Chapter 15
Heat Conduction

In this chapter the Fourier heat conduction equation along with the boundary
conditions and the initial conditions for various coordinate systems are recalled.
One-dimensional heat conduction problems in Cartesian coordinates, cylindrical
coordinates and spherical coordinates are treated for both the steady and the transient
temperature fields. The particular problems and solutions for heat conduction in a
strip, a solid cylinder, a hollow circular cylinder and a hollow sphere are presented
for various boundary conditions. [See also Chap. 22.]

15.1 Heat Conduction Equation

Heat conduction equation
The Fourier law of heat conduction is

oT
g=-Ag- (15.1)

where ¢ denotes the heat flux with dimension [W /m?] and ) is the thermal conduc-
tivity of the solid with dimension [W/(m - K)]. Here, 0/0n denotes differentiation
along out-drawn normal 7 to the isothermal surface.

The Fourier heat conduction equation for the homogeneous isotropic solid based
on the Fourier law of heat conduction (15.1) is

oT )
cp— = AVT+Q (15.2)
ot
An alternative form is L oT 0
- =VT+ = 15.2/
K Ot A ( )
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354 15 Heat Conduction

where
K= — (15.3)

in which Q is the internal heat generation per unit volume per unit time, c is the
specific heat with dimension [J/(kg - K)], p is the density with dimension [kg/m?]
of the solid, and x means the thermal diffusivity with dimension [m?/s], and the
expression for the Laplacian operator V? is different for each coordinate system:

0? 0? 0?
2 _ Pl + 972 + 2 : for Cartesian coordinates
? 19 19
= 4+ —— 4+ —— 4+ — = Af lindrical dinat
s R w7 + 52 or cylindrical coordinates

2 +2 ) N 1 0 (. 08 N 1 9%
=—+-——+ —5——[|sinf—= _—
o2 " ror  P2singoo \° 2 sin2 0 952

: for spherical coordinates (15.4)

The heat conduction equation for a nonhomogeneous anisotropic solid is

oT 8( 8T)+8()\ 8T)+8(>\0T)+Q (15.5)
cp— = — |\ — — Ny — (= .
Por = ox ™Moy dy \"7 dy 0z \"* 0z
where A, Ay, and \; denote the thermal conductivities along the x, y, and z directions,
respectively, and depend on the position.
The heat conduction equation for a nonhomogeneous isotropic solid is

cpaa—f _ %(Ag—z) + %(A%) %(A%—f) +0 (15.6)

The heat conduction equation for homogeneous anisotropic solid is

or O*T o*T O*T
— =M=t A= A= + 15.7
Por = Moxr T T T (-
The heat conduction equation for a homogeneous isotropic solid without internal

heat generation is

1or
-—— =VT 15.
K Ot (158)

The steady state heat conduction equation for the homogeneous isotropic solid with
the internal heat generation Q is

v27+%=0 (15.9)
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The steady state heat conduction equation for the homogeneous isotropic solid
without internal heat generation is

VT =0 (15.10)

Boundary conditions

When heat transfer between the boundary surface of the solid and the surrounding
medium occurs by convection, the boundary condition is

—)\a—T—f-qb:h(T—@) (15.11)
on

where & denotes the heat transfer coefficient with dimension [W/ (m2 -K)1, g» means
heat generation per unit area per unit time on the boundary surface and ® is the
temperature of the surrounding medium which is a given function of position and
time.

When the surfaces of two solids are in perfect thermal contact, the temperature
on the contact surface and the heat flow through the contact surface are the same for
both solids

T, =1, )\1@ = )\2@ (15.12)
on on
where subscripts 1 and 2 refer to the solid 1 and 2, respectively, and 7 is the common
normal direction on the contact surface.

Initial condition
When the transient heat conduction Eq.(15.2) is considered, an initial condition
which expresses the temperature distribution in the solid at initial time must be
specified

T = ®(P) (15.13)

where @ (P) is the initial temperature distribution and P is a position in the solid.

15.2 One-Dimensional Heat Conduction Problems

Temperature in a strip

The heat conduction Eq.(15.9) simplifies to the form for one-dimensional steady
state heat conduction problems of a homogeneous isotropic solid with the internal
heat generation Q
a°r __9 (15.14)
dxz A ‘
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If there is no internal heat generation Q, Eq.(15.14) reduces to

d°T

= (15.15)

The steady temperature in a strip of width / with constant internal heat generation
Q is given for the heat transfer boundary conditions

hp(hax + )
A(hg + hp) + hahpl
Q_ﬂ[ QA+ hpl) (hpx + ) x_2]
2X LA(hy + hp)l + hohpl? 12

T=T,+ T, —Ta)

(15.16)

where T, and T}, are the temperatures of the surrounding media, 5, and hj are the
heat transfer coefficients, and subscripts a and b denote boundaries at x = 0 and
x = [, respectively.

The heat conduction Eq. (15.8) simplifies to the form for one-dimensional transient
heat conduction problems of a homogeneous isotropic solid

oT T

The transient temperature in a strip of width / with the initial temperature 7;(x) is
given for the heat transfer boundary conditions

hp(hax + )
Aha + hp) + hahpl
+2 i ()\zs,% + hi)(ha sin s, x + \s, cos s,,x)e’“%’
U224+ h2) (W22 + hp) + Mg + hy) (W25 + hahp)

[ hp(hgx + X)
X/O {Tl'(x)—[Ta+(Th_Ta)/\(hu+hb)+huhbl:|]

X (hg sins,x + Asj, cos s,x) dx (15.18)

Tx,t) =T, + (T — Ty)

where s, are eigenvalues of the transcendental equation

A8 (hg + hp)
tan s, = ~ote 0 15.19
R V- (13.19)

Temperature in a hollow cylinder

The heat conduction Eq. (15.9) simplifies to the form for one-dimensional steady
state heat conduction problems of the homogeneous isotropic cylinder with an inter-
nal heat generation Q
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d’T LT _ o (15.20)
dr2 " rdr A ’
Furthermore, if there is no internal heat generation Q, Eq. (15.20) reduces to

d*T  1dT
S 15.21
dr?  rdr ( )
The steady temperature in a hollow cylinder of inner radius a and outer radius b
with constant internal heat generation Q is given for the heat transfer boundary
conditions

r A
1n—+h
T =T, + Ty — T)—p——“"
In— + —
a hga hpb
A\, b AN, 7
2 2
1-2 In—+b*{14+2——)In—
a ( o ( + bhb) n-) o (1522)
A
AR R YN S AR
0, o\ e Tbm" A ) by
4N 4N b A A
In— + —
a hga  hpb

where subscripts a and b denote the boundaries at r = a and r = b, respectively.
The heat conduction Eq. (15.8) simplifies to the form for one-dimensional transient
heat conduction problems of a homogeneous isotropic cylinder

oT o’T 10T
E:”(W ?E) (15.23)

The transient temperature in a hollow cylinder of inner radius a and outer radius b
with the initial temperature T; (r) is given for the heat transfer boundary conditions

In(r/a) + A/ (haa)
In(b/a) + A/ (hqa) + X/ (hpb)

T'=Ta+ (T = Ta)
00
Tohg — Tphp G .
_ﬂ_z alla b2b n f(Sn,r)eihS’zl
(h2 + N2s2) — (hy + A\2s2) G2

t

n=1

”Tzi Si%f(sn»r) /bT( )f( ynd — kst
- = (1) f (S, mmdn e "
2 B2+ X)) — (hy + N2sD)G2 Ja ! "

(15.24)

where s, are eigenvalues of the transcendental equation
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[haJo(sna) + Asp J1 (sna)l[hp Yo (s0D) — AspY1(s,b)]
— [hpJo(snb) — Xs J1(5nb)[ha Yo (spa) + AspY1(s,a)] =0 (15.25)

and
_ haJo(spa) + AspJi(spa) — haYo(spa) + AspYi(sna)

n = = (15.26)
hpJo(spb) — AspJ1(snb) hpYo(snD) — AspY1(spb)
f(sn, 1) = Jo(su)[haYo(spa) + s, Y1(spa)]
— Yo(sur)[haJo(sna) + Asp J1(spa)l (15.27)

in which Jo(sr) is the Bessel function of the first kind of order zero, and Yy (sr) is
the Bessel function of the second kind of order zero.

Temperature in a hollow sphere

The heat conduction Eq. (15.9) simplifies to the form for one-dimensional steady state
heat conduction problems of the homogeneous isotropic sphere with the internal heat
generation Q

d*T  2dT 0

—t———=—= 15.28

dr? + rdr A ( )
Furthermore, if there is no internal heat generation Q, Eq.(15.28) reduces to

d’°T  2dT 0 (15.29)
dr? rdr ’

The steady temperature in a hollow sphere of inner radius a and outer radius b with
constant internal heat generation Q is given for the heat transfer boundary conditions

1+ A -
haa 1 0

T =Ty +(T) - T)——5——— _6’2
1—2 A
b+haa+bhbb

a\? A a2 A qa

1—(2) +2 ) IRV AT

[ (b) + ahyg (b) + bhb]r

o V) () -G () (- 5)

(15.30)

S
t‘

Q

S
S
=
<>

&

The heat conduction Eq. (15.8) simplifies to the form for one-dimensional transient
heat conduction problems of a homogeneous isotropic sphere
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oT O’T 20T
E:”(W ?E) (15.31)

The transient temperature in a hollow sphere of inner radius a and outer radius b
with the initial temperature 7; (r) is given for the heat transfer boundary conditions

A a

i

a r
T(r,t) =T, + (Tp — Ty) P 3 P
1-2 A
b+hua+bhbb

o0
C, . _
+ Z —1[(hua + A) sins, (r — a) + Aspa cos s, (r — a)]e ris2t
r

n=1

(15.32)

where coefficients C,, are

b
(b — N + N2526°] / (T () — Tyl
X [(hqa + N) sin s, (n — al)l + Aspacoss,(n —a)ldn

C, =
(b — @)[(haa + N2 + Ns2a21[(hpb — N + N2s2b%]
+ Ab(haa + A) + a(hpb — M[(haa + N (hpb — ) + N5, ab]
(15.33)
and s, are eigenvalues of the transcendental equation
[(haa+ 20 Gy = X) = X252ab] sins, (b — @)
4+ Asp [b (hga + ) +a (hpb — N)]coss, (b —a) =0 (15.34)

15.3 Problems and Solutions Related to Heat Conduction

Problem 15.1. When the boundary conditions of a strip are given by following three
cases (1), (2) and (3), find the steady temperatures in the strip.

[1] Prescribed surface temperatures 7, and 7}, at both surfaces x = 0 and x = |/,
respectively.

[2] Prescribed surface temperature 7, at the left surface x = 0 and constant heat
flux gp (= —A(dT/dx)) at the right surface x = [.

[3] Constant heat flux g, (= A(dT/dx)) at the left surface x = 0 and prescribed
surface temperature 7}, at the right surface x = [.

Solution. The general solution of the governing Eq. (15.15) is

T =A+ Bx (15.35)
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where unknown coefficients A and B are determined by each boundary condition.

[1] The boundary conditions are
T=T, on x=0, T=T, on x=1 (15.36)

Substituting Eq. (15.35) into Eq. (15.36), unknown coefficients A and B can be
determined as

1
A=T,, B=(T,— Ta)7 (15.37)
The temperature becomes
X
T=T,+ T - Tu)? (Answer)

[2] The boundary conditions are

dT
T=T, on x=0, —)\d—:qb on x =1 (15.38)
X

Substituting Eq. (15.35) into Eq. (15.38), unknown coefficients A and B can be
determined as
A=T,, B=—— (15.39)

The temperature becomes
T=T,— —x (Answer)

[3] The boundary conditions are

dT
A— =g, on x=0, T=T, onx =1 (15.40)
dx
Substituting Eq. (15.35) into Eq. (15.40), unknown coefficients A and B can be
determined as

a qa
A=T,——I, B=— 15.41
b= 3 ( )
The temperature becomes
qg
T=T,— 7(1 —X) (Answer)

Problem 15.2. When the boundary conditions of a hollow cylinder are given by
following five cases (1)—(5), find the steady temperatures in the hollow cylinder.

[1] Prescribed surface temperatures 7, and 7} at both surfaces r = a and r = b,
respectively.
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[2] Prescribed surface temperature T, at the inner surface r = a, and heat transfer
between the outer surface and the surrounding medium with temperature 7j, at
the outer surface r = b.

[3] Prescribed surface temperature 7} at the outer surface r = b, and heat transfer
between the inner surface and the surrounding medium with temperature 7, at
the inner surface r = a.

[4] Constant heat flux g, (= A(dT/dr)) at the inner surface r = a, and heat transfer
between the outer surface and the surrounding medium with temperature 7}, at
the outer surface r = b.

[5] Constant heat flux g, (= —A(dT/dr)) at the outer surface r = b, and heat
transfer between the inner surface and the surrounding medium with temperature
T, at the inner surface r = a.

Solution. The general solution of the governing Eq.(15.21) is
T=A+Blnr (15.42)

where unknown coefficients A and B are determined by each boundary condition.

[1] The boundary conditions are
T=T, on r=a, T=1T, on r=»b (15.43)

Substituting Eq. (15.42) into Eq. (15.43), unknown coefficients A and B can be
determined as

T, — T, T, - T,

A=T,— ————Ina, = — (15.44)
Inb —1Ina Inb —1Ina
The temperature becomes
In r
T=T,+ (Tp — Ta)—g (Answer)
In —
a
[2] The boundary conditions are
orT
T=T, on r=a, —)\a— =hp(T —Tp) on r=">b (15.45)
r
Substitution of Eq.(15.42) into Eq. (15.45) gives
na 1
A=T,— (T, — T,) b 1 B= (T, — T, b ;Y (15.46)
In— + — In— 4+ —
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(3]

(4]

(5]

15 Heat Conduction

The temperature becomes

T=T,+ (T — Ta)% (Answer)
In 2 + m
The boundary conditions are
/\ill—fzha(T—Ta) on r=a, T=T, on r=»>b (15.47)

Substitution of Eq. (15.42) into Eq. (15.47) gives

Ina — W 1
a
A=T,—(Tp — Ta)ﬁ, B = (T, — Ta)W (15.48)
— n f—
1 a  hga a hga
The temperature becomes
r A
In— + W
T =T, + (Ty —T,) Z i“ (Answer)
In — +
a  hga

The boundary conditions are

T dT
d— =q, on r=a, —A—=h,(T—Tp) on r=»>b (15.49)
dr dr

Substitution of Eq. (15.42) into Eq. (15.49) gives

qaQ A qdaa
A=T — Inb+ —), B= 15.50
b (Inb + hbb) y ( )
The temperature becomes
T=1,+ %% (1n A (Answer)
TN\

The boundary conditions are

dT dT
A—=hy(T—-T,) on r=a, —A\—=gqp on r=> (15.51)
dr dr
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Substitution of Eq.(15.42) into Eq. (15.51) gives

qvb A qnb
A=T,+ —(Ina— —), B=—— 15.52
at b\ (Ina haa) h\ ( )
The temperature becomes
qpb r A
T=T,——In—+ (Answer)
A a hga

Problem 15.3. When the boundary conditions of a hollow sphere are given by fol-
lowing five cases (1)—(5), find the steady temperatures in the hollow sphere.

(1]
(2]

(3]

(4]

(5]

Prescribed surface temperatures 7, and T}, at both surfaces r = a and r = b,
respectively.

Prescribed surface temperature 7, at the inner surface r = a, and heat transfer
between the outer surface and the surrounding medium with temperature 7} at
the outer surface r = b.

Prescribed surface temperature 7}, at the outer surface r = b, and heat transfer
between the inner surface and the surrounding medium with temperature 7, at
the inner surface r = a.

Constant heat flux g, (= A(dT /dr)) atthe inner surface r = a, and heat transfer
between the outer surface and the surrounding medium with temperature 7} at
the outer surface r = b.

Constant heat flux g, (= —A\(dT/dr)) at the outer surface r = b, and heat
transfer between the inner surface and the surrounding medium with temperature
T, at the inner surface r = a.

Solution. The general solution of the governing Eq. (15.29) is

B
T=A+— (15.53)
r

where unknown coefficients A and B are determined by each boundary condition.

(1]

The boundary conditions are
T=T, on r=a, T=T, on r=»>b (15.54)
Substitution of Eq.(15.53) into Eq. (15.54) gives

B B
At—=T, A+ =T (15.55)
a
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(2]

(3]

15 Heat Conduction

Equation (15.55) gives

T, — T, T, — T,
a=1,4 27Te g @l =Tl (15.56)
1—— 1——
b b
The temperature becomes
a
1—2=
T=T,+ (T, —T,) - (Answer)
b
The boundary conditions are
dT
T=T, on r=a, —)\d—zhb(T—T;,) on r=>b (15.57)
r
Substitution of Eq.(15.53) into Eq. (15.57) gives
A=T,+ Ty —T, ! p——— 2T Ta) 15.58
Sl ot P e e (B
b  bbhy b bbhy
The temperature becomes
a
)
_ _ r
T=T,+ (Tp Ta)—1 7 . PEDY (Answer)
b bbhy
The boundary conditions are
dT
/\d—=ha(T—Ta) on r=a, T=T, on r=>b (15.59)
r
Substitution of Eq.(15.53) into Eq. (15.59) gives
1+ A
_ ah, _ a(Tp —T,)
A=T,+ T, —T,) e B_—ﬁ (15.60)
- -+ - -+

b ah, b ah,
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The temperature becomes

A a
1+ -
a r
T=T,+ Ty — TQ)W
b ah,
[4] The boundary conditions are
T dT
A—=¢q, on r=a, —-A—=h,(T—-Ty) on r=»>b
dr dr

Substitution of Eq. (15.53) into Eq. (15.61) gives

2
a"qa adaq a A
B=— A=T —(1——)
L bhy,

The temperature becomes

T=T,—

ot )

[5] The boundary conditions are

dT dT
A—=hy(T—-T,) on r=a, —A— =¢qp On r=>b
dr dr

Substitution of Eq. (15.53) into Eq. (15.63) gives

b2qp bqp b A
B=—2 A=T,——2=(1
A “ /\a(+aha)

bqbb(l—i-i a)

ah, r

365

(Answer)

(15.61)

(15.62)

(Answer)

(15.63)

(15.64)

(Answer)

Problem 15.4. Find the steady temperature in a strip of width / with constant internal

heat generation Q under heat transfer boundary conditions.

Solution. The steady state heat conduction equation is given by Eq.(15.14). The

boundary conditions are

dT dT

)\d—=ha(T—Ta) on x=0, - A\—=hp(T—-Tp) on x=1
X

dx

(15.65)
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where T, and T} are the temperatures of the surrounding media, #, and h;, are the
heat transfer coefficients, and subscripts a and b denote boundaries at x = 0 and
x = [, respectively. A general solution of Eq. (15.14) is

_ Q>
T =A+Bx——x (15.66)

The coefficients A and B can be determined from the boundary conditions (15.65)

AT + My (Ty, — Ty) 0  MNQ@X+hpl)
T N g 4 hp) + hahpl T 22X Mg + hp) + hahpl
_ hohyp(Ty — Tp) 2 hal QX + hypl) (15.67)
Nha + hp) + hahpl — 2X X(hg + hp) + hahpl '
Substitution of Eq. (15.67) into Eq. (15.66) gives the temperature
hp(hax + N)
T=T,+ (T, —T,
o+ T = T S & hala]

Q1 @A+ hpl)(hpx + ) x>
_[ 5 — —2] (Answer)
2A LA(hg + hp)l 4+ hohpl l

Problem 15.5. Find the steady temperature in a hollow cylinder of inner radius
a and outer radius b with constant internal heat generation Q under heat transfer
boundary conditions.

Solution. The steady heat conduction equation in the hollow cylinder is given by
Eq. (15.20). The boundary conditions are

T
A—=hy(T—-T,) on r=a
dr
dT
— )\d— =hp(T —Tp) on r=">b (15.68)
r

The general solution of Eq. (15.20) is
T=A+Blnr— 9. (15.69)
4

The coefficients A and B can be determined from the boundary conditions (15.68)

Ina —
hqa

lnb+ A + A

a hga  hpb

AZTa_(Tb_Ta)
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a*Inb —b*Ina —2ib21na -2 A a’Inb
bhy

ang

A A A

I B S NN

Y Fand” T T T G by
A lnb—l- A + A
a hga  hpb

A A
1+2—)p*—(1-2 a’
T, — T, ( ) ( a)
B= b L2 bhy ah (15.70)

i b N A N A 4\ i b N A N A
n— — n— —
hga — hpb a hga  hpb

Thus the temperature is

I r A
n;_’_haa
lné—l— A -I-i
a hga  hpb

A b A r
2 2

1-2 In—+b°({14+2—)In—
“ ( aha)nr ( bhb)na

A A XA

PRI Y% S NN

0., 0 \"an, T
4\ 4A lné—l— A + A
a hga  hpb

TZTa"‘(Tb_Ta)

+

(Answer)

Problem 15.6. Find the steady temperature in a hollow sphere of inner radius a and
outer radius b with constant internal heat generation Q under heat transfer boundary
conditions.

Solution. The steady heat conduction equation in the hollow sphere is given by
Eq. (15.28). The boundary conditions are

dT
A—="h(T—-T,) on r=a
dr

dT
—)\—d =hy(T —Tp) on r=>b (15.71)
r

The general solution of Eq. (15.28) is

B
r=at2_Lp

15.72
r 6A ( )
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The coefficients A and B can be determined from the boundary conditions (15.71)

A=T,+ Ty, —Ta)

A A a\3 A A
gbZ (1 +2%) (1 * aha) B (E) (1 _2aha) (1 B M)

6 a A a A
1—=
b+haa+bhbb

+

Q

(15.73)

- A a
hea r 0
T =T+ (T - T) ———5——— -5
1—- = -
b+haa b hpb

-G 2 ) 2 )

o, ) (i) - ) (-2a) (-3

6 a A

(Answer)

Problem 15.7. Determine the one-dimensional steady temperature of a two-layered
hollow cylinder for the heat transfer boundary conditions.

Solution. The temperature of each layer is
T, =Ai+BInr (i=1,2) (15.74)

The boundary conditions at each boundary are
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dT
Mt = (T =T on r=a
dr
dT dT;
T1=T2’ A]d_;=AZW on r=c
dT,
—)\zd— = hh(Tz — Tb) on r = b (1575)
r

We get the coefficients A; and B; in Eq.(15.74) from (15.74) and (15.75)

T, — Ty T, — T,

A =T, — bhp y(ahyIna — \), B = D abh hp)y
T, — T,
Ay =T, + 2 5 L phy(ahgdoIn S — ahy A Inc + Ajo)
a
T, — T
By = ”D @ abhghph (15.76)
where
b c
D = M\ A\a(ahy + bhy) + abhahb()\l In=+ X\ ln —) (15.77)

C a

Then, the temperature of each layer is

T, — T,
=T, + b abhb/\z(aha In L + /\1)
D a
T, — T, A
T =T,+ b abhb)\g{aha (ln < + A In C) + )\1} (Answer)
D a X\ ¢

Problem 15.8. Find the transient temperature in a strip, when the initial temperature
is T; (r), and the boundary conditions of the strip are given by following two cases:

[1] Prescribed surface temperatures 7, and 7}, at both surfaces x = 0 and x = |/,
respectively.

[2] Prescribed surface temperature 7, at x = 0 and constant heat flux ¢;(=
—\(0T/Ox)) atx = L.

Solution. When the heat transfer conditions at both surfaces are

oT oTr
A—="h,(T—-T,) on x=0, “A\—=h,(T—-Tp) on x=1 (15.78)
Ox Ox

the temperature is given by Eq.(15.18). Comparing between the heat transfer con-
ditions (15.78) and each boundary condition, the temperature for each boundary
condition can easily be obtained.

[1] The boundary conditions on x = 0 and x = [ for this problem are

T=T, on x=0, T=1T, on x=1 (15.79)
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Rewriting the boundary conditions (15.78) gives

T=T,+ A oT 0, T=T, A oT [ (15.80)
— ——  0n =0, = — — — 0n = .
“ 7 hg Ox * b hp Ox *

Putting i, — oo and h; — oo, Eq.(15.80) reduces to Eq.(15.79). Therefore,

we can obtain the temperature from Eq.(15.18) after putting 7, — oo and
]’lb — OQ.

T 1) =Ty + (Ty — m%

n 22{/()[[7}()0 T, — (T, — Ta)ﬂ sinmr%cdx}

X sin nﬂ')l—ce_”(’”/l)z[ (Answer)
[2] The boundary conditions of this case are
orT
T=T, on x=0, - A—=¢qp on x=1 (15.81)
Ox
If we rewrite hpT, = —qp, and put h, — oo and hp = 0 in Eq.(15.78),

Eq.(15.78) reduces to Eq.(15.81). Therefore, we can obtain the temperature
from Eq. (15.18), after rewriting T = —g; and putting h, — oo and iy = 0.

T, 1) =T, — ‘%’x

+2g{ [T 7o+ (5 e ]

2n — 17T)_‘)e7m[(2n71)n/2]2z

[

X sin( (Answer)
Problem 15.9. When the boundary condition of the solid cylinder is heat transfer
between the surface and the surrounding medium with the temperature 7,, and the
initial temperature is 7; (r), find the transient temperature in the solid cylinder.

Solution. When the boundary condition of the solid cylinder is heat transfer be-
tween the surface of the cylinder and the surrounding medium with the temperature
T,, and the initial temperature is 7; (), the equations to be solved are

(1) Governing equation

or _ ﬁ(azT ! aT) (15.82)

o1 o ror
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(2) Boundary condition

orT
—A—=h,(T—-T,) on r=a (15.83)
or
(3) Initial condition
T=T;(r) at t=0 (15.84)

The solution of Eq. (15.82) can be obtained by use of the method of separation of
variables. We put the temperature to

T, t)= f(r)g) (15.85)

Substitution of Eq.(15.85) into Eq. (15.82) leads to a pair of ordinary differential

equation for g(¢) and f(¢)
dg(1)

o + ks%g(1) =0 (15.86)
> f(ry ldfer) | 5.
St s ) =0 (15.87)

where s is arbitrary constant, and Eq. (15.87) is Bessel’s differential equation of order

Z€10. !

The linearly independent solutions of Eq. (15.86) are
git)y=1 for s =0, g()= exp(—nszt) for s #0 (15.88)
and the linearly independent solutions of Eq.(15.87) are

1
fr) = (lnr) for s =0, f(r)= (;gg:;) for s # 0 (15.89)

where Jy(sr) is the Bessel function of the first kind of order zero, and Yy (sr) is the
Bessel function of the second kind of order zero. As these solutions exist for arbitrary
values of s, the general solution of temperature 7 (r, f) may be given by

i 2
T(r,t) = Ao+ Bor + Z[AnJo(s,,r) + B, Yo(s,r)]e ut (15.90)

n=1

As the Bessel function Yy (sr) and In r are infinite at » = 0, By and B, must be zero
for the solid cylinder. Therefore, the temperature for this problem reduces to

1 G. N. Watson, Theory of Bessel Functions (2nd ed.), Cambridge University Press, Cambridge
(1944).
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o
T(r,1) = Ag+ > AnJo(sur)e ™ (15.91)
n=1
where A, are unknown coefficients.
Substitution of Eq. (15.91) into the boundary condition (15.83) gives
as 2
ha(Ao = Ta) + D AulhaJo(sna) = Asu i (swa)le™"" =0 (15.92)
n=1
If Ap = T, and s, are eigenvalues of the eigenfunction
haJo(spa) — sy Ji(spa) =0 (15.93)
then, Eq. (15.92) is identically satisfied. Therefore, the temperature is
ad 2
T =T,+ Y AnJo(syr)e” ™' (15.94)
n=1
Using the initial condition (15.84), Eq. (15.94) yields
o0
> Andolsur) = Ti(r) = T, (15.95)

n=1

Multiplying both sides of Eq. (15.95) by rJo(s;,7), and integrating from O to a, we

find
2

" a2 (sma) + I (sma)]

a
/ [T; (r) — Ta1Jo(spr)rdr (15.96)
0
in which the following relations are used

a
/ Jo(smr)Jo(spr)rdr
0

2 _ g2 [smJ1(sma)Jo(sna) — s, J1(spa)Jo(sma)]

= m[haJo(Sma)Jo(sna) — haJo(spa)Jo(sma)] = 0
for m #n
a az
/ Jg (smryrdr = =15 (sn@) + I (sna)] (15.97)
0
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Therefore, the temperature is given by

n=1

T =Ta= — Z{ 7 (W) oy / T, —Ti(rnJo(snr)rdr}

—rs2t

X Jo(sur)e (Answer)

If the surface temperature on the surface r = a is prescribed, the boundary
condition is
T=T, on r=a (15.98)

For this case the temperature becomes

Tnn = a2 Z I T2 (sna) / — Ti (M) Jo(sar)r dr} Jo(sar)e it

n=1
(Answer)

where s, are eigenvalues of eigenfunction
Jo(spa) =0 (15.99)

Problem 15.10. Find the transient temperature in a hollow cylinder of inner radius
a and outer radius b with the initial temperature 7; (r) under heat transfer boundary
conditions.

Solution. The problem to be solved consists of

(1) Governing equation:

oT o*T 10T
— =kl +-—— 15.100
ot (8r2 + r Or ) ( )
(2) Boundary conditions:
or
AE:ha(T_Ta) on r=a
orT
—A—=hp(T —Tp) on r=>b (15.101)
or
(3) Initial condition:
T=T(r) at t=0 (15.102)

The general solution of Eq. (15.100) is from (15.90)

o0
T(r.1) = Ao+ Bolnr + > [AyJo(sar) + B Yo(spr)]e "t (15.103)

n=1
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Substitution of Eq.(15.103) into Eq. (15.101) gives

o0
ah,Ayg + Bo(ahgsIna — \) —ah,T, + Z{A" [ahy,Jo(spa) + Aspady(spa)]

n=1

+ BulahaYo(sna) + Aspa¥) (spa)]}e ™1 =0

o0
bhyAg + Bo(bhyInb + X) — bhpTy + > {AulbhyJo(sub) — AsubJi (sub)]

n=1

+ Bu[bhpYo(syb) — AspbY (snb)]}e_"'sf%’ =0 (15.104)
Equation (15.104) gives

ahgaAg + Bo(ahgIna — N\) = ah,T,
bhpAo + Bo(bhpInb + \) = bhyT) (15.105)

and

AulahgJo(spa) + AspaJi(spa)] + BylahaYo(spa) + AspaYy(spa)] =0
Aulbhp Jo(snb) — AspbJ1(spb)] + By[bhpYo(spb) — AsybY1(s,b)] =0

(15.106)
Solving Eq.(15.105) for Ap and By, we get
Ina —
= aha _ T, — T,
Ag=T, — (Tj Ta)1 b+ N B P Bo—l b+ ;Y . ;Y (15.107)
n— — n— -
a ah, bhy a ah, bhy

Equation (15.106) is satisfied, if s, are eigenvalues of the transcendental equation

[haJo(sna) 4+ Asp J1 (spa)1[hp Yo (s,D) — AspY1(s,b)]
— [hp Jo(spD) — Asu J1 (s, D)1[haYo(sna) + AspY1(spa)] =0 (15.108)

Referring to Eq. (15.108) we may put

o haJo(spa) + AspJ1(spa) o haYo(spa) + Asp Y1 (spa)
hpJo(spb) — AspJ1(spb) hpYo(sub) — Asp Y1(s,b)

(15.109)

n

Equation (15.108) can be written as

hp fo(Sn, b) — Asy f1(sp, b) =0 (15.110)
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where

JiCsn, 1) = Ji(sar)[haYo(sna) + AsuY1(sna)]
—Yi(sur)[haJo(spa) + AspJ1(spa)] (@ =0,1) (15.111)

The temperature (15.103) reduces to

o0
T = Ao+ Bolnr + 3 Ay fols, r)e " (15.112)

n=1

where A, /[ah,Yo(spa) + As, Y1(spa)] is rewritten as A,. From the initial condition
(15.102), Eq. (15.112) reduces to

> Aufolsu.r) = Ti(r) — (Ag + Bolnr) (15.113)

n=1
Multiplying rfo(s;,r) to both sides of Eq.(15.113) and integrating form a to b,
2
we get

2.2
TS

T 2002 + \2)GE — (h2 + N\s2)]

m

b
X / [T;(r) — (Ao + BoInr)] fo(sm, r)rdr (15.114)

Substitution of Eq.(15.107) into Eq. (15.114), we get

ﬂzsi b
A, = T e
" 2[(h3 4+ N252)G2 — (h2 + A2s2)] /a i(r) fo(sm, ryrdr

T(Tphp G — Tahy)

— 15.115
(h7 + A\2s2)G2, — (h2 + N\2s2) ( .
Rewriting fo(sp, r) as f(sy, r), the temperature can be expressed as
In(r/a) + \/(hqa
T (T — T (r/a) + A/ (haa)
In(b/a) + A/ (hqa) + \/(hpb)
o0
Taha - TbhbGn )
-7 f(sn, et
,,Z:% (h2 + \2s2) — (h} + \2s2)G2™ "
2 X 2 b
s Sy S (sns7) / —rs2t
-5 Ti () f (Sn, mndn e
2 Z; (h2 + X252) — (h} + N3s2)G2 o "
(Answer)

2 see: Problem 15.11.
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Problem 15.11. Derive Eqgs.(15.114) and (15.115) from Eq.(15.113) in Problem
15.10.

Solution. From Eq.(15.113), we have
o0
> Anfolsu.r) =T;(r) = (Ao + BoInr) (15.116)
n=1
Multiplying r fo (s, ) to Eq.(15.116) and integrating form a to b, we get

b 0 b
/ Jo(sm, 1) Z Ap fo(sp, r)rdr = / JoGsm, NITi(r) — (Ao + BoInr)lrdr
a n=1 a

(15.117)
where

fiGsn,r) = Ji(spr)[haYo(spa) + AspY1(spa)l
=Y (sur)[haJo(spa) + sy J1(spa)] (i=0,1) (15.118)

Before performing integration of Eq. (15.117), we calculate the following functions:

2 2
folsn, a) = —As, =——
Tasy Ta
2h,
fl (Sl’la a) ==
TSpa

Jo(sn, b) = Jo(sub)[haYo(spa) + AspY1(spa)]
= Yo(sub)[ha Jo(spa) + AspJ1(spa)]
= Jo(sub)GnlhpYo(snb) — AsyY1(syb)]
= Yo(suD)GylhpJo(snb) — AspJ1(snb)]
= GpAsu[J1(52D) Yo (5b) — Y1 (sub) Jo(sub)]
2 2\
=G \s,—— =G, —
TSy b
Sf1(sn, b) = J1(sub)[ha Yo (sna) + AspY1(spa)]
— Yi(sub)lha Jo(sna) + AspJ1(sna)]
= J1(snb)GplhpYo(spb) — Asp Y1 (sub)]
= Y1(5ub)Gylhp Jo(snb) — AspJ1(spD)]
2hp

= Gphp[J1(sab)Yo(52D) — Y1 (50D) Jo(5,D)] = G (15.119)

n

in which the following formula of Bessel functions is used:
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2
Jit1(@) Y0 (2) — Ty () Ypt1(2) = p— (15.120)

and

_ haJo(spa) + AspJi(spa) — haYo(spa) + AspYi(sna)

= — (15.121)
hpJo(spb) — AsuJi(spb) — hpYo(spb) — AspY1(sub)

n

By use of Eq.(15.119), the integration of the left side in Eq.(15.117) becomes

b
/ Jo(sm, r) fo(sn, r)rdr

b
= <=5 [ i 5 ) o5 ) = 5. f1 (50 5) folsm )|

-2 i 7 [Smfl (Sm» @) fo(sn, @) — S f1(Sn, @) fo(sm, a)]
__b [ b py — o b b
= H[Esmfo(smy ) fo(sn, b) — s, Sn fo(sns b) fo(sm, )]

dha [ 2A 2hy 1 2\
7 is,g [Smm(—;) s (~2)]=0
/ab 12 (s, ryrdr = %[foz(smb) + fﬁ(smb)] - g[fg(sma) + flz(sma)]

b? hy + As? a’
= 5 ) = S5 (ma) + fRGma)]
h2 2

2h2 )\2 2 2
R RGO RHCHR

2

=37 [(hi + M) Gy — (hg + Azsrzn)] (15.122)
m

From Egs. (15.117) and (15.122), A,, is determined as

2.2
™8m

T 2002 + N22)GE — (h2 + \s2)]

Am

b
X / [T;(r) — (Ag + Bolnr)] fo(sm, r)rdr (Answer)
a
Calculating the following integral:

b
/ (Ao + Bolnr) fo(sy, r)rdr
r By b
= [0+ Botnn = s = [ Ao,
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= [0+ Botnn = s+ 3 2 olon. N
= 2 Gy — oo + Bo[(mb £ 2 VG
s bhy,

(o= )]}

2 2
= > (hme - ha)Ta + ) (Tb Ta)hme
7TSm s

m

2
= _Z(Tbhme — Taha) (15.123)
ﬂ'Sm

we get

7252

m T mos
20(h} + N252)G2, — (h2 + A2s2)] / (r) fo(sm, r)rdr
T(TphpGm — Taha)

Ap =

- Answer
(h? + N2s2)G2, — (h2 + \2s2) ( )
Problem 15.12. Find the solution of the differential equation
d>f(r) | 1df(r)
—¢*f(r) = g(r) (15.124)

d*r rodr

Equation (15.124) is appeared in the derivation of the transient temperature in the
cylinder when Laplace transform technique is used.

Solution. The solution of homogeneous differential equation of Eq. (15.124) is
f(r)y=Aly(gr) + BKo(qr) (15.125)

where Iy(gr) and Ko(gr) are modified Bessel functions.
We introduce the method of variation of parameters to obtain the particular solu-
tion of Eq.(15.124). We put f(r) instead of Eq. (15.125)

f(r) = A(r)lo(gr) + B(r)Ko(qr) (15.126)

Differentiation of Eq. (15.126) with respect to r gives

df(r) _ dA() dB(r) dIo(qr) dKo(qr)
- 7 lolar) + ——Ko(gr) + A()—_"— + B)— -
d*f(ry ddA(r) () dA(r) dlo(qr)
dr? dr[ dr lo(gr) + Kolq )] dr dr
dB(r) dKo(gr) dzlo(qr) d*Ko(qr)

g, TAO— — +B)— = (15127)
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Substitution of Egs. (15.127) into Eq. (15.124) yields

d INTdA(r) dB(r)
— 4+ - I K
(dr r)[ dr olgr) + dr O(qr)]
dA(r)dly(qr) dB(r)dKo(gr)
= 15.12
+ dr dr + dr dr 9(r) (15.128)
Equation (15.128) can be satisfied when we take
dA(r) dB(r)
lo(gr) + Ko(gr) =0
dr dr
dA(r)dly(qr) dB(r)dKo(gr)
= 15.129
dr dr + dr dr 9() ( )
Solving Eq.(15.129), we get
A _ Koqr)
dr qllo(gr)Ki(gr) + Li(gr)Ko(gr)]
dB I
B0 _ 0(gr) (15.130)
dr qllo(gr)Ki(gr) + 11(gr)Ko(gr)]
where dlo(qr) IK
’
o - qli(gr), =0 _ —qKi(gr) (15.131)
dr dr
Using the following formula
1
Io(gr)Ki(gr) + 1i(gr)Ko(gr) = . (15.132)
Equation (15.130) reduce to
dA(r) dB(r)
P rg(r)Ko(gr), —— = —rg(r)lo(qr) (15.133)
r dr
Then, we obtain
A(r) = /rg(r)Ko(qr)dr, B(r) = —/rg(r)[o(qr)dr (15.134)
r r

Therefore the general solution is given by

f@r) = AIo(qr)+BKo(qr)+/ ng(mo(gr)Kolgn)—Ko(gr)lo(gn)ldn (Answer)
' (15.135)
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Problem 15.13. Find the transient temperature in a hollow cylinder, when the initial
condition is 7;(r), and the boundary conditions of the hollow cylinder are given by
following five cases (1)-(5):

[1] Prescribed surface temperatures 7, and 7} at both surfaces r = a and r = b,
respectively.

[2] Prescribed surface temperature T, at the inner surface r = a, and heat transfer
between the outer surface and the surrounding medium with temperature 7j, at
the outer surface r = b.

[3] Prescribed surface temperature 7}, at the outer surface r = b, and heat transfer
between the inner surface and the surrounding medium with temperature 7, at
the inner surface r = a.

[4] Constant heat flux g,(= A(OT /Or)) at the inner surface r = a, and heat transfer
between the outer surface and the surrounding medium with temperature 73 at
the outer surface r = b.

[5] Constant heat flux gp(= —A(OT/Or)) at the outer surface r = b, and heat
transfer between the inner surface and the surrounding medium with temperature
T, at the inner surface r = a.

Solution. When the both surfaces are heat transfer conditions

oT oT
AN——=h(T—-T,) on r=a, —A\— =hp(T —Tp) on r=>b (15.136)
or or

the temperature is given by Eq. (15.24). Comparing between the heat transfer con-
ditions (15.136) and each boundary condition, the temperature for each boundary
condition can be obtained.

[1] The boundary conditions on r = a and r = b for this problem are
T=T, on r=a, T=T, on r=»>b (15.137)

Rewriting the boundary conditions (15.136) gives

A OT A oT
T:T””LEE on r=a, T:Tb—EE on r=>b (15.138)

Putting h, — oo and hp — oo in Eq.(15.138), Eq.(15.138) reduces to
Eq.(15.137). Therefore, we can obtain the temperature from Eq.(15.24) after
putting h, — oo and hp — 0.
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lni

T=T,+ (T, — To)—%

In —
a
o0

T, Jo(spb) — Ty Jo (s,
— 0(8nb) — T Jo(sna)

Jo(sub) f(sy, 1 e~rsat
Joz(snb)—foz(s,,a) 0(snb) f (s, 1)

n=1

72— szJoz(s,,b)f(sn,r) b i
) 5 T; - dn e~ st A
2 nZ:; J3(sub) — J3(sna) Ja (M f(sp, mndne (Answer)
where
[ n, 1) = Yo(sn@) Jo(snr) = Jo(s2a) Yo (sn7) (15.139)

and s, are eigenvalues of the eigenfunction f(s,, b) = 0.
[2] The boundary conditions of this case are

oT
T=T, on r=a, —)\8— =hp(T —Tp) on r=>b (15.140)
r

If we put h, — oo in Eq.(15.138), Eq. (15.138) reduces to Eq. (15.140). There-
fore, we can obtain the temperature from Eq. (15.24) after putting h, — oo.

T=To+ (T — To)—5—~
In= 4+ ——
"a b

n S Ta = BGuhn) [ Gne1) iy
1 — G2(h3 + \2s2)

n=1

2 2 —ks2t b
s S~ f(sp, r)e " n
S 2 AL T f s mdy (Answen)
2 n=1

1 — G2(h3 + \252) Ja
where f(s,, r) and G, are given by
f (s, 1) = Yo(spa) Jo(snr) — Jo(sna)Yo(sr)

B Jo(sna) - Yo(sua)
hpJo(spb) — AspJ1(spb) hpYo(spb) — sy Y1(spb)

n

(15.141)
and s, are eigenvalues of the eigenfunction

[hpYo(snb) — AsnY1(s2D)1Jo(sna) — [hp Jo(snb) — Asp J1(saD) Yo (spa) = 0
(15.142)
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(3]

(4]
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The boundary conditions of this case are

oT
Aa—zha(T—Ta) on r=a, T=T, on r=>b
r

(15.143)

By comparison between Eqgs.(15.138) and (15.143), Eq.(15.138) reduces to
Eq.(15.143) if we put i, — oo. Therefore, we can obtain the temperature from

Eq. (15.24) after putting i, — o0.

r A
ln——i—h
a a
T=Tat Ty = Ta)—p—3—
In —
haa
_Wi (Taha = TyG) f (50 7) 2
hi+ Nsy — Gy,

n=1

o0 2 ks2t b
o f (sp, r)e™"n
__Zh2+;\2 2 G2/ T; () f (sp, mn dn

where f(s,, r) and G, are given by

F(sn, 1) = [haYo(spa) + As, Y1 (spa)lJo(spr)
— [haJo(sna) + AspJ1(spa) 1Yo (spr)

G, — haJo(spa) + Asy J1(spa) _ haYo(spa) + AspY1(spa)
n =

Jo(snb) B Yo(snb)

and s, are eigenvalues of the eigenfunction f(s,, b) = 0.
The boundary conditions of this case are

oT oT
A—=¢q, on r=a, —A—=hp(T —Tp) on r=>
or or

(Answer)

(Answer)

(15.144)

By comparison between Eqs. (15.136) and (15.144), after rewriting h, T, = —q,
and putting h, — 0, Eq.(15.136) reduces to Eq.(15.144). Therefore, we can

obtain the temperature from Eq. (15.24), after rewriting h, T, = —gq, and putting
hy, — 0.
qaa r A
T =T, In—-— —
L (n b hbb)

n WZ (qa +TpGp hb)\zsn)f(sm r) o hsh 24
Asa[l — G2(h2 + M\252)]
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b
T:(n) f (s, Mndn (Answer)

2 i 521 (5. r)e 1!
2 &1 = G2(hy + N2s52) Ja

where f(s,, r) and G, are given by

fGsu, 1) =Y1(spa)Jo(sur) — J1(spa)Yo(s,r)
Ji(spa) Y1 (spa)

= = (15.145)
hpJo(sub) — Asp J1(sub) hpYo(spb) — Asp Y1 (s,b)

n

and s, are eigenvalues of the eigenfunction

[hpYo(snb) — AspY1(5,D)1J1(spa) — [hpJo(spD) — AspJ1(sp,b)]Y1(spa) =0

(15.146)
[5] The boundary conditions of this case are
or or
A—=hy(T—-T,) on r=a, —A—=¢qp on r=> (15.147)
or or

By comparison between Eqs. (15.136) and (15.147), after rewriting T, = —qp
and putting hp — 0, Eq.(15.136) reduces to Eq.(15.147). Therefore, we can
obtain the temperature from the temperature Eq. (15.24), after rewriting s, Tp =
—qp and putting b, — O.

qpb r A
T=T,—2(m=-
¢ )\(na+haa)

oo

. Z (TyhaAsn — qpGn) f (S, 1) e—nsst
Asp(h2 4+ X252 — G2)

n=

m i S2f (s, r)e”"t
2 hZ + X252 — G

n=1

b
/ T fsamndn  (Answer)

where f(s,, r) and G, are given by

f(sn, 1) = [haYo(sna) + Asp Y1 (spa)]Jo(snr)
— [haJo(spa) + AspJ1(spa)]Yo(sur)

G — hqJo(spa) + AspJ1(spa) _ haYo(spa) + s, Y1 (spa)
" Ji(snb) Bl Y1 (sub)

(15.148)

and s, are eigenvalues of the eigenfunction

[haYo(sna) + Asp Y1(spa)lJ1(spb) — [ha Jo(sna) + AspJ1(spa)]Y1(spb) =0
(15.149)
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Problem 15.14. Find the transient temperature in the hollow sphere, when the initial
condition is 7;(r), and the boundary conditions of a hollow sphere are given by
following five cases (1)-(5):

[1] Prescribed surface temperatures 7, and 7} at both surfaces r = a and r = b,
respectively.

[2] Prescribed surface temperature T, at the inner surface r = a, and heat transfer
between the outer surface and the surrounding medium with temperature 7j, at
the outer surface r = b.

[3] Prescribed surface temperature 7}, at the outer surface r = b, and heat transfer
between the inner surface and the surrounding medium with temperature 7, at
the inner surface r = a.

[4] Constant heat flux g,(= A(OT /Or)) at the inner surface r = a, and heat transfer
between the outer surface and the surrounding medium with temperature 73 at
the outer surface r = b.

[5] Constant heat flux gp(= —A(OT/Or)) at the outer surface r = b, and heat
transfer between the inner surface and the surrounding medium with temperature
T, at the inner surface r = a.

Solution. When at both surfaces the heat transfer conditions are

oT oT

A—=ho(T -T,) on r=a, —A—=hp(T —Tp) on r=>b (15.150)
or or

the temperature is given by Eq.(15.32). By comparing between the heat transfer
conditions (15.150) and each boundary condition, the temperature for each boundary
condition can be obtained.

[1] The boundary conditions on » = a and r = b for this problem are
T=T, on r=a, T=T, on r=>b (15.151)

Rewriting the boundary conditions (15.150) gives

A oT A oT
IT=1T,+—— on r=a, T=T,——— on r=>b (15.152)
h, Or

If we put h, — oo and hp, — oo in Eq.(15.152), Eq.(15.152) reduces to
Eq.(15.151). Therefore, we can obtain the temperature from Eq.(15.32) after
putting h, — oo and h, — o0

1—

a
- 2

T =T, + (T —T)—F% +
1-= ©

—ayr

ad 2
Z sin s, (r — a)e” i’
n=1

-4

b
X / [Ti(n) —Ta = (Th — Ta) Z}nsin sn(1 —a)dn  (Answer)
a 1——
b
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where s, = nm/(b — a).
[2] The boundary conditions of this case are

oT
— =h(T —Tp) on r=> (15.153)

T=T, on r=a, —\ =
“ e or

If we put h, — oo in Eq.(15.152), Eq. (15.152) reduces to Eq. (15.153). There-
fore, we can obtain the temperature from Eq. (15.32), after putting h, — oo.

1_g i 2
T = T(l + (Tb — Ta)a—};lA + ; Zsinsn(r — Cl)e_ﬂsnt

- - =1

b by

N252b% 4 (hpb — N\)?
X
(b — a)[N252b% + (hpb — N)2] + Ab(hpb — \)

) (n—noo—f)
x/ Ti) — Ty — n

Y nsins,(n —a)dn

! a n a
b bhpb
(Answer)
where s, are eigenvalues of the eigenfunction
(hpb — N)sins, (b —a) + Aspbcoss, (b —a) =0 (15.154)
[3] The boundary conditions of this case are
oT
)\a—:ha(T—Ta) on r=a, T=T, on r=»>b (15.155)
r

If we put hp, — oo in Eq. (15.152), Eq. (15.152) reduces to Eq. (15.155). There-
fore, we can obtain the temperature from Eq. (15.32) after putting 4, — oo.

A a

T4 ==

p

T =T, +(Tp - T)— "
1 — =

b+haa

0]

2 z (hga + M) sins,(r —a) + Asyacoss,(r —a) _,2,
e n
(b — a)[N2s2a? + (hga + N)?1+ Xa(hqa + N)

r
n=1
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A a

b YR

< |1 = 7= (1~ 1) | et
a ]_g_’—_
b hua

X Nl(hqa + N) sins, (n — a) + Asya coss,(n —a)ldn (Answer)
where s, are eigenvalues of the eigenfunction
(hqa + M) sins, (b — a) + Asyacoss, (b —a) =0 (15.156)

[4] The boundary conditions of this case are

oT oT
A—=¢q, on r=a, —A—=hp(T —Tp) on r=> (15.157)
or or
If we rewrite h, T, = —q, and put h, — 0in Eq.(15.150), Eq. (15.150) reduces
to Eq. (15.157). Therefore, we can obtain the temperature from Eq. (15.32) after

rewriting h,T, = —q, and putting h, — 0.
qaa a (b A
T=T,—-“——(Z-1+-"—
TN (r + hhb)
2 o= [N252b% 4 (hypb — N)?][sin s, (r — a) + spa cos s, (r — a)]
r (b —a)(1 + s2a»)[N2s2b* + (hpb — N)?]
+ [bA + a(hpb — M[s2ab + (hpb — \)]

b
kst qgaaa (b A
n T;(n) — T, —-\-—-14+—
X e /0[,(77) bt b(n +hhb)}

X nlsins,(n —a) + spacoss,(n —a)ldn (Answer)

where s, are eigenvalues of the eigenfunction

(hbb - Asﬁab) sin s, (b — a) + s [a (hph — \) + bA] cos sy (b — a) = 0

(15.158)
[5] The boundary conditions of this case are
or orT
A—=hy(T —T,) on r=a, —A— =¢qp on r=> (15.159)
or or

If we rewrite h, Ty = —qp and put hp, — 01in Eq. (15.150), Eq. (15.150) reduces
to Eq. (15.159). Therefore, we can obtain the temperature from Eq. (15.32) after
rewriting h, T, = —qp and putting hp — 0.

bb A
T=Ta—%—(1—9+ )

a r  hga
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e¢]

n g Z (s%b2 + D[(hga + M) sins, (r — a) + Asya coss,(r —a)]
r (b —a)(1 + s2b*)[N2s2a> + (haa + N)?]
+[b(haa + N) — aXl[As2ab — (hga + N)]

w2 [P bb A
Xe—m,%t/ T,'(n)—Ta-l—qL— 1_6_1_1_
a A a N hga

X Nl(hqa + N) sins, (n — a) + Asya coss,(n —a)ldn (Answer)

where s, are eigenvalues of the eigenfunction

(haa F A+ As,fab) Sin sy (b — @) — sn [b (haa + \) — aX] cos s, (b —a) = 0
(15.160)
Problem 15.15. When a solid cylinder with the initial temperature 7; () is exposed

to heat transfer between the surface of radius a and the surrounding medium with
time dependent temperature 7, (¢), find the transient temperature in the solid cylinder.

Solution. The equations to be solved are

(1) Governing equation
10T 9°T 10T

—_—— = —— 15.161
K Ot orr  r Or ( )
(2) Boundary condition
oT
_)\E =hy[T —T,(t)] on r=a (15.162)
(3) Initial condition
T=T(r) at t=0 (15.163)

Applying the Laplace transform with respect to the time 7 and taking the initial
condition into consideration, we obtain
Governing equation:

&1 + 147 ’T = 1T»( ) (15.161")
arz " rar TNV '
Boundary condition:
dT .-
— )\d— =h(T—-T,) on r=a (15.162")
r

where g% = p/k.
The general solution of Eq.(15.161") for a solid cylinder is obtained from
Eq. (15.135) of Problem 15.12 by putting B = 0 and g(n) = —T;(n)/k
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_ 1 r
T =Aly(qr) — ;/0 T; (mnllo(gr) Ko(gn) — lo(gn) Ko(gr)ldn

= Alp(gr) + G(gqr) (15.164)

where
1 r
G(gr) = _E/o T; (mnllo(gr) Ko(gn) — lo(gn) Ko(gr)ldn (15.165)

Differentiation of Eq. (15.164) with respect to r gives

dT
d_r = Aqli(gr) + G1(gr) (15.166)
where
dG 1 /"
G(gr) = 284 = /0 T;(mngl1 (gr)Ko(gn) + Io(gm) K1 (gr)ldn
(15.167)

The boundary condition (15.162") gives
ANg I (ga) + NG (ga) + AhyIo(qa) + heG(qa) = h,T, (15.168)
Then, A is given by

A= haTa _ )\Gl(qa)+haG(qa)
Aqli(qa) + halo(qa)  Nqli(ga) + halo(qa)

N haTy AgKi(qa) — haKo(qa)

~ Aghi(ga) +halo(qa) — Aqli(qa) + halo(ga)

a

1 [4 1
« L / Ty ynlo(gndn + — / T (mynKo(gmdn (15.169)
K Jo K Jo

Hence, the temperature in the Laplace transformed domain is

haTalo(qr)
Aqli(ga) + halo(qa)
A Ki(ga) — h,Ko(ga) Ip(qr) [*
T; (mn d
N Ii(ga) + halo(ga) K Jo mnlo(gndn

I a
0(;”) /0 T (mynKo(gmdn + G(qr) (15.170)

T =

+

or an alternative form

T=T,T) + T + T3 (15.171)
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where o
Tl = a O(qr) (15171/)
)‘q]l (Cla) +ha1()(qa)
T AN Ki(qa) — hy,Ko(ga) Ip(qr) [*
e Ti(mnlo(gmd (15.171")
A L(qa) £ halo(qa)  rJy HUPHOMIEN
_ ]( ,,.) a |
T3 = _OZ /0 Ti(mnKo(gm)dn + G(qr) (15.171"")

The inverse Laplace transform of Eq.(15.170) reduces to calculation of the sum of
the residues at the poles in the inner region with the contour. Since Eq. (15.171""") has
no pole, the inverse Laplace transform of Eq.(15.171""’) reduces to zero. Equations
(15.171’) and (15.171") have poles at p = —rxs?2, and s, are eigenvalues of the
eigenfunction

AspJ1(spa) — hgJo(spa) =0 (15.172)

The residue of 7} is

halo(gqr)e?’ B hy Io(qr)e7”S5t
d , 1 d '
—[AqL(qa) + halo(qa)] 'p=—rs}  ————[Aql1(ga) + halo(ga)] 'a=is
dp 2qk dq
_ 2is,,/iha10(isnr)e_’“§’ B 2iSn/‘€haJo(snr)e—“§f
T alXisplo(ispa) + hal1(ispa)]  a[MisnJo(spa) + ihgJi(spa)]
2sn/€ha-]0(5nr)€_m’%l _ ZﬁAS,%haJO(snr)e_’“r%t

— - 15.173
alAsnJo(sna) + haJi(spa))  a(N>s2 + h2)Jo(spa) ( )

where i2 = —1. On the other hand,

AqKi(qa) — hg KO(qa)|q:is,,
= AisA—%)[Jl (sn@) — iY)(sna)] — ha(—gi)wo(sna) — i¥o(sna)]

s ™
= Ei[ha Jo(spa) — AsyJi(spa)] + E[haYO(sna) — AspY1(spa)] (15.174)
Using Eq. (15.172), Eq. (15.174) reduces to

A Ki(qa) — haKO(qa)|q=is,,

T Sy,
= —{h,Y —
B { aYo(spa) To(sna)

[Jl (sna)Yo(sna) — mzna]}
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T Yo(spa) A
= " lhaJo(sna) — AsuJ
2[ aJo(spa) spJ1(spa)l ToGnd) PYAT)
A
- (15.175)
aJo(spa)
Residue of 75 is
AgKi(ga) — haKo(ga) lo(gr) [¢
d - - T; (mnlo(gn)dne”’ e
d_[)\qll (qa) + hal()(qa)] 0 n
4
2025 2Jo(s,,r)e HiSu /
T; Jo(s,n)d 15.176
2(>\2 2 +h2)Jo (Sna) (77)17 0( nlrl) n ( )
We get
_ t
LT, Th] =/ T.(T)T(t — T)dT
2
2/<J)\h 52 2 Jo(spr)e rsn@=T)
T dr  (15.177
/ ( )Z 252+ i doGna) T )
Therefore, the temperature is given by
2kMhg (! s2Jo(sur)e” Ks2(t—T)
a /0 a(T)Z (>\2 2 +h2)Jo(sna)
L - 2Jo(snr)e"“’
Ti (mnJo(spm)d Answer
Z (252 + 12) J2 (sna )/ (mnJo(snmdn ( )
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