
Chapter 13
Thermal Stresses in Bars

In this chapter the concept of thermal stresses in bars is introduced for the simple case
of a perfectly clamped bar subjected to arbitrary temperature change. The problems
and solutions related to thermal stresses in bars are: a perfectly clamped bar, a clamped
bar with a small gap, a clamped circular frustum, a bar with variable cross-sectional
area, two bars attached to each other, three bars fastened to each other, truss of three
bars, and three bars hanging from a rigid plate.

13.1 Thermal Stresses in Bars

When the temperature of a circular bar of length l changes from an initial temperature
T0 to its final temperature T1, the free thermal elongation λT of the bar is defined by

λT = α(T1 − T0)l = ατ l (13.1)

where α is the coefficient of linear thermal expansion which is measured in one per
one degree of the temperature 1/K, and τ denotes the temperature change given by

τ = T1 − T0 (13.2)

The free thermal strain is given by

εT = λT

l
= ατ (13.3)

When an internal force and the temperature change act simultaneously in the bar, the
normal strain is given by

ε = εs + εT (13.4)
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Fig. 13.1 A perfectly clam-
pled bar

where εs denotes the strain produced by the internal force. The strain εs produced by
the internal force is proportional to the normal stress σ

εs = σ

E
(13.5)

where E denotes Young’s modulus.
Hooke’s law with the temperature change is

ε = σ

E
+ ατ (13.6)

When a perfectly clamped bar with length l and cross-sectional area A, shown in
Fig. 13.1, is subjected to the uniform temperature change τ , the thermal stress is

σ = −αEτ (13.7)

If the temperature change τ (x) is a function of the position x , the free thermal
elongation λT of the bar of length l is

λT =
∫

dλT =
∫ l

0
ατ (x) dx = α

∫ l

0
τ (x) dx (13.8)

The thermal strain εT is

εT = λT

l
= α

l

∫ l

0
τ (x) dx (13.9)

The thermal stress in the perfectly clamped bar is

σ = −αE

l

∫ l

0
τ (x) dx (13.10)
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13.2 Problems and Solutions Related to Thermal Stresses
in Bars

Problem 13.1. If the temperature in a mild steel rail with length 25 m is raised to
50 K, and the coefficient of linear thermal expansion for mild steel is 11.2×10−6 1/K,
what elongation is produced in the rail?

Solution. The elongation λT is from Eq. (13.1)

λT = ατ l = 11.2 × 10−6 × 50 × 25 = 14 × 10−3 m = 14 mm (Answer)

Problem 13.2. The temperature of a bar of length 1 m of mild steel is kept at 300 K.
If the temperature at one end of the bar is raised to 380 K and at the other end to
480 K, and the temperature distribution is linear along the bar, what elongation is
produced in the bar? The coefficient of linear thermal expansion for mild steel is
11.2 × 10−6 1/K.

Solution. The temperature rise τ (x) = T1(x) − T0 is

τ (x) = T1(x) − T0 =
[
380 + (480 − 380)

x

1

]
− 300 = 80 + 100x (13.11)

The free thermal elongation λT is

λT =
∫ 1

0
ατ (x)dx = α

∫ 1

0
(80 + 100x)dx

= 11.2 × 10−6 ×
[
80x + 50x2

]1

0
= 1.456 × 10−3 m = 1.46 mm (Answer)

(13.12)

Problem 13.3. A bar of mild steel at 300 K is clamped between two walls. Calculate
the thermal stress produced in the bar when the bar is heated to 360 K. The coefficient
of linear thermal expansion and Young’s modulus are α = 11.2 × 106 1/K and
E = 206 GPa, respectively.

Solution. The thermal stress σ is from Eq. (13.7)

σ = −αEτ = −138.4×106 Pa = −138 MPa (Answer)

Problem 13.4. In Problem 13.2, calculate the thermal stress produced in the bar if
it is clamped between two walls. The coefficient of linear thermal expansion and
Young’s modulus are α = 11.2 × 106 1/K and E = 206 GPa, respectively.

Solution. As the summation of the free thermal elongation λT and the elongation
λs due to the stress is zero, we get
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σ = Eλs

l
= − EλT

l
= −206 × 109 × 1.456 × 10−3

1
= −300 MPa (Answer)

Problem 13.5. A bar of mild steel at 300 K is clamped between two walls in such a
way that the initial stress is zero. Calculate the temperature when the thermal stress in
the bar reaches the compressive strength (σBC = 400 MPa). The coefficient of linear
thermal expansion and Young’s modulus are α = 11.2 × 106 1/K and E = 206 GPa,
respectively.

Solution. The compressive thermal stress σ is given by Eq. (13.7). Therefore, the
temperature rise τ is

τ = σBC

αE
= 400 × 106

11.2 × 10−6 × 206 × 109 = 173.37 (13.13)

Then
T1 = T0 + τ = 300 + 173.37 = 473.37 K = 473 K (Answer)

Problem 13.6. The temperature of a bar with a small gap e = 1 mm, shown in
Fig. 13.2 is kept at 300 K. If the temperature at one end of the bar is raised to 380 K
and at the other end to 480 K, and the temperature distribution is linear along the
bar, calculate the thermal stress. Where length of the bar is 1 m, and the coefficient
of linear thermal expansion and Young’s modulus are α = 11.2 × 106 1/K and
E = 206 GPa, respectively.

Solution. The free thermal elongation is assumed to be longer than the gap. The
summation of elongations due to the free thermal elongation and the elongation due
to the stress is equal to the small gap e

∫ l

0
ατ (x)dx + σl

E
= e (13.14)

Then, we get

σ = − E

l

[
α

∫ l

0
τ (x)dx − e

]
(13.15)

Fig. 13.2 A bar with a small
gap
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The free thermal expansion is given by Eq. (13.12). Therefore,

σ = −206 × 109

1

(
1.46 × 10−3 − 1 × 10−3) = −94.8 × 106 = −94.8 MPa

(Answer)

Problem 13.7. If a clamped circular frustum of mild steel with d0 = 1 cm, d1 =
2 cm, and l = 2 m is subjected to the temperature change −50 K, calculate the
resulting thermal stress. The coefficient of linear thermal expansion and Young’s
modulus are α = 11.2 × 106 1/K and E = 206 GPa, respectively.

Solution. The free thermal elongation λT is

λT = ατ l (13.16)

The cross-sectional area Ax at the position x is given by

Ax = π

4
d2

x = π

4

[
d0 + (d1 − d0)

x

l

]2 (13.17)

Thus, the strain εx of the frustum at x due to an internal force Q becomes

εx = σx

E
= Q

E Ax
= 4Q

Eπ
[
d0 + (d1 − d0)

x

l

]2
(13.18)

and the elongation λs of the frustum due to the internal force Q equals

λs =
∫

dλs =
∫ l

0
εx dx =

∫ l

0

4Q

Eπ
[
d0 + (d1 − d0)

x

l

]2
dx

= − 4Ql

Eπ(d1 − d0)

[
1

d0 + (d1 − d0)
x

l

]l

0

= 4Ql

Eπd1d0
(13.19)

As the frustum is perfectly constrained in the x direction, the combined elongation
of the free thermal elongation λT and the elongation λs due to the internal force Q
must be zero

λ = λT + λs = 0 (13.20)

From Eqs. (13.16), (13.19), and (13.20) the internal force Q is

Q = −αEτ
π

4
d1d0 (13.21)

Then, the thermal stress is
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σx = Q

Ax
= −αEτ

d1d0[
d0 + (d1 − d0)

x

l

]2
(13.22)

If d1 > d0, the maximum thermal stress (σx )max occurs at the minimum cross-
sectional area and the minimum thermal stress (σx )min occurs at the maximum cross-
sectional area

(σx )max = −αEτ
d1

d0
, (σx )min = −αEτ

d0

d1
(13.23)

The thermal stress σx is calculated from Eq. (13.22)

σx = −11.2 × 10−6 × 206 × 109 × (−50)

× 1 × 10−2 × 2 × 10−2[
1 × 10−2 + (2 × 10−2 − 1 × 10−2)

x

2

]2

= 230.7 × 106

(
1 + x

2

)2 Pa = 231(
1 + x

2

)2 MPa (Answer) (13.24)

The maximum and minimum thermal stresses are from Eq. (13.24)

(σx )max = 231 MPa, (σx )min = 231(
1 + 2

2

)2 MPa = 57.8 MPa (Answer)

Problem 13.8. If the temperature of a clamped circular frustum of mild steel with
d0 = 1 cm, d1 = 2 cm, and l = 2 m changes linearly from 0 K at one end to
−50 K at the other end, calculate the resulting thermal stress. The coefficient of linear
thermal expansion and Young’s modulus are α = 11.2 × 106 1/K and E = 206 GPa,
respectively.

Solution. The distribution of the temperature change τ (x) is

τ (x) = −50
x

l
(13.25)

The free thermal elongation λT is

λT =
∫ l

0
ατ (x)dx = α

∫ l

0

−50x

l
dx = −

[
25αx2

l

]l

0
= −0.56×10−3 m (13.26)

The cross-sectional area Ax at the position x is given by

Ax = π

4
d2

x = π

4

[
d0 + (d1 − d0)

x

l

]2 (13.27)
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Thus, the strain εx of the frustum at x due to an internal force Q becomes

εx = σx

E
= Q

E Ax
= 4Q

Eπ
[
d0 + (d1 − d0)

x

l

]2
(13.28)

and the elongation λs of the frustum due to the internal force Q equals

λs =
∫

dλs =
∫ l

0
εx dx =

∫ l

0

4Q

Eπ
[
d0 + (d1 − d0)

x

l

]2
dx

= − 4Ql

Eπ(d1 − d0)

[
1

d0 + (d1 − d0)
x

l

]l

0
= 4Ql

Eπd1d0
(13.29)

As the frustum is perfectly constrained in the x direction, the summation of elongation
of the free thermal elongation λT and the elongation λs due to the internal force Q
must be zero

λ = λT + λs = 0 (13.30)

From Eqs. (13.29) and (13.30) the internal force Q is

Q = − Eπd1d0λT

4l
(13.31)

and the thermal stress is calculated to be

σx = Q

Ax
= − Eπd1d0λT

4l
π

4

[
d0 + (d1 − d0)

x

l

]2

= (0.56 × 10−3) × (206 × 109) × (1 × 10−2) × (2 × 10−2)

2 × [
1 × 10−2 + (2 × 10−2 − 1 × 10−2)

x

2

]2

= 115.36 × 106

(
1 + x

2

)2
Pa = 115(

1 + x

2

)2
MPa (Answer)

The maximum and minimum thermal stresses are

(σx )max = 115 MPa, (σx )min = 28.8 MPa (Answer)

Problem 13.9. If a bar with a small gap e between its free end and a rigid wall is
subjected to the positive temperature change τ (x), and the cross-sectional area of
the bar is given by A(x), calculate the thermal stress produced in the bar.

Solution. The small elongation dλ(x) of the small element dx is
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dλ(x) = ε(x)dx =
[σ(x)

E
+ ατ (x)

]
dx (13.32)

The elongation λ of the bar with length l is

λ =
∫

dλ =
∫ l

0

[
σ(x)

E
+ ατ (x)

]
dx =

∫ l

0

[ Q

E A(x)
+ ατ (x)

]
dx (13.33)

in which Q is an internal force. The free thermal elongation is assumed to be longer
than the gap. The summation of elongation due to the free thermal elongation and
elongation due to the stress is equal to the small gap e

∫ l

0
ατ (x)dx + 1

E

∫ l

0

Q

A(x)
dx = e (13.34)

Then, we get

Q = − E∫ l

0

1

A(x)
dx

[
α

∫ l

0
τ (x)dx − e

]
(13.35)

Thermal stress is

σ = Q

A(x)
= − E

A(x)

∫ l

0

1

A(x)
dx

[
α

∫ l

0
τ (x)dx − e

]
(Answer)

The maximum and minimum thermal stresses are

(σ)max = − E

A(x)min

∫ l

0

1

A(x)
dx

[
α

∫ l

0
τ (x)dx − e

]

(σ)min = − E

A(x)max

∫ l

0

1

A(x)
dx

[
α

∫ l

0
τ (x)dx − e

]
(Answer)

Problem 13.10. A hollow cylinder with a bar of the same length l and the same
centerline, shown in Fig. 13.3 is subjected to different temperature changes τi , (i =
1, 2). The hollow cylinder and the bar are connected to two rigid plates. Calculate the
thermal stresses produced in both the hollow cylinder and the bar, and the elongations.

Solution. The elongations λi due to both the free thermal elongation and the thermal
stress are

λ1 = α1τ1l + σ1

E1
l, λ2 = α2τ2l + σ2

E2
l (13.36)
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Fig. 13.3 A bar and a hol-
low cylinder with both ends
clamped to rigid plates

where Ai , Ei , and αi denote cross-sectional area, Young’s modulus, and the coef-
ficient of linear thermal expansion of the i-th material, respectively. Since the final
length of both the cylinder and the bar after deformation is the same, the following
relation holds

l + α1τ1l + σ1

E1
l = l + α2τ2l + σ2

E2
l (13.37)

The equilibrium of the internal forces is described by

σ1 A1 + σ2 A2 = 0 (13.38)

Solving Eqs. (13.37) and (13.38) gives the stresses

σ1 = − A2 E1 E2(α1τ1 − α2τ2)

A1 E1 + A2 E2

σ2 = A1 E1 E2(α1τ1 − α2τ2)

A1 E1 + A2 E2
(Answer)

Substitution of these stresses into Eq. (13.36) gives the elongations of the cylinder
and the bar

λ1 = λ2 = (α1τ1 E1 A1 + α2τ2 E2 A2)l

A1 E1 + A2 E2
(Answer)

Problem 13.11. Two circular bars, one is mild steel of length 50 cm and diameter
1 cm, and the other is aluminum of length 25 cm and diameter 2 cm, are attached to
each other in series, placed between rigid walls, and subjected to the temperature
change τ = T1 − T0, as shown in Fig. 13.4. Calculate the temperature rise needed
for the thermal stresses in the bars to reach the compressive strength. The coefficient
of linear thermal expansion, Young’s modulus and the compressive strength for mild
steel are α1 = 11.2 × 106 1/K, E1 = 206 GPa and 400 MPa, respectively. The coef-
ficient of linear thermal expansion, Young’s modulus and the compressive strength
for aluminum are α2 = 23.1 × 106 1/K, E2 = 72 GPa and 70 MPa, respectively.

Solution. The elongations of bar 1 and 2 are, respectively, given by

α1τ l1 + σ1

E1
l1, α2τ l2 + σ2

E2
l2 (13.39)



310 13 Thermal Stresses in Bars

Fig. 13.4 Two bars attached
to each other

As two bars are placed between rigid walls, the combined elongation of the bars is
zero. Thus,

α1τ l1 + σ1

E1
l1 + α2τ l2 + σ2

E2
l2 = 0 (13.40)

From the equilibrium condition of internal forces, the internal force in bar 1 is equal
to the internal force in bar 2

σ1 A1 = σ2 A2 (13.41)

From Eqs. (13.40) and (13.41), the thermal stresses σ1 and σ2 are given as

σ1 = −
α1 E1τ

(
1 + α2l2

α1l1

)

1 + A1 E1l2
A2 E2l1

, σ2 = σ1
A1

A2
= −α1 E1τ

A1

A2

1 + α2l2
α1l1

1 + A1 E1l2
A2 E2l1

(13.42)

Therefore, the necessary temperature rise for bar 1 is

τ = − σ1

α1 E1

1 + A1 E1l2
A2 E2l1

1 + α2l2
α1l1

(13.43)

Numerical calculation gives the temperature rise

τ = 115.876 K = 116 K (13.44)

On the other hand, the necessary temperature rise for bar 2 is given by

τ = − σ2

α1 E1

A2

A1

1 + A1 E1l2
A2 E2l1

1 + α2l2
α1l1

(13.45)

Therefore, the necessary temperature rise is

τ = 81.11 K = 81 K (13.46)
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Fig. 13.5 A hollow cylinder
with an inserted screw

Then, comparison between Eqs. (13.44) and (13.46) gives the necessary temperature
rise 81 K.

Problem 13.12. A hollow cylinder with an inserted screw, shown in Fig. 13.5 is
subjected to different temperature changes τi , (i = 1, 2). Calculate the thermal
stresses produced in both the hollow cylinder and the screw.

Solution. The elongations λi due to both the free thermal elongation and the thermal
stress are

λ1 = α1τ1l + σ1

E1
l, λ2 = α2τ2l + σ2

E2
l (13.47)

where Ai , Ei , and αi denote cross-sectional area, Young’s modulus, and the coef-
ficient of linear thermal expansion of the i-th material, respectively. Since the final
length of both the hollow cylinder and the screw after deformation is the same, the
following relation holds

l + α1τ1l + σ1

E1
l = l + α2τ2l + σ2

E2
l (13.48)

The equilibrium condition of the internal forces is described by

σ1 A1 + σ2 A2 = 0 (13.49)

Solving Eqs. (13.48) and (13.49) gives the thermal stresses

σ1 = − E1 E2 A2(α1τ1 − α2τ2)

A1 E1 + A2 E2

σ2 = E1 E2 A1(α1τ1 − α2τ2)

A1 E1 + A2 E2
(Answer)

Problem 13.13. A copper tube is fastened by a mild steel bolt, as shown in Fig. 13.6.
The length of the tube is 50 cm, and the cross-sectional areas of the bolt and the
tube are As = 1 cm2 and Ac = 2 cm2, respectively. Calculate the thermal stresses
produced if the system is subjected to the temperature change of 80 K. The coefficient
of linear thermal expansion and Young’s modulus for mild steel are αs = 11.2 ×
106 1/K and Es = 206 GPa, respectively. The coefficient of linear thermal expansion
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Fig. 13.6 A copper tube
fastened by a mild steel bolt

and Young’s modulus for copper are αc = 16.5 × 106 1/K and Ec = 120 GPa,
respectively.

Solution. Since the final length of both the copper tube and the mild steel bolt after
deformation is the same, the following relation holds

l + αsτ l + σs

Es
l = l + αcτ l + σc

Ec
l (13.50)

The equilibrium condition of the internal forces is described by

σs As + σc Ac = 0 (13.51)

Solving Eqs. (13.50) and (13.51) gives the stresses

σs = − Es Ec Ac(αs − αc)τ

As Es + Ac Ec
, σc = Es Ec As(αs − αc)τ

As Es + Ac Ec
(13.52)

The numerical results are

σs = 47.001 × 106 Pa = 47 MPa, σc = −23.5 MPa (Answer)

Problem 13.14. In the foregoing problem, calculate the maximum tolerable tem-
perature rise such that stresses in the system do not exceed the compressive or the
tensile strength. The tensile strengths of the steel and the copper are σst = 400 MPa
and σct = 300 MPa, respectively. We assume the compressive strength has the same
magnitude as the tensile strength. The safety factor (defined by the ratio of yield
stress or the tensile strength and the tolerable stress) is f = 3.

Solution. The stresses due to the temperature change τ are given by Eq. (13.52),
namely

σs = − Es Ec Ac(αs − αc)τ

As Es + Ac Ec
, σc = Es Ec As(αs − αc)τ

As Es + Ac Ec
(13.53)

The tolerable stress of a mild steel bolt is
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σsa = σst

f
(13.54)

The maximum tolerable temperature rise τ of the mild steel bolt is given by

τ = − σsa

αs Es

(
1 − αc

αs

)/(
1 + As Es

Ac Ec

) = −σst

f

1 + As Es

Ac Ec

αs Es

(
1 − αc

αs

)

= −400 × 106

3

× 1 + 1 × 10−4 × 206 × 109/(2 × 10−4 × 120 × 109)

11.2 × 10−6 × 206 × 109 × [1 − 16.5 × 10−6/(11.2 × 10−6)]
= 226.944 = 227 K (13.55)

Tolerable stress of the copper tube is

σca = σct

f
(13.56)

The maximum tolerable temperature rise τ of the copper tube is given by

τ = σca

αs Es
As

Ac

(
1 − αc

αs

)/(
1 + As Es

Ac Ec

) = σct

f

Ac

As

1 + As Es

Ac Ec

αs Es

(
1 − αc

αs

)

= −300 × 106

3

2 × 10−4

1 × 10−4

× 1 + 1 × 10−4 × 206 × 109/(2 × 10−4 × 120 × 109)

11.2 × 10−6 × 206 × 109 × [1 − 16.5 × 10−6/(11.2 × 10−6)]
= 340.416 = 340 K (13.57)

Therefore, from Eqs. (13.55) and (13.57), the maximum tolerable temperature rise
is 227 K.

Problem 13.15. A bar of mild steel of cross-sectional area As is placed between
two parallel bars of copper of cross-sectional area Ac, shown in Fig. 13.7. When the
three bars of same length l are bonded together and are subjected to a temperature
change of τs in the bar of mild steel and τc in the bar of copper, calculate the thermal
stresses produced in each bar.

Solution. The final lengths of middle steel and two copper bars are same

l + αsτsl + σsl

Es
= l + αcτcl + σcl

Ec
(13.58)
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While the equilibrium condition of internal forces gives

σs As + 2σc Ac = 0 (13.59)

From Eqs. (13.58) and (13.59) we get

σs = Es(αcτc − αsτs)

1 + As Es

2Ac Ec

, σc = −σs As

2Ac (Answer)

Problem 13.16. Calculate the thermal stresses produced in the bars of the truss
shown in Fig. 13.8, if the temperature changes of the bars are τi .

Solution. The relation between the elongation of bar 1 and bar 2 is

λ2 = λ1 cos θ (13.60)

Therefore,

α2τ2l2 + σ2l2
E2

= (
α1τ1l1 + σ1l1

E1

)
cos θ (13.61)

The relation between the length of bar 1 and bar 2 gives

l1 = l2 cos θ (13.62)

Substitution of Eq. (13.62) into (13.61) reduces to

α2τ2 + σ2

E2
= (

α1τ1 + σ1

E1

)
cos2 θ (13.63)

Then σ1

E1
cos2 θ − σ2

E2
= −α1τ1 cos2 θ + α2τ2 (13.64)

The equilibrium of internal forces requires

σ1 A1 + 2σ2 A2 cos θ = 0 (13.65)

Solution of Eqs. (13.64) and (13.65) gives

Fig. 13.7 Three bars with
rectangular cross section
fastened to each other
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Fig. 13.8 Truss of three bars

σ1 = −α1 E1τ1

cos2 θ − α2τ2

α1τ1

cos2 θ + E1

E2

A1

2A2

1

cos θ

= −α1 E1τ1

1 − α2τ2

α1τ1 cos2 θ

1 + A1 E1

2A2 E2 cos3 θ

σ2 = − A1

2A2 cos θ
σ1 (Answer)

Problem 13.17. Calculate the thermal stresses produced in the bars which hang
from a rigid plate shown in Fig. 13.9, if the temperature changes of the bars are τi .
The weight of the rigid plate may be neglected.

Solution. The elongations of each bar are

λi = σi

Ei
l + αiτi l (i = 1, 2, 3) (13.66)

The equilibrium condition of the internal forces in each bar requires

σ1 A1 + σ2 A2 + σ3 A3 = 0 (13.67)

The equilibrium of the moments at the point A is

σ2 A2a + σ3 A3(a + b) = 0 (13.68)

The relation between the elongation of each bar is

(λ3 − λ1) : (λ2 − λ1) = (a + b) : a (13.69)
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Fig. 13.9 Three bars on whih
hangs a rigid plate

Solution of Eqs. (13.67), (13.68) and (13.69) gives

σ1 = A2 A3b
C

D
, σ2 = −A1 A3(a + b)

C

D
, σ3 = A1 A2a

C

D
(Answer)

in which

C = −bα1τ1 + (a + b)α2τ2 − aα3τ3

D = a2 A1 A2

E3
+ b2 A2 A3

E1
+ (a + b)2 A1 A3

E2
(13.70)


	13 Thermal Stresses in Bars
	13.1 Thermal Stresses in Bars
	13.2 Problems and Solutions Related to Thermal Stresses  in Bars


