-6356-2_2

76 3 Formulation of Problems of Elasticity

Problem 3.2. An alternative form of Eq.(3.81) in Problem 3.1 reads [see Eq.(3.7)
in which A = 2uv /(1 —2v) and b = 0]

1—2v

V(dive) - >—
— 2ZV

curlcurlu =0 on B (3.91)

Show that if u = u(x) is a solution to Eq.(3.91) then
1-2
/ [div w? + = 25 (curl u)2] dv
B

1-2

- / u. [(div wn+ ? (curlu) x ni| da (3.92)
2—2v

B

where n is the unit outward normal vector field on 0B.

Hint. Multiply Eq.(3.91) by u in the dot product sense, integrate the result over B,
and use the divergence theorem.

Note. Since —1 < v < 1/2 [see Eq.(2.50)] then Eq.(3.92) implies that a displace-
ment boundary value problem of homogeneous isotropic elastostatics may have at
most one solution.

Solution. In components Eq.(3.91) takes the form

1—2v
Uk ki — €iab Ebed Ud,ca =0 (3.93)
2—2v
Since
2
wi up ki = Wi ug k)i — Ui;) (3.94)
Uj Eiab Ebcd Ud,ca = €iab Sbcd[(ud,c Ui)sg — Ud,c ”i,a] (3.95)
and
Eiab €bcd Ud,c Ui,a = —(&pai ui,a)(sbcd ud,c) (3.96)

therefore, multiplying (3.93) by u; we obtain

1—2v

.2 - =
(ul,l) + 22

2v
(&bai Wi a)(Ebed Ud,c) = \ Uk k Uq + Eiab Ebed Ud,c Ui |sa

1—
2—2v
(3.97)

Finally, integrating (3.97) over B and using the divergence theorem we obtain
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s 1=2v

(ui i)+ (&bai Ui,a)(Ebed Ud,c) | dv
2—2v

B

1—2v
= /ua Uk k Ng + =———=—€abi (Ebcd Ua,c)Ni | da (3.98)
2—2v
9B

Equation (3.98) is equivalent to (3.92), and this completes solution of Problem 3.2.

Problem 3.3. Show that for a homogeneous isotropic infinite elastic body subject
to a temperature change 7 = T (x) its volume change is represented by the formula

+v

1
trE(x) = aT(x) for xe E3 (3.99)

I—v
where v and « denote Poisson’s ratio and coefficient of thermal expansion, respec-
tively.
Hint. Apply the reciprocal relation (3.28) to the external force-temperature systems

[b,s, 7] =[0,0, 7] and [B,g, T] = [0, 0,§(x —&)] on E3. Also note tllat for an
isotropic body M = —(BA +2u)eland tr E = [BX 4+ 21) /(A +2)]a T .

Solution. Let s = [u,E,S] and 5 = [u, E, S] be the thermoelastic states pro-
dBced on E3 by the external thermomechanical loads [b, s, T] = [0, 0, T (x)] ang
[b,s, T] = [0, 0, 5(x — &)], respectively. Applying Eq.(3.29) to the states s and S
we obtain

/TM~EMui/TM-EM) (3.100)

E3 E3

For a homogeneous isotropic thermoelastic solid

M=-0Cr+2n)al (3.101)
Therefore, _ _
M- -E=—-0CA+2uwa(trE) (3.102)
and
M- -E=—-0CA+2uwa(trE) (3.103)

where A and p are Lamé constants. Substituting (3.102) and (3.103) into (3.100) we
get

/Tmﬁmz/fmmm (3.104)

E3 E3

Since 5 is the thermoelastic state produced by the temperature T on E3, 1 takes the
form
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i=Vg (3.105)

where the thermoelastic potential ¢ satisfies Poisson’s equation

Vg = oT (3.106)
1—v
Hence -
orh = v = 1 YT (3.107)
—V

Therefore, substituting (3.107) into (3.104) we obtain

1
. / T©)38(x — §)dv(©) = / Sx—OrEGIdvE  (3.108)

E3 E3

or using the filtrating property of the delta function we arrive at Eq.(3.99). This
completes solution of Problem 3.3.

Problem 3.4. Assume Tj to be a constant temperature, and let a; (i = 1, 2, 3) be
positive constants of the length dimension. Show that for a homogeneous isotropic
infinite elastic body subject to the temperature change

T(x)=TolH(x1+a1) — H(x1 —ap] x [H(xz2 +a2) — H(xz — az)]
X [H(x3 4+ a3) — H(x3 — a3)] (3.109)

where H = H (x) denotes the Heaviside function defined by: H(x) = 1 forx > 0
and H(x) = 0 for x < 0; the stress components S;; are represented by the formulas

aj as az 82
00 = Ao [ d [ da [ des e
19§

—ap —a3

—1,2
01— 607+ (2 =87 + (13 - )7

aj a) as
+ 478 Ao / dg§ / d& / d&36(x1 — &1)8(x2 — &2)8(x3 — &3)
—aj —az —asz
(3.110)

where
Ag=—— a Ty (3.111)

Also, show that the integrals on the RHS of Eq. (3.110) can be calculated in terms of
elementary functions, and for the exterior of the parallelepiped

lx1] < a1, |xl<a |x3] <a3 (3.112)
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we obtain

(x3 +az +ry1.42.-3) (X3 —az +ry1.-2.43)

(x3 —as+ri14243) (33 +a3 +ry1.-2-3)
(x3 —az +r-1.42.43) (x3 +az + r—1.—2.—3)i|
(x3+as+r-142-3) (x3 —az +r—1.-2.43)

S1p = A01n|:

(3.113)

(x1+ar+r-14243) X1 —ar +ry1.42.-3)

(x1 —ar +ry14243) (1 +ar +r-1.42.-3)
(x1 —ay +ri1.-2.43) (x1 +ar + r1.2‘3)]
(x1+ar +r-1.-2.43) x1 —ay +ry1.-2.-3)

S23 = Apln |:

(3.114)

(2 t+ax+rp1.-243) (2 —ax +7r-1.42+43)

(2 —ax+ry14243) (2 + a2 +r-1.-2.43)
(2 —az +r41.42.-3) (2 +ax + V—1.—2.—3)}
(2 +ax +ry1.-2.-3) (x2 —az +r-1.42.-3)

S31 = Apln |:

(3.115)

and

_1[X2ta x3+a3 _1f*2+a x3—a3
S11 = Ay |:tan 1(—— —tan M =—2= = 2
X] —ajy r41.-2.-3 X] —apr41.-2.43

_1{X2—a x3+a3 —1 (X2 —a x3—az
— tan~! (——) + tan 1 (
X1 — a4y r41.42.-3 X1 — a1 F4+1.42.43

_tan_l(m—i-az X3+a3)+ta (x2+a2 X3—a3)
3.1

X1+ayrr-1.-2.-3 X1+air—1.-243

_1{*2—ax x3+a3 X2 —ay X3 —az
+ tan _ ) —tan~
X1+apr-1.42.-3 X1+arr—1.42.43

(

}

16)

1 fx¥3ta3 x1t+a _1(Xx3+ta3 x1 —ay
Sy = Ay |:tan 1 (—— —tan (2=
X2 —axr—1.42.-3 X2 —axr41.42.-3

1 f{x3—a3 x1t+a X3 —az x;—a
_ tan 1(__)+ta ( )
X2 —axr—1.42.43 X2 — a2 V41,4243
_1fx3+ta3 x1t+a X3+az xp—ap
— tan 1 (—— + tan~
X2+axr—1.-2.-3 X2+ axry1.-2.-3
_1fx3—a3 x1t+a X3 —asz xp—ap
+ tan 1(__)_tan 1( )}
X2+ axr—1.-2.43 X2+ axry1.-2.43

(3.117)
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1 f{*x1ta x2+a _1f{*1+a x2—az
S33 = Ay [tan ! (—— —tan [ ——— 2=
X3 — a3 r—1.-2.43 X3 — a3 r—1.42.43

_1 (X1 —a1 x2+a —1 (X1 —a1 x2—dy
—tanl( —)+tan1(
X3 —a3zry1.-2.-3 X3 — a3 r41.42.43

R (X1+a1 x2 +ax )+ta (X1+a1 xz—az)

X3+azr—1.-2.-3 X3 +azr—1.42.-3

1 f*1—a1 x2+a (X1 —a xo—ax
+tan1( _)_ml( ]
X3 +azry1.-2.-3 X3+ asrq1.42.-3

(3.118)

where
rerao43 = [(x1 Fa)? 4+ (o Fa)® + (3 Faz)?1'/? (3.119)

Note that Eq. (3.114) follows from Eq. (3.113) by the transformation of indices
1—-2, 2—-3, 3—>1

and Eq. (3.115) follows from Eq. (3.114) by the transformation of indices
2—-3 3—>1, 1=2

Also, Eq. (3.117) follows from Eq. (3.116) by the transformation of indices
1—-2, 2—-3, 3—>1

and Eq. (3.118) follows from Eq. (3.117) by the transformation of indices

Hint. To find S, use the formula

_dw 242 3.120
m_n(u+ u+a) (3.120)

and to calculate S;; take advantage of the formulas

du 1 u
—————d e e — (3.121)
/( /U2 + a2 a’ Jul + 42

and

/ du uva? = b? (3.122)
W2 + b)Vu? + a2 b\/a it a2 '
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where a and b are constants subject to the conditions
a#0, b#0, |a|l>|b] (3.123)

Solution. To show (3.110) we note that

aj ap as
Sij(x) = / dé& / &, / d&3 7 (x§) (3.124)
—ai —az —as
where
Sij(x.§) =2u (¢f’2~j - 8ij¢,*kk) (3.125)
and
« I+v
Phe = 7,2 801 — 815 (x2 — £2)8(x3 — £3) (3.126)
Since . 1
* __ v
¢ x5 = 4 1—va |x — &|
therefore
2
Sij(Xf) = Ap [ 0808, Ix — & +4mwd;;6(x1 — &1)8(x2 — §2)8(x3 — &3)

where Ag is given by (3.111). Hence, substituting S;kj into Eq.(3.124) we obtain
(3.110).

To show (3.113)—(3.118) we note that for the exterior of the parallelepiped
[xi| <ap, |x2| <ax, |x3] <a3 (3.127)

Equation (3.110) reduces to

aj a az
Sij(X)=A0/d51 /d& / dés
—daj —az —as
2

8_ —£)2 _ )2 _ £\29-1/2
X o, agj[(xl ED°+ (2 — &)+ (x3 — &3)°]

i,j=1,12, 3. (3.128)

Lettingi = 1, j = 2 in (3.128) we obtain
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as a
0
S]g(X):Ao/d%'y, /dfza—52
—as —ap
x {1 = a? + (2 - 87 + (3 — )17
— [ 4 an)? + (o — E)2 + (3 — sg)zr‘/z] (3.129)

or

as

Spp(x) = Ap / dé3 x {[(X1 —a1)? + (2 — @) + (x3 — &)71/2

—[(x1 — a)? 4 (2 + a2)* + (x3 — &)717 /2
—[(x1 +a)?+ (2 — @) + (x3 — £3)2171/2
+ [+ a)? + (2 +a)” + (3 — )17}

(3.130)
Since for every b > 0
as x3+as
/ [0 + (x3 — &)1 /2 d&s = / b+ ud) V2 qu (3.131)
—as x3—as

and by virtue of (3.121)
/(b2 4+ 2 du =1 (u VUl b2) (3.132)

if follows from (3.130) that

(x3+as+ri1.42.-3) (X3 —az+ry1.-2.43)

(x3—azs+ri1.42.43) (3+a3+ri—2-3)
(x3 —az+r-1.42.43) (x3+az+r_1.-2-3)
(x3+azs+r-1.42.-3) (x3—az3+r_1.-2.43)

S1o = Apln [

] (3.133)

where r11. 12, 13 is defined by (3.119). This completes proof of (3.113). The com-
ponents S73 and S31, respectively, are obtained from (3.113) by the transformation
of the indices

1—-2, 2—3, 3—>1 (3.134)

and
2—-3, 3—>1, 1—=2 (3.135)



3.10 Problems and Solutions Related to the Formulation of Problems of Elasticity 83

By lettingi =1, j = 1in (3.128) we obtain

a a3 ay 5
s =do [ der [a [an s
0&;

—an —a3 —a

1

x [(x2 = &)7 4 (3 — £)> + (11 — &)717'/? (3.136)

Since
3% [0 — &% + 21712 = (11 — Dl — &% +e2172 (3137

where
o = (x2— £)° + (x3 — £3)° (3.138)

therefore Eq. (3.136) takes the form

a as
S1(x) = Ao / dé& / diy x [ (x1 —ay) (x1 +ay) ]
[(x1
—az —as

—a)?+ P2 [ +a)? + PP

(3.139)
Now, because of (3.121),

x3+as

7 1 du
d —
/ =2 [(x1 —a1)? + a?]3/? [(x1 —a)? + (x2 — &) +u?P/?
s

x3—aj

. 1 (x3 +a3)

S —an?+ (- &)? | [(x1 —an?+ (x2 — &) + (x3 +a3)?]'/?
(x3 —a3)

Sl —an? + (—£)2 + (3 —a3)?]12

] (3.140)
Also, using (3.122), we obtain

a
1 1
d
/ 2 B+ —a (6 —a’+ G+ @)’ + (o)
I,

az x2+az
1 1 1 1
= [ d& 212 24 212 212 du
(x2 —&)2 + 0% [(x2 — 6)> +a?]V/ us+b* Ju2 + 42
“a Xo—ap
! Nl R
=——— Jtan | ——— (3.141)
by a? — b? b/ u? + a? iy
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where
P = (x; —a)?, a® = (1 —a)*+ (x3 +a3)? (3.142)

By letting x; > aj and x3 > —a3 we receive

b=x1—a;, Vva?—-b2=x3+4+u3 (3.143)

and reduce Eq. (3.141) to

ap
1 1
d
/ M 1R (-8l
I,

1 _1 X2+ax x3+as _1X2—ax x3+as
= tan — tan
(x1 —a1)(x3 + az) X1 —ay re1.-2.-3 X] —day ry1.42.-3
(3.144)

It follows from Eq. (3.139) that

az

S1(x) = Ap / d& (x1 —ay)

—ay

1
(x1 —ap?+ (x2 — &)?

8 [ (x3 + a3)
[(x2 — )% + (x1 — a)? + (x3 +a3)?]1/?
B (x3 —a3) ]
[(x2 — £2)% + (x1 — a1)? + (x3 — a3)?]!/?

a

— Ao / dé& (x1 +ay)

—ay

1
(x1 +a1)?+ (x2 — 522)2

8 [ (x3 +a3)
[(x2 — £)? + (x1 +a1)? + (x3 + a3)?]1/?
_ (x3 —a3)
[(x2 — £)% + (x1 +a1)? + (x3 — a3)?]'/?

(3.145)

Therefore, using Eq. (3.141) as well as equations obtained from Eq. (3.141) by suit-
able choice of a and b, we obtain (3.116).

The components Sy and S33 are obtained from Eq. (3.116) by suitable transfor-
mation of indices.

Problem 3.5. Letu = u(x, t) be a solution of the vector equation

f
VZu— —— =—— on B x(0,00) (3.146)
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subject to the initial conditions

u(x, 0) = up(x), u(x,0) =nug(x) for x B (3.147)
where f = f(x, #) is a prescribed vector field on B x [0, 00); and ug(x) and 1 (x)

are prescribed vector fields on B; and ¢ > 0.
Also, let u = u(x, ) be a solution of the vector equation

1 0% f
2~ _
subject to the initial conditions
u(x,0) = Up(x), u(x,0) =up(x) for x€B (3.149)

where T = fo, t) #f (x_, t), ﬁoix) # up(x), and ﬁo(x) # 1g(x) are prescribed
functions on B x [0, 00), B, and B, respectively. Show that the following reciprocal
relation holds true

1 ~ - — ou
—2/(u*f+u~u0+l'1~u0)dv+/u>k—da
c on
B 9B
1 ~ ~ . - _ oJu
== xf+u-wp+u-u)dv+ | ux —da (3.150)
c on
B 9B

where * represents the inner convolutional product, that is, for any two vector fields
a=a(x,t)and b =b(x,7) on B x [0, c0)
t
a*b:/a(x,t—r)-b(x,r)dt (3.151)
0

Solution. Let f(x, p) denote the Laplace transform of a function f = f(x,1)
defined by

o0

Lf = f(x, p) =/e—P’f(x, Hdt (3.152)
0
Then
fx. 1) =pfx, p)— f(x,0) (3.153)
fx, 1) =p* f(x, p) — f(x,0) — pf(x,0) (3.154)

Now, Egs. (3.146) and (3.147) in components take the forms
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1. fi
Ui kk — EM,' = _c_2 (3155)
and
u;i(x, 0) = ugi (x), u;(x,0) = uo; (x) (3.156)

Taking the Laplace transform of Eq. (3.155) and using (3.156) we obtain

o, 7
0k — C_2(P2ui — lig; — p ug;) = —c—; (3.157)

Similarly, Eqgs. (3.148) and (3.149) imply that

Uj kk — C_Z(qui —up; — p ug;) = % (3.158)

Multiplying (3.157) by u; and (3.158) by u;, respectively, we obtain

1 fi i

i Wi ke — 6_2(P27iﬁi — Withoi — p Ujng;) = — 2 (3.159)
Ui Ui kk — C_Z(quiui — Uujlloi — p ujlo;) = —'C—Zl (3.160)
Since _ _ _
witt; ik = (Uil )k — Ui kUi k (3.161)
and _ B B
Witki jk = (Wil k), —UW; kUl k (3.162)

therefore, subtracting (3.160) from (3.159), and using the divergence theorem we
obtain

T~ — —_— 1 . —_— —_ ~ — ~ —
/(uiui,k ng —uju ng)da + 3 (ttoiut; + p uoiu; — uoi; — puoiu;)dv
0B B

=—Ci2/(fl-_ﬁ,-—?iﬁi)dv (3.163)
B
or

/uiui,k”k da + 2 /Wif,» +ujuo; + (pu; — uo;)uo; + uo;uo; Jdv
JIB B
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—_— 1 —_ A _ . = o~ o~
= / uju k hy da + 2 /[“ifi + u;no; + (pu; — uo;)uo; + uo;uo; Jdv
B B
(3.164)

Using the formula

L' (fo="fxg (3.165)

and applying the operator L™ to Eq. (3.164) we arrive at Eq. (3.150). This completes
solution of Problem 3.5.

Problem 3.6. LetU = fj(x, t) be a symmetric second-order tensor field that satisfies
the wave equation

13\~ F
2 —
subject to the initial conditions

U(x,0) = Up(x), U(x,0) = Up(x) for x€B (3.167)

where F= F(x, 1), U (x), and 60 (x) are prescribed functions on B x [0, o), B, and
B, respectively. Let u = u(x, ) be a solution to Eq. (3.166) and (3.167) of Problem
3.5. Show that

1 ~ £ ~ U
—2/(F*u+U0u+U0ﬁ)dv+/—*uda
c on
B 9B
1 ~ Y ~ . ~ Ju
== (Uxf+Uuy+ Ung)dv+ [ Ux —da (3.168)
c on
B 9B

where for any _tensor field T = T(x,t) on B x [0, o0) and for any vector field
v =v(x,t) on B x [0, c0)

t
Txv= /T(x, t—1)v(X,7)dTt (3.169)
0

Solution. Equation (3.150) of Problem 3.5 in components takes the form
1 ~ - ~ . u;
— [ (fi xui +uoiui + uoini)dv+ [ — xuida
c on
B 3B

1 ~ .~ - ou; —~
= 2 /(fi *u; +uoiu; + uo,-u,-)dv—i—/ a—nl *u;da (3.170)
B 9B
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It follows from the formulation of Problems 3.5 and 3.6 that Eq. (3.170) holds also
true if for a fixed index j we let

= Uij, o = Ugij, tioi = Uoij, fi = Fj (3.171)

Therefore, substituting (3.171) into (3.170) we obtain

1 [ =~ - _ 3U;
C_2 (Fij * u; + Uoiju; + Upiju;)dv + an *u;da
B B
1 ~ . ~ A Bui ~
:C_2 (f,-*U,-j—i-u()i Uij+M0i Uij)dv—i- E*Uij da (3.172)
B

B

Finally, the symmetry of tensors l7,~j, 17,, l70,~j, and (7 0ij» as well as the relation
axb=bxa (3.173)

valid for arbitrary functions a = a(x, t) and b = b(x, t), imply that Eq.(3.172) is
equivalent to Eq. (3.168). This completes solution to Problem 3.6.

Problem 3.7. Let G = G(x, &;t) be a symmetric second-order tensor field that
satisfies the wave equation

(3G = —18(x — £)8(r) for x€ E3, § € E3, 1 >0 (3.174)
subject to the homogeneous initial conditions

G(x,£0) =0, G(x,£0 =0 for xe E>,6 € E> (3.175)
where

92 1 92
dxxoxy  c2 0t

6= (k=1,2,3) (3.176)

Show that a solution u to Egs. (3.146) and (3.147) of Problem 3.5 admits the integral
representation

ux, 1) = 6—12/(G*f+cuo+(;uo)dv(g)
B

+/ (G w96 *u) da(€) (3.177)

on on
9B

Hint. Apply the reciprocal relation (3.168) of Problem 3.6 in which f/c2 =
16(x — &)8(t) and U = G(x, &5 1).
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Solution. To solve this problem we let in Eq. (3.168) of Problem 3.6 the following
U=G(x &1, Uy=G(x & 0)=0

Uo=G(x, & 0) =0, F/c2=15(x—E)5(t) (3.178)

and
dv=dv), da=da) (3.179)

and obtain

G
/ [15(x — 8D * uE Ndv(E) + / (5) xuda(®)
B

aB

1 .
= C_z/(G*f+Guo+Gﬁo)dv(<§)+/G* g—:da(g) (3.180)
B 9B

Finally, using the filtrating property of the delta function we find that (3.180) is
equivalent to (3.177). This completes solution to Problem 3.7.

Problem 3.8. Show that a unique solution to Egs. (3.174) and (3.175) of Problem
3.7 takes the form

c

Gx.&:1) = 1~ |X1_$|8(t— 'X_H) 1 (3.181)

and, hence, reduce Eq.(3.177) from Problem 3.7 to the Poisson-Kirchhoff integral
representation

1 /f(f;‘,t—lx—él /€)

0
ux, ) = dv(§) + E[I My et (w)] + 1 Mx ¢ (110)

47‘[6‘2 |X—§|
B
1 1 Ou 5 |
T [|x—s|an(5’t""—5|/C>—u<€’t—lx—s|/c)an|x_g|
B
1 0 ou
T gl [an 'X“f'] [3,@& — x| /d} ] da(€)

(3.182)

where for any vector fieldv=v(x) onB C E 3 the symbol My ; (V) represents the
mean value of v over the spherical surface with a center at x and of radius ct, that is,
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1 2 b4
My ¢ (V) = E/d(ﬂ/d@ sin 6
0 0

X V(X1 4 ct sinf cos ¢, Xy + ¢t sinf sing, x3 + ct cosf) (3.183)

and we adopt the convention that all relevant quantities vanish for negative time
arguments.

Note. If B= E3 andf =0 on E3 x [0, 00) then Eq. (3.182) reduces to the form
d .
W0, 1) = 2 My (o)) 41 M (o) (3.184)

Solution. Equation (3.174) of Problem 3.7 takes the form

(v~ &2
v G=-15x-8)58®) (3.185)

cZ 912

Applying the Laplace transform to this equation and using the homogeneous initial
conditions (3.175) of Problem 3.7 we obtain

[vz - (5)2} G=-15x—-58) (3.186)
C
where o
G=Gx& p) = /e*PfG(x, E, 1)dt (3.187)
0

The only solution to Eq.(3.186) in E3 that vanishes as [x| — oo, |§| < oo, takes

the form (p > 0)

_ 11
G=— e~ cx=Elq (3.188)

Hence, applying the operator L~! to (3.188) we obtain

1 1
G(x, &’ 1) = m 3([ — ;|X —&l)l (3.189)

This completes proof of (3.181). To show that (3.182) holds true, we split (3.177) of
Problem 3.7 into the sum

ux,’) =uPx, 1) +u?x, 1) +uP(x, 1) (3.190)
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where

(1) _ 1
wx,n=— /G*fdy(E_,) (3.191)

C

B
u@x, 1) = / (G ML u) da(&) (3.192)
on on

B

u®x, 1) = ciz / (G ug + G W) dv(€) (3.193)

If G from Eq. (3.189) is substituted into Eq.(3.191) we obtain

uVx, 1) =

dU(E_,) /dr f(Z; tr—1)8 (r - %|X—§|) (3.194)

Using the filtrating property of the delta function

t

/a(r —10) g(t — T)dT = g(t — to))H(t — 10) (3.195)
0

where g = g(¢) is an arbitrary function and H = H (¢) is the Heaviside function

1 t>0
H(t) = [O ‘- O] (3.196)
we reduce Eq. (3.194) to the form
1 f(&:—%) R
Dix, 1) = < H(r-—)d 3.197
oy = s [ ( C) v(®) (3.197)
B
where
=|x—¢&| (3.198)

The function u? (x, 1) given by (3.197) is identical to the first integral on the RHS
of Eq. (3.182) when the convention that f(x, ¢) vanishes for < 0 is adopted.
An alternative form of (3.197) reads

uVx, 1) = b / §| (g r— |x — §|) dv(€) (3.199)

BNS(x,ct)
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where
S(x,ct) ={&:1& — x| < ct}.

To show that u® (x, 7) is identical to the last integral on the RHS of (3.182), we
apply the Laplace transform to Eq.(3.192), use Eq. (3.188), and obtain

1 1 ppdl 0] 1 P 1 OR _»
—2) _ LR | O (1) —er_ L 9K R Al
wr . p) 4 / [Re on |:8n (R) ¢ cR on ¢ p] u] a®)

3B
(3.200)
Applying the inverse Laplace transform to Eq. (3.200) we obtain

1 1 du R (1 R
@) _ N _
" (X’t)_4n/[R on (F”t c) on (R)u(&’t c)
0B

L LR (g, ‘- g)] H (t - g) da) (3.201)

cR on

The function u® given by (3.201) is equivalent to the last integral on the RHS of
(3.182), if the convention that u(x, t) = 0 for < 0 is adopted. An equivalent form
of (3.201) reads

1 1 du R 0 1 R
()] - — - _ )= _ -
w1 4 / [R on (&,t c) on (R)u(é’t c)

dBNS(x,ct)

1 9R. R
- o (g,z - ?) ] da(®) (3.202)

To show that u® (x, 1) given by (3.193) is equal to a sum of the second and third
terms on the RHS of (3.182), consider the integral

h(x, t):ci2 / G g dv(€) (3.203)
B

Since

Ls(i_ R —tcza(R 0 (3.204)
R c) TR ¢ :

therefore, an alternative form of G given by (3.189) reads

tc?

G610 = oh

S(R —cn)l (3.205)

and the function h = h(x, r) takes the form
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hix. 1) = u(§)

i ) wogp ox- &l — en)du(§) (3.206)
B

Next, we let
R=¢&-—x (3.207)
and introduce the spherical coordinates (R, ¢, ) with a center at X

R1 = Rcos ¢ sin6

R> = Rsin ¢ sin6

R3; = Rcos 6 (3.208)
O0<R<oo, 0<¢<2m 0<0<m (3.209)

Then the integral (3.206) takes the form

t 1y(R
h(x, 1) = — / B +X) ¢ R — endu®) (3.210)
4 R2
B*
where
dv(R) = R*sin® dg do dR (3.211)
and
B*={(R,¢,0) :Ri <R <Rp; 0<¢ <271,0<0 <} (3.212)

The domain B* is a mapping of B under the transformation defined by Egs. (3.207)
and (3.208), and R, and R, are uniquely defined nonnegative numbers. Hence,
Eq.(3.210) can also be written as

Ry 2 T
t
h(x, 1) = 4—/dR §(R —ct)/d<p/d9 sin 6
4
Ry 0 0
X Ug(x; + Rcosgsinf, xp + Rsingsinf, x3+ Rcosf) (3.213)
or
2 T
t
h(x,1) = —/dgo/d@sin@
4
0 0
X Ug(x1 4+ ctcosgsinf, xp + ctsingsin€, x3 +crcosf) (3.214)
or

h(x, 1) =t My ¢ (llp) (3.215)



94 3 Formulation of Problems of Elasticity

where My . (1p) is defined by (3.183). Finally, if we note that

1 .
g(x, < = / Gup dv() (3.216)
c
B
can be written as
| 1
g(x,t) = — —/Guo dv(&) (3.217)
at | 2
B

then computing the integral on the RHS of (3.217) in a way similar to that of the
integral h = h(x, t), and taking into account Eq. (3.193) we obtain

d )
u¥(x,1) = o [tMy. s ()] + 1My ¢/ (80) (3.218)

This completes proof of (3.182).

Problem 3.9. Let G* = G*(x,&;t) be a solution to the initial-boundary value
problem:

[2G* = —18(x — £)8(1) for x, £€B, 1>0 (3.219)
G'x,£0 =0, G'x,£0 =0 for x,é£ B (3.220)

and _
G*(x,£:1)=0 for x€dB, >0, £cB (3.221)

and let u = u(x, ¢) be a solution to the initial-boundary value problem

Pu = —Ciz on B x (0, 00) (3.222)
u(x, 0) = ug(x), u(x,0) =up(x) for xeB (3.223)
u(x,t) =gx,t) on 9B x [0, 0c0) (3.224)

where the functions f, ug, 19, and g are prescribed. Use the representation formula
(3.177) of Problem 3.7 to show that

1 .
u(x, 1) = 2 / (G* +f + G"ug + G™ag) dv(§)
B

_/ (aG* *g) da(&) (3.225)
on

oB
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Solution. The representation formula (3.177) of Problem 3.7 reads

ux 1) = - / (G +f + Gug + Giig) dv ()

2
B
+/ (G * 8_u — E *u) da(&) (3.226)
on on
0B

where G satisfies Eqs. (3.174) and (3.175) of Problem 3.7, and u satisfies Egs. (3.146)
and (3.147) of Problem 3.5.

By letting G = G™ in Eq. (3.226) and using the boundary conditions (3.221) and
(3.224) we obtain (3.225).

This completes a solution to Problem 3.9.

Problem 3.10. A tensor field S corresponds to the solution of a traction problem of
classical elastodynamics if and only if

Vip~'(divS)] — K[S]= —B on B x [0, o) (3.227)
$Sx,0=SPx), $x,0=SPx) for xeB (3.228)
Sn=7% on 9B x [0, 00) (3.229)

[see Egs. (3.71)—(3.73)] in which B is expressed in terms of a body force b, and SO
and S are defined in terms of two vector fields. A tensor field S corresponding to
an external load [B, S©, S(O),E] is said to be of a o-type if S satisfies Eqgs. (3.227)
through (3.229) with an arbitrary symmetric second-order tensor field B and arbitrary
symmetric initial tensor fields S and $©), not necessarily related to the data of
classic elastodynamics. Show that if S and S are two different tensorial fields of
o-type corresponding to the external loads [B, SO, S(O),’sj and [ﬁ, §(0), g(O),/E\],
respectively, then the following reciprocal relation holds true

/ [ﬁ S0 . =(0) ] / =
*S+SW.K[S1+S " -K[S]jdv + o (divS) * (Sn) da
‘ » (3.230)
= / [B «S+ 8O . K[S]+8©. K[§]} dv + /p*‘ (divS) * (Sn) da

B B

Solution. The tensor fields S;; and S; ., respectively, satisfy the equations

(0™ "S(ikk).;) — Kijit St = —Bij on B x (0, 00) (3.231)
$ij(x.0) = SV, $i;(x,0) =35 x) onB (3.232)
Sijnj =73 ondB x (0,00) (3.233)
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and
(p™"Stikk).;,) — Kijit St = —Bij on B x (0, 00) (3.234)
- - - +(0)
$;j(x,0) =57 (®). S;j(x.0)=5;; (x) onB (3.235)
Snj =S8 ondB x (0,00) (3.236)

Applying the Laplace transform to Eqgs.(3.231) and (3.234), and using the initial
conditions (3.232) and (3.235), respectively, we obtain

1< < & 0 =
(0™ Skt ) = Kigut (P25 = 8 = pS) = =By (3.237)
and
= = +(0) - -
(0™ Sk, — Kiju (pzskz — Sy - pS,E?)) = —B; (3.238)

Next, multiplying (3.237) by ?,- j and (3.238) by —E/, and adding up the results we
obtain

—_— 1= —_ — . O O — _ =
Sii (07 Sik i), j —Sij Kiju (P25k1 - S;EI) - PS;({Z)) — Sij (07 Sik k), s

_ = L0 - _ = _
+5i; Kiju (pzsk, —- S - ps,§?>) +BiSij—Bi;jSij=0  (3.239)
Since
Sii (0 Sikk)sj —Sij (0 Sikk)sj = (Sijo Sikx — Eijpilgik,k)sj (3.240)

and _ o
Kijir Sij Skt = Kijir Sij Ski (3.241)

therefore, by integrating (3.239) over B and using the divergence theorem, we obtain

5. < 3.7 <. o0 T <0 ¢ , 30 (O
/ (Bij Sij — Bij Sij) dv(€) +/Kijkl S,‘j Skl + (pSij — Sij )Skl + Sij Skl
B B

<. O < ©0)) 5O _ o(0)5(0)
=5 S = (p5 - 5) S - sPY (v

+ / p~! (§ij Sik.k — Sij §ik,k) njda(§) =0 (3.242)
OB

Finally, applying the inverse Laplace transform to (3.242), using the convolution
theorem

f+xg=rg (3.243)
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as well as the relation )0 =0
Kiju Si(j)SIEl) = Kijui S,-(j)S,E,) (3.244)

we obtain

/(B «S— B« S)dv() +/ ['s’ KISO14+8 - KSO1—s-KS?1-§ - KEO1 ! dve)
B B

+ / p~ ! [(divS) * (Sn) — (div S) * (Sm)] da(®) =0 (3.245)
B

Since K is symmetric
A -K[B]=B:-K[A] VAandB (3.246)

therefore, Eq.(3.245) is equivalent to Eq.(3.230), and this completes a solution to
Problem 3.10.

Problem 3.11. Let S,.(/l.d) = Si(/l'd) (x, &; 1) be a solution of the following equation

—1 g(kD) oGkl
(0™ Stk xy.;) — KijpgSpg” =0

for xe E3, £ E% ijk1=1,273 (3.247)
subject to the initial conditions

S (x,£0) =0, $5V(x, £ 0) = Cijud(x — &)
for xe E’, £ E% 1i,j,k1=1,2,3 (3.248)

where K;ji; denotes the components of the compliance tensor K, and C; jkl stands
for the components of elasticity tensor C, that is,

Cijki Kiimn = 8imOnj) (3.249)
Let S;; = S;;(x, t) be a solution of the equation
(0" Sirn). ;) — KijuSuy =0 for xeB, >0 (3.250)
subject to the homogeneous initial conditions
Sij(x,0) =0, Sij(x, 0)=0 for xeB (3.251)
and the boundary condition

Siinj =% on 9B x [0, 00) (3.252)
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Use the reciprocal relation (3.230) of Problem 3.10 to show that

Sy (X, 1) = / o (S,'m,m *S80n; 5 « S}l’;’}m) da(&) (3.253)
B

Note. Equation (3.253) provides a solution to the traction initial-boundary value
problem of classical elastodynamics if the field S;, ,, on 0B x [0, co) is found
from an associated integral equation on dB x [0, 00). The idea of solving a traction
problem of elastodynamics in terms of displacements through an associated boundary
integral equation is due to V.D. Kupradze.

Solution. Note that for a fixed pair (k, /) §,~j = Si(]].d) (x, &; 1) is a tensor field of

o -type corresponding to the data: Eij =0, ?, # 0, §i(](.)) =0, and E,(?) = Cijud(x—
€);and S;; = S;j(x, 1) is a tensor field of o-type corresponding to the data: B;; = 0,
5 #0, Si(,(')) =0, and Si(.?) = 0. Therefore, using the reciprocal relation (3.230) of
Problem 3.10. in which 3",, = Sl.(]].d) (x,&; 1) and Sij = Sij(x,1), we obtain

~(0) _ ~ o~
[ 50 Kot $40® = [ 07 S =514 Sim) da®) - 3254)

B JdB
where
§;?) = S,-(fl)(X, & 0) = Ciju (x = &) (3.255)
Sijnj = S{i" (x, & 1)nj(©) (3.256)
Simom = St (X, & 1) (3.257)
Since

~(0)
Sij Kijpg Spq = Cijki Kijpg Spq 8(x = &) = Cuij Kijpg Spg $(x — &)

= 8(kp Sqi) Spg 8(x — &) = S (&, ) (x — &) (3.258)
therefore, Eq. (3.254) takes the form
[ u 086~ 8d0@) = [ 71 (Simm"m; =5 5050, ) dac

B dB
(3.259)

Finally, using the filtrating property of the delta function we obtain (3.253). This
completes a solution to Problem 3.11.
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Problem 3.12. Consider the pure stress initial-boundary value problem of linear
elastodynamics for a homogeneous isotropic incompressible elastic body B [see

Eq.(3.55) with o > 0 and A — oc]. Find a tensor field S = S(x,7) on
B x [0, 0o) that satisfies the equation

V(divS) — 2ﬁ [s - %(tr S) 1] = —-Vb on B x [0, 00) (3.260)
i

subject to the initial conditions
S(x,0) = Sp(x), S(x,0) =Sp(x) for x B (3.261)
and the traction boundary condition
Sn=7S on 9B x [0, 00) (3.262)

Here, b,S, Sp, and So, are prescribed functions (u > 0, p > 0). Show that the
problem (3.260) through (3.262) may have at most one solution.

Solution. We are to show that the field equation

o - 1.
S(ik.kj) — ﬂ (S,‘j — §S"k 5,']') =0 on B x [0, 00) (3.263)

subject to the homogeneous initial conditions
Sij(x, 0)=0, $;j(x,00=0 onB (3.264)
and the homogeneous traction boundary condition
Sijnj=0 ondB x [0, c0) (3.265)

imply that _
Sij =0 on B x [0, c0) (3.266)

To this end we multiply (3.263) by S; ; and obtain
. o [ - 1.. .
S(ik.kj) Sij — W Sij Sij — §Skk Sii ) =0 (3.267)

Since ) ) ) )
Seik.kj) Sij = Sikkj Sij = (Sikk Sij)»j —Sikk Sij.j (3.268)
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therefore (3.267) can be written in the form

(Sikck Sij).j — Sikck Sij.j — 7~ Eg(si,/ Sij) — 329

p 1o . . 110
2p

(Saa)ﬂ =0 (3.269)
or

. 190 p 1o . . 11ra . .
(Sik Sij),j_zg(sik,k Sij,j)_ﬂ [EE(SU Sij) — gEE(Saa) } =0 (3.270)
Integrating Eq. (3.270) over the cartesian product B x [0, ], using the divergence
theorem, the homogeneous initial conditions (3.264) as well as the boundary condi-
tion
S;;nj=0 ondB x [0, 00) (3.271)

obtained by differentiation of (3.265) with respect to time, we obtain

o |. - 1 .
/ [Sik,k Sijj+ = |:Sij Sij — _(Saa)2:| ]dv =0 (3.272)
B 2u 3
Since
5@ Lo s
$ij = 5§ + 3 8aa 8ij (3.273)
where
5D = 55— 2S00 84 (3.274)
ij T Fu 3 aa Cij .
and X
$ij $ij = i85 + 5 Baa)? (3.275)

therefore, Eq.(3.272) can be written as

[ (s 8+ 22360 850 Y aw=o0 (3276)
B

Equation (3.276) implies that
Sk =0, 8 =0 onB x[0,00) (3.277)

Equation (3.277), together with the homogeneous initial conditions (3.264); imply
that

1 _
Sij = §5aa d;j on B x [0, 00) (3.278)
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Equations (3.278) and (3.277); imply that
Sua.i =0 on B x [0, 00)
which is equivalent to
Saa(x,1) = c(t) on B x [0, 00)

where ¢ = ¢(t) is an arbitrary function of time.
Finally, Egs. (3.265), (3.278), and (3.280) lead to

c(t)n;(x) =0 ondB x [0, 00)
Since |n; n;| = 1 on d B, therefore Eq. (3.281) implies that

le@®)| =0

101

(3.279)

(3.280)

(3.281)

(3.282)

Equation (3.282) together with Eq. (3.278) implies Eq. (3.266), and this completes a

solution to Problem 3.12.
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