Chapter 17
Plane Thermoelastic Problems

In this chapter the basic treatment of plane thermoelastic problems in a state of
plane strain and a plane stress are recalled. Typical three methods for the solution
of plane problems are presented: the thermal stress function method for both simply
connected and multiply connected bodies, the complex variable method with use of
the conformal mapping technique, and potential method for Navier’s equations [See

also Chap.7].

17.1 Plane Strain and Plane Stress

The unified systems of the governing equations for both plane strain and plane stress

are as follows:
The generalized Hooke’s law is

1
k * k
exxzﬁ(axx—yayy)—l—ar—c
Eyy_E* Oyy —V Oxx a’'T —c
1
=567

An alternative form
Oxx = (N 4+ 2)exy + Neyy — fF1
Oyy = N 4+ 2)€yy + Nexy — 577
Oxy = 2[i€xy

where

E .
£ — E = - for plane strain
E

for plane stress
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. W for plane strain
v = 1—v
v for plane stress
o — o' = (1 +v)a for plane strain
I e for plane stress
A for plane strain
* = 2uA
A N=-F g plane stress (17.2)
A+2u
. B8 ) for plane strain
A= = L/B for plane stress
A+2u
o= L veo for plane strain
10 for plane stress

The equilibrium equations in the absence of body forces are

0 doy 0 0
Tax  Tx g, D Ty (17.3)
ox dy 0x ady
The compatibility equation is
02eyy n 82€yy _ (‘)zexy (17.4)
0y? Ox? Ox0y
Navier’s equations are from Egs. (7.25) and (7.35)
Oe or
HVr + OV ) o = o =0
Vouy, + (N — —f"—=0
uVuy + ( +,U)ay ﬂay
where e = €,y + €yy + ™.
The boundary conditions are
Oxxl + 0yxm = ppx, Oxyl +0yym = pyy (17.6)

Next, we show typical three analytical methods for the plane problem.

Thermal stress function method
We introduce a thermal stress function x related to the components of stress as
follows

%X %X X

Oxx = 6_))2’ Oyy = W’ Oxy = —m (17.7)
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The governing equation for the thermal stress function Y is

Vi = —a*E*V?r (17.8)
where
0? 0? 0? 0? ot o* ot
vi=vvi [+ ) ([ )= 2— 4+ 7 (179
(8)62 + 8y2) (ax2 + 5‘y2) Ox* + Ox20y? + oyt (17.9)

B =1 T, for plane strain (17.10)

aFE  for plane stress

The components of displacement can be expressed in the form

1 ox 1 ov N
Uy = — | ——=— + — | —Ccx
2G Ox 14v* 0y (17.11)
1 ox n 1 oy N ’
Uy = — | —=— — | —c
YT2G | 9y 14vrox Y
where ¢* is a constant and the function v satisfies the equation
k2 * ok 521/J
Oxx + 0y +a"E*T =V + " E'T = —— (17.12)
0x0dy
in which 5
9 2
Ve =0 17.13
axDy (G ( )

When the external force does not apply to the body, the boundary conditions of
pure thermal stress problems are

(P)=Cix + Cay + C3
ox(P)

on’

17.14
= Cycos(n’, x) + Crcos(n', y) ( )

where n’ denotes some direction which does not coincide with the direction of the
contour, and C1, C;, and C3 are arbitrary integration constants. The arbitrary inte-
gration constants Cp, Co, and C3 can be taken zero for a simply connected body. On
the other hand, for a multiply connected body whose boundary consists of m + 1
simply closed contours L; (i =0, 1,...,m), Eq.(17.14) can be rewritten as

X(P;) = Ciix + Cojy + C3;
ox(P;)

on’

LiG=0,1,---, 1715
= Cyicos(n’, x) + C cos(nsy) i m)  (17.15)
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where P; is an arbitrary point on the i-th boundary contour L; (i = 0, 1,...,m),
Cii, Coi, and C3; are the integration constants on the boundary contour L; (i =
0, 1,...,m), and the integration constants on only one contour can be zero.

The conditions of single-valuedness of rotation and displacements in (m+1)-tuply
connected body with traction free surfaces are

jf aﬁ(vzx—ka*E*T)ds:O (i=1,....,m) (17.16)
L; n

7{ xlg—xzi (V2 x4+ E*)ds =0 (i=1,....m) (17.17)
L; Os on

74 x12+ng (V2 x4+ E*)ds =0 (i=1,....,m) (17.18)
L; Oon Os

The general solution of Eq.(17.8) for the thermal stress function y may be
expressed as the sum of the complementary solution X and the particular solution x

X =XetXp (17.19)
where the complementary solution . and the particular solution , are governed
» Ve =0 (17.20)

VZix, = —a*E*r (17.21)

When the transient heat conduction equation with no heat generation is discussed,
the particular solution X, is

'
Xp = —a*E*/{/ T(x, y, 1) dt’ + xpr + (0 —1)Xp0 (17.22)
I

where #, denotes the reference time, and - and ) 0 denote solutions of the following
Poisson’s and Laplace’s equations, respectively

V2Xpr = —o*E*7,, VszO =0 (17.23)

in which 7, denotes the temperature at the reference time #,.

Complex variable method
The biharmonic function y. governed by Eq.(17.20) can be represented by two
complex functions p(z) and 11 (z) as follows

1 - —
Ye =5 |70 + 2@ + 1) + @) (17.24)
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where the upper bar denotes its conjugate complex function
Z=x—1y, @) =p—iq (17.25)

where i = —1. Hence, the thermal stress function x can be represented by two
complex functions and the particular solution X,

1r_ - .
X=X X = 5 [FO+ @D+ @+ D@ +x,  (1726)
The plane thermal stresses are given by

oxx +0yy =4Re [go (z)] o E*T

o .9\ 17.27
Tyy = Oux + 2i0y = 2[79"(2) +¢' ()] + (——i—y) Xp r2n

where 1 (z) = w/l (z), and the complex functions (z) and ¥ (z) are called the complex
stress functions.
The components of displacement are

vy = 20 | 200~ 7@ -0 - (22 422 | et i
=5~ - — (x4
uyx +iuy G| 150 p(z zp'(z Z Dy y
(17.28)
The boundary condition for the pure thermoelastic problem without traction is
—_— — 0 0
0(2) +z2¢'(2) + Y (2) = — (% +i %y”) +C (17.29)

The resultant moment M about the origin of the coordinate system is

/ N L IR VRN P
M= Re[l/n(z) —z91(2) — 2z (z)]A — [xa—x" +y 8—; — xp] (17.30)

Let us translate a given region S in the complex z-plane into a region X in the
complex (-plane by use of the conformal mapping function w(()

z=x+iy=w(), (=¢&+4in=pe’ (17.31)

A curvilinear coordinate system (p, #) consists of curves p = constant and radii
6 = constant. The components (u,, uy) of displacement vector u in the (-plane
referred to a curvilinear coordinate system (p, #) can be expressed by the components
(ux, uy) of displacement vector u in the z-plane referred to a Cartesian coordinate
system (x, y)

wy +iug = e (uy +iuy) (17.32)
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where « denotes an angle between x axis and p axis. The components of stress in
plane problems referred to a curvilinear coordinate system (p, #) can be expressed

by the components referred to a Cartesian coordinate system (x, y) as follows

Tpp + 009 = Oxx + Oyy

099 — Opp + 2009 = ezm(ayy — Oxx +2i0yy) (17.33)

With the conformal mapping function w((), Eq.(17.32) with ¢* = 0 becomes

1w W) ——
ity = 30 (O|[1+V*¢<o =57 ©0-%0
¢ 1 (Oxp . 10xp
17.34
pw’(g)( i p 00 )] ( )
The stress fields (17.33) are expressed by
¢'(Q) N
Opp + 099 = 4Re[ /(O] — o E*T
. 2¢ POV, o
0o — Ty + 20 = (0[ SO0 ]+ (o}
4¢? [82xp L xp Q) ]
P2’ () | 962 W(Q) ¢ (W' (O
(17.35)
Potential method
Navier’s equations (17.5) can be rewritten as
2 2
MVzuer(/\*Jru)(a Yo ”y) 2T
0x 0x0y 8x
) 2u u (17.36)
* X Y * _
uV Uy + (A" + ) (Gxay + ayz) 8" — y

The general solutions of Navier’s equations (17.36) for the plane problem can be
expressed as the sum of the complementary solutions u¢ and u;, and the particular

solutions u? and ug
uy = uS +ul, Uy :u;—i—ug (17.37)

The particular solutions u% and uf can be expressed in terms of Goodier’s ther-
moelastic potential & as follows:

ul =@, uj =9, (17.38)
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@ must satisfy the equation as

V2o =K1 (17.39)
where g
K = =1+ v5a* 17.40

The complementary solutions u} and uf, of Navier’s equations (17.36) are expressed
by two plane harmonic functions.

3-v* 091 02 3-v* 091 02
¢ _ N Y x99 (74
o1 Yo Yo W 1+1/*¢2 xé)y yay (17.41)

where two functions ¢1 and ¢; are harmonic

V21 =0, Vi =0 (17.42)

17.2 Problems and Solutions Related to Plane Thermoelastic
Problems

Problem 17.1. Derive the governing equation for y to be expressed by Eq.(17.8).

Solution. From Eq. (17.7) the thermal stress function  is defined by

*x ?x *x
Oxx = 6—))2, O'yyzw, O'Xyz—m (1743)
The equilibrium equations (17.3) are automatically satisfied by use of the thermal
stress function . The compatibility equation is from Eq. (17.4)

0% 82eyy 82€xy
=2 17.44
0y? + Ox?2 Ox0y ( )

Using Hooke’s law, and substituting the thermal stress function y into Eq. (17.44),
we obtain

e ey *exy

0y? + Ox2 Oxdy

= 88—;2[% (oxx — V¥oyy) + a1 — c*]
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= %[%(%—y*%) +a*7—c*]

P r1 9% L0 N N
+taal (G~ g) Torm =]
02 (1 +v* 9%y )
Oxdy \ E* 0x0dy
1 10*y 0*x Iy 0?
RIS A T DA T ANV AN [p—
E* [8x4 + 0x20y? + oy* “ (0)62

+2

+ a_;)T] —0 (1745

Therefore, the governing equation for thermal stress function y is

Vi = —a*E*V?r (Answer)
where
E akE .
I 1+ 1/)041 — i1, for plane strain (17.46)
aF for plane stress

Problem 17.2. Prove that the arbitrary integration constants Cy, C», and C3 in
Eq. (17.14) may be taken as zero for a simply connected body.

Solution. We take
X=x"+Cix+Cry+C; (17.47)

Substitution of Eq.(17.47) into Eqgs. (17.8), (17.7) and (17.14) gives the governing
equation

Vi = —a*E*V?r (17.48)
the stresses 5 5 5
o x* o™ X" o™ x*
Oxx :a—yz, O'yyzw, ny:—M (1749)
and the boundary conditions
IxX*(P
V*(P) =0, Xa (/ ) Z0 onL (17.50)
n

Since the function C1x + C2y + C3 does not appear in the governing Eq. (17.48),
the stresses (17.49) and the boundary conditions (17.50), the integration constants
can be taken zero for the simply connected body.

Problem 17.3. Prove that the integration constants Cy;, C»;, and C3; on the boundary
contour L; (i =0, 1,...,m) in Eq.(17.15) can be taken zero on only one contour.

Solution. We take
X = X"+ Crox + C20y + C30 (17.51)
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Substitution of Eq.(17.51) into Eqgs. (17.8), (17.7) and (17.15) gives the governing
equation

Vi = —a*E*V?r (17.52)
the stresses
82 * 82 * 32 *
. . (17.53)
dy ox 0x0y
and the boundary conditions
Ox* (P
=0, P _o o,
n
X*(P;) = (C1; — C10)x + (C2i — Ca0)y + (C3; — C3p)
8X*(P,') / ’
o = (C1; — Cro) cos(n’, x) + (Co;i — Cxp) cos(n’, y)
on Li(i =1,2,-+-,n) (17.54)
If we put
i =C1i—Cio, C3 =Coy —Cy, C3 =0C3—C3 (17.55)

equations (17.54) reduce to

Ox* (P
X*(Po) =0, N o Lo
on'
X*(Pi) = Clix + Cyy + C5;
oX*(P)

o = Ci;cos(n’, x) + Cx;cos(n’,y) on Li(i =1,2,---,n) (17.56)
n

Taking Eqs. (17.52), (17.53) and (17.56) into consideration, the integration constants
on only one contour can be taken zero.

Problem 17.4. Prove that the thermal stress is not produced in a strip with thick-
ness [, when the steady temperature distribution without the internal heat generation
is treated.

Solution. The heat conduction equation without internal heat generation is
VT =0 (17.57)
The thermal stress function yx satisfies the equation
Vi = —a*E*V2r (17.58)
where 7 = T — Tp. From Egs. (17.57) and (17.58) we get

Vi =0 (17.59)
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The general solution of Eq.(17.59) is

Xx=Ao+ Aix+ By + Agx2 + Bzy2 + Caxy
+ Asx® 4 B3y® + C3x?y 4 Dixy? (17.60)

Thermal stresses are

2
Oxx = aTi,( =2By +6B3y +2D3x
0%y
Oyy = W = 2A2 + 6A3X + 2C3y
%X
=——"—=—0,—2C3x — 2D 17.61
Oxy axay 2 3X 3y ( )
The boundary conditions are
oxx =0, 0xy=0 onx=0, [ (17.62)

The unknown coefficients are determined from Eq. (17.62) as
B,=0, B3=0, D3=0, C,=0, C3=0 (17.63)

From the condition of lim oy, = 0, we get
y—00

Ay =0, A3=0 (17.64)

Then, the thermal stress is not produced in the strip.

Problem 17.5. Find the displacements in a strip when a steady temperature is
given by
T =T, + (T — Ta))l—c (17.65)

Solution. Thermal stress is not produced in a strip, since the temperature given by
Eq. (17.65) is the steady temperature without internal heat generation. As the thermal
stress is not produced in a strip, a harmonic function v expressed by Eq.(17.12)
reduces to

0%
0x0y

— V2y 4 a*E*r = o E*r = a*E*[Ta T+ (T — Ta)ﬂ (17.66)

where T denotes the initial temperature. The integration of Eq.(17.66) gives

2

w=A+Bx+Cy+ a*E*[(Ta — To)xy + (T — Ta)%] (17.67)
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The displacements (17.11) with no thermal stress reduce to

1 o, 1 o,

= oy o= 17.68
TG+ ey T T g+ a7 (17.68)
Substitution of Eq.(17.67) into Eq. (17.68) gives
C " X x2
=z —cr+a [(Ta — To)x + (T — Ta)j]
ty = 5 = ¢y + [T = Ty + (T, — T) = | (Answer)

Problem 17.6. Derive the solutions of Eq. (17.20) in a Cartesian coordinate system.

Solution. First, we consider the solutions of Laplace’s equation in a Cartesian
coordinate system by use of the method of separation of variables. Laplace’s equation
is

( 82 82

We assume that the harmonic function can be expressed by the product of two
unknown functions, each of which has only one variable

h(x,y) = f(r)g(y) (17.70)

Substitution of Eq. (17.70) into Eq. (17.69) gives

d> f (x) d’g(y)
5+ a*f(x) =0, R a’g(y) =0 (17.71)
or ) )
df(x) d=g(y)
e a’f(x) =0, e +a’g(y) =0 (17.72)

where a is a constant. The linearly independent solutions of Eq.(17.71) are

f(x)=(i) for a =0, f(x)=(°"s“x) for a #0

sin ax

sinh ay

g(y) = (;) for a =0, g(y)= (COSh“y) for a 20 (17.73)
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and the linearly independent solutions of Eq.(17.72) are

f(x):()lc) for a =0, f(x):<cgshax) for a #0

sinh ax

9(y) = (;) for a =0, g(y)= (C9S“y) for a £0  (17.74)

sinay

Now, we show that a function

p(x,y) =[Ax + By + C(x> + y)1h(x, y) (17.75)

is a biharmonic function, where a function A (x, y) is harmonic, and A, B, C are
arbitrary constants. Differentiation of Eq. (17.75) gives

2
P& oene y) + 204 + 200 218D
ox? Ox
0 (x )

+ [Ax + By + C(x> + y9)]

2
TP o Chx. )+ 2(B +2Cy )ah(x y)

0y?
+ [Ax + By + C(x*> + yz)]a}g—;’” (17.76)
As the function & (x, y) is harmonic, we get
V2p(x,y) =4Ch(x,y) +2(A + 2Cx)$ +2(B + 2Cy)ah%y’y) (17.77)
Differentiation of Eq. (17.77) gives
a2v2‘8;;(2x, Y _ 1ac 82’;(;‘2’ Y oy 2Cx)—a3lg(;3’ 2
+ 2(B + 2cy)838h+3yy)
32V28[;(2x,y) - 120822(;’ Y 4o +2c )—B(y Y
+ 2(A+2Cx )ﬁ (17.78)

Ox

Therefore, we obtain
4 2 9
Vip(x,y) =12CV~h(x,y) + 2(A +2Cx)a—V h(x,y)
X

+2(B + 2cy)§v2h(x, ¥) =0 (17.79)
y
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From Egs.(17.73), (17.74) and (17.75), the particular solutions of a biharmonic
equation (17.20) in a Cartesian coordinate system may be expressed as follows:

1

G)0)

y X y
x? +y?

1

X sin ax sinhay

y cos ax coshay
x? +y?

1

x (smh ax ) (sm ay ) (Answer) (17.80)

y cosh ax cosay
x? +y?

The notation for the product of three one-column matrices is explained by Egs.
(16.97) and (16.98).

Next, we show another type of the solutions of the biharmonic equation. A com-
plex function ¢(z) is introduced.

z=x+iy, @) =p-+iq (17.81)
where i2 = —1, and p and ¢ are harmonic functions. Therefore
2p =@ +¢(2), 2ig =@ — Q) (17.82)

We assume that ¢ (z) is expressed by

p() =14 D (A" + Byz™") (17.83)

n=1
where A, B, are real constants. Then, the harmonic function p of the real part of

((z) is written as

1 -
p= E[w(z) + (2]
1 o0
=1+ ;[An(z" +7) 4 B+

1 ~ n =n
=145 +3 [An+ B

n=1

1
s yz)n] (17.84)
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We obtain the following harmonic functions from Eq. (17.84)

7+Z7=@x+iy)+x—iy)=2x
P24+ =4ip) + @ —iy)?=2x2—yY)
P4+ = +iy)’ + (x—iy)? =2x(x% —3y?)
A= i)t 4 =iyt =20 — 6x2y2 +yh (17.85)

In the similar way, we obtain the harmonic function g of the imaginary part of ©(z)

1 _
q= T[QO(Z) —(2)]
i

o0

1
= 2 2 MA@ =)+ Bac™" =27

n=1

- 1
ZZ -7 [ Bnm] (17.86)

From Eq. (17.86) we obtain the following imaginary parts

z—2=x+iy)—(x —iy) =2y

2 =2 _ . N2 c N2 g

2 -7 = +iy)? — (x —iy)? = dixy

2P =@ +iy)’ - —iy)? = 2iy(y* - 3x?)

A== +in)t = (x—iy)* = 8izy(x? —y?) (17.87)

Therefore, taking into the consideration of Egs. (17.84)—(17.87), we obtain the alter-
native forms of the particular solutions of the biharmonic equation

1 1

by X ( 1 ) (x)

y | y r=2 ) \y
X242 X242

1

X 1 x?—y?

y rt xy
x2 + y2

1

X 1 x(x2 = 3y%)

y r0J\y(? =327
x2 + y2

1

X 1 x* —6x2y? 444

y (r_g) ( Xy(x? = y2) e (Answer)
X2+ y2
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in which r = /x2 + y2. The notation for the product of three one-column matrices
is explained by Eqgs. (16.97) and (16.98).

Problem 17.7. Derive the solutions of Eq. (17.20) in the polar coordinate system.

Solution. First, we consider the solutions of Laplace’s equation in the polar coor-
dinate system by use of the method of separation of variables. Laplace’s equation is

(82 1o 1 62

ot o g he 0 =0 (1759

We assume that the harmonic function can be expressed by the product of two
unknown functions, each of which has only one variable

h(r,0) = f(r)g(9) (17.39)
Substitution of Eq. (17.89) into Eq. (17.88) gives

efr)  1dfe)

dr? r dr r_zf(r) =0
d*g(0
dgo(z ) 4 n2g0) =0 (17.90)

where n is the integer. The linearly independent solutions of Eq. (17.90) are

n

f(r):(lnlr) for n =0, f(r):(rrn) forn # 0

sin nf

1
g(0) = (6) forn=0, g¢@) = (cosn@) forn #0  (17.91)
Next, we consider the particular solution p(r, #) which satisfies the equation

V2p(r, 0) = f(r)g(0) (17.92)

The particular solution p is assumed to be expressed by the product of two functions,
each of which has only one variable

p(r,0) = F(r)g(9) (17.93)
Substitution of Eq. (17.93) into Eq.(17.92) gives

d’F(r) 1dF(r) n?
2 T~ aFO =50 (17.94)

and a particular solution F'(r) of Eq.(17.94) takes the form


http://dx.doi.org/10.1007/978-94-007-6356-2_16
http://dx.doi.org/10.1007/978-94-007-6356-2_16
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r2/4
r2(nr —1)/4

o= (3 )
r3/8
FKV)::(rlnr/2>
"2/ (4n 4 4)

F(r) = (_r—n+2/(4n _4)

)

17 Plane Thermoelastic Problems

o)
)
)

when f(r) = (

r

when f(r) = (

1

when f(r) = ( (17.95)

From Egs.(17.91) and (17.95), the particular solutions of Eq.(17.20) in the polar

coordinate system are

1 r

r? 1 r! cos
Inr (9)’ = (sinf))
r2Inr rinr

ril

r—" cosnf

pit2 (sin n@)
r—n+2

(Answer) (17.96)

In Eq. (17.96), we used the following notation for the product of two one-column

matrices
i
| (o) Z
S3 73
Ja
Then, for example
r}’l
r" cosnf)
pht2 sinnd ) —
r—n+2

Problem 17.8. Derive Eq.(17.34).

fig1
0
f3g1
fag
fig
f92
f392
fag2

(17.97)

r'* cosnf
r~"cosnf
"2 cosnf
—1+2 cosnb

r’ sinnf
r~""sinnf
"2 sinnb
r"*2 sinnd

r

(17.98)
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Solution. The relationship for the displacement between a curvilinear coordinate
system and a Cartesian coordinate system is given by Eq.(17.32)

up +iug = e " (uy +iuy) (17.99)

When a small displacement dz is produced, a corresponding point ¢ undergoes a

small displacement d( _ ‘
dz = |dz|e'", d¢ = |d()e" (17.100)

From Eq.(17.100), we get

o 42 _ w(Qd¢ ol W' _ ¢ w(©)

ldz| — W/(Ql-1d¢I WO p (O
—ia:e—mm ng
lw @ plw QI

e

sia _[C WP CJOWEQ)  F©)
= 2= =2 2 T 17.101
=il = SOTQ  PI0 (710D
Next, we introduce the new notation
0(2) = pWw(Q) = (), Y(2) =Pw(() =¥ ()
o) = de(z) _deQ)dg 1 doQ) _ ¢'(¢) (17.102)

dz — d¢ dz WO d¢ W)

Substitution of Eqs.(17.28) with ¢* = 0, (17.101) and (17.102) into Eq.(17.99)
yields

’ —ia 6
u,+iug=e 2G[1+ *Sﬁ(Z)—ZQD (z) — w(z) ( +i %}p)]
_ 1 {W© W) ——
T 26 p W Q) [1 e 60 - =5 EIGERTE)
_ % aXp
( Ox i Oy )] (17.103)

Taking into the consideration the following relationship

8+,8 (83z+332) .(0az+882)
—ti—=—— 4+ =— N+ ==
Ox dy 0z 0x 07 Ox dzdy 0z dy

o 0. .0 0
-GG w)
0 (‘3% 2;2_2 1 (88/) 869)

=2—=2——"=2——=
9z 0cdz W(QOC W) IpOC  900¢
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Zzl{aaf a0

O lap ac 805g[ %(lnc_ln@]}

1,0 ¢ 01 w9 10
_w@( \[c+ 89<) we/(<>(6_p+ 5o0)

¢ 1 o .10
- 17.104
pw(é)(ap+lp89) ( )

we obtain the displacement
. 1 ¢ W0 v W)
up + iy = ZGPW(C)'[HV*MQ 57O -¥0
¢ 1 o .10

=050 6t pa)] (Answen

Problem 17.9. Derive Eq. (17.35).

Solution. The relationship for the stress between a curvilinear coordinate system
and a Cartesian coordinate system is given by Eq.(17.33):

O-pp + 000 = Oxx + Uyy

000 — Tpp + 2iag, = ¥ (Tyy — Oy + 2i0yy) (17.105)
Substitution of Eq. (17.27) into Eq. (17.105) yields
0pp + 0p9 = 4Re[¢'(2)] — " E*T

. o 0 \2
o0 — 0y + 210, :e2za{ (207 (2) + ¥ ()] + (— _lay) X,,} (17.106)

By transforming the variable from z to ¢, and using Eqgs.(17.101) and (17.102) in
Problem 17.8, Eq.(17.106) reduce to

Tpp + 0o = 4Re[%] maET
_ GO0 (9Qy Y
=2, = 5SS LEG (56) + 566
N (% 3 i%)zxp} (17.107)

Taking into the consideration of the relationship
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0 .0 0 0z 0 07 /0 0z 0 07
oy = (o T oan) ~ (5 T o)
=(6%+6%)—i2(8 a):z2 046 _, 19

Jdz 0%

9z ¢ dz W' (C) OC

8 92 1 ar 1 8
(5 —'5) =*>oalzoad

1 1 92 W) 0
—4 g _ YN 9 17.108
solvose " wora) (17109
we obtain the stress
Opp + 009 = 4Re[jj/§8] —o*E*T
G — YO
40 — O pp + 2i0, = 2;m{w(o[d(o] tw (o}
Cz 1 1 82Xp W/(O aXp
42 - — A
Pz wwo[w’(o a2~ WP 8<] (Answer)

Problem 17.10. Airy’s stress function F related to the components of stress

O?F *F O?F
Tax = 3_)’27 oy = ox2’ Oy = _8x3y

(17.109)

is usually used in isothermal plane problems, where a governing equation of F is
V4F = 0. Prove that the thermal stress in plane problems can be expressed by

9% 0?
Oxx = a_yz(F — 2,[1,(1)), Oyy = W(F — 2[&@)
2
Xy = — F—-2ud 17.110
Oxy 8x6y( p) ( )

where @ is Goodier’s thermoelastic potential and F is Airy’s stress function.

Solution. Using Eqs. (17.37) and (17.38), the strains are expressed by
Exx = €5 + Poxx, Eyy = S;y +D,yy, gy = efcy + D, (17.111)
From Eqgs. (17.1") and (17.111), we get

Trx = (N +2p0)e5, + Ne§y — 2,y + (N +2) V2D — B*7
Ty = (N 25, + Ne, — 20D, + (N +20) V2D — BT
Ory = 20, + 2P, 5y (17.112)
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Since the governing equation for Goodier’s thermoelastic potential function @ is
given by Eq. (17.39), Eq. (17.112) reduces to

Oxx = A" 4+ 2p)e, + )\*E;y —2ud, =0y, — 24D,y = F,yy —2ud, ),
oy = (A" + 2/1)5;}, + N, —2ud, oy = a;y —2u®, iy = Foxx — 2u®, 1y
Oxy = 2/¢5§y + 24D,y = a;y + 24D,y = —(F,xy —2u®,y) (Answer)

Next, we derive the governing equation of Airy’s stress function F. Substitution
of Eq.(17.1) into Eq. (17.4) gives

1 Fou v Py P 1 Poy  Fow P
E* 9y?  E* 0y? dy?  E* 9x2  E* Ox? Ox2
1 +v* 02
) ;V 8;;"; (17.113)

Simplification of Eq.(17.113) reduces to

— 2
dy? Ox0y Ox?2 Ox?2 + 0x0y 0y?

= —*E*V?r (17.114)

2 2 2 2
020,y 0%0xy 070y, . (820” 0%0xy N 0 ayy)

Substitution of Eq.(17.110) into Eq. (17.114) gives

82(F,yy - Zﬂq)’yy ) 282(F7xy - 2/Jcp»)cy ) az(F’xx —2u®,xx)

0y? Ox0y Ox?2
_ V*I:az(F,yy - zﬂq)syy) _ 282(F7xy - 2/~L<Dyxy) + 32(Faxx — 2P, xx )]
Ox? Ox0y 0y?
= —a*E*V’r (17.115)

Simplification of above equation reduces to

o*E*
VAF — 2uv2(v2<1> -5 T) —0 (17.116)
o
By the use of Eq.(17.39), Eq.(17.116) reduces to
VYF =0 (17.117)

Problem 17.11. Prove that the components of thermal stress in plane problems can
be expressed by

2
Oxx = 2/~L|:_cb,yy + x¢1,yy + y¢2,yy + m(¢l,x + V*¢2,y):|
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2
Oyy = 2/,L|:—q>,xx + X(bl,xx + y¢2,xx + 1—}-—1/*(¢2‘y + V*(bl,x)]
1—v*
Oy = 20 @y = (W01 + Y02y + T @Ly 20| (T.118)

where @ denotes Goodier’s thermoelastic potential given by Eq.(17.38) and two
harmonic functions ¢, ¢; are given by Eq. (17.41).

Solution. The displacement may be expressed from Eqgs. (17.38) and (17.41)

3—v*
Uy = q)’x"'] U*¢1 —XP1,x —YP2,x
3—p*
uy—q>7) +1+ ¢ _X(bl,y _y¢27y (17119)
Equation (17.119) give the strains
Exx = Doxx + 2 ¢l»x XPl,xx — YOD2oxx
Eyy = Doy +2 ¢2, —XQ1,yy — YP2,yy

1
Exy = q>,xy+ (¢17V+¢2’x) x¢1:xy_y¢27xy (17.120)

From Eqgs. (17.1") and (17.120), we get

1-—
o = (A" + 20) (P, xx + 2 le’x XPloxx — YOP2oxx)

+)\*(q)»yy+2 ¢2’v x¢lvyy_)’¢2’yy)_ﬁ*7
Oyy = ()\ —|—2,u,)(d),yy +2 ¢2a x¢1ayy _y(ZSZayy)
1
+)\*(<D»xx+2 ¢17x x¢1,xx_y¢2»xx) _ﬁ*T

1-—
Oxy = 2N[q)axy + ((;51»} +¢2,x) — x¢l9xy _y¢2vxy ] (17.121)

By the use of Eqgs. (17.39) and (17.42), we can obtain

Oxx = 2#(_q)syy —XP1,xx — Y2 +21)01,x +X\* ¢2,y ]

1+

1-
Oyy ZZM(_(szx_X(bl’)y y¢2sy»)+2 [()‘*+2M)¢27y +)\ ¢lvx]

I+v

1—
Oxy = 2“[(1)7)()) + (¢l sy T $2,x) — x¢laxy y¢2»xy] (17.122)
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Material constants are rewritten as for plane strain

N v v*
v = <~ V=
1—v 14 v*
Vo = up /(v 2t

1—2v 1=2v¢/(1+v¥ 1 —v*
3

1—v* 1—v*/ v
O = (T ) =2

14+ v* 14+ v*
1—v* . _ 1—v* v* _s v* (17.123)
14 v* M1 A '
and for plane stress

Sy = 2uA _ 2u2vp/(1 —2v) _ 2uv _ 2uv*

’ A2p 2up/A=-20)+2p 1—v 1—v*
1_V*()\*+2u)_2u _V*(V—*H):zﬂ !
14+v 14+ v*\1 —p* 14+ v*
Ll VP Wl LA (17.124)
14+ v* 1+v*1 —v* 14+ v*

By the use of Eqs. (17.123), (17.124) and (17.42), Eq. (17.122) reduce to

UXX =ZMI:_CD,yy+x¢],yy+y¢2’yy+1+ (¢)17X+V ¢27y ]

Oyy :2/J|: SXX +x¢1yxx+y¢27xx+ (¢27y+l/ P1.x )]

1
Oy = 201 ®oay = (1 + ¥02) .y + +V*(¢>1,y+¢2,x)] (Answer)
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