
Chapter 15
Heat Conduction

In this chapter the Fourier heat conduction equation along with the boundary
conditions and the initial conditions for various coordinate systems are recalled.
One-dimensional heat conduction problems in Cartesian coordinates, cylindrical
coordinates and spherical coordinates are treated for both the steady and the transient
temperature fields. The particular problems and solutions for heat conduction in a
strip, a solid cylinder, a hollow circular cylinder and a hollow sphere are presented
for various boundary conditions. [See also Chap. 22.]

15.1 Heat Conduction Equation

Heat conduction equation
The Fourier law of heat conduction is

q = −λ
∂T

∂n
(15.1)

where q denotes the heat flux with dimension [W/m2] and λ is the thermal conduc-
tivity of the solid with dimension [W/(m · K)]. Here, ∂/∂n denotes differentiation
along out-drawn normal n to the isothermal surface.

The Fourier heat conduction equation for the homogeneous isotropic solid based
on the Fourier law of heat conduction (15.1) is

cρ
∂T

∂t
= λ∇2T + Q (15.2)

An alternative form is
1

κ

∂T

∂t
= ∇2T + Q

λ
(15.2′)
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where

κ = λ

cρ
(15.3)

in which Q is the internal heat generation per unit volume per unit time, c is the
specific heat with dimension [J/(kg · K)], ρ is the density with dimension [kg/m3]
of the solid, and κ means the thermal diffusivity with dimension [m2/s], and the
expression for the Laplacian operator ∇2 is different for each coordinate system:

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 : for Cartesian coordinates

= ∂2

∂r2 + 1

r

∂

∂r
+ 1

r2

∂2

∂θ2 + ∂2

∂z2 : for cylindrical coordinates

= ∂2

∂r2 + 2

r

∂

∂r
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂φ2

: for spherical coordinates (15.4)

The heat conduction equation for a nonhomogeneous anisotropic solid is

cρ
∂T

∂t
= ∂

∂x

(
λx

∂T

∂x

)
+ ∂

∂y

(
λy

∂T

∂y

)
+ ∂

∂z

(
λz

∂T

∂z

)
+ Q (15.5)

whereλx ,λy , andλz denote the thermal conductivities along the x , y, and z directions,
respectively, and depend on the position.

The heat conduction equation for a nonhomogeneous isotropic solid is

cρ
∂T

∂t
= ∂

∂x

(
λ

∂T

∂x

)
+ ∂

∂y

(
λ

∂T

∂y

)
+ ∂

∂z

(
λ

∂T

∂z

)
+ Q (15.6)

The heat conduction equation for homogeneous anisotropic solid is

cρ
∂T

∂t
= λx

∂2T

∂x2 + λy
∂2T

∂y2 + λz
∂2T

∂z2 + Q (15.7)

The heat conduction equation for a homogeneous isotropic solid without internal
heat generation is

1

κ

∂T

∂t
= ∇2T (15.8)

The steady state heat conduction equation for the homogeneous isotropic solid with
the internal heat generation Q is

∇2T + Q

λ
= 0 (15.9)
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The steady state heat conduction equation for the homogeneous isotropic solid
without internal heat generation is

∇2T = 0 (15.10)

Boundary conditions

When heat transfer between the boundary surface of the solid and the surrounding
medium occurs by convection, the boundary condition is

− λ
∂T

∂n
+ qb = h(T − �) (15.11)

where h denotes the heat transfer coefficient with dimension [W/(m2 ·K)], qb means
heat generation per unit area per unit time on the boundary surface and � is the
temperature of the surrounding medium which is a given function of position and
time.

When the surfaces of two solids are in perfect thermal contact, the temperature
on the contact surface and the heat flow through the contact surface are the same for
both solids

T1 = T2, λ1
∂T1

∂n
= λ2

∂T2

∂n
(15.12)

where subscripts 1 and 2 refer to the solid 1 and 2, respectively, and n is the common
normal direction on the contact surface.

Initial condition
When the transient heat conduction Eq. (15.2) is considered, an initial condition
which expresses the temperature distribution in the solid at initial time must be
specified

T = �(P) (15.13)

where �(P) is the initial temperature distribution and P is a position in the solid.

15.2 One-Dimensional Heat Conduction Problems

Temperature in a strip

The heat conduction Eq. (15.9) simplifies to the form for one-dimensional steady
state heat conduction problems of a homogeneous isotropic solid with the internal
heat generation Q

d2T

dx2 = − Q

λ
(15.14)
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If there is no internal heat generation Q, Eq. (15.14) reduces to

d2T

dx2 = 0 (15.15)

The steady temperature in a strip of width l with constant internal heat generation
Q is given for the heat transfer boundary conditions

T = Ta + (Tb − Ta)
hb(ha x + λ)

λ(ha + hb) + hahbl

+ Ql2

2λ

[ (2λ + hbl)(hbx + λ)

λ(ha + hb)l + hahbl2 − x2

l2

]
(15.16)

where Ta and Tb are the temperatures of the surrounding media, ha and hb are the
heat transfer coefficients, and subscripts a and b denote boundaries at x = 0 and
x = l, respectively.

The heat conduction Eq. (15.8) simplifies to the form for one-dimensional transient
heat conduction problems of a homogeneous isotropic solid

∂T

∂t
= κ

∂2T

∂x2 (15.17)

The transient temperature in a strip of width l with the initial temperature Ti (x) is
given for the heat transfer boundary conditions

T (x, t) = Ta + (Tb − Ta)
hb(ha x + λ)

λ(ha + hb) + hahbl

+ 2
∞∑

n=1

(λ2s2
n + h2

b)(ha sin sn x + λsn cos sn x)e−κs2
n t

l(λ2s2
n + h2

a)(λ2s2
n + h2

b) + λ(ha + hb)(λ2s2
n + hahb)

×
∫ l

0

{
Ti (x) −

[
Ta + (Tb − Ta)

hb(ha x + λ)

λ(ha + hb) + hahbl

]}

× (ha sin sn x + λsn cos sn x) dx (15.18)

where sn are eigenvalues of the transcendental equation

tan snl = λsn(ha + hb)

λ2s2
n − hahb

(15.19)

Temperature in a hollow cylinder

The heat conduction Eq. (15.9) simplifies to the form for one-dimensional steady
state heat conduction problems of the homogeneous isotropic cylinder with an inter-
nal heat generation Q
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d2T

dr2 + 1

r

dT

dr
= − O

λ
(15.20)

Furthermore, if there is no internal heat generation Q, Eq. (15.20) reduces to

d2T

dr2 + 1

r

dT

dr
= 0 (15.21)

The steady temperature in a hollow cylinder of inner radius a and outer radius b
with constant internal heat generation Q is given for the heat transfer boundary
conditions

T = Ta + (Tb − Ta)

ln
r

a
+ λ

haa

ln
b

a
+ λ

haa
+ λ

hbb

− Q

4λ
r2 + Q

4λ

⎛
⎜⎜⎝

a2
(

1 − 2
λ

aha

)
ln

b

r
+ b2

(
1 + 2

λ

bhb

)
ln

r

a

+ λ

aha
b2 + λ

bhb
a2 + 2(b2 − a2)

λ

aha

λ

bhb

⎞
⎟⎟⎠

ln
b

a
+ λ

haa
+ λ

hbb

(15.22)

where subscripts a and b denote the boundaries at r = a and r = b, respectively.
The heat conduction Eq. (15.8) simplifies to the form for one-dimensional transient

heat conduction problems of a homogeneous isotropic cylinder

∂T

∂t
= κ

(∂2T

∂r2 + 1

r

∂T

∂r

)
(15.23)

The transient temperature in a hollow cylinder of inner radius a and outer radius b
with the initial temperature Ti (r) is given for the heat transfer boundary conditions

T = Ta + (Tb − Ta)
ln(r/a) + λ/(haa)

ln(b/a) + λ/(haa) + λ/(hbb)

− π

∞∑
n=1

Taha − TbhbGn

(h2
a + λ2s2

n ) − (h2
b + λ2s2

n )G2
n

f (sn, r)e−κs2
n t

− π2

2

∞∑
n=1

s2
n f (sn, r)

(h2
a + λ2s2

n ) − (h2
b + λ2s2

n )G2
n

∫ b

a
Ti (η) f (sn, η)ηdη e−κs2

n t

(15.24)

where sn are eigenvalues of the transcendental equation
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[ha J0(sna) + λsn J1(sna)][hbY0(snb) − λsnY1(snb)]
− [hb J0(snb) − λsn J1(snb)][haY0(sna) + λsnY1(sna)] = 0 (15.25)

and

Gn = ha J0(sna) + λsn J1(sna)

hb J0(snb) − λsn J1(snb)
= haY0(sna) + λsnY1(sna)

hbY0(snb) − λsnY1(snb)
(15.26)

f (sn, r) = J0(snr)[haY0(sna) + λsnY1(sna)]
− Y0(snr)[ha J0(sna) + λsn J1(sna)] (15.27)

in which J0(sr) is the Bessel function of the first kind of order zero, and Y0(sr) is
the Bessel function of the second kind of order zero.

Temperature in a hollow sphere

The heat conduction Eq. (15.9) simplifies to the form for one-dimensional steady state
heat conduction problems of the homogeneous isotropic sphere with the internal heat
generation Q

d2T

dr2 + 2

r

dT

dr
= − Q

λ
(15.28)

Furthermore, if there is no internal heat generation Q, Eq. (15.28) reduces to

d2T

dr2 + 2

r

dT

dr
= 0 (15.29)

The steady temperature in a hollow sphere of inner radius a and outer radius b with
constant internal heat generation Q is given for the heat transfer boundary conditions

T = Ta + (Tb − Ta)

1 + λ

haa
− a

r

1 − a

b
+ λ

haa
+ a

b

λ

hbb

− Q

6λ
r2

− Q

6λ
b2

⎛
⎜⎜⎝

[
1 −

(a

b

)2 + 2
λ

aha

(a

b

)2 + 2
λ

bhb

]a

r

−
[(

1 + 2
λ

bhb

) (
1 + λ

aha

)
−

(a

b

)3
(

1 − 2
λ

aha

) (
1 − λ

bhb

)]
⎞
⎟⎟⎠

1 − a

b
+ λ

haa
+ a

b

λ

hbb
(15.30)

The heat conduction Eq. (15.8) simplifies to the form for one-dimensional transient
heat conduction problems of a homogeneous isotropic sphere
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∂T

∂t
= κ

(∂2T

∂r2 + 2

r

∂T

∂r

)
(15.31)

The transient temperature in a hollow sphere of inner radius a and outer radius b
with the initial temperature Ti (r) is given for the heat transfer boundary conditions

T (r, t) = Ta + (Tb − Ta)

1 + λ

haa
− a

r

1 − a

b
+ λ

haa
+ a

b

λ

hbb

+
∞∑

n=1

Cn

r

[
(haa + λ) sin sn(r − a) + λsna cos sn(r − a)

]
e−κs2

n t

(15.32)

where coefficients Cn are

Cn =

⎛
⎝ 2[(hbb − λ)2 + λ2s2

n b2]
∫ b

a
[Ti (η) − Ts(η)]η

×[(haa + λ) sin sn(η − a) + λsna cos sn(η − a)] dη

⎞
⎠

(
(b − a)[(haa + λ)2 + λ2s2

n a2][(hbb − λ)2 + λ2s2
n b2]

+λ[b(haa + λ) + a(hbb − λ)][(haa + λ)(hbb − λ) + λ2s2
n ab]

)

(15.33)
and sn are eigenvalues of the transcendental equation

[
(haa + λ) (hbb − λ) − λ2s2

n ab
]

sin sn(b − a)

+ λsn [b (haa + λ) + a (hbb − λ)] cos sn(b − a) = 0 (15.34)

15.3 Problems and Solutions Related to Heat Conduction

Problem 15.1. When the boundary conditions of a strip are given by following three
cases (1), (2) and (3), find the steady temperatures in the strip.

[1] Prescribed surface temperatures Ta and Tb at both surfaces x = 0 and x = l,
respectively.

[2] Prescribed surface temperature Ta at the left surface x = 0 and constant heat
flux qb (= −λ(dT/dx)) at the right surface x = l.

[3] Constant heat flux qa (= λ(dT/dx)) at the left surface x = 0 and prescribed
surface temperature Tb at the right surface x = l.

Solution. The general solution of the governing Eq. (15.15) is

T = A + Bx (15.35)
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where unknown coefficients A and B are determined by each boundary condition.

[1] The boundary conditions are

T = Ta on x = 0, T = Tb on x = l (15.36)

Substituting Eq. (15.35) into Eq. (15.36), unknown coefficients A and B can be
determined as

A = Ta, B = (Tb − Ta)
1

l
(15.37)

The temperature becomes

T = Ta + (Tb − Ta)
x

l
(Answer)

[2] The boundary conditions are

T = Ta on x = 0, −λ
dT

dx
= qb on x = l (15.38)

Substituting Eq. (15.35) into Eq. (15.38), unknown coefficients A and B can be
determined as

A = Ta, B = −qb

λ
(15.39)

The temperature becomes

T = Ta − qb

λ
x (Answer)

[3] The boundary conditions are

λ
dT

dx
= qa on x = 0, T = Tb on x = l (15.40)

Substituting Eq. (15.35) into Eq. (15.40), unknown coefficients A and B can be
determined as

A = Tb − qa

λ
l, B = qa

λ
(15.41)

The temperature becomes

T = Tb − qa

λ
(l − x) (Answer)

Problem 15.2. When the boundary conditions of a hollow cylinder are given by
following five cases (1)–(5), find the steady temperatures in the hollow cylinder.

[1] Prescribed surface temperatures Ta and Tb at both surfaces r = a and r = b,
respectively.
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[2] Prescribed surface temperature Ta at the inner surface r = a, and heat transfer
between the outer surface and the surrounding medium with temperature Tb at
the outer surface r = b.

[3] Prescribed surface temperature Tb at the outer surface r = b, and heat transfer
between the inner surface and the surrounding medium with temperature Ta at
the inner surface r = a.

[4] Constant heat flux qa (= λ(dT/dr)) at the inner surface r = a, and heat transfer
between the outer surface and the surrounding medium with temperature Tb at
the outer surface r = b.

[5] Constant heat flux qb (= −λ(dT/dr)) at the outer surface r = b, and heat
transfer between the inner surface and the surrounding medium with temperature
Ta at the inner surface r = a.

Solution. The general solution of the governing Eq. (15.21) is

T = A + B ln r (15.42)

where unknown coefficients A and B are determined by each boundary condition.

[1] The boundary conditions are

T = Ta on r = a, T = Tb on r = b (15.43)

Substituting Eq. (15.42) into Eq. (15.43), unknown coefficients A and B can be
determined as

A = Ta − Tb − Ta

ln b − ln a
ln a, B = Tb − Ta

ln b − ln a
(15.44)

The temperature becomes

T = Ta + (Tb − Ta)

ln
r

a

ln
b

a

(Answer)

[2] The boundary conditions are

T = Ta on r = a, −λ
∂T

∂r
= hb(T − Tb) on r = b (15.45)

Substitution of Eq. (15.42) into Eq. (15.45) gives

A = Ta − (Tb − Ta)
ln a

ln
b

a
+ λ

hbb

, B = (Tb − Ta)
1

ln
b

a
+ λ

hbb

(15.46)
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The temperature becomes

T = Ta + (Tb − Ta)

ln
r

a

ln
b

a
+ λ

hbb

(Answer)

[3] The boundary conditions are

λ
dT

dr
= ha(T − Ta) on r = a, T = Tb on r = b (15.47)

Substitution of Eq. (15.42) into Eq. (15.47) gives

A = Ta − (Tb − Ta)

ln a − λ

haa

ln
b

a
+ λ

haa

, B = (Tb − Ta)
1

ln
b

a
+ λ

haa

(15.48)

The temperature becomes

T = Ta + (Tb − Ta)

ln
r

a
+ λ

haa

ln
b

a
+ λ

haa

(Answer)

[4] The boundary conditions are

λ
dT

dr
= qa on r = a, −λ

dT

dr
= hb(T − Tb) on r = b (15.49)

Substitution of Eq. (15.42) into Eq. (15.49) gives

A = Tb − qaa

λ
(ln b + λ

hbb
), B = qaa

λ
(15.50)

The temperature becomes

T = Tb + qaa

λ

(
ln

r

b
− λ

hbb

)
(Answer)

[5] The boundary conditions are

λ
dT

dr
= ha(T − Ta) on r = a, −λ

dT

dr
= qb on r = b (15.51)
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Substitution of Eq. (15.42) into Eq. (15.51) gives

A = Ta + qbb

λ
(ln a − λ

haa
), B = −qbb

λ
(15.52)

The temperature becomes

T = Ta − qbb

λ

(
ln

r

a
+ λ

haa

)
(Answer)

Problem 15.3. When the boundary conditions of a hollow sphere are given by fol-
lowing five cases (1)–(5), find the steady temperatures in the hollow sphere.

[1] Prescribed surface temperatures Ta and Tb at both surfaces r = a and r = b,
respectively.

[2] Prescribed surface temperature Ta at the inner surface r = a, and heat transfer
between the outer surface and the surrounding medium with temperature Tb at
the outer surface r = b.

[3] Prescribed surface temperature Tb at the outer surface r = b, and heat transfer
between the inner surface and the surrounding medium with temperature Ta at
the inner surface r = a.

[4] Constant heat flux qa (= λ(dT/dr)) at the inner surface r = a, and heat transfer
between the outer surface and the surrounding medium with temperature Tb at
the outer surface r = b.

[5] Constant heat flux qb (= −λ(dT/dr)) at the outer surface r = b, and heat
transfer between the inner surface and the surrounding medium with temperature
Ta at the inner surface r = a.

Solution. The general solution of the governing Eq. (15.29) is

T = A + B

r
(15.53)

where unknown coefficients A and B are determined by each boundary condition.

[1] The boundary conditions are

T = Ta on r = a, T = Tb on r = b (15.54)

Substitution of Eq. (15.53) into Eq. (15.54) gives

A + B

a
= Ta , A + B

b
= Tb (15.55)
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Equation (15.55) gives

A = Ta + Tb − Ta

1 − a

b

, B = −a(Tb − Ta)

1 − a

b

(15.56)

The temperature becomes

T = Ta + (Tb − Ta)

1 − a

r

1 − a

b

(Answer)

[2] The boundary conditions are

T = Ta on r = a, −λ
dT

dr
= hb(T − Tb) on r = b (15.57)

Substitution of Eq. (15.53) into Eq. (15.57) gives

A = Ta + (Tb − Ta)
1

1 − a

b
+ a

b

λ

bhb

, B = − a(Tb − Ta)

1 − a

b
+ a

b

λ

bhb

(15.58)

The temperature becomes

T = Ta + (Tb − Ta)

1 − a

r

1 − a

b
+ a

b

λ

bhb

(Answer)

[3] The boundary conditions are

λ
dT

dr
= ha(T − Ta) on r = a, T = Tb on r = b (15.59)

Substitution of Eq. (15.53) into Eq. (15.59) gives

A = Ta + (Tb − Ta)

1 + λ

aha

1 − a

b
+ λ

aha

, B = − a(Tb − Ta)

1 − a

b
+ λ

aha

(15.60)
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The temperature becomes

T = Ta + (Tb − Ta)

1 + λ

aha
− a

r

1 − a

b
+ λ

aha

(Answer)

[4] The boundary conditions are

λ
dT

dr
= qa on r = a, −λ

dT

dr
= hb(T − Tb) on r = b (15.61)

Substitution of Eq. (15.53) into Eq. (15.61) gives

B = −a2qa

λ
, A = Tb + aqa

λ

a

b

(
1 − λ

bhb

)
(15.62)

The temperature becomes

T = Tb − aqa

λ

a

b

(b

r
− 1 + λ

bhb

)
(Answer)

[5] The boundary conditions are

λ
dT

dr
= ha(T − Ta) on r = a, −λ

dT

dr
= qb on r = b (15.63)

Substitution of Eq. (15.53) into Eq. (15.63) gives

B = b2qb

λ
, A = Ta − bqb

λ

b

a

(
1 + λ

aha

)
(15.64)

The temperature becomes

T = Ta − bqb

λ

b

a

(
1 + λ

aha
− a

r

)
(Answer)

Problem 15.4. Find the steady temperature in a strip of width l with constant internal
heat generation Q under heat transfer boundary conditions.

Solution. The steady state heat conduction equation is given by Eq. (15.14). The
boundary conditions are

λ
dT

dx
= ha(T − Ta) on x = 0, −λ

dT

dx
= hb(T − Tb) on x = l (15.65)
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where Ta and Tb are the temperatures of the surrounding media, ha and hb are the
heat transfer coefficients, and subscripts a and b denote boundaries at x = 0 and
x = l, respectively. A general solution of Eq. (15.14) is

T = A + Bx − Q

2λ
x2 (15.66)

The coefficients A and B can be determined from the boundary conditions (15.65)

A = Ta + λhb(Tb − Ta)

λ(ha + hb) + hahbl
+ Q

2λ

λl(2λ + hbl)

λ(ha + hb) + hahbl

B = hahb(Tb − Ta)

λ(ha + hb) + hahbl
+ Q

2λ

hal(2λ + hbl)

λ(ha + hb) + hahbl
(15.67)

Substitution of Eq. (15.67) into Eq. (15.66) gives the temperature

T = Ta + (Tb − Ta)
hb(ha x + λ)

λ(ha + hb) + hahbl

+ Ql2

2λ

[ (2λ + hbl)(hbx + λ)

λ(ha + hb)l + hahbl2 − x2

l2

]
(Answer)

Problem 15.5. Find the steady temperature in a hollow cylinder of inner radius
a and outer radius b with constant internal heat generation Q under heat transfer
boundary conditions.

Solution. The steady heat conduction equation in the hollow cylinder is given by
Eq. (15.20). The boundary conditions are

λ
dT

dr
= ha(T − Ta) on r = a

− λ
dT

dr
= hb(T − Tb) on r = b (15.68)

The general solution of Eq. (15.20) is

T = A + B ln r − Q

4λ
r2 (15.69)

The coefficients A and B can be determined from the boundary conditions (15.68)

A = Ta − (Tb − Ta)

ln a − λ

haa

ln
b

a
+ λ

haa
+ λ

hbb
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+ Q

4λ

⎛
⎜⎝

a2 ln b − b2 ln a − 2
λ

bhb
b2 ln a − 2

λ

aha
a2 ln b

+ λ

aha
b2 + λ

bhb
a2 + 2(b2 − a2)

λ

aha

λ

bhb

⎞
⎟⎠

ln
b

a
+ λ

haa
+ λ

hbb

B = Tb − Ta

ln
b

a
+ λ

haa
+ λ

hbb

+ Q

4λ

(
1 + 2

λ

bhb

)
b2 −

(
1 − 2

λ

aha

)
a2

ln
b

a
+ λ

haa
+ λ

hbb

(15.70)

Thus the temperature is

T = Ta + (Tb − Ta)

ln
r

a
+ λ

haa

ln
b

a
+ λ

haa
+ λ

hbb

− Q

4λ
r2 + Q

4λ

⎛
⎜⎜⎝

a2
(

1 − 2
λ

aha

)
ln

b

r
+ b2

(
1 + 2

λ

bhb

)
ln

r

a

+ λ

aha
b2 + λ

bhb
a2 + 2(b2 − a2)

λ

aha

λ

bhb

⎞
⎟⎟⎠

ln
b

a
+ λ

haa
+ λ

hbb

(Answer)

Problem 15.6. Find the steady temperature in a hollow sphere of inner radius a and
outer radius b with constant internal heat generation Q under heat transfer boundary
conditions.

Solution. The steady heat conduction equation in the hollow sphere is given by
Eq. (15.28). The boundary conditions are

λ
dT

dr
= ha(T − Ta) on r = a

− λ
dT

dr
= hb(T − Tb) on r = b (15.71)

The general solution of Eq. (15.28) is

T = A + B

r
− Q

6λ
r2 (15.72)
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The coefficients A and B can be determined from the boundary conditions (15.71)

A = Ta + (Tb − Ta)

1 + λ

haa

1 − a

b
+ λ

haa
+ a

b

λ

hbb

+ Q

6λ
b2

(
1 + 2

λ

bhb

) (
1 + λ

aha

)
−

(a

b

)3
(

1 − 2
λ

aha

) (
1 − λ

bhb

)

1 − a

b
+ λ

haa
+ a

b

λ

hbb

B = −(Tb − Ta)
a

1 − a

b
+ λ

haa
+ a

b

λ

hbb

− Q

6λ
ab2

1 −
(a

b

)2 + 2
λ

aha

(a

b

)2 + 2
λ

bhb

1 − a

b
+ λ

haa
+ a

b

λ

hbb

(15.73)

Thus, the temperature is

T = Ta + (Tb − Ta)

1 + λ

haa
− a

r

1 − a

b
+ λ

haa
+ a

b

λ

hbb

− Q

6λ
r2

− Q

6λ
b2

⎛
⎜⎜⎝

[
1 −

(a

b

)2 + 2
λ

aha

(a

b

)2 + 2
λ

bhb

]
a

r

−
[(

1 + 2
λ

bhb

) (
1 + λ

aha

)
−

(a

b

)3
(

1 − 2
λ

aha

) (
1 − λ

bhb

)]
⎞
⎟⎟⎠

1 − a

b
+ λ

haa
+ a

b

λ

hbb
(Answer)

Problem 15.7. Determine the one-dimensional steady temperature of a two-layered
hollow cylinder for the heat transfer boundary conditions.

Solution. The temperature of each layer is

Ti = Ai + Bi ln r (i = 1, 2) (15.74)

The boundary conditions at each boundary are
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λ1
dT1

dr
= ha(T1 − Ta) on r = a

T1 = T2 , λ1
dT1

dr
= λ2

dT2

dr
on r = c

−λ2
dT2

dr
= hb(T2 − Tb) on r = b (15.75)

We get the coefficients Ai and Bi in Eq. (15.74) from (15.74) and (15.75)

A1 = Ta − Tb − Ta

D
bhbλ2(aha ln a − λ1) , B1 = Tb − Ta

D
abhahbλ2

A2 = Ta + Tb − Ta

D
bhb(ahaλ2 ln

c

a
− ahaλ1 ln c + λ1λ2)

B2 = Tb − Ta

D
abhahbλ1 (15.76)

where

D = λ1λ2(aha + bhb) + abhahb

(
λ1 ln

b

c
+ λ2 ln

c

a

)
(15.77)

Then, the temperature of each layer is

T1 = Ta + Tb − Ta

D
bhbλ2

(
aha ln

r

a
+ λ1

)

T2 = Ta + Tb − Ta

D
bhbλ2

{
aha

(
ln

c

a
+ λ1

λ2
ln

r

c

)
+ λ1

}
(Answer)

Problem 15.8. Find the transient temperature in a strip, when the initial temperature
is Ti (r), and the boundary conditions of the strip are given by following two cases:

[1] Prescribed surface temperatures Ta and Tb at both surfaces x = 0 and x = l,
respectively.

[2] Prescribed surface temperature Ta at x = 0 and constant heat flux qb(=
−λ(∂T/∂x)) at x = l.

Solution. When the heat transfer conditions at both surfaces are

λ
∂T

∂x
= ha(T − Ta) on x = 0, −λ

∂T

∂x
= hb(T − Tb) on x = l (15.78)

the temperature is given by Eq. (15.18). Comparing between the heat transfer con-
ditions (15.78) and each boundary condition, the temperature for each boundary
condition can easily be obtained.

[1] The boundary conditions on x = 0 and x = l for this problem are

T = Ta on x = 0, T = Tb on x = l (15.79)
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Rewriting the boundary conditions (15.78) gives

T = Ta + λ

ha

∂T

∂x
on x = 0, T = Tb − λ

hb

∂T

∂x
on x = l (15.80)

Putting ha → ∞ and hb → ∞, Eq. (15.80) reduces to Eq. (15.79). Therefore,
we can obtain the temperature from Eq. (15.18) after putting ha → ∞ and
hb → ∞.

T (x, t) = Ta + (Tb − Ta)
x

l

+ 2
∞∑

n=1

{∫ l

0

[
Ti (x) − Ta − (Tb − Ta)

x

l

]
sin nπ

x

l
dx

}

× sin nπ
x

l
e−κ(nπ/ l)2t (Answer)

[2] The boundary conditions of this case are

T = Ta on x = 0, −λ
∂T

∂x
= qb on x = l (15.81)

If we rewrite hbTb = −qb, and put ha → ∞ and hb = 0 in Eq. (15.78),
Eq. (15.78) reduces to Eq. (15.81). Therefore, we can obtain the temperature
from Eq. (15.18), after rewriting hbTb = −qb and putting ha → ∞ and hb = 0.

T (x, t) = Ta − qb

λ
x

+ 2
∞∑

n=1

{∫ l

0

[
Ti (x) − Ta + qb

λ
x
]

sin
(2n − 1

2
π

x

l

)
dx

}

× sin
(2n − 1

2
π

x

l

)
e−κ[(2n−1)π/2]2t (Answer)

Problem 15.9. When the boundary condition of the solid cylinder is heat transfer
between the surface and the surrounding medium with the temperature Ta , and the
initial temperature is Ti (r), find the transient temperature in the solid cylinder.

Solution. When the boundary condition of the solid cylinder is heat transfer be-
tween the surface of the cylinder and the surrounding medium with the temperature
Ta , and the initial temperature is Ti (r), the equations to be solved are

(1) Governing equation
∂T

∂t
= κ

(∂2T

∂r2 + 1

r

∂T

∂r

)
(15.82)
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(2) Boundary condition

− λ
∂T

∂r
= ha(T − Ta) on r = a (15.83)

(3) Initial condition
T = Ti (r) at t = 0 (15.84)

The solution of Eq. (15.82) can be obtained by use of the method of separation of
variables. We put the temperature to

T (r, t) = f (r)g(t) (15.85)

Substitution of Eq. (15.85) into Eq. (15.82) leads to a pair of ordinary differential
equation for g(t) and f (t)

dg(t)

dt
+ κs2g(t) = 0 (15.86)

d2 f (r)

dr2 + 1

r

d f (r)

dr
+ s2 f (r) = 0 (15.87)

where s is arbitrary constant, and Eq. (15.87) is Bessel’s differential equation of order
zero.1

The linearly independent solutions of Eq. (15.86) are

g(t) = 1 for s = 0, g(t) = exp(−κs2t) for s �= 0 (15.88)

and the linearly independent solutions of Eq. (15.87) are

f (r) =
(

1
ln r

)
for s = 0, f (r) =

(
J0(sr)

Y0(sr)

)
for s �= 0 (15.89)

where J0(sr) is the Bessel function of the first kind of order zero, and Y0(sr) is the
Bessel function of the second kind of order zero. As these solutions exist for arbitrary
values of s, the general solution of temperature T (r, t) may be given by

T (r, t) = A0 + B0r +
∞∑

n=1

[An J0(snr) + BnY0(snr)]e−κs2
n t (15.90)

As the Bessel function Y0(sr) and ln r are infinite at r = 0, B0 and Bn must be zero
for the solid cylinder. Therefore, the temperature for this problem reduces to

1 G. N. Watson, Theory of Bessel Functions (2nd ed.), Cambridge University Press, Cambridge
(1944).
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T (r, t) = A0 +
∞∑

n=1

An J0(snr)e−κs2
n t (15.91)

where An are unknown coefficients.
Substitution of Eq. (15.91) into the boundary condition (15.83) gives

ha(A0 − Ta) +
∞∑

n=1

An[ha J0(sna) − λsn J1(sna)]e−κs2
n t = 0 (15.92)

If A0 = Ta and sn are eigenvalues of the eigenfunction

ha J0(sna) − λsn J1(sna) = 0 (15.93)

then, Eq. (15.92) is identically satisfied. Therefore, the temperature is

T = Ta +
∞∑

n=1

An J0(snr)e−κs2
n t (15.94)

Using the initial condition (15.84), Eq. (15.94) yields

∞∑
n=1

An J0(snr) = Ti (r) − Ta (15.95)

Multiplying both sides of Eq. (15.95) by r J0(smr), and integrating from 0 to a, we
find

Am = 2

a2[J 2
0 (sma) + J 2

1 (sma)]
∫ a

0
[Ti (r) − Ta]J0(smr)rdr (15.96)

in which the following relations are used

∫ a

0
J0(smr)J0(snr)rdr

= a

s2
m − s2

n
[sm J1(sma)J0(sna) − sn J1(sna)J0(sma)]

= a

λ(s2
m − s2

n )
[ha J0(sma)J0(sna) − ha J0(sna)J0(sma)] = 0

for m �= n∫ a

0
J 2

0 (smr)rdr = a2

2
[J 2

0 (sma) + J 2
1 (sma)] (15.97)
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Therefore, the temperature is given by

T (r, t) = Ta − 2

a2

∞∑
n=1

{
1

J 2
0 (sna) + J 2

1 (sna)

∫ a

0
[Ta − Ti (r)]J0(snr)rdr

}

× J0(snr)e−κs2
n t (Answer)

If the surface temperature on the surface r = a is prescribed, the boundary
condition is

T = Ta on r = a (15.98)

For this case the temperature becomes

T (r, t) = Ta − 2

a2

∞∑
n=1

{
1

J 2
1 (sna)

∫ a

0
[Ta − Ti (r)]J0(snr)r dr

}
J0(snr)e−κs2

n t

(Answer)
where sn are eigenvalues of eigenfunction

J0(sna) = 0 (15.99)

Problem 15.10. Find the transient temperature in a hollow cylinder of inner radius
a and outer radius b with the initial temperature Ti (r) under heat transfer boundary
conditions.

Solution. The problem to be solved consists of

(1) Governing equation:
∂T

∂t
= κ

(∂2T

∂r2 + 1

r

∂T

∂r

)
(15.100)

(2) Boundary conditions:

λ
∂T

∂r
= ha(T − Ta) on r = a

−λ
∂T

∂r
= hb(T − Tb) on r = b (15.101)

(3) Initial condition:
T = Ti (r) at t = 0 (15.102)

The general solution of Eq. (15.100) is from (15.90)

T (r, t) = A0 + B0 ln r +
∞∑

n=1

[An J0(snr) + BnY0(snr)]e−κs2
n t (15.103)
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Substitution of Eq. (15.103) into Eq. (15.101) gives

aha A0 + B0(aha ln a − λ) − ahaTa +
∞∑

n=1

{An[aha J0(sna) + λsna J1(sna)]

+ Bn[ahaY0(sna) + λsnaY1(sna)]}e−κs2
n t = 0

bhb A0 + B0(bhb ln b + λ) − bhbTb +
∞∑

n=1

{An[bhb J0(snb) − λsnbJ1(snb)]

+ Bn[bhbY0(snb) − λsnbY1(snb)]}e−κs2
n t = 0 (15.104)

Equation (15.104) gives

aha A0 + B0(aha ln a − λ) = ahaTa

bhb A0 + B0(bhb ln b + λ) = bhbTb (15.105)

and

An[aha J0(sna) + λsna J1(sna)] + Bn[ahaY0(sna) + λsnaY1(sna)] = 0

An[bhb J0(snb) − λsnbJ1(snb)] + Bn[bhbY0(snb) − λsnbY1(snb)] = 0

(15.106)

Solving Eq. (15.105) for A0 and B0, we get

A0 = Ta − (Tb − Ta)

ln a − λ

aha

ln
b

a
+ λ

aha
+ λ

bhb

, B0 = Tb − Ta

ln
b

a
+ λ

aha
+ λ

bhb

(15.107)

Equation (15.106) is satisfied, if sn are eigenvalues of the transcendental equation

[ha J0(sna) + λsn J1(sna)][hbY0(snb) − λsnY1(snb)]
− [hb J0(snb) − λsn J1(snb)][haY0(sna) + λsnY1(sna)] = 0 (15.108)

Referring to Eq. (15.108) we may put

Gn = ha J0(sna) + λsn J1(sna)

hb J0(snb) − λsn J1(snb)
= haY0(sna) + λsnY1(sna)

hbY0(snb) − λsnY1(snb)
(15.109)

Equation (15.108) can be written as

hb f0(sn, b) − λsn f1(sn, b) = 0 (15.110)
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where

fi (sn, r) = Ji (snr)[haY0(sna) + λsnY1(sna)]
− Yi (snr)[ha J0(sna) + λsn J1(sna)] (i = 0, 1) (15.111)

The temperature (15.103) reduces to

T = A0 + B0 ln r +
∞∑

n=1

An f0(sn, r)e−κs2
n t (15.112)

where An/[ahaY0(sna) + λsnY1(sna)] is rewritten as An . From the initial condition
(15.102), Eq. (15.112) reduces to

∞∑
n=1

An f0(sn, r) = Ti (r) − (A0 + B0 ln r) (15.113)

Multiplying r f0(smr) to both sides of Eq. (15.113) and integrating form a to b,
we get2

Am = π2s2
m

2[(h2
b + λ2s2

m)G2
m − (h2

a + λ2s2
m)]

×
∫ b

a
[Ti (r) − (A0 + B0 ln r)] f0(sm, r)rdr (15.114)

Substitution of Eq. (15.107) into Eq. (15.114), we get

Am = π2s2
m

2[(h2
b + λ2s2

m)G2
m − (h2

a + λ2s2
m)]

∫ b

a
Ti (r) f0(sm, r)rdr

− π(TbhbGm − Taha)

(h2
b + λ2s2

m)G2
m − (h2

a + λ2s2
m)

(15.115)

Rewriting f0(sm, r) as f (sm, r), the temperature can be expressed as

T = Ta + (Tb − Ta)
ln(r/a) + λ/(haa)

ln(b/a) + λ/(haa) + λ/(hbb)

− π

∞∑
n=1

Taha − TbhbGn

(h2
a + λ2s2

n ) − (h2
b + λ2s2

n )G2
n

f (sn, r)e−κs2
n t

− π2

2

∞∑
n=1

s2
n f (sn, r)

(h2
a + λ2s2

n ) − (h2
b + λ2s2

n )G2
n

∫ b

a
Ti (η) f (sn, η)ηdη e−κs2

n t

(Answer)

2 see: Problem 15.11.
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Problem 15.11. Derive Eqs. (15.114) and (15.115) from Eq. (15.113) in Problem
15.10.

Solution. From Eq. (15.113), we have

∞∑
n=1

An f0(sn, r) = Ti (r) − (A0 + B0 ln r) (15.116)

Multiplying r f0(sm, r) to Eq. (15.116) and integrating form a to b, we get

∫ b

a
f0(sm, r)

∞∑
n=1

An f0(sn, r)rdr =
∫ b

a
f0(sm, r)[Ti (r) − (A0 + B0 ln r)]rdr

(15.117)
where

fi (sn, r) = Ji (snr)[haY0(sna) + λsnY1(sna)]
−Yi (snr)[ha J0(sna) + λsn J1(sna)] (i = 0, 1) (15.118)

Before performing integration of Eq. (15.117), we calculate the following functions:

f0(sn, a) = −λsn
2

πasn
= − 2λ

πa

f1(sn, a) = 2ha

πsna

f0(sn, b) = J0(snb)[haY0(sna) + λsnY1(sna)]
− Y0(snb)[ha J0(sna) + λsn J1(sna)]

= J0(snb)Gn[hbY0(snb) − λsnY1(snb)]
− Y0(snb)Gn[hb J0(snb) − λsn J1(snb)]

= Gnλsn[J1(snb)Y0(snb) − Y1(snb)J0(snb)]
= Gnλsn

2

πsnb
= Gn

2λ

πb

f1(sn, b) = J1(snb)[haY0(sna) + λsnY1(sna)]
− Y1(snb)[ha J0(sna) + λsn J1(sna)]

= J1(snb)Gn[hbY0(snb) − λsnY1(snb)]
− Y1(snb)Gn[hb J0(snb) − λsn J1(snb)]

= Gnhb[J1(snb)Y0(snb) − Y1(snb)J0(snb)] = Gn
2hb

πsnb
(15.119)

in which the following formula of Bessel functions is used:
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Jn+1(z)Yn(z) − Jn(z)Yn+1(z) = 2

πz
(15.120)

and

Gn = ha J0(sna) + λsn J1(sna)

hb J0(snb) − λsn J1(snb)
= haY0(sna) + λsnY1(sna)

hbY0(snb) − λsnY1(snb)
(15.121)

By use of Eq. (15.119), the integration of the left side in Eq. (15.117) becomes

∫ b

a
f0(sm, r) f0(sn, r)rdr

= b

s2
m − s2

n

[
sm f1(sm, b) f0(sn, b) − sn f1(sn, b) f0(sm, b)

]

− a

s2
m − s2

n

[
sm f1(sm, a) f0(sn, a) − sn f1(sn, a) f0(sm, a)

]

= b

s2
m − s2

n

[ hb

λsm
sm f0(sm, b) f0(sn, b) − hb

λsn
sn f0(sn, b) f0(sm, b)

]

− a

s2
m − s2

n

[
sm

2ha

πsma

(
− 2λ

πa

)
− sn

2ha

πsna

(
− 2λ

πa

)]
= 0

∫ b

a
f 2
0 (sm, r)rdr = b2

2

[
f 2
0 (smb) + f 2

1 (smb)
]

− a2

2

[
f 2
0 (sma) + f 2

1 (sma)
]

= b2

2

h2
b + λ2s2

m

h2
b

f 2
1 (smb) − a2

2

[
f 2
0 (sma) + f 2

1 (sma)
]

= b2

2

h2
b + λ2s2

m

h2
b

(
Gm

2hb

πsmb

)2 − a2

2

[( 2ha

πsma

)2 +
(
− 2λ

πa

)2]

= 2

π2s2
m

[
(h2

b + λ2s2
m)G2

m − (h2
a + λ2s2

m)
]

(15.122)

From Eqs. (15.117) and (15.122), Am is determined as

Am = π2s2
m

2[(h2
b + λ2s2

m)G2
m − (h2

a + λ2s2
m)]

×
∫ b

a
[Ti (r) − (A0 + B0 ln r)] f0(sm, r)rdr (Answer)

Calculating the following integral:

∫ b

a
(A0 + B0 ln r) f0(sm, r)rdr

=
[
(A0 + B0 ln r)

r

sm
f1(sm, r) −

∫
B0

sm
f1(sm, r)dr

]b

a
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=
[
(A0 + B0 ln r)

r

sm
f1(sm, r) + B0

s2
m

f0(sm, r)
]b

a

= 2

πs2
m

{
(hbGm − ha)A0 + B0

[(
ln b + λ

bhb

)
hbGm

−
(

ln a − λ

aha

)
ha

]}

= 2

πs2
m

(hbGm − ha)Ta + 2

πs2
m

(Tb − Ta)hbGm

= 2

πs2
m

(TbhbGm − Taha) (15.123)

we get

Am = π2s2
m

2[(h2
b + λ2s2

m)G2
m − (h2

a + λ2s2
m)]

∫ b

a
Ti (r) f0(sm, r)rdr

− π(TbhbGm − Taha)

(h2
b + λ2s2

m)G2
m − (h2

a + λ2s2
m)

(Answer)

Problem 15.12. Find the solution of the differential equation

d2 f (r)

d2r
+ 1

r

d f (r)

dr
− q2 f (r) = g(r) (15.124)

Equation (15.124) is appeared in the derivation of the transient temperature in the
cylinder when Laplace transform technique is used.

Solution. The solution of homogeneous differential equation of Eq. (15.124) is

f (r) = AI0(qr) + BK0(qr) (15.125)

where I0(qr) and K0(qr) are modified Bessel functions.
We introduce the method of variation of parameters to obtain the particular solu-

tion of Eq. (15.124). We put f (r) instead of Eq. (15.125)

f (r) = A(r)I0(qr) + B(r)K0(qr) (15.126)

Differentiation of Eq. (15.126) with respect to r gives

d f (r)

dr
= d A(r)

dr
I0(qr) + d B(r)

dr
K0(qr) + A(r)

d I0(qr)

dr
+ B(r)

d K0(qr)

dr
d2 f (r)

dr2 = d

dr

[d A(r)

dr
I0(qr) + d B(r)

dr
K0(qr)

]
+ d A(r)

dr

d I0(qr)

dr

+ d B(r)

dr

d K0(qr)

dr
+ A(r)

d2 I0(qr)

dr
+ B(r)

d2 K0(qr)

dr
(15.127)
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Substitution of Eqs. (15.127) into Eq. (15.124) yields

( d

dr
+ 1

r

)[d A(r)

dr
I0(qr) + d B(r)

dr
K0(qr)

]

+ d A(r)

dr

d I0(qr)

dr
+ d B(r)

dr

d K0(qr)

dr
= g(r) (15.128)

Equation (15.128) can be satisfied when we take

d A(r)

dr
I0(qr) + d B(r)

dr
K0(qr) = 0

d A(r)

dr

d I0(qr)

dr
+ d B(r)

dr

d K0(qr)

dr
= g(r) (15.129)

Solving Eq. (15.129), we get

d A(r)

dr
= g(r)

K0(qr)

q[I0(qr)K1(qr) + I1(qr)K0(qr)]
d B(r)

dr
= −g(r)

I0(qr)

q[I0(qr)K1(qr) + I1(qr)K0(qr)] (15.130)

where
d I0(qr)

dr
= q I1(qr),

d K0

dr
= −q K1(qr) (15.131)

Using the following formula

I0(qr)K1(qr) + I1(qr)K0(qr) = 1

qr
(15.132)

Equation (15.130) reduce to

d A(r)

dr
= rg(r)K0(qr),

d B(r)

dr
= −rg(r)I0(qr) (15.133)

Then, we obtain

A(r) =
∫

r
rg(r)K0(qr)dr, B(r) = −

∫
r

rg(r)I0(qr)dr (15.134)

Therefore the general solution is given by

f (r) = AI0(qr)+BK0(qr)+
∫

r
ηg(η)[I0(qr)K0(qη)−K0(qr)I0(qη)]dη (Answer)

(15.135)
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Problem 15.13. Find the transient temperature in a hollow cylinder, when the initial
condition is Ti (r), and the boundary conditions of the hollow cylinder are given by
following five cases (1)–(5):

[1] Prescribed surface temperatures Ta and Tb at both surfaces r = a and r = b,
respectively.

[2] Prescribed surface temperature Ta at the inner surface r = a, and heat transfer
between the outer surface and the surrounding medium with temperature Tb at
the outer surface r = b.

[3] Prescribed surface temperature Tb at the outer surface r = b, and heat transfer
between the inner surface and the surrounding medium with temperature Ta at
the inner surface r = a.

[4] Constant heat flux qa(= λ(∂T/∂r)) at the inner surface r = a, and heat transfer
between the outer surface and the surrounding medium with temperature Tb at
the outer surface r = b.

[5] Constant heat flux qb(= −λ(∂T/∂r)) at the outer surface r = b, and heat
transfer between the inner surface and the surrounding medium with temperature
Ta at the inner surface r = a.

Solution. When the both surfaces are heat transfer conditions

λ
∂T

∂r
= ha(T − Ta) on r = a, −λ

∂T

∂r
= hb(T − Tb) on r = b (15.136)

the temperature is given by Eq. (15.24). Comparing between the heat transfer con-
ditions (15.136) and each boundary condition, the temperature for each boundary
condition can be obtained.

[1] The boundary conditions on r = a and r = b for this problem are

T = Ta on r = a, T = Tb on r = b (15.137)

Rewriting the boundary conditions (15.136) gives

T = Ta + λ

ha

∂T

∂r
on r = a, T = Tb − λ

hb

∂T

∂r
on r = b (15.138)

Putting ha → ∞ and hb → ∞ in Eq. (15.138), Eq. (15.138) reduces to
Eq. (15.137). Therefore, we can obtain the temperature from Eq. (15.24) after
putting ha → ∞ and hb → ∞.
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T = Ta + (Tb − Ta)

ln
r

a

ln
b

a

− π

∞∑
n=1

Ta J0(snb) − Tb J0(sna)

J 2
0 (snb) − J 2

0 (sna)
J0(snb) f (sn, r) e−κs2

n t

− π2

2

∞∑
n=1

s2
n J 2

0 (snb) f (sn, r)

J 2
0 (snb) − J 2

0 (sna)

∫ b

a
Ti (η) f (sn, η)η dη e−κs2

n t (Answer)

where
f (sn, r) = Y0(sna)J0(snr) − J0(sna)Y0(snr) (15.139)

and sn are eigenvalues of the eigenfunction f (sn, b) = 0.
[2] The boundary conditions of this case are

T = Ta on r = a, −λ
∂T

∂r
= hb(T − Tb) on r = b (15.140)

If we put ha → ∞ in Eq. (15.138), Eq. (15.138) reduces to Eq. (15.140). There-
fore, we can obtain the temperature from Eq. (15.24) after putting ha → ∞.

T = Ta + (Tb − Ta)

ln
r

a

ln
b

a
+ λ

hbb

− π

∞∑
n=1

(Ta − TbGnhb) f (sn, r)

1 − G2
n(h2

b + λ2s2
n )

e−κs2
n t

− π2

2

∞∑
n=1

s2
n f (sn, r)e−κs2

n t

1 − G2
n(h2

b + λ2s2
n )

∫ b

a
Ti (η) f (sn, η)η dη (Answer)

where f (sn, r) and Gn are given by

f (sn, r) = Y0(sna)J0(snr) − J0(sna)Y0(snr)

Gn = J0(sna)

hb J0(snb) − λsn J1(snb)
= Y0(sna)

hbY0(snb) − λsnY1(snb)
(15.141)

and sn are eigenvalues of the eigenfunction

[hbY0(snb) − λsnY1(snb)]J0(sna) − [hb J0(snb) − λsn J1(snb)]Y0(sna) = 0
(15.142)
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[3] The boundary conditions of this case are

λ
∂T

∂r
= ha(T − Ta) on r = a, T = Tb on r = b (15.143)

By comparison between Eqs. (15.138) and (15.143), Eq. (15.138) reduces to
Eq. (15.143) if we put hb → ∞. Therefore, we can obtain the temperature from
Eq. (15.24) after putting hb → ∞.

T = Ta + (Tb − Ta)

ln
r

a
+ λ

haa

ln
b

a
+ λ

haa

− π

∞∑
n=1

(Taha − TbGn) f (sn, r)

h2
a + λ2s2

n − G2
n

e−κs2
n t

− π2

2

∞∑
n=1

s2
n f (sn, r)e−κs2

n t

h2
a + λ2s2

n − G2
n

∫ b

a
Ti (η) f (sn, η)η dη (Answer)

where f (sn, r) and Gn are given by

f (sn, r) = [haY0(sna) + λsnY1(sna)]J0(snr)

− [ha J0(sna) + λsn J1(sna)]Y0(snr)

Gn = ha J0(sna) + λsn J1(sna)

J0(snb)
= haY0(sna) + λsnY1(sna)

Y0(snb)
(Answer)

and sn are eigenvalues of the eigenfunction f (sn, b) = 0.
[4] The boundary conditions of this case are

λ
∂T

∂r
= qa on r = a, −λ

∂T

∂r
= hb(T − Tb) on r = b (15.144)

By comparison between Eqs. (15.136) and (15.144), after rewriting ha Ta = −qa

and putting ha → 0, Eq. (15.136) reduces to Eq. (15.144). Therefore, we can
obtain the temperature from Eq. (15.24), after rewriting ha Ta = −qa and putting
ha → 0.

T = Tb + qaa

λ

(
ln

r

b
− λ

hbb

)

+ π

∞∑
n=1

(qa + TbGnhbλsn) f (sn, r)

λsn[1 − G2
n(h2

b + λ2s2
n )] e−κs2

n t
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− π2

2

∞∑
n=1

s2
n f (sn, r)e−κs2

n t

1 − G2
n(h2

b + λ2s2
n )

∫ b

a
Ti (η) f (sn, η)η dη (Answer)

where f (sn, r) and Gn are given by

f (sn, r) = Y1(sna)J0(snr) − J1(sna)Y0(snr)

Gn = J1(sna)

hb J0(snb) − λsn J1(snb)
= Y1(sna)

hbY0(snb) − λsnY1(snb)
(15.145)

and sn are eigenvalues of the eigenfunction

[hbY0(snb) − λsnY1(snb)]J1(sna) − [hb J0(snb) − λsn J1(snb)]Y1(sna) = 0
(15.146)

[5] The boundary conditions of this case are

λ
∂T

∂r
= ha(T − Ta) on r = a, −λ

∂T

∂r
= qb on r = b (15.147)

By comparison between Eqs. (15.136) and (15.147), after rewriting hbTb = −qb

and putting hb → 0, Eq. (15.136) reduces to Eq. (15.147). Therefore, we can
obtain the temperature from the temperature Eq. (15.24), after rewriting hbTb =
−qb and putting hb → 0.

T = Ta − qbb

λ

(
ln

r

a
+ λ

haa

)

− π

∞∑
n=1

(Tahaλsn − qbGn) f (sn, r)

λsn(h2
a + λ2s2

n − G2
n)

e−κs2
n t

− π2

2

∞∑
n=1

s2
n f (sn, r)e−κs2

n t

h2
a + λ2s2

n − G2
n

∫ b

a
Ti (η) f (sn, η)η dη (Answer)

where f (sn, r) and Gn are given by

f (sn, r) = [haY0(sna) + λsnY1(sna)]J0(snr)

− [ha J0(sna) + λsn J1(sna)]Y0(snr)

Gn = ha J0(sna) + λsn J1(sna)

J1(snb)
= haY0(sna) + λsnY1(sna)

Y1(snb)
(15.148)

and sn are eigenvalues of the eigenfunction

[haY0(sna) + λsnY1(sna)]J1(snb) − [ha J0(sna) + λsn J1(sna)]Y1(snb) = 0
(15.149)
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Problem 15.14. Find the transient temperature in the hollow sphere, when the initial
condition is Ti (r), and the boundary conditions of a hollow sphere are given by
following five cases (1)–(5):

[1] Prescribed surface temperatures Ta and Tb at both surfaces r = a and r = b,
respectively.

[2] Prescribed surface temperature Ta at the inner surface r = a, and heat transfer
between the outer surface and the surrounding medium with temperature Tb at
the outer surface r = b.

[3] Prescribed surface temperature Tb at the outer surface r = b, and heat transfer
between the inner surface and the surrounding medium with temperature Ta at
the inner surface r = a.

[4] Constant heat flux qa(= λ(∂T/∂r)) at the inner surface r = a, and heat transfer
between the outer surface and the surrounding medium with temperature Tb at
the outer surface r = b.

[5] Constant heat flux qb(= −λ(∂T/∂r)) at the outer surface r = b, and heat
transfer between the inner surface and the surrounding medium with temperature
Ta at the inner surface r = a.

Solution. When at both surfaces the heat transfer conditions are

λ
∂T

∂r
= ha(T − Ta) on r = a, −λ

∂T

∂r
= hb(T − Tb) on r = b (15.150)

the temperature is given by Eq. (15.32). By comparing between the heat transfer
conditions (15.150) and each boundary condition, the temperature for each boundary
condition can be obtained.

[1] The boundary conditions on r = a and r = b for this problem are

T = Ta on r = a, T = Tb on r = b (15.151)

Rewriting the boundary conditions (15.150) gives

T = Ta + λ

ha

∂T

∂r
on r = a, T = Tb − λ

hb

∂T

∂r
on r = b (15.152)

If we put ha → ∞ and hb → ∞ in Eq. (15.152), Eq. (15.152) reduces to
Eq. (15.151). Therefore, we can obtain the temperature from Eq. (15.32) after
putting ha → ∞ and hb → ∞

T = Ta + (Tb − Ta)

1 − a

r

1 − a

b

+ 2

(b − a)r

∞∑
n=1

sin sn(r − a)e−κs2
n t

×
∫ b

a

[
Ti (η) − Ta − (Tb − Ta)

1 − a

η

1 − a

b

]
η sin sn(η − a)dη (Answer)
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where sn = nπ/(b − a).
[2] The boundary conditions of this case are

T = Ta on r = a, −λ
∂T

∂r
= hb(T − Tb) on r = b (15.153)

If we put ha → ∞ in Eq. (15.152), Eq. (15.152) reduces to Eq. (15.153). There-
fore, we can obtain the temperature from Eq. (15.32), after putting ha → ∞.

T = Ta + (Tb − Ta)

1 − a

r

1 − a

b
+ a

b

λ

hbb

+ 2

r

∞∑
n=1

sin sn(r − a)e−κs2
n t

× λ2s2
n b2 + (hbb − λ)2

(b − a)[λ2s2
n b2 + (hbb − λ)2] + λb(hbb − λ)

×
∫ b

a

⎡
⎢⎢⎣Ti (η) − Ta −

(Tb − Ta)

(
1 − a

η

)

1 − a

b
+ a

b

λ

hbb

⎤
⎥⎥⎦ η sin sn(η − a) dη

(Answer)

where sn are eigenvalues of the eigenfunction

(hbb − λ) sin sn (b − a) + λsnb cos sn (b − a) = 0 (15.154)

[3] The boundary conditions of this case are

λ
∂T

∂r
= ha(T − Ta) on r = a, T = Tb on r = b (15.155)

If we put hb → ∞ in Eq. (15.152), Eq. (15.152) reduces to Eq. (15.155). There-
fore, we can obtain the temperature from Eq. (15.32) after putting hb → ∞.

T = Ta + (Tb − Ta)

1 + λ

haa
− a

r

1 − a

b
+ λ

haa

+ 2

r

∞∑
n=1

(haa + λ) sin sn(r − a) + λsna cos sn(r − a)

(b − a)[λ2s2
n a2 + (haa + λ)2] + λa(haa + λ)

e−κs2
n t
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×
∫ b

a

⎡
⎢⎢⎣Ti (η) − Ta − (Tb − Ta)

⎛
⎜⎜⎝

1 + λ

haa
− a

η

1 − a

b
+ λ

haa

⎞
⎟⎟⎠

⎤
⎥⎥⎦

× η[(haa + λ) sin sn(η − a) + λsna cos sn(η − a)] dη (Answer)

where sn are eigenvalues of the eigenfunction

(haa + λ) sin sn (b − a) + λsna cos sn (b − a) = 0 (15.156)

[4] The boundary conditions of this case are

λ
∂T

∂r
= qa on r = a, −λ

∂T

∂r
= hb(T − Tb) on r = b (15.157)

If we rewrite haTa = −qa and put ha → 0 in Eq. (15.150), Eq. (15.150) reduces
to Eq. (15.157). Therefore, we can obtain the temperature from Eq. (15.32) after
rewriting haTa = −qa and putting ha → 0.

T = Tb − qaa

λ

a

b

(
b

r
− 1 + λ

hbb

)

+ 2

r

∞∑
n=1

[λ2s2
n b2 + (hbb − λ)2][sin sn(r − a) + sna cos sn(r − a)](

(b − a)(1 + s2
n a2)[λ2s2

n b2 + (hbb − λ)2]
+ [bλ + a(hbb − λ)][λs2

nab + (hbb − λ)]
)

× e−κs2
n t

∫ b

a

[
Ti (η) − Tb + qaa

λ

a

b

(
b

η
− 1 + λ

hbb

)]

× η[sin sn(η − a) + sna cos sn(η − a)] dη (Answer)

where sn are eigenvalues of the eigenfunction

(
hbb − λ − λs2

n ab
)

sin sn (b − a) + sn [a (hbb − λ) + bλ] cos sn (b − a) = 0

(15.158)
[5] The boundary conditions of this case are

λ
∂T

∂r
= ha(T − Ta) on r = a, −λ

∂T

∂r
= qb on r = b (15.159)

If we rewrite hbTb = −qb and put hb → 0 in Eq. (15.150), Eq. (15.150) reduces
to Eq. (15.159). Therefore, we can obtain the temperature from Eq. (15.32) after
rewriting hbTb = −qb and putting hb → 0.

T = Ta − qbb

λ

b

a

(
1 − a

r
+ λ

haa

)
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+ 2

r

∞∑
n=1

(s2
n b2 + 1)[(haa + λ) sin sn(r − a) + λsna cos sn(r − a)](

(b − a)(1 + s2
n b2)[λ2s2

n a2 + (haa + λ)2]
+[b(haa + λ) − aλ][λs2

nab − (haa + λ)]
)

× e−κs2
n t

∫ b

a

[
Ti (η) − Ta + qbb

λ

b

a

(
1 − a

η
+ λ

haa

)]

× η[(haa + λ) sin sn(η − a) + λsna cos sn(η − a)] dη (Answer)

where sn are eigenvalues of the eigenfunction

(
haa + λ + λs2

n ab
)

sin sn (b − a) − sn [b (haa + λ) − aλ] cos sn (b − a) = 0

(15.160)

Problem 15.15. When a solid cylinder with the initial temperature Ti (r) is exposed
to heat transfer between the surface of radius a and the surrounding medium with
time dependent temperature Ta(t), find the transient temperature in the solid cylinder.

Solution. The equations to be solved are

(1) Governing equation
1

κ

∂T

∂t
= ∂2T

∂r2 + 1

r

∂T

∂r
(15.161)

(2) Boundary condition

− λ
∂T

∂r
= ha[T − Ta(t)] on r = a (15.162)

(3) Initial condition
T = Ti (r) at t = 0 (15.163)

Applying the Laplace transform with respect to the time t and taking the initial
condition into consideration, we obtain
Governing equation:

d2T̄

dr2 + 1

r

dT̄

dr
− q2T̄ = − 1

κ
Ti (r) (15.161′)

Boundary condition:

− λ
dT̄

dr
= ha(T̄ − T̄a) on r = a (15.162′)

where q2 = p/κ.
The general solution of Eq. (15.161′) for a solid cylinder is obtained from

Eq. (15.135) of Problem 15.12 by putting B = 0 and g(η) = −Ti (η)/κ
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T̄ = AI0(qr) − 1

κ

∫ r

0
Ti (η)η[I0(qr)K0(qη) − I0(qη)K0(qr)]dη

= AI0(qr) + G(qr) (15.164)

where

G(qr) = − 1

κ

∫ r

0
Ti (η)η[I0(qr)K0(qη) − I0(qη)K0(qr)]dη (15.165)

Differentiation of Eq. (15.164) with respect to r gives

dT̄

dr
= Aq I1(qr) + G1(qr) (15.166)

where

G1(qr) ≡ dG(qr)

dr
= − 1

κ

∫ r

0
Ti (η)ηq[I1(qr)K0(qη) + I0(qη)K1(qr)]dη

(15.167)
The boundary condition (15.162′) gives

Aλq I1(qa) + λG1(qa) + Aha I0(qa) + haG(qa) = ha T̄a (15.168)

Then, A is given by

A = ha T̄a

λq I1(qa) + ha I0(qa)
− λG1(qa) + haG(qa)

λq I1(qa) + ha I0(qa)

= ha T̄a

λq I1(qa) + ha I0(qa)
+ λq K1(qa) − ha K0(qa)

λq I1(qa) + ha I0(qa)

× 1

κ

∫ a

0
Ti (η)η I0(qη)dη + 1

κ

∫ a

0
Ti (η)ηK0(qη)dη (15.169)

Hence, the temperature in the Laplace transformed domain is

T̄ = ha T̄a I0(qr)

λq I1(qa) + ha I0(qa)

+ λq K1(qa) − ha K0(qa)

λq I1(qa) + ha I0(qa)

I0(qr)

κ

∫ a

0
Ti (η)η I0(qη)dη

+ I0(qr)

κ

∫ a

0
Ti (η)ηK0(qη)dη + G(qr) (15.170)

or an alternative form
T̄ = T̄a T̄1 + T̄2 + T̄3 (15.171)
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where

T̄1 = ha I0(qr)

λq I1(qa) + ha I0(qa)
(15.171′)

T̄2 = λq K1(qa) − ha K0(qa)

λq I1(qa) + ha I0(qa)

I0(qr)

κ

∫ a

0
Ti (η)η I0(qη)dη (15.171′′)

T̄3 = I0(qr)

κ

∫ a

0
Ti (η)ηK0(qη)dη + G(qr) (15.171′′′)

The inverse Laplace transform of Eq. (15.170) reduces to calculation of the sum of
the residues at the poles in the inner region with the contour. Since Eq. (15.171′′′) has
no pole, the inverse Laplace transform of Eq. (15.171′′′) reduces to zero. Equations
(15.171′) and (15.171′′) have poles at p = −κs2

n , and sn are eigenvalues of the
eigenfunction

λsn J1(sna) − ha J0(sna) = 0 (15.172)

The residue of T̄1 is

ha I0(qr)ept

d

dp
[λq I1(qa) + ha I0(qa)]

∣∣∣∣
p=−κs2

n

= ha I0(qr)e−κs2
n t

1

2qκ

d

dq
[λq I1(qa) + ha I0(qa)]

∣∣∣∣
q=isn

= 2isnκha I0(isnr)e−κs2
n t

a[λisn I0(isna) + ha I1(isna)] = 2isnκha J0(snr)e−κs2
n t

a[λisn J0(sna) + iha J1(sna)]
= 2snκha J0(snr)e−κs2

n t

a[λsn J0(sna) + ha J1(sna)] = 2κλs2
n ha J0(snr)e−κs2

n t

a(λ2s2
n + h2

a)J0(sna)
(15.173)

where i2 = −1. On the other hand,

λq K1(qa) − ha K0(qa)|q=isn

= λisn(−π

2
)[J1(sna) − iY1(sna)] − ha(−π

2
i)[J0(sna) − iY0(sna)]

= π

2
i[ha J0(sna) − λsn J1(sna)] + π

2
[haY0(sna) − λsnY1(sna)] (15.174)

Using Eq. (15.172), Eq. (15.174) reduces to

λq K1(qa) − ha K0(qa)|q=isn

= π

2

{
haY0(sna) − λsn

J0(sna)

[
J1(sna)Y0(sna) − 2

πsna

]}
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= π

2
[ha J0(sna) − λsn J1(sna)]Y0(sna)

J0(sna)
+ λ

a J0(sna)

= λ

a J0(sna)
(15.175)

Residue of T̄2 is

λq K1(qa) − ha K0(qa)

d

dp
[λq I1(qa) + ha I0(qa)]

I0(qr)

κ

∫ a

0
Ti (η)η I0(qη)dηept

∣∣∣
p=−κs2

n

= 2λ2s2
n J0(snr)e−κs2

n t

a2(λ2s2
n + h2

a)J 2
0 (sna)

∫ a

0
Ti (η)ηJ0(snη)dη (15.176)

We get

L−1[T̄a T̄1] =
∫ t

0
Ta(τ )T1(t − τ )dτ

= 2κλha

a

∫ t

0
Ta(τ )

∞∑
n=1

s2
n J0(snr)e−κs2

n (t−τ )

(λ2s2
n + h2

a)J0(sna)
dτ (15.177)

Therefore, the temperature is given by

T = 2κλha

a

∫ t

0
Ta(τ )

∞∑
n=1

s2
n J0(snr)e−κs2

n (t−τ )

(λ2s2
n + h2

a)J0(sna)
dτ

+ 2λ2

a2

∞∑
n=1

s2
n J0(snr)e−κs2

n t

(λ2s2
n + h2

a)J 2
0 (sna)

∫ a

0
Ti (η)ηJ0(snη)dη (Answer)
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