Chapter 13
Thermal Stresses in Bars

In this chapter the concept of thermal stresses in bars is introduced for the simple case
of a perfectly clamped bar subjected to arbitrary temperature change. The problems
and solutions related to thermal stresses in bars are: a perfectly clamped bar, a clamped
bar with a small gap, a clamped circular frustum, a bar with variable cross-sectional
area, two bars attached to each other, three bars fastened to each other, truss of three
bars, and three bars hanging from a rigid plate.

13.1 Thermal Stresses in Bars

When the temperature of a circular bar of length / changes from an initial temperature
Tj to its final temperature 77, the free thermal elongation A7 of the bar is defined by

M\ = a(Ty — Tp)l = artl (13.1)

where « is the coefficient of linear thermal expansion which is measured in one per
one degree of the temperature 1/K, and 7 denotes the temperature change given by

T=T1—T (13.2)
The free thermal strain is given by
A
er = TT =ar (13.3)

When an internal force and the temperature change act simultaneously in the bar, the
normal strain is given by
€E=¢€ +e€r (13.4)
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Fig. 13.1 A perfectly clam- jEl —_ j;
pled bar
a A E
X
/

where €, denotes the strain produced by the internal force. The strain €, produced by
the internal force is proportional to the normal stress o

o
&=% (13.5)
where E denotes Young’s modulus.
Hooke’s law with the temperature change is
o
= — 13.6
€ z + art ( )

When a perfectly clamped bar with length / and cross-sectional area A, shown in
Fig. 13.1, is subjected to the uniform temperature change 7, the thermal stress is

oc=—aFET (13.7)

If the temperature change 7(x) is a function of the position x, the free thermal
elongation A7 of the bar of length [ is

1 1
AT = /d)\T =/ at(x)dx = a/ T(x)dx (13.8)
0 0

The thermal strain ey is

[
e = 2L — g/ 7(x) dx (13.9)
0

The thermal stress in the perfectly clamped bar is

aE [!
J:—T/O T(x)dx (13.10)
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13.2 Problems and Solutions Related to Thermal Stresses
in Bars

Problem 13.1. If the temperature in a mild steel rail with length 25 m is raised to
50K, and the coefficient of linear thermal expansion for mild steel is 11.2 x 107° 1/K,
what elongation is produced in the rail?

Solution. The elongation A7 is from Eq. (13.1)
AM=arl=112x10°%x50x25=14x 107 m=14mm  (Answer)

Problem 13.2. The temperature of a bar of length 1 m of mild steel is kept at 300 K.
If the temperature at one end of the bar is raised to 380K and at the other end to
480 K, and the temperature distribution is linear along the bar, what elongation is
produced in the bar? The coefficient of linear thermal expansion for mild steel is
11.2 x 107% 1/K.

Solution. The temperature rise 7(x) = T1(x) — Ty is
() =Ty (x) — Tp = [380 1 (480 — 380)){] —300 =80+ 100x  (13.11)

The free thermal elongation Aris

1 1
A = / at(x)dx = a/ (80 4+ 100x)dx
0 0

1
=112 x 1076 x [80x T 50x2]0 —1456x 10> m=1.46mm  (Answer)
(13.12)

Problem 13.3. A bar of mild steel at 300 K is clamped between two walls. Calculate
the thermal stress produced in the bar when the bar is heated to 360 K. The coefficient
of linear thermal expansion and Young’s modulus are o = 11.2 x 10 1/K and
E = 206 GPa, respectively.

Solution. The thermal stress o is from Eq.(13.7)
0 =—aET = —138.4x 10°Pa = —138 MPa (Answer)

Problem 13.4. In Problem 13.2, calculate the thermal stress produced in the bar if
it is clamped between two walls. The coefficient of linear thermal expansion and
Young’s modulus are o = 11.2 x 10%1/K and E = 206 GPa, respectively.

Solution. As the summation of the free thermal elongation Az and the elongation
As due to the stress is zero, we get
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E ), E\p 206 x 10° x 1.456 x 1073
o= =T = 1 = —300MPa (Answer)

Problem 13.5. A bar of mild steel at 300 K is clamped between two walls in such a
way that the initial stress is zero. Calculate the temperature when the thermal stress in
the bar reaches the compressive strength (0 pc = 400 MPa). The coefficient of linear
thermal expansion and Young’s modulus are o = 11.2 x 10 1/K and E = 206 GPa,
respectively.

Solution. The compressive thermal stress o is given by Eq.(13.7). Therefore, the
temperature rise 7 is

400 x 106
;= 7BC _ x — 17337 (13.13)
aE 11.2 x 10~6 x 206 x 10°
Then
T) = Ty + 7 = 300 + 173.37 = 473.37K = 473K (Answer)

Problem 13.6. The temperature of a bar with a small gap ¢ = 1 mm, shown in
Fig. 13.2 is kept at 300 K. If the temperature at one end of the bar is raised to 380 K
and at the other end to 480 K, and the temperature distribution is linear along the
bar, calculate the thermal stress. Where length of the bar is 1 m, and the coefficient
of linear thermal expansion and Young’s modulus are o = 11.2 x 10° 1/K and
E = 206 GPa, respectively.

Solution. The free thermal elongation is assumed to be longer than the gap. The
summation of elongations due to the free thermal elongation and the elongation due
to the stress is equal to the small gap e

! ol
/ ar(x)dx + — =e (13.14)
0 E

Then, we get
E l
o= —T[a/ T(x)dx — e] (13.15)
0

Fig. 13.2 A bar with a small
gap
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The free thermal expansion is given by Eq. (13.12). Therefore,

206 x 10°

(146 1077 — 1 x 1077) = —94.8 x 10° = —94.8 MPa

(Answer)

g =

Problem 13.7. If a clamped circular frustum of mild steel with dy = 1cm, d; =
2cm, and [ = 2m is subjected to the temperature change —50K, calculate the
resulting thermal stress. The coefficient of linear thermal expansion and Young’s
modulus are v = 11.2 x 10° 1/K and E = 206 GPa, respectively.

Solution. The free thermal elongation A7 is
Ar = aTl (13.16)

The cross-sectional area A, at the position x is given by

7r s Xq2
Ay = pd = [do+ (@ - do)7] (13.17)

Thus, the strain €, of the frustum at x due to an internal force Q becomes

o =25 = 0 _ 40 (13.18)

EEA Exldo+ (i - o))

and the elongation ) of the frustum due to the internal force Q equals

1 I
4
)\X:/d)\sz/exdx:/ 0 xzdx
0 0 Endo+ (@ —do)7]

B 401 [ 1 ]’ 401
En(d, — dy) do + (d —d())%c 0 Endidy

(13.19)

As the frustum is perfectly constrained in the x direction, the combined elongation
of the free thermal elongation A7 and the elongation A; due to the internal force Q
must be zero

A=A+ A =0 (13.20)

From Egs. (13.16), (13.19), and (13.20) the internal force Q is
Q=—akET %dldo (13.21)

Then, the thermal stress is
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did
oy = Ag — _aET 10 (13.22)

x [do + (d) — do>§]2

If di > dp, the maximum thermal stress (oy)max Occurs at the minimum cross-
sectional area and the minimum thermal stress (o )min Occurs at the maximum cross-

sectional area

d d
(0 )max = —ET =, (03)min = —QET — (13.23)
d() dl

The thermal stress o is calculated from Eq. (13.22)
or = —11.2 x 107 x 206 x 10° x (—50)

1x1072x2x 1072
[1 X 1072 4 (2 x 10-2 — 1 x 10—2)3]2

X

230.7 x 10° 231
= Pa=———MPa (Answer) (13.24)

(1+3) ()

The maximum and minimum thermal stresses are from Eq. (13.24)

231

(0 )max =231 MPa, (0x)min = — 55 MPa=57.8MPa  (Answer)
1+3)

(143
Problem 13.8. If the temperature of a clamped circular frustum of mild steel with
dy = lcm, di = 2cm, and [ = 2m changes linearly from 0K at one end to
—50 K at the other end, calculate the resulting thermal stress. The coefficient of linear
thermal expansion and Young’s modulus are o = 11.2 x 10 1/K and E = 206 GPa,

respectively.

Solution. The distribution of the temperature change 7(x) is

7(x) = —so’l—c (13.25)

The free thermal elongation A7 is

! l 24!
~50 25
Ar =/ ar(x)dx = a/ z Y dx = —[ ‘;‘x ] — —0.56x 10" m (13.26)
0 0 0

The cross-sectional area A, at the position x is given by

Y ™ X
Ay =2dl = Zdo+ (i —do) 7] (13.27)
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Thus, the strain €, of the frustum at x due to an internal force Q becomes

EEA - Erldy+ @ - do) 7]

and the elongation A of the frustum due to the internal force Q equals

I I
)\s=/d)\s=/exdx=/ 4Q xzdx
0 0 Exl[do+ (dy —d0)7]

401 1 ! 401
== Q |: x] = Q (13.29)
Eﬂ'(dl - dO) dO + (dl _ dO)T 0 E7Td1d0

As the frustum is perfectly constrained in the x direction, the summation of elongation
of the free thermal elongation A7 and the elongation A; due to the internal force Q

must be zero
A=A+ =0 (13.30)

From Egs. (13.29) and (13.30) the internal force Q is

Endydo)
0= _% (13.31)

and the thermal stress is calculated to be
(0] End\dy\r

o'x = — = —
Ax 41§[d0+(d1 —d0)§]2

~ (056 x 1077) x (206 x 10%) x (I x 107%) x (2 x 1072)
2x[Ix10724+ 2% 1072 =1 x 10*2);]2

11536 x 10° pa M5 o (Answer)
(43 ey

The maximum and minimum thermal stresses are
(0x)max = 115MPa, (0y)min = 28.8 MPa (Answer)

Problem 13.9. If a bar with a small gap e between its free end and a rigid wall is
subjected to the positive temperature change 7(x), and the cross-sectional area of
the bar is given by A(x), calculate the thermal stress produced in the bar.

Solution. The small elongation d \(x) of the small element dx is
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dA(x) = e(x)dx = [% + ar(x)]dx (13.32)

The elongation A of the bar with length [ is

_ _ [[ow o
)\_/dA_/O [T+ar(x)] dx—/o [EA(X) +ar(x)]dx  (13.33)

in which Q is an internal force. The free thermal elongation is assumed to be longer
than the gap. The summation of elongation due to the free thermal elongation and
elongation due to the stress is equal to the small gap e

1

! 1
/0 at(x)dx + z A mdx =e (13.34)

Then, we get
[
0= _L[a/ T(x)dx — e] (13.35)
0

|
/ dx
0o A(x)

Thermal stress is

0
o = =
A(x)

F(x)dx — e] (Answer)

E l
] [0‘/
1 0
A(x)/ —dx
0o Ax)

The maximum and minimum thermal stresses are

E !
(0)max = — [ [a/ T(x)dx — e]
A(X)min / — ax 7’
0 A()
l
(@)min = — El " [04/ T(x)dx — e] (Answer)
A max / ——ax 7’
0 A()

Problem 13.10. A hollow cylinder with a bar of the same length / and the same
centerline, shown in Fig. 13.3 is subjected to different temperature changes 7;, (i =
1, 2). The hollow cylinder and the bar are connected to two rigid plates. Calculate the
thermal stresses produced in both the hollow cylinder and the bar, and the elongations.

Solution. The elongations \; due to both the free thermal elongation and the thermal
stress are - o
AN =aml+—I, M=aynl+ —I (13.36)
Ey Ey
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Fig. 13.3 A bar and a hol- Material 1
low cylinder with both ends AL E, ay, 1
clamped to rigid plates

Material 2
Ag. Eg. a0, fg____

where A;, E;, and o; denote cross-sectional area, Young’s modulus, and the coef-
ficient of linear thermal expansion of the i-th material, respectively. Since the final
length of both the cylinder and the bar after deformation is the same, the following
relation holds
o1 lop)
l+oaiml+—1l =14 aymnl + —I (13.37)
Eq E>

The equilibrium of the internal forces is described by
01A1 +02A, =0 (13.38)
Solving Egs. (13.37) and (13.38) gives the stresses

A E 1 Ex(ogT — om)
A1E1 + AyE,
_ALE1Ex(aiT — o)

o) = (Answer)
AE1+ AyE,

o1 =

Substitution of these stresses into Eq. (13.36) gives the elongations of the cylinder
and the bar

_ (amE1A1 + aam Er Ag)l

A=A
e AE| + ArE>

(Answer)

Problem 13.11. Two circular bars, one is mild steel of length 50cm and diameter
1 cm, and the other is aluminum of length 25 cm and diameter 2 cm, are attached to
each other in series, placed between rigid walls, and subjected to the temperature
change 7 = T1 — Ty, as shown in Fig. 13.4. Calculate the temperature rise needed
for the thermal stresses in the bars to reach the compressive strength. The coefficient
of linear thermal expansion, Young’s modulus and the compressive strength for mild
steel are oy = 11.2 x 100 1/K, E1 = 206 GPa and 400 MPa, respectively. The coef-
ficient of linear thermal expansion, Young’s modulus and the compressive strength
for aluminum are oy = 23.1 x 10° 1/K, E,> = 72 GPa and 70 MPa, respectively.

Solution. The elongations of bar 1 and 2 are, respectively, given by

L + o [ I, + gzl (13.39)
T —1, — .
ATl E, 1 Q2TL2 E, 2
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Fig. 13.4 Two bars attached T—T,
to each other

A;,E]ba1 Az.Ez.OCz

/) I

As two bars are placed between rigid walls, the combined elongation of the bars is
zero. Thus,

g1 g2
a Tl + —h +axth + =1, =0 (13.40)
E E>

From the equilibrium condition of internal forces, the internal force in bar 1 is equal
to the internal force in bar 2
01A1 = 0242 (13.41)

From Egs. (13.40) and (13.41), the thermal stresses o1 and o, are given as

l
a1E17(1+2) 1+O‘Ll2
ol =— alt) oA e il (3 )
! 1+A1E112 n 02 A e A21+A15112 '
A2Exl, A2Exly
Therefore, the necessary temperature rise for bar 1 is
A Eql
o T+ AlEll2
r=— ;: ; 12 1 (13.43)
a1 LB 1+ 202
aily
Numerical calculation gives the temperature rise
7=115876 K = 116K (13.44)
On the other hand, the necessary temperature rise for bar 2 is given by
ALE1D
A
r=_ 2 82 Ak (13.45)
a1 E] Ay alp
1+ —
Ozlll

Therefore, the necessary temperature rise is

r=81.11K = 81K (13.46)
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Fig. 13.5 A hollow cylinder ALE o, 1
with an inserted screw i
7
Az.Ezbaz. (5] \\\\\\\\\\\ | d| dg
l

Then, comparison between Eqgs. (13.44) and (13.46) gives the necessary temperature
rise 81 K.

Problem 13.12. A hollow cylinder with an inserted screw, shown in Fig.13.5 is
subjected to different temperature changes 7;, (i = 1,2). Calculate the thermal
stresses produced in both the hollow cylinder and the screw.

Solution. The elongations A; due to both the free thermal elongation and the thermal
stress are o1 o
M=ol +—=—I, M =aoayml+ —I (13.47)
E E

where A;, E;, and o; denote cross-sectional area, Young’s modulus, and the coef-
ficient of linear thermal expansion of the i-th material, respectively. Since the final
length of both the hollow cylinder and the screw after deformation is the same, the
following relation holds

I+ arml+ 2 =1+ aml + 221 (13.48)
E E>

The equilibrium condition of the internal forces is described by
1A + 024, =0 (13.49)
Solving Egs. (13.48) and (13.49) gives the thermal stresses

_E1EyAx(onT — o)
A1E1+ A Ky
E1ErA (a1 — apm)

oy = (Answer)
A1E1+ A2 Ey

g1 =

Problem 13.13. A copper tube is fastened by a mild steel bolt, as shown in Fig. 13.6.
The length of the tube is 50cm, and the cross-sectional areas of the bolt and the
tube are A; = lcm? and A. = 2cm?, respectively. Calculate the thermal stresses
produced if the system is subjected to the temperature change of 80 K. The coefficient
of linear thermal expansion and Young’s modulus for mild steel are oy = 11.2 X
10° 1/K and E; = 206 GPa, respectively. The coefficient of linear thermal expansion
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Fig. 13.6 A copper tube Copper tube

fastened by a mild steel bolt —]
&

and Young’s modulus for copper are a. = 16.5 x 10°1/K and E. = 120GPa,
respectively.

Solution. Since the final length of both the copper tube and the mild steel bolt after
deformation is the same, the following relation holds

g a,
[+ ay7l + E—Sl =1+ a.7l + E—fl (13.50)

s Cc

The equilibrium condition of the internal forces is described by
osAs +0:Ac =0 (13.51)
Solving Egs. (13.50) and (13.51) gives the stresses

_ EsE A (ag — ae)T o EsE-Ag(asy — ae)T

oy = , Oc= (13.52)
AsE; + A E, AyE; + A E,
The numerical results are
oy = 47.001 x 10° Pa = 47MPa, o, = —23.5MPa (Answer)

Problem 13.14. In the foregoing problem, calculate the maximum tolerable tem-
perature rise such that stresses in the system do not exceed the compressive or the
tensile strength. The tensile strengths of the steel and the copper are o;; = 400 MPa
and o, = 300MPa, respectively. We assume the compressive strength has the same
magnitude as the tensile strength. The safety factor (defined by the ratio of yield
stress or the tensile strength and the tolerable stress) is f = 3.

Solution. The stresses due to the temperature change 7 are given by Eq.(13.52),
namely

_ E;EAc(ay — )T _ EJEAs(asy — ao)T
AsEs+AE. T ° AsEs + AcE,

(13.53)

o5 =

The tolerable stress of a mild steel bolt is
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o
Osq = 7” (13.54)

The maximum tolerable temperature rise 7 of the mild steel bolt is given by

ASES
1+
= Osa _ Ost A E,
= : AsEgN o (1 Qe
aSES(l_%)/(HL) f aSEs(l——c)
(&%} AcE, Qs
400 x 10°
3

141 x107% x 206 x 107/(2 x 10™* x 120 x 10°)
X
11.2 x 1070 x 206 x 10% x [1 — 16.5 x 1076/(11.2 x 1076)]
=226.944 = 227K (13.55)

Tolerable stress of the copper tube is

Oct

Ocq = 7 (13.56)
The maximum tolerable temperature rise 7 of the copper tube is given by
A E;
I+ —F
_ Oca _ &ﬁ A E,
asEsﬁ(l -2 /(1+ AsES) fAsage (1-2)
A oy AE,. Qs
300 % 10°2 x 107*
3 1 x10~4

141 x107% x 206 x 107/(2 x 10™* x 120 x 10°%)
X
11.2 x 1070 x 206 x 109 x [1 — 16.5 x 10=6/(11.2 x 10=6)]
=340.416 = 340K (13.57)

Therefore, from Egs. (13.55) and (13.57), the maximum tolerable temperature rise
is 227 K.

Problem 13.15. A bar of mild steel of cross-sectional area Ay is placed between
two parallel bars of copper of cross-sectional area A., shown in Fig. 13.7. When the
three bars of same length / are bonded together and are subjected to a temperature
change of 7 in the bar of mild steel and 7. in the bar of copper, calculate the thermal
stresses produced in each bar.

Solution. The final lengths of middle steel and two copper bars are same

osl ocl
l+asTSl+EL=l+acrcl+E—c

s c

(13.58)
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While the equilibrium condition of internal forces gives
0sAs +20:,A, =0 (13.59)

From Egs. (13.58) and (13.59) we get

oo = Es(aete — ay7y) o — _UsAs
5 14 AgEg 7 T 24, (Answer)
2A.E.

Problem 13.16. Calculate the thermal stresses produced in the bars of the truss
shown in Fig. 13.8, if the temperature changes of the bars are 7;.

Solution. The relation between the elongation of bar 1 and bar 2 is

A2 = Ajcosf (13.60)
Therefore, , ;
armly + 02—22 = (aumil + UEI—II) cos 6 (13.61)

The relation between the length of bar 1 and bar 2 gives
Iy =1lycos@ (13.62)

Substitution of Eq. (13.62) into (13.61) reduces to

arT) + 2—22 = (a1m + ;—11) cos? 6 (13.63)

Then o o
L eosth— 22 = —ay71 0820 + army (13.64)
E; E;

The equilibrium of internal forces requires
01A1 +202A2c080 =0 (13.65)

Solution of Egs. (13.64) and (13.65) gives

Fig. 13.7 Three bars with
rectangular cross section Copper
fastened to each other Mild steel

Copper
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Fig. 13.8 Truss of three bars

T
cos? 6 — i
oqT
o1 =—a1Eim 2R All ! I
cos?f + ——
E>2A, cost
QT
a7 cos2f
= —alElTl 1A11E1
4+
2A,E>cos3 0
Aq
o) =—m ——O0
2 2A, cos 6 !

315

(Answer)

Problem 13.17. Calculate the thermal stresses produced in the bars which hang
from a rigid plate shown in Fig. 13.9, if the temperature changes of the bars are 7;.

The weight of the rigid plate may be neglected.

Solution. The elongations of each bar are

No=Ditaml (=123
E;

The equilibrium condition of the internal forces in each bar requires

01A1 + 02A2 +03A3 =0
The equilibrium of the moments at the point A is
opAra + 03A3(a+b) =0

The relation between the elongation of each bar is

M=AD:(M=A)=(@+b):a

(13.66)

(13.67)

(13.68)

(13.69)
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Fig. 13.9 Three bars on whih
hangs a rigid plate

bar||1 bar||2 bar|| 3

Solution of Egs. (13.67), (13.68) and (13.69) gives
C C C
g| = A2A3b5, gy = —A1A3(a +b)5, g3 = A]AQ(ZB (AnSWGI‘)
in which
C = —baim + (a+ b)arm —aasT;

ALA ArA AlA
— 2212 22 3+( +p)2 238 (13.70)
E3 E;



	13 Thermal Stresses in Bars
	13.1 Thermal Stresses in Bars
	13.2 Problems and Solutions Related to Thermal Stresses  in Bars


