
Chapter 2
Fundamentals of Linear Elasticity

In this chapter a number of concepts are introduced to describe a linear elastic body.
In particular, the displacement vector, strain tensor, and stress tensor fields are intro-
duced to define a linear elastic body which satisfies the strain-displacement rela-
tions, the equations of motion, and the constitutive relations. Also, the compatibility
relations, the general solutions of elastostatics, and an alternative definition of the
displacement field of elastodynamics are discussed. The stored energy of an elastic
body, the positive definiteness and strong ellipticity of the elasticity fourth-order
tensor, and the stress-strain-temperature relations for a thermoelastic body are also
discussed.

2.1 Deformation of an Elastic Body

A material body B is defined as a set of elements x, called particles, for which there
is a one-to-one correspondence with the points of a region κ(B) of a physical space;
while a deformation of B is a map κ of B onto a region κ(B) in E3 with det (∇κ)> 0.
The point κ(x) is the place occupied by the particle x in the deformation κ , and

u(x) = κ(x) − x (2.1)

is the displacement of x.
If the mapping κ depends also on time t ∈ [0,∞), such a mapping defines a

motion of B, and the displacement of x at time t is

u(x, t) = κ(x, t) − x (2.2)
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By the deformation gradient and the displacement gradient we mean the tensor fields
F = ∇κ and ∇u, respectively. A finite strain tensor D is defined by

D = 1

2
(FTF − 1) (2.3)

or, equivalently, by

D = E + 1

2
(∇u)(∇uT) (2.4)

where

E = 1

2
(∇u + ∇uT) = ̂∇u (2.5)

The tensor field E is called an infinitesimal strain tensor.
An infinitesimal rigid displacement of B is defined by

u(x) = u0 + W(x − x0) (2.6)

where u0, x0 are constant vectors and W is a skew constant tensor.
An infinitesimal volume change of B is defined by

δv(B) =
∫

B

div u dv (2.7)

while
div u = tr E (2.8)

represents a dilatation field.
If a deformation is not accompanied by a change of volume, that is, if δv(P) = 0

for every P ⊂ B, the displacement u is called isochoric.

Kirchhoff Theorem. If two displacement fields u1 and u2 correspond to the same
strain field E then

u1 − u2 = w (2.9)

where w is a rigid displacement field.
A homogeneous displacement field is defined by

u(x) = u0 + A(x − x0) (2.10)

where A is an arbitrary constant tensor and u0, x0 are constant vectors. Clearly, if
A is skew, (2.10) represents a rigid displacement, while for an arbitrary A

u(x) = u1(x) + u2(x) (2.11)
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where u1(x) is a rigid displacement field and u2(x) is a displacement field corre-
sponding to the strain E = sym A. The displacement u2(x) of the form

u2(x) = E (x − x0) (2.12)

corresponds to a pure strain from x0.
Let e > 0 and let n be a unit vector. Then by substituting E = e n ⊗ n into (2.12)

we obtain a simple extension of amount e in the direction n; and by substituting
E = e 1 into (2.12) we obtain uniform dilatation of amount e. Finally, let g > 0 and
let m be a unit vector perpendicular to n. Then substituting E = g [m ⊗ n + n ⊗ m ]
into (2.12) we obtain a simple shear of amount g with respect to the pair (m,n).

Decomposition of a strain tensor E into spherical and deviatoric tensors

E = E(s) + E(d) (2.13)

where

E(s) = 1

3
(tr E) 1 (2.14)

is called a spherical part of E, and E(d) = E − E(s) is called a deviatoric part of E.
Clearly,

tr (E(d)) = 0 (2.15)

2.2 Compatibility

Theorem Let B ⊂ E3 be simply connected. If u is a displacement field corre-
sponding to a strain field E on B, that is, if

E = 1

2
(∇u + ∇uT) on B (2.16)

then E satisfies the equations of compatibility

curl curl E = 0 on B (2.17)

Conversely, let E be a symmetric tensor field that satisfies the equations of compat-
ibility (2.17), then there exists a displacement field u on B such that u and E satisfy
(2.16).

In components the equations of compatibility (2.17) take the form

Ei j,kl + Ekl,i j − Eik, jl − E jl,ik = 0 (2.18)

An alternative form of (2.17) reads
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∇2E + ∇∇(tr E) − 2̂∇(div E) = 0 (2.19)

2.3 Motion and Equilibrium

Let S be a surface in B with unit normal n. Let B be subject to a deformation, and
let sn = sn(x, t) denote a force per unit area at x and for t ≥ 0 exerted by a portion
of B on the side S toward which n points on a portion of B on the other side of S.
The force sn is called the stress vector at (x, t), while a second-order tensor field
S = S(x, t) such that

S n = sn on S × [0,∞) (2.20)

is called a time-dependent stress tensor field on S × [0,∞).

The equilibrium equations of elastostatics

div S + b = 0 (2.21)

S = ST (2.22)

Equation (2.21) expresses the balance of forces, and Eq. (2.22) expresses the balance
of moments; and b in (2.21) is the body force vector.

The Beltrami representation of S

S = curl curl A (2.23)

where A is a symmetric tensor field, or

S = −∇2G + 2̂∇(div G) − (div div G) 1 (2.24)

where G is a symmetric tensor field.

Self-equilibrated stress field

If S = ST on B, and
∫

S

Sn da = 0 (2.25)

∫

S

x × (Sn) da = 0 (2.26)

for every closed surface S in B, then S is called a self-equilibrated stress field.
One can show that S given by (2.23) is a self-equilibrated stress field, and S given

by (2.23) is complete in the sense that for any self-equilibrated S there is a symmetric
tensor A such that (2.23) is satisfied.
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The Beltrami-Schaefer representation of S

S = curl curl A + 2̂∇h − (div h) 1 (2.27)

where A is a symmetric tensor field and h is a harmonic vector field on B.

2.4 Equations of Motion

div S + b = ρ ü on B × [0,∞) (2.28)

where ρ is density and b is the body force vector field.

Kinetic energy of B for t ≥ 0

K(t) = 1

2

∫

B

ρ u̇2dv (2.29)

Stress power of B for t ≥ 0

P(t) =
∫

B

S · Ėdv (2.30)

A dynamic process is identified with a triplet [u, S, b] that satisfies the equations of
motion (2.28).

Theorem An array of functions [u, S, b] is a dynamic process consistent with the
initial conditions

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) for x ∈ B (2.31)

if and only if
i ∗ div S + f = ρ u on B × [0,∞) (2.32)

where
f(x, t) = i ∗ b(x, t) + ρ(x) [u0(x) + t u̇0(x)] (2.33)

and
i = i(t) = t (2.34)

The function f = f(x, t) given by (2.33) is called pseudo-body force field.
Clearly, since ρ > 0, Eq. (2.32) provides an alternative definition of the displace-

ment vector u = u(x,t) related to the stress tensor S = S(x,t).
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2.5 Constitutive Relations

A body B is said to be linearly elastic if for every point x ∈ B there is a linear
transformation C from the space of all symmetric tensors E into the space of all
symmetric tensors S, or

S = C [E] (2.35)

In components
Si j = Ci jkl Ekl (2.36)

The tensor C = C(x) is called the elasticity tensor field on B. It follows from
Eq. (1.54) that

Ci jkl = (ei ⊗ e j ) · C [(ek ⊗ el)] (2.37)

and, since S and E are symmetric, we postulate that

Ci jkl = C jikl = Ci jlk (2.38)

The elasticity tensor C is also assumed to be invertible, that means that a restriction
of C to the space of all symmetric tensors is invertible. The elasticity tensor on the
space of all tensors cannot be invertible since its value on every skew tensor is zero.

The invertibility of C means that there is a fourth-order tensor K = K(x) such
that

K = C−1 (2.39)

Then equivalent form of (2.35) is

E = K [S] (2.40)

The tensor K = K(x) is called the compliance tensor.
The fourth-order tensor C is symmetric if and only if

A · C[B] = B · C[A] (2.41)

for any symmetric tensors A and B.
In components the symmetry of C means that

Ci jkl = Ckli j (2.42)

The tensor C is positive semi-definite if

A · C[A] ≥ 0 (2.43)

for every symmetric tensor A.

http://dx.doi.org/10.1007/978-94-007-6356-2_1
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The tensor C is positive definite if

A · C[A] > 0 (2.44)

for every symmetric nonzero tensor A.
The compliance tensor K enjoys the properties similar to those of the elasticity

tensor C [see, Eqs. (2.38) and (2.42)–(2.44)].
By an anisotropic elastic body we mean the body for which the tensor C possesses

in general 21 different components.

2.6 Isotropic Elastic Body

For an isotropic elastic body the Eqs. (2.35) and (2.40), respectively, take the form

S = 2μ E + λ (tr E) (2.45)

and

E = 1

2μ

[

S − λ

3λ + 2μ
(tr S) 1

]

(2.46)

where λ and μ are Lamé moduli subject to the constitutive restrictions

μ > 0, 3λ + 2μ > 0 (2.47)

An alternative form of Eqs. (2.45) and (2.46), written in terms of Young’s modulus
E and Poisson’s ratio ν, reads

S = E

1 + ν

[

E + ν

1 − 2ν
(tr E) 1

]

(2.48)

E = 1

E
[(1 + ν) S − ν (tr S) 1] (2.49)

where
E > 0 and − 1 < ν < 1/2 (2.50)

Strain energy density of B

W(E) = 1

2
E · C [E] (2.51)

Stress energy density of B

̂W(S) = 1

2
S · K [S] (2.52)
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The tensor C is said to be strongly elliptic if

A · C[A] > 0 (2.53)

for every A of the form
A = a ⊗ b (2.54)

where a and b are arbitrary nonzero vectors.

2.7 The Cauchy Relations

An anisotropic elastic body obeying, in addition to the symmetry relations (2.38)
and (2.42), the restrictions

Ci jkl = Cik jl (2.55)

is said to be of the Cauchy type.

2.8 Constitutive Relations for a Thermoelastic Body

For an anisotropic body subject to an uneven heating the constitutive relations take
the form

S = C [E] + T M (2.56)

and
E = K [S] + T A (2.57)

where
T = θ − θ0, θ0 > 0 (2.58)

is a temperature change, M = MT is called the stress-temperature tensor, A = AT

is called the thermal expansion tensor, θ is the absolute temperature, and θ0 is a
reference temperature.

Since relations (2.56) and (2.57) are equivalent

K = C−1 and A = − K[M] (2.59)

for an isotropic body

S = 2μ E + λ (tr E) − (3λ + 2μ)α T 1 (2.60)

and



2.8 Constitutive Relations for a Thermoelastic Body 43

E = 1

2μ

[

S − λ

3λ + 2μ
(tr S) 1

]

+ α T 1 (2.61)

where α is the coefficient of thermal expansion,
or

S = E

1 + ν

[

E + ν

1 − 2ν
(tr E) 1

]

− E

1 − 2ν
α T 1 (2.62)

and

E = 1

E
[(1 + ν) S − ν (tr S) 1] + α T 1 (2.63)

2.9 Problems and Solutions Related to the Fundamentals
of Linear Elasticity

Problem 2.1. Show that if u is a pure strain from x0, then u admits the decomposition

u = u1 + u2 + u3 (2.64)

where u1, u2, and u3 are simple extensions in mutually perpendicular directions
from x0.

Solution. Since u represents a pure strain from x0, u takes the form [see definition
of u2 in (2.12)]

u = E(x − x0) (2.65)

where E is the strain tensor corresponding to u. Now, by the decomposition spectral
theorem [see Eq. (1.45) in which T = E and λi = ei ]

E =
3

∑

i=1

ei ni ⊗ ni (2.66)

where ni is a principal direction corresponding to a principal value ei of E.
Substituting (2.66) into (2.65) we obtain

u =
3

∑

i=1

ei (ni ⊗ ni )(x − x0) (2.67)

Since for two arbitrary vectors a and b

(a ⊗ a)b = (a · b)a (2.68)

http://dx.doi.org/10.1007/978-94-007-6356-2_1
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therefore, Eq. (2.67) is equivalent to

u = u1 + u2 + u3 (2.69)

where
ui = ei [ni · (x − x0)]ni (no sum) (2.70)

Since ui represents a simple extension of magnitude ei in the direction of ni [see
Eq. (2.12)], and n1, n2, and n3 are orthogonal, Eq. (2.69) is equivalent to (2.64). This
completes proof of (2.64).

Problem 2.2. Show that u in Problem 2.1 admits an alternative representation

u = ud + uc (2.71)

where ud is a uniform dilatation from x0, while uc is an isochoric pure strain from x0.

Solution. We rewrite E of Problem 2.1 as

E = E(s) + E(d) (2.72)

where

E(s) = 1

3
1(tr E), E(d) = E − 1

3
1(tr E) (2.73)

Then Eq. (2.65) of Problem 2.1 takes the form

u = ud + uc (2.74)

where

ud = E(s)(x − x0) (2.75)

uc = E(d)(x − x0) (2.76)

It follows from Eqs. (2.73) and (2.75) that ud represents a uniform dilatation of
magnitude e = 1

3 (tr E), while the condition tr E(d) = 0 implies that uc represents
an isochoric pure strain. This completes solution to Problem 2.2.

Problem 2.3. Show that if u is a simple shear of amountγ with respect to the pair (m,
n), where m and n are perpendicular unit vectors, then u admits the decomposition

u = u1 + u2 (2.77)

where u1 is a simple extension of amount γ in the direction 1√
2
(m + n), and u2 is a

simple extension of amount −γ in the direction 1√
2
(m − n).
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Solution. Since u represents a simple shear of amount γ with respect to (m, n),
then the strain tensor corresponding to u takes the form [see the definition of a simple
shear below Eq. (2.12)]

E = γ (m ⊗ n + n ⊗ m) (2.78)

Let λ and a denote a principal value and a principal vector of E, respectively. Then

γ (n · a)m + γ (m · a)n − λa = 0 (2.79)

It is easy to check that Eq. (2.79) has the three eigensolutions

a1 = m × n, λ1 = 0 (2.80)

a2 = 1√
2
(m + n), λ2 = γ (2.81)

a3 = 1√
2
(m − n), λ3 = −γ (2.82)

Therefore, using the solution (2.67) of Problem 2.1 we find that Eq. (2.77) holds true.
This completes solution of Problem 2.3.

Problem 2.4. Let u and E denote a displacement vector field and the corresponding
strain tensor field defined on B. Show that the mean strain ̂E(B) is represented by
the surface integral

̂E(B) = 1

v(B)

∫

∂B

sym (u ⊗ n) da (2.83)

where v(B) is the volume of B.

Solution. The mean strain ̂E(B) is defined by

̂E(B) = 1

v(B)

∫

B

E dv (2.84)

In components we obtain

̂Ei j (B) = 1

v(B)

∫

B

Ei j dv (2.85)

Since

Ei j = 1

2
(ui, j + u j,i ) (2.86)

therefore, by the divergence theorem,
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∫

B

Ei j dv = 1

2

∫

B

(ui, j + u j,i )dv = 1

2

∫

∂ B

(ui n j + u j ni )da (2.87)

Equations (2.87) and (2.85) imply that Eq. (2.83) holds true, and this completes solu-
tion to Problem 2.4.

Problem 2.5. Show that if u = 0 on ∂B then
∫

B

(∇u)2dv ≤ 2
∫

B

|E|2 dv (2.88)

where E is the strain tensor field corresponding to a displacement field u on B.

Solution. We recall the relation

∇u = E + W (2.89)

where

E = 1

2
(∇u + ∇uT) (2.90)

and

W = 1

2
(∇u − ∇uT) (2.91)

Since E · W = 0, Eq. (2.89) implies that

|∇u|2 = |E|2 + |W|2 (2.92)

and it follows from Eqs. (2.90) and (2.91), respectively, that

|E|2 = 1

2
[(∇u)2 + (∇u) · (∇uT)] (2.93)

and

|W|2 = 1

2
[(∇u)2 − (∇u) · (∇uT)] (2.94)

Hence,
|E|2 − |W|2 = (∇u) · (∇uT) (2.95)

Now

(∇u) · (∇uT) = ui, j uT
i, j = ui, j u j,i

= (ui, j u j ),i − ui, j i u j

= (ui, j u j ),i − (ui,i u j ), j + (ui,i )
2
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= (u j,i ui − ui,i u j ), j + (ui,i )
2

= div[(∇u)u − (div u)u] + (div u)2 (2.96)

Therefore, integrating Eq. (2.96) over B, using the divergence theorem, and the homo-
geneous boundary condition: u = 0 on ∂ B, we obtain

∫

B

(∇u) · (∇uT)dv =
∫

B

(div u)2dv (2.97)

Equations (2.95) and (2.97) imply that

∫

B

(|E|2 − |W|2)dv =
∫

B

(div u)2dv (2.98)

and it follows from Eq. (2.92) that

∫

B

(|E|2 + |W|2)dv =
∫

B

|∇u|2dv (2.99)

Therefore, by adding Eqs. (2.98) and (2.99), we obtain

2
∫

B

|E|2dv =
∫

B

|∇u|2dv +
∫

B

(div u)2dv (2.100)

and Eq. (2.100) leads to the inequality

2
∫

B

|E|2dv ≥
∫

B

|∇u|2dv (2.101)

This completes solution of Problem 2.5.

Problem 2.6. (i) Let E be a strain tensor field on E3 defined by the matrix

E = N

E

⎡

⎣

1 0 0
0 −ν 0
0 0 −ν

⎤

⎦ (2.102)

where E , N , and ν are positive constants. Show that a solution u to the equation
E = ̂∇u on E3 subject to the condition u(0) = 0 takes the form

u =
[

N

E
x1, −ν

N

E
x2, −ν

N

E
x3

]T

(2.103)
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(ii) Let E be a strain tensor field on E3 defined by the matrix

E = M

E I
x1

⎡

⎣

ν 0 0
0 ν 0
0 0 −1

⎤

⎦ (2.104)

where M, E, I , and ν are positive constants. Show that a solution u to the
equation E = ̂∇u on E3 subject to the condition u(0) = 0 takes the form

u = M

E I

[

1

2
(x2

3 + ν x2
1 − ν x2

2 ), ν x1x2, −x1x3

]T

(2.105)

Solution. (i) Using (2.103) we find that u(0) = 0 and

∇u = N

E

⎡

⎣

1 0 0
0 −ν 0
0 0 −ν

⎤

⎦ (2.106)

Since ∇u = ∇uT, the equation

̂∇u = E (2.107)

in which E is given by (2.102) is identically satisfied. This completes a proof
of (i).

(ii) Using (2.105) we obtain u(0) = 0 and

∇u = M

E I

⎡

⎣

νx1 −νx2 x3
νx2 νx1 0
−x3 0 −x1

⎤

⎦ (2.108)

Hence

∇uT = M

E I

⎡

⎣

νx1 νx2 −x3
−νx2 νx1 0

x3 0 −x1

⎤

⎦ (2.109)

and

̂∇u = M

E I

⎡

⎣

νx1 0 0
0 νx1 0
0 0 −x1

⎤

⎦ (2.110)

Equation (2.110) implies that u given by (2.105) satisfies the equation

̂∇u = E (2.111)

where E is given by (2.104). This completes proof of (ii).
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Problem 2.7. Given a stress tensor S at a point A, find: (i) the stress vector s on a
plane through A parallel to the plane n · x − vt = 0 (|n| = 1, v > 0, t ≥ 0), (ii)
the magnitude of s, (iii) the angle between s and the normal to the plane, and (iv) the
normal and tangential components of the stress vector s.

Answers. (i) s = Sn; (ii) |s| = |Sn|; (iii) cos θ = s · n/ |s|; (iv) s = sn + sτ , where
sn = (n · s) n and sτ = n × (s × n).

Solution. Solution to Problem 2.7 is presented by the answers (i)–(iv).

Problem 2.8. Let {ei } be an orthonormal basis for a stress tensor S, and let {e∗
i } be

an orthonormal basis formed by the eigenvectors of S. Then a tensor S∗ obtained
from S by the transformation formula from {ei } to {e∗

i } takes the form

S∗ = λ1 e∗
1 ⊗ e∗

1 + λ2 e∗
2 ⊗ e∗

2 + λ3 e∗
3 ⊗ e∗

3 (2.112)

where λi is an eigenvalue of S corresponding to the eigenvector e∗
i . Show that the

function
g(n∗) = ∣

∣s∗
τ

∣

∣ = ∣

∣n∗ × (S∗n∗ × n∗)
∣

∣ (2.113)

representing the tangent stress vector magnitude with regard to a plane with a normal
n∗ in the {e∗

i } basis, assumes the extreme values

∣

∣s∗
τ

∣

∣

1 = 1

2
|λ2 − λ3| (2.114)

∣

∣s∗
τ

∣

∣

2 = 1

2
|λ3 − λ1| (2.115)

and
∣

∣s∗
τ

∣

∣

3 = 1

2
|λ1 − λ2| (2.116)

at

n∗
1 = [0, ±1/

√
2, ±1/

√
2]T (2.117)

n∗
2 = [ ±1/

√
2, 0, ±1/

√
2]T (2.118)

and
n∗

3 = [ ±1/
√

2, ±1/
√

2, 0]T (2.119)

respectively. Hence, if λ1 > λ2 > λ3 then the largest tangential stress vector mag-
nitude is

∣

∣s∗
τ

∣

∣

2 = 1

2
|λ3 − λ1| (2.120)

and this extreme vector acts on the plane that bisects the angle between e∗
1 and e∗

3.
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Solution. It follows from (iv) of Problem 2.7 that

s∗ = s∗
n + s∗

τ (2.121)

where
s∗ = S∗n∗ (2.122)

and
s∗

n = (s∗ · n∗)n, s∗
τ = n∗ × (s∗ × n) (2.123)

Using (2.112), (2.122) and (2.123), we obtain

s∗ = λ1n∗
1e∗

1 + λ2n∗
2e∗

2 + λ3n∗
3e∗

3 (2.124)

and
s∗ · n∗ = λ1(n

∗
1)

2 + λ2(n
∗
2)

2 + λ3(n
∗
3)

2 (2.125)

Since s∗
n · s∗

τ = 0, by squaring (2.121), we get

|s∗|2 = ∣

∣s∗
n

∣

∣

2 + ∣

∣s∗
τ

∣

∣

2 (2.126)

Now, introduce the function

f (n∗) = ∣

∣s∗
τ

∣

∣

2 = |s∗|2 − ∣

∣s∗
n

∣

∣

2 = λ2
1(n

∗
1)

2 + λ2
2(n

∗
2)

2 + λ2
3(n

∗
3)

2

−
[

λ1(n
∗
1)

2 + λ2(n
∗
2)

2 + λ2
3(n

∗
3)

2
]2

(2.127)

If there is an extremum of f = f (n∗), treated as a function of n∗
1, n∗

2, and n∗
3, it is

also an extremum of g = g(n∗) = √
f (n∗).

To find the extreme values of f = f (n∗) subject to the condition |n∗| = 1 we
solve the algebraic equation for n∗

∂

∂n∗
i

[ f (n∗) − t (|n∗|2 − 1)] = 0 (2.128)

where t is a Lagrangian multiplier. In expanded form Eq. (2.128) takes the form

[

λ2
1 − 2λ1(s∗ · n∗) − t

]

n∗
1 = 0 (2.129)

[

λ2
2 − 2λ2(s∗ · n∗) − t

]

n∗
2 = 0 (2.130)

[

λ2
3 − 2λ3(s∗ · n∗) − t

]

n∗
3 = 0 (2.131)
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Fig. 2.1 The wedge region

0

0 < θ < π/2

x 2

x 2 = x 1 tan θ

S 22

S
12

x 1

S 22

θ

x2

x1

where (s∗ · n∗) is given by (2.125). It can be verified that the unit vectors n∗
1, n∗

2, and
n∗

3, given by Eqs. (2.117), (2.118), and (2.119), respectively, satisfy Eqs. (2.129)–
(2.131) with t = λ2λ3. In addition, by substituting n∗

1, n∗
2, and n∗

3 into (2.127), we
obtain Eqs. (2.114), (2.115), and (2.116), respectively. Also, the vector n∗

2 that is
normal to the surface element on which the largest tangential stress vector

(

s∗
τ

)

2 acts
bisects the angle between e∗

1 and e∗
3. This completes solution of Problem 2.8.

Problem 2.9. Let D = {x : x1 ≥ 0, x1 tan θ ≥ x2 ≥ 0} be a two-dimensional
wedge region shown in the Fig. 2.1, and let Sαβ = Sαβ(x), [x = (x1, x2); α, β =
1, 2] be a symmetric tensor field on D defined by

S11 = d x2 + e x1 − ρ gx1, S22 = −γ x1, S12 = S21 = −e x2 (2.132)

where d, e, g, ρ, and γ are constants [g > 0, ρ > 0, γ > 0]. (i) Show that

div S + b = 0 on D (2.133)

where
b = [ρ g, 0]T on D (2.134)

(ii) Using the transformation formula from the system xα to the system x ′
α

[see Eq. (1.157) in Problem 1.8] find the components S′
αβ in terms of Sαβ , and

show that
S′

12 = 0 and S′
22 = 0 for x2 = x1 tan θ (2.135)

provided

e = γ

tan2 θ
, and d = ρ g

tan θ
− 2γ

tan3 θ
(2.136)

(iii) Give diagrams of S11 and S12 over a horizontal section x1 = x0
1 = constant.

(iv) Give a diagram of S22 over the vertical section x2 = 0.

http://dx.doi.org/10.1007/978-94-007-6356-2_1
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Solution. To show (i) we note that Sαβ = Sαβ(x1, x2) given by Eq. (2.132) satisfies
the equilibrium equation

Sαβ,β + bα = 0 on D (2.137)

since
S1β,β = −ρ g, S2β,β = 0 on D (2.138)

for arbitrary constants d, e, g, ρ, and γ . To show (ii) we use the transformation
formulas [see Eq. (1.157) in Problem 1.8]

S′
11 = S11 cos2 θ + S12 sin 2θ + S22 sin2 θ (2.139)

S′
12 = 1

2
(S22 − S11) sin 2θ + S12 cos 2θ (2.140)

S′
22 = S11 sin2 θ − S12 sin 2θ + S22 cos2 θ (2.141)

[see Fig. 2.1].
The components S11, S12, and S22 taken on the line x2 = x1 tan θ assume the

forms

S11(x1, x1 tan θ) = (d tan θ + e − ρg)x1 (2.142)

S12(x1, x1 tan θ) = −(e tan θ)x1 (2.143)

S22(x1, x1 tan θ) = −γ x1 (2.144)

Therefore, substituting (2.142)–(2.144) into the RHS′ of (2.140) and (2.141), and
equating the results to zero, we obtain the algebraic equations for the unknown
constants e and d, provided γ and ρg are prescribed

e(sin2 θ + tan θ sin 2θ) + d tan θ sin2 θ

= γ cos2 θ + ρg sin2 θ (2.145)

e(sin 2θ + 2 tan θ cos 2θ) + d tan θ sin 2θ

= −γ sin 2θ + ρg sin 2θ (2.146)

Dividing Eq. (2.145) by sin2 θ and Eq. (2.146) by sin 2θ and introducing the notation

tan θ = u (2.147)

we obtain

3e + du = γ

u2 + ρg

(2 − u2)e + du = −γ + ρg (2.148)

http://dx.doi.org/10.1007/978-94-007-6356-2_1
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It is easy to check that a unique solution (e, d) of Eqs. (2.148) takes the form (2.136)
that is

e = γ /u2, d = ρg/u − 2γ /u3 (2.149)

This completes proof of (ii).
Finally, when x1 = x0

1 = const, S11 and S12 are represented by straight lines
on the planes (x2, S11) and (x2, S12), respectively, and S22 at x2 = 0 is represented
by a straight line passing through the origin 0 as shown in Fig. 2.1. This completes
solution to Problem 2.9.

Problem 2.10. Let B denote a cylinder of length l and of arbitrary cross section,
suspended from the upper end and subject to its own weight ρg. Then the stress
tensor S = S(x) on B takes the form

S =
⎡

⎣

0 0 0
0 0 0
0 0 ρgx3

⎤

⎦ (2.150)

since, in this case, the body force vector field is given by b = [0, 0, −ρ g]T, and
div S + b = 0 on B. The stress vector s associated with S on ∂B has the following
properties: s = [0, 0, ρ g l ]T on the end plane x3 = l; and s = 0 on the plane x3 = 0
and on the lateral surface of the cylinder since n = [n1, n2, 0]T on the surface.
Assuming that the cylinder is made of a homogeneous isotropic elastic material, the
associated strain tensor field E takes the form [see Eqs. (2.49)]

E = ρ g x3

E

⎡

⎣

−ν 0 0
0 −ν 0
0 0 1

⎤

⎦ (2.151)

where E and ν are Young’s modulus and Poisson’s ratio, respectively.

(i) Show that a solution u of the equation

E = ̂∇u on B (2.152)

subject to the condition
u(0, 0, l) = 0 (2.153)

takes the form

u = ρ g

E

[

−νx1x3, −νx2x3,
ν

2
(x2

1 + x2
2 ) + 1

2
(x2

3 − l2)

]T

(2.154)

(ii) Plot u3 = u3(0, 0, x3) over the range 0 ≤ x3 ≤ l.

Solution. To solve the problem we use (2.154) and obtain
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Fig. 2.2 The cylinder of
arbitrary cross section

x 2

x 1

x 3

gρl B

∇u = ρg

E

⎡

⎣

−νx3 0 −νx1
0 −νx3 −νx2

νx1 νx2 x3

⎤

⎦ (2.155)

and

∇uT = ρg

E

⎡

⎣

−νx3 0 νx1
0 −νx3 νx2

−νx1 −νx2 x3

⎤

⎦ (2.156)

Hence

̂∇u = ρg

E

⎡

⎣

−νx3 0 0
0 −νx3 0
0 0 x3

⎤

⎦ (2.157)

Therefore, u given by (2.154) satisfies (2.152). Also, it is easy to prove that u satisfies
(2.153). Finally, u3 = u3(0, 0, x3) is represented by a parabolic curve restricted to
the interval 0 ≤ x3 ≤ . This completes solution to Problem 2.10.

Problem 2.11. For a transversely isotropic elastic body each material point posses
an axis of rotational symmetry, which means that the elastic properties are the same
in any direction on any plane perpendicular to the axis, but they are different than
those in the direction of the axis. If the x3 axis coincides with the axis of symmetry,
then the stress-strain relation for such a body takes the form



2.9 Problems and Solutions Related to the Fundamentals of Linear Elasticity 55

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

S11
S22
S33
S32
S31
S12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 (c11 − c12)/2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

E11
E22
E33
2E32
2E31
2E12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2.158)

where S and E are the stress and strain tensors, respectively, and five numerically
independent moduli c11, c33, c12, c13, and c44 are related to the components Ci jkl

of the fourth-order elasticity tensor C by [see Eq. (2.35)]

c11 = C1111, c12 = C1122, c13 = C1133, c33 = C3333, c44 = C1313 (2.159)

Show that if the axis of symmetry of a transversely isotropic body coincides with the
direction of an arbitrary unit vector e, then the stress-strain relation takes the form

S = C [E] = (c11 − c12)E + {c12(tr E) − (c12 − c13)e · (Ee)} 1

− (c11 − c12 − 2c44){e ⊗ (Ee) + (Ee) ⊗ e} (2.160)

− {(c12 − c13)(tr E) − (c11 + c33 − 2c13 − 4c44)e · (Ee)}e ⊗ e

Solution. For a transversely isotropic body in which the axis of symmetry coincides
with an arbitrary unit vector e, the stress–strain relation takes the form1

S = C[E] (2.161)

where S and E are the stress and strain tensors, respectively, and the elasticity tensor
C is given by

C = c33C(1) + (c11 + c12)C(2) + √
2 c13(C(3) + C(4))

+ (c11 − c12)C(5) + 2 c44C(6) (2.162)

In Eq. (2.162) the tensors C(a), a = 1, 2, 3, 4, 5, 6, are defined by

C (1)
i jkl = Ai j Akl , C (2)

i jkl = 1

2
Bi j Bkl

C (3)
i jkl = 1√

2
Ai j Bkl , C (4)

i jkl = 1√
2

Bi j Akl

C (5)
i jkl = 1

2
(Bik B jl + Bil B jk − Bi j Bkl)

C (6)
i jkl = 1

2
(Aik B jl + Ail B jk + A jk Bil + A jl Bik)

(2.163)

1 See P. Chadwick, Proc. R. Soc. London, A 422, p. 26 (1989).



56 2 Fundamentals of Linear Elasticity

where
Ai j = ei e j , Bi j = δi j − ei e j (2.164)

and ei are the components of e in the coordinates {xi }.
Using (2.163) and (2.164), we obtain

C (1)
i jkl Ekl = ei e j ek el Ekl (2.165)

or in direct notation
C(1)[E] = [e · (Ee)]e ⊗ e (2.166)

Similarly, by (2.163) and (2.164), we get

C (2)
i jkl Ekl = 1

2
(δi j − ei e j )(δkl − ek el)Ekl (2.167)

or

C(2)[E] = 1

2
(1 − e ⊗ e)[tr E − e · (Ee)] (2.168)

Also, using (2.163) and (2.164), we obtain

√
2

(

C (3)
i jkl + C (4)

i jkl

)

Ekl = ei e j (δkl − ek el)Ekl + (δi j − ei e j )ek el Ekl (2.169)

or √
2(C(3)[E] + C(4)[E]) = [e · (Ee)]1 + [tr E − 2e · (Ee)]e ⊗ e (2.170)

and

C (5)
i jkl Ekl = Ei j − ei ek E jk − e j ek Eik + ei e j ek el Ekl

− 1

2
(δi j − ei e j )(Ekk − ek el Ekl) (2.171)

or

C(5)[E] = E − e ⊗ (Ee) − (Ee) ⊗ e + e ⊗ e(e · Ee)

− 1

2
(1 − e ⊗ e)(tr E − e · Ee) (2.172)

and
C (6)

i jkl Ekl = ei E jk ek + Eik ek e j − 2ei e j ek el Ekl (2.173)

or
C(6)[E] = e ⊗ Ee + (Ee) ⊗ e − 2e ⊗ e[e · (Ee)] (2.174)



2.9 Problems and Solutions Related to the Fundamentals of Linear Elasticity 57

Therefore, substituting C from (2.162) into (2.161) and using (2.166), (2.168),
(2.170), (2.172), and (2.174), we obtain (2.160). Note that the representation
(2.160) coincides with (2.158) if e = (0, 0, 1). This can be proved by substitut-
ing e = (0, 0, 1) into (2.160).

Problem 2.12. Show that the stress-strain relation (2.160) in Problem 2.11 is invert-
ible provided

c ≡ (c11 + c12)c33 − 2c2
13 > 0, c11 > |c12| , c44 > 0 (2.175)

and that the strain-stress relation reads

E = K[S] = (c11 − c12)
−1S + 1

2

[{

c−1c33 − (c11 − c12)
−1} (tr S)

− {

c−1(c33 + 2c13) − (c11 − c12)
−1} e · (Se)

]

1

−
{

(c11 − c12)
−1 − 1

2
c−1

44

}

{e ⊗ (Se) + (Se) ⊗ e} (2.176)

− 1

2

[{c−1(c33 + 2c13) − (c11 − c12)
−1} (tr S)

−{c−1(2 c11 + c33 + 2c12 + 4c13) + (c11 − c12)
−1 − 2c−1

44 } e · (Se)
]

e ⊗ e

Solution. To show that (2.160) in Problem 2.11 is invertible if the inequalities
(2.175) are satisfied, and the inverted formula takes the form (2.176), consider the
fourth-order tensor

A = a1C(1) + a2C(2) + a3(C(3) + C(4)) + a5C(5) + a6C(6) (2.177)

where a1, a2, a3, a5, and a6 are scalars that satisfy the inequalities

a1 > 0, a2 > 0, a1a2 − a2
3 > 0, a5 > 0, a6 > 0 (2.178)

and C(a) (a = 1, 2, 3, 4, 5, 6) are the fourth-order tensors defined by (2.163) and
(2.164) in Problem 2.11.

Then, there is A−1 in the form

A−1 =
(

a1a2 − a2
3

)−1 {a2C(1) + a1C(2) − a3(C(3) + C(4))} + a−1
5 C(5) + a−1

6 C(6)

(2.179)
such that

AA−1 = A−1A = 1 (2.180)

where 1 is the fourth-order identity tensor with components
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Ii jkl = 1

2
(δik δ jl + δ jk δil) (2.181)

To prove (2.180) we use (2.163) and (2.164) of Problem 2.11 to obtain the 6 × 6
tensor matrix

[C(a) C(b)] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

C(1) 0 C(3) 0 0 0
0 C(2) 0 C(4) 0 0
0 C(3) 0 C(1) 0 0

C(4) 0 C(2) 0 0 0
0 0 0 0 C(5) 0
0 0 0 0 0 C(6)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2.182)

as well as the identity
C(1) + C(2) + C(5) + C(6) = 1 (2.183)

Calculating the tensor A A−1, by using Eqs. (2.177), (2.179), (2.182), and (2.183)
we obtain

A A−1 = 1 (2.184)

Similarly, using Eqs. (2.177), (2.179), (2.182), and (2.183) we get

A−1 A = 1 (2.185)

Now, by letting

a1 = c33, a2 = c11 + c12, a3 = √
2 c13

a5 = c11 − c12, a6 = 2c44
(2.186)

in Eq. (2.177) we obtain A = C, and the inequalities (2.178) reduce to those of
(2.175). Also, Eq. (2.179) reduces to

C−1 = K = c−1{(c11 + c12)C(1) + c33C(2) − √
2 c13(C(3) + C(4))}

+ (c11 − c12)
−1C(5) + 2−1c−1

44 C(6) (2.187)

where
c = (c11 + c12)c33 − 2c2

13 > 0 (2.188)

Therefore, the strain–stress relation reads

E = K[S] = c−1{(c11 + c12)C(1)[S] + c33C(2)[S] − √
2 c13(C(3)[S] + C(4)[S])}

+ (c11 − c12)
−1C(5)[S] + 2−1c−1

44 C(6)[S] (2.189)
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Finally, if Eqs. (2.166), (2.168), (2.170), (2.172), and (2.174) of Problem 2.11 in
which E is replaced by S are taken into account, Eq. (2.189) reduces to (2.176).

Problem 2.13. Prove that the inequalities (2.175) in Problem 2.12 are necessary
and sufficient conditions for the elasticity tensor C (compliance tensor K) to be
positive definite. This means that the strain energy density (stress energy density) of
a transversely isotropic body is positive definite if and only if the inequalities (2.175)
in Problem 2.12 hold true.

Solution. Define the fourth-order tensor H by

H = √
a1a′

1

(

a′ 2
1 + a2

3

)−1/2
C(1) + √

a2a′
2

(

a′ 2
2 + a2

3

)−1/2
C(2)

+ a3(a
′
1 + a′

2)
−1/2(C(3) + C(4)) + √

a5 C(5) + √
a6 C(6) (2.190)

where

a′
1 = a1 + (a1 a2 − a3)

1/2, a′
2 = a2 + (a1 a2 − a3)

1/2 (2.191)

and a1, a2, a3, a5, and a6 satisfy the inequalities (2.178) of Problem 2.12.
Then using the matrix equation (2.182) of Problem 2.12 we obtain

H H = A (2.192)

where A is the fourth-order tensor given by (2.177) of Problem 2.12. Hence, we get

A[E] = H(H [E]) ∀ E = ET �= 0 (2.193)

and
E · A[E] = E · H(H [E]) (2.194)

or
E · A[E] = (H [E]) · (H [E]) (2.195)

Since
(H [E]) · (H [E]) > 0 ∀ E = ET �= 0 (2.196)

therefore, expressing a1, a2, a3, a5, and a6 in terms of c11, c12, c13, c33, and c44
[see Eqs. (2.186) of Problem 2.12], we conclude that if (2.175) of Problem 2.12 is
satisfied then

E · C [E] > 0 ∀ E = ET �= 0 (2.197)

that is, the elasticity tensor C is positive definite.
To prove that (2.197) implies (2.175) of Problem 2.12, that is, that (2.175) of

Problem 2.12 are also necessary conditions, we take advantage of the fact that E
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in (2.197) is an arbitrary second-order symmetric tensor, and select the following
choices

E1 = αe ⊗ e + β√
2
(1 − e ⊗ e) (2.198)

E2 = e ⊗ c + c ⊗ e (2.199)

E3 = c ⊗ (e × c) + (e × c) ⊗ c (2.200)

where α and β are the real numbers, and c is an arbitrary unit vector orthogonal to e.
Then, substituting (2.198), (2.199), and (2.200) into (2.197), respectively, we

obtain

E1 · C [E1] = c33α
2 + 2

√
2 c13 αβ + (c11 + c12)β

2 (2.201)

E2 · C [E2] = 4c44 (2.202)

E3 · C [E3] = 2 (c11 − c12) (2.203)

Since the RHS of (2.201) is positive for non-vanishing numbers α and β, we obtain

� = 8c2
13 α2 − 4(c11 + c12)c33α

2 < 0 (2.204)

or
c = (c11 + c12)c33 − 2c2

13 > 0 (2.205)

and
c11 + c12 > 0, c33 > 0 (2.206)

Also, Eqs. (2.202) and (2.203) together with the positiveness of C imply that

c44 > 0, c11 − c12 > 0 (2.207)

Since the inequalities (2.205)–(2.207) are equivalent to the inequalities (2.175) of
Problem 2.12, the solution to Problem 2.13 is complete.

Problem 2.14. Consider a plane n · x − vt = 0 (|n| = 1, v > 0, t ≥ 0). Let S be
the stress tensor obtained form Eq. (2.160) of Problem 2.11 in which 0 < e · n < 1,
and the strain tensor E is defined by

E = sym (n ⊗ a) (2.208)

where a is an arbitrary vector orthogonal to n. Let S⊥ and S|| represent the normal
and tangential parts of S with respect to the plane [see Problem 1.4 in which T is
replaced by S]. Show that
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S = (c11 − c12) sym (n ⊗ a) − (c11 − c12 − 2c44) cos θ sym (e ⊗ a) (2.209)

S⊥ = [(c11 − c12) sin2 θ + 2c44 cos2 θ ] sym (n ⊗ a) (2.210)

S|| = (c11 − c12 − 2c44) cos θ sym [(n cos θ − e) ⊗ a] (2.211)

where
cos θ = e · n, 0 < θ < π /2 (2.212)

Solution. If we let E = sym(n ⊗ a) into Eq. (2.160) of Problem 2.11, we obtain
(2.209). To obtain (2.210) and (2.211) we use the formulas:

S⊥ = 2 sym(n ⊗ Sn) − (n · Sn)n ⊗ n (2.213)

and
S‖ = (1 − n ⊗ n)[S(1 − n ⊗ n)] (2.214)

By substituting S from Eq. (2.209) into Eqs. (2.213) and (2.214), we obtain (2.210)
and (2.211), respectively. This completes solution to Problem 2.14.

Problem 2.15. Show that for a transversely isotropic elastic body the stress energy
density

̂W(S) = 1

2
S · K[S] (2.215)

corresponding to the stress tensor given by Eq. (2.209) of Problem 2.14 takes the
form

̂W(S) = 1

2
a2

[

1

2
(c11 − c12) sin2 θ + c44 cos2 θ

]

(2.216)

Also, show that
̂W(S) = ̂W(S⊥) − ̂W(S||) (2.217)

where ̂W(S⊥) and ̂W(S||) represent the “normal” and “tangential” stress energies,
respectively, given by

̂W(S⊥) = 1

2
S⊥ · K[S⊥] = ̂W(S)

[

1 + 1

8
c−1

44 (c11 − c12)−1(c11 − c12 − 2c44)2 sin2 2θ

]

(2.218)

and

̂W(S||) = 1

2
S|| · K[S||] = ̂W(S)

[

1

8
c−1

44 (c11 − c12)
−1(c11 − c12 − 2c44)

2 sin2 2θ

]

(2.219)

Here, S⊥ and S|| are given by Eqs. (2.210) and (2.211), respectively, of Problem 2.14.
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Solution. If we substitute S from Eq. (2.209) of Problem 2.14 into Eq. (2.215) we
arrive at (2.216). Next, using Eqs. (2.208) and (2.210) of Problem 2.14 we obtain
(2.218); and using Eqs. (2.208) and (2.211) of Problem 2.14, we get Eq. (2.219).
Finally, subtracting (2.219) from (2.218) we obtain Eq. (2.217). This completes solu-
tion to Problem 2.15.

Problem 2.16. Let ϕ(θ) = ̂W(S||)/̂W(S⊥), where ̂W(S⊥) and ̂W(S||) denote
the normal and tangential stress energy densities, respectively, of Problem 2.15.
Show that

max
θ ∈ [ 0, π /2 ] [ϕ(θ)] = ϕ(π/4) = A2

1 + A2 (2.220)

where

A = 1

2
√

2

|c11 − c12 − 2c44|
(c11 − c12)1/2c1/2

44

(2.221)

Note. When the body is isotropic we have

c11 = c33 = λ + 2μ, c12 = c13 = λ, c44 = μ (2.222)

whereλ andμ are the Lamé material constants. In this case Eq. (2.221) reduces to A =
0, which means that for an isotropic body the tangential stress energy corresponding
to the stress (2.211) of Problem 2.14 vanishes.

Solution. Note that, by using Eqs. (2.218) and (2.219) of Problem 2.15, we obtain

ϕ(θ) = ̂W (S‖)/ ̂W (S⊥) = A2 sin2 2θ

(1 + A2 sin2 2θ)
(2.223)

where A is given by Eq. (2.221). Equation (2.223) implies (2.220), and this completes
solution of Problem 2.16.

Problem 2.17. Let u, E, and S denote the displacement vector, strain tensor, and
stress tensor fields, respectively, corresponding to a body force b and a temperature
change T . Suppose that the fields u, E, and S satisfy the equations

E = ̂∇u on B (2.224)

div S + b = 0 on B (2.225)

S = C[E] + T M on B (2.226)

where B is a bounded domain in E3; while C and M denote the elasticity and
stress-temperature tensors, respectively, independent of x ∈ B. Also, suppose that
an alternative equation to Eq. (2.226) reads

E = K[S] + T A on B (2.227)
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where K and A represent the compliance and thermal expansion tensors, respectively.
Let̂f =̂f (B) denote the mean value of a function f = f(x) on B

̂f (B) = 1

v(B)

∫

B

f(x) dv (2.228)

where v(B) stands for the volume of B. Show that

̂E (B) = 1

v(B)

∫

∂B

sym (u ⊗ n)da (2.229)

and

̂S (B) = 1

v(B)

⎡

⎣

∫

∂B

sym (x ⊗ Sn) da +
∫

B

sym (u ⊗ b) dv

⎤

⎦ (2.230)

where n is the outward unit normal on ∂B. Also, show that

̂E(B) = K[̂S(B)] + ̂T (B)A (2.231)

and
̂S(B) = C[̂E(B)] + ̂T (B)M (2.232)

Solution. Equation (2.229) is identical with Eq. (2.83) of Problem 2.4. Therefore, a
proof of (2.229) is the same as that of (2.83) of Problem 2.4. To show (2.230), we
note that Eq. (2.225) implies the tensorial equation

x ⊗ div S + x ⊗ b = 0 (2.233)

or in components
xi S jk,k + xi b j = 0 (2.234)

An equivalent form of Eq. (2.234) reads

(xi S jk),k −S ji + xi b j = 0 (2.235)

Integrating Eq. (2.235) over B and using the divergence theorem we obtain

∫

∂ B

xi S jk nk da −
∫

B

S ji dv +
∫

B

xi b j dv = 0 (2.236)

Finally, taking into account the symmetry of Si j , and applying the operator sym
to Eq. (2.236); and dividing (2.236) by v(B), we obtain (2.230). Also applying the
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mean value operator to Eqs. (2.227) and (2.226), we obtain (2.231) and (2.232),
respectively; since the fourth-order tensors C and K, and the second-order tensors
M and A are independent of x. This completes solution of Problem 2.17.

Problem 2.18. The volume change δv(B) associated with the fields u, E, and S in
Problem 2.17 is defined by [see Eqs. (2.7)–(2.8)]

δv(B) = v(B) tr ̂E(B) (2.237)

Show that

(i) δv(B) = 0, ̂S(B) = ̂T (B) M if u = 0 on ∂B (2.238)

and

(ii) ̂S(B) = 0, ̂E(B) = ̂T (B)A, δv(B) = v(B)̂T (B) tr A

if Sn = 0 on ∂B and b = 0 on B (2.239)

Note. Equations (2.239) imply that the volume change δv(B) of a homogeneous
isotropic thermoelastic body with zero stress vector on ∂B and zero body force
vector on B subject to a temperature change T on B is given by

δv(B) = 3 α ̂T (B) v(B) (2.240)

where α is the coefficient of linear thermal expansion of the body.

Solution. If u = 0 on ∂ B then it follows from Eq. (2.229) of Problem 2.17
that ̂E(B) = 0. This together with Eq. (2.232) of Problem 2.17 and Eq. (2.237)
implies (i).

To show (ii) we note that if Sn = 0 on ∂ B and b = 0 on B then, by virtue of
(2.230) of Problem 2.17 we obtain

̂S(B) = 0 (2.241)

Hence, using (2.231) of Problem 2.17 we get

̂E(B) = ̂T (B)A (2.242)

Finally, taking the trace of (2.234) and using (2.237) we obtain

δv(B) = v(B) ̂T (B)tr A (2.243)

This completes proof of (ii). The result (2.240) follows from the fact that in a homo-
geneous isotropic body

tr A = 3α (2.244)

This completes solution of Problem 2.18.
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