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Preface

Fecimus, quod potuimus,
faciant meliora potentes.

All the authors of this book have done research in and taught numerous courses on
the Theory of Elasticity, Thermoelasticity and Thermal Stresses. Coincident with
that teaching, we have jointly created three textbooks in these critical fields of
Mechanics:

1. Richard B. Hetnarski and J6zef Ignaczak, The Mathematical Theory of
Elasticity.

2. Naotake Noda, Richard B. Hetnarski and Yoshinobu Tanigawa, Thermal
Stresses.

3. Richard B. Hetnarski and M. Reza Eslami, Thermal Stresses—Advanced The-
ory and Applications.

These publications are a result of our dedication to teaching engineering stu-
dents on these subjects of Mechanics. Publication details of our three textbooks
will be found at the end of this Preface.

The new book that we now present here is the crowning achievement of our
activities in these fields. It comprises the problems contained in the three listed
books, together with detailed solutions and explanations. Thus, Part I is related to
the book The Mathematical Theory of Elasticity, Part I covers the problems in the
book Thermal Stresses, and Part III covers problems in the book Thermal Stres-
ses—Advanced Theory and Applications.

The three parts are augmented by Part IV, Numerical Methods, that covers three
important topics: the Method of Characteristics, the Finite Element Method for
Coupled Thermoelasticity, and the Boundary Element Method for Coupled
Thermoelasticity. A full chapter in Part IV is devoted to the Method of Charac-
teristics. The need for numerical methods in the solution of dynamic problems is
dictated by the well-known difficulty of obtaining exact solutions. The Method of
Characteristics serves to reduce the hyperbolic partial differential equations of
dynamic problems to a family of ordinary differential equations, each of which is
valid along a different family of characteristic lines. These equations are more
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viii Preface

suitable for numerical analysis because their use makes it possible to obtain the
solutions through a step-by-step integration procedure. The method has the
advantage of giving a simple description of the wave fronts, and can readily find
numerical solutions to problems with any type of input functions.

Part IV contains a chapter that treats the Finite Element Method for Coupled
Thermoelasticity. The method of finite elements described in that chapter is based
on the Galerkin method and presents classical formulation for problems of coupled
thermoelasticity. The formulation may be modified to be applicable to the
uncoupled thermoelasticity problems simply by removing the coupling term from
the energy equation. The method is also made applicable to problems of
generalized thermoelasticity, by taking into account the terms containing the
relaxation times associated with the Lord-Shulman, the Green-Lindsay, or the
Green-Naghdi models.

Part IV also dedicates a chapter to a description of the Boundary Element
Method for Coupled Thermoelasticity. The formulation of the Laplace transform
boundary element method is based on the generalized thermoelasticity theory of
the Lord-Shulman model. The unique feature of this formulation is that a single
heat excitation principle solution is used to derive the boundary element
formulation.

We consider this new book to be an indispensable companion to all who study
any of the initial three books. In it, we present not only the problems contained in
these books, together with their careful and often extensive solutions, but also
explanations in the form of introductions that appear at the beginning of chapters
in Parts I, II and III. Therefore, this book links the three listed books into one
consistent entity of four publications.

Note that in Part I, the chapter numbers correspond to chapters in the book The
Mathematical Theory of Elasticity, except that they are shifted by one, i.e., Chap. 1
in this book corresponds to Chap. 2 in MTE, Chap. 2 in this book corresponds to
Chap. 3 in MTE, etc.

Note also that the notations in Parts I, II, and III are respectively the same as in
the three listed books; since not all notations are the same in each of the three
books, some notations in different parts of this book differ from each other.

The quality and style of figures differed in the three initial books, thus they
differ in the corresponding parts of the new book. Of necessity, we note an
overlapping of the material covered in various parts of the new book. Such
occurrences are marked by cross-references at the beginning of some chapters.

We took the opportunity to list all discovered errors that exist in the second
editions of the books The Mathematical Theory of Elasticity and Thermal Stresses,
and in the book Thermal Stresses—Advanced Theory and Applications.

References to the literature are placed in footnotes. At the end of the book, we
provide a brief list of important books on the theory and applications, and also the
books that are devoted to solving of problems. More extensive lists of references to
the literature appear in our three original books.

We express our thanks to Jonathan W. Plant, Executive Editor for Mechanical,
Aerospace & Nuclear Engineering at Taylor & Francis/CRC Press, who granted us


http://dx.doi.org/10.1007/978-94-007-6356-2_1
http://dx.doi.org/10.1007/978-94-007-6356-2_2
http://dx.doi.org/10.1007/978-94-007-6356-2_2
http://dx.doi.org/10.1007/978-94-007-6356-2_3
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permission to use the text of the problems and associated figures contained in The
Mathematical Theory of Elasticity, second edition, as well as in Thermal Stresses,
second edition. Without such permission, this book could not have been published.

A positive attitude toward publication of the book by Professor G. M. L.
Gladwell, the Series Editor, is highly appreciated.

We are indebted to Nathalie Jacobs, Senior Publishing Editor/Engineering at
Springer, for undertaking the publication of the book and for her assistance in the
execution of this project.

The authors’ names are placed on the title page and below in alphabetical order.

April 2013 M. Reza Eslami
Richard B. Hetnarski

J6zef Ignaczak

Naotake Noda

Naobumi Sumi

Yoshinobu Tanigawa

Publication information on the three books referred
to in Preface:

1. Richard B. Hetnarski and Jézef Ignaczak, The Mathematical Theory of Elas-
ticity. 2nd ed., CRC Press, Boca Raton, 2011.

2. Naotake Noda, Richard B. Hetnarski and Yoshinobu Tanigawa, Thermal
Stresses 2nd ed., Taylor & Francis, New York, 2003.

3. Richard B. Hetnarski and M. Reza Eslami, Thermal Stresses—Advanced
Theory and Applications, Springer, 2009.
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Part I
The Mathematical Theory of Elasticity



Chapter 1
Mathematical Preliminaries

In this chapter the basic definitions of vector and tensor algebra, elements of tensor
differential and integral calculus, and concept of a convolutional product for two
time-dependent tensor fields are recalled. These concepts are then used to solve
particular problems related to the Mathematical Preliminaries.

1.1 Some Formulas in Tensor Algebra

A vector will be understood as an element of a vector space V. The inner product of
two vectors u and v from V will be denoted by u - v. If Cartesian coordinates are
introduced in such a way that the set of vectors {e;} = {er, e», e3} with an origin 0
stands for an orthonormal basis, and if u is a vector and x is a point of E 3. then
Cartesian coordinates of u and x are given by

u—=u-€, X;ji—=X-6€; (1.1)
Apart from the direct (vector or tensor) notation we use indicial notation in which

subscripts range from 1 to 3 and summation convention over repeated subscripts is
observed. For example,

(98]

u-VZZu,’V[ = Uu;v; (1.2)

i=1
From the definition of an orthonormal basis {e;} it follows that
e-e =0; (1,j=1,2,3) (1.3)

where §;; is called the Kronecker symbol defined by

M. Reza Eslami et al., Theory of Elasticity and Thermal Stresses, Solid Mechanics 3
and Its Applications 197, DOI: 10.1007/978-94-007-6356-2_1,
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(1t =]
5’1‘[0 it Q] (1.4

We introduce the permutation symbol ¢;ji, also called the alternating symbol,
defined by

1 if (i, j, k) is an even permutation of(1, 2, 3)
gijr = 1 —1 if (i, j, k) is an odd permutation of(1, 2, 3) (1.5)
0  otherwise, that is, if two subscripts are repeated

The permutation symbol will be used for the definition of the vector product u x v
of two vectors u and v
(U X V); = &jkujvi (1.6)

We may observe that the following identity holds true
Emis€jks = Smjdik — OmkSij (L.7)

An alternative definition of the permutation symbol, given in terms of the vectors
e;, 1S

s,-jkzei-(ej xek) (1.8)
Using this definition of &;jx, a generalized form of Eq. (1.7) is obtained

Sip Sig Sir
€ijkEpgr = 8jp 8jq 8jr (1.9)
5kp 5kq (Skr

Letting k = r in this identity we obtain Eq. (1.7).
The permutation symbol ¢;jx can be also used to calculate a 3 x 3 determinant

a az as
gijkaibjck = by by b3 (1.10)
c1 ¢ c3

A second-order tensor is defined as a linear transformation from V to V, that is, a
tensor T is a linear mapping that associates with each vector v a vector u by

u="Tyv (1.11)
The components of T are denoted by T;;

T, = e - Te; (1.12)
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so the relation (1.11) in index notation takes the form
uj = Tijv;j (1.13)
The Kronecker symbol §;; represents an identity tensor that in direct notation is
written as 1.
A product of two tensors A and B is defined by
(AB)v = A(Bv) for every vector v (1.14)
Thus, in Cartesian coordinates
(AB);j = Aix Byj (1.15)
The transpose of T, denoted by TT, is defined as a unique tensor satisfying the
property
Tu-v=u-Tly for every u and v (1.16)
From this definition it follows that
Ty =T (1.17)
If T = T7, then the tensor T is symmetric. Also, if T = —TT then the tensor T is
skew or asymmetric. Therefore, T is symmetric if 7;; = T};, and skew if T;; = —T;.

Every tensor T can be expressed by a sum of a symmetric tensor sym T and skew
tensor skw T, that is,

T =sym T + skw T (1.18)
where |

sym T = §(T+TT) (1.19)
and |

skw T = (T =T (1.20)
In index notation

Tij = Tqj) + Tiijy (1.21)

where 1

Tiijy = 5 (Tij + Tji) (1.22)
and

1
Tiij) = E(T” —Tji) (1.23)
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If atensor P is skew, then there exists a vector w, called the axial vector corresponding

to P, such that
Pu =w xu for every vector u
and it follows from (1.24) that
Pij = —¢&jjrowk

and
w; = —&ijk Pjk

For any tensor T the trace of T is denoted by tr (T). In index notation
tr (T) =Tj;
The determinant of T is denoted by det (T) and it is
T Tz Tz

det (T) = |T21 T2 T3
T51 T3 T33

1.2 Alternative Definitions of a Vector and of a Tensor
Using an Orthogonal Tensor

We say that Q is orthogonal if and only if
Q'Q=0QQ" =1
For an orthonormal basis e; and orthogonal Q, the vectors
e, = Qe;

form an orthonormal basis.

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

Also, for two orthonormal bases e; and e; , there exists a unique orthogonal tensor

Q such that (1.30) holds true.

For a vector w with components in e; denoted by w;, and with components in €]

denoted by w!, we have

/
wi = Qjiw;

/
wj = Qjiw;

(1.31)
(1.32)
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Similarly, for a tensor T we get

T}, = Qwi QijTu (1.33)
T = Ok Qi T} (1.34)

where
Qji=¢€ e (1.35)

The set of three quantities w, or nine quantities Ty, referred to e;, which transform

to another set w; or Tl’j, referred to e, according to (1.31)—(1.32), or (1.33)—(1.34),
is defined as a vector, or a tensor, respectively.

1.3 Further Definitions

The tensor product of two vectors a and b denoted by a ® b is defined by

(a®b)u=(b-u)a for any vector u (1.36)
In components
(a®b)ij =a,-bj (1.37)
Clearly
tr(@a®b)=a-b (1.38)

Similarly, the inner product of two tensors A and B is defined by
A-B=tr (ATB) = A;B;; (1.39)
The magnitude of A is defined by
Al = (A-A) (1.40)
Also, for any tensor T the following relation holds
T="Tje ®e¢; (1.41)
and the nine tensors €; ® €; are orthonormal in the sense
(e ®ej) (e ®e) =0kdj; (1.42)

Equation (1.41) constitutes the decomposition formula for T in terms of the nine
orthonormal tensors e; ® ;.
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Also note that if A is a symmetric tensor and B is a skew tensor then [see MTE-2e,
Example 2.1.5]

A-B=0 (1.43)

and for an orthonormal basis e; and an orthogonal tensor Q the vectors e, = Qe;

form an orthonormal basis [see MTE-2e, Example 2.1.6], and, for two orthonormal
bases e; and €], there exists a unique orthogonal tensor Q such that e} = Qe;.

1.4 Eigenproblem for a Second Order Tensor

We call X an eigenvalue corresponding to an eigenvector u of a tensor T if
Ta = Au (1.44)

For a symmetric tensor T there exists an orthonormal basis {n;} defined by three
eigenvectors of T corresponding to three eigenvalues A; of T such that

3
T= Z)\,‘ n, Q n; (1.45)
i=1
Here
Tn; = A;n; (nosumoni) (1.46)
The inverse of T, denoted by T-!, is defined by
TT '=T 'T=1 (1.47)
The tensor T~ is closely related to that of an orthogonal tensor. A tensor A is said
to be an orthogonal if A is invertible, that is if A" exists and A~! = AT. Thus, A
is an orthogonal tensor if and only if
ATA=AAT =1 (1.48)

For any invertible tensors A and B

(AB)"! =B 1A"! (1.49)
A HT=A (1.50)
AH =@ hHT (1.51)

Also, a tensor A is invertible if and only if its matrix [A] is invertible with A" =
[A~1].
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1.5 A Fourth-Order Tensor C

A fourth-order tensor C is defined as a linear transformation that assigns to a second-
order tensor U another second-order tensor V

V=C|[U] (1.52)
or, in components,
Vij = Ciju Uni (1.53)
The components C;jy; are defined in terms of the basis {e;} by
Cijut = (¢; ®ej) - Cl(er @ep)] (1.54)
Let {e;} be another orthonormal basis, such that

e/ = Qe (1.55)

1

and let C; ki be components of C with respect to {e;}. A fourth-order tensor C may
be also defined as the set of 81 quantities Cy,,p, that transform to Cl.’ ki according to
the formula

l{jkl = Omi Onj Qpk Qg1 Crmnpg (1.56)

The transpose CT of C is defined as a unique fourth-order tensor that satisfies the
relation

A -C[B] = CT[A]- B for all second-order tensors A and B (1.57)
In components
C;kl = Chiij (1.58)
Also,
ICl = sup {IC[A]]} (1.59)
|Al=1

is defined as the magnitude |C| of C. Clearly,

IC[A]] <|C]| |A| forevery A (1.60)

1.6 Tensor Fields

For a scalar function f = f(x), x € R CE?, the gradient of f at x is defined by
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u=Vf (1.61)
or, in components,
u; =f,,' =€ -Vf (1.62)
The del operator V is defined by
ad
V=¢— (1.63)
0X

For a vector function v = v(x), the gradient of v is defined by

or, in components,
Vii = (VV)ij = vi; (1.65)

The divergence of v, div v, and the curl of v, curl v, are defined, respectively, by

div v(x) = tr(Vv) = v;; (1.66)
and
(curl v) x a = (Vv — VVT) a for every a (1.67)
or
(curl v); =s;jk vk, j (1.68)

The symmetric gradient of v, denoted by Vv, is defined by
A 1 T
Vv =sym (Vv) = E(VV + Vv') (1.69)

Similarly, if T is a tensor field, the divergence of T and the curl of T are defined,
respectively, in components, by

divT); =T (1.70)

and
(curl T)ij =8ipq qu,p (171)

The Laplacian of a scalar field f, of a vector field v, and of a tensor field T, are
defined, respectively, by
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Af =1 gk (1.72)
(AV)i = vikk (1.73)
(AT)ij = Tij kk (1.74)

Also, instead of A we often use V2

A = V? (1.75)

1.7 Integral Theorems

The divergence theorem for a tensor field T.

Let T be a tensor field on R C E3, let n be a unit outer normal vector to dR. Then

/Tnda:/didev (1.76)

dR R

Stokes’ Theorem
Let u and T denote a vector and tensor fields, respectively, on R, and let C be a closed
curve in R. Then

j{wsdt = / (curlu)-nda (1.77)
C S
]{ Tsdt = / (curl T)Tnda (1.78)
C S

where S is a surface contained in R and bounded by C, n is the unit vector normal to
S, and s is a unit vector tangent to C.

1.8 Irrotational and Solenoidal Fields

A vector field u on R is said to be irrotational in R if
curlu =0onR (1.79)

A vector field u on R is said to be solenoidal in R if

/ u-nda =0 forevery closed regular surface S in R (1.80)
N
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Theorem on irrotational fields
Let R be a simply connected region of E3

(a) If uis a vector field on R and curl u = 0, then there exists a scalar field f such
that u = Vf.

(b) If T is a tensor field on R and curl T = 0, then there exists a vector field v such
that T = Vv.

Theorem on solenoidal fields

(a) If u is a vector field on R and f u - nda = O for every closed surface S C R,

S
then there exists a vector field w such that u = curl w.
(b) If T is a tensor field on R and f TTn da = 0 for every closed surface S C R,

S
then there exists a tensor field W such that T = curl W.

Helmholtz’s Theorem
If u is a vector field on R then there exist a scalar field f and a vector field v such that

u=Vf+4curlv (1.81)

and
divv=20 (1.82)

1.9 Time-Dependent Fields

Let f and g be scalar fields on R x T where R is a region of E3,and T = [0,00) is
the time interval. The convolution f * g of f and g is defined by

t
[f xglx,1) =/f(x,t—r)g(x, T)dt (1.83)
0

We list properties of convolution that are useful in applications.
Let f, g, and & be scalar fields on R x T, continuous in time. Then

(@) frg=gx*f

() (fxg)xh=/f*x(gxh)=[f*gx*h

(©) fx(g+h)=fxg+ fxh

d fxg=0 = f=0o0 g=0

(e) L{f =g} = L{f} L{g} where L is the Laplace transform with respect to ¢, that
is, for any function h = h(x, 1)

o0

L{h} = /e_’”h(x, 1) dt (1.84)

0
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The convolution product of two scalar functions can be applied to mixed fields. Thus,
if wis a vector field and f is a scalar field then

t
[f*u](x,t) = / fx, t—o)u(x, t)drt (1.85)
0

If A and B are time-dependent tensor fields, then

t
[A % B](x, 1) =/A(x,t—r) -B(x, 1)dt (1.86)
0

If A is a tensor field and u is a vector field, then

t

[A xu](x,t) = /A(x, t—oulx, r)drt (1.87)
0
In components
Lf xul; =[f *u;] (1.88)
[A xB] = [A;j * Bij] (1.89)
[Axul; =[A;j *uj] (1.90)

1.10 Problems and Solutions Related to the Mathematical
Preliminaries

Problem 1.1. Use the properties of the alternator ; j; introduced in Sect. 1.1 to show
that

(axb)yxec=(@-c)b—(b-c)a (1.91)

(axb)x(exd)=[a-(cxd)]b—[b-(cxd)]a (1.92)

where a, b, ¢, and d are arbitrary vectors.

Solution. To show (1.91) we write the LHS of (1.91) in components and obtain
[(a X b) X C],‘ = ,s,-.,‘k(a X b)jCk = Eijk €jpq Ap bq Ck = Ejki Ejpq Ap bq Ck (1.93)

Now, by using the ¢ — § identify [see Eq.(1.7)] we obtain
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€jki €jpg = Okp Biq — Okq Sip (1.94)

Therefore substituting (1.94) into (1.93) we receive
[(a x b) xcl; =ag cx b — by ¢k a; (1.95)

or
[(axb)xcl;=(@-c)b; —(b-C)a; (1.96)

Equation (1.96) is equivalent to (1.91), and this proves (1.91). To show (1.92) we
replace the vector ¢ in (1.91) by ¢ x d, and arrive at (1.92).

Problem 1.2. Show that for any vector u and a unit vector n the following decom-
position formula holds true

u=u"+u (1.97)
where
ut=@-n)n and u =nx (uxn) (1.98)
Also, show that
ul~u”=0, u~n=ul~n, u.n=0 (1.99)

Note. If u = u(x) is a vector field defined on a surface S in E3, n = n(x) is a unit
outward normal vector field on S, and P is a plane tangent to S at x, then ul and u!
represent the normal and tangent parts of u, respectively, with respect to P.

Solution. The relation (1.91) in components reads

u; = (uh); + @ (1.100)
where
Wh); = (g m) ng, i)y = ej ni expgupng (1.101)
Since by the ¢ — § identify
Eijk €kpq = €kij Ekpq = SipSjq — BigSpj (1.102)

therefore

@h; = (8ip 8jq — 8iq Spj) mj g up
=ngng Ui —NpUpn; (1.103)
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Now, if we substitute (ul); and (u'); from (1.101) and (1.103), respectively, into
the RHS of (1.100), and take into account that n, n, = 1, we arrive at the LHS of
(1.100) which proves (1.100).

The relations (1.93) hold true, since by (1.101) and (1.103)

ut ull = @) @ = enong i —niup np) = (e n)* — (g n)* =0

(1.104)
uton = [(ug nnilni =ugng =u-n (1.105)

and
ul n =@ =@ —niuynyni =0 (1.106)

Problem 1.3. Show that an alternative form of Egs. (1.107) and (1.108) in Problem
1.2 reads
u=u' +ul (1.107)

where
u'=m®u)n and u'=1—-n®n)u (1.108)

In Eq. (1.108) the symbol ® represents the tensor product of two vectors, and 1 is a
unit second-order tensor [see Eq.(1.36)].

Solution. The tensor product of vectors a and b is defined as a second order tensor
P with the components
P,‘j = da; bj (1.109)

or in direct notation
P=a®Db (1.110)

Therefore, Eq.(1.108) in components read
(uJ‘)i =n;u;n; and (ll”),‘ = (ij —ninju; (1.111)

Substituting (1.111) into the RHS of (1.107) written in components, we arrive at the
LHS of (1.107) written in components. This proves (1.107).

Problem 1.4. Let T = T(x) be a symmetric tensor field defined on a surface S in
E3,n = n(x) a unit outward normal vector field on S, and P a plane tangent to S at
x. Show that

T=T!+T1! (1.112)
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where
TJ‘=2sym(n®Tn)—(n~Tn)n®n (1.113)
and
T'=1-n®n)T0—-n®n) (1.114)
Also, show that
TH.T'=0, Tn=T'n, T'n=0 (1.115)

Note. The tensors T~ and T!! represent the normal and tangential parts of T, respec-
tively, with respect to the plane P.

Solution. Equations (1.113) and (1.114), respectively, in components, take the form
(Tl),-jzni Tikni +nj Tig ng —ng Typ np nj nj (1.116)
and
(T”)ij = Bip—ninp)Tpg(8qj—ngnj) =Tij—njTigng—n; Tpjnp+ninjn, Tpy
(1.117)
Since T is a symmetric tensor, therefore,
n;i Tix ng = ni Tpj ny (1.118)
Writing (1.112) in components, and substituting (1.116) and (1.117) into the RHS
of (1.112) we arrive at the LHS of (1.112) which proves (1.112).
To prove (1.115); note that
T+ . T = (Th),; (1!, (1.119)
If we note that
((Sip—l’li np)ni =0 and ((qu — g nj)nj =0 (1120)
then substituting (1.116) and (1.117) into (1.119) and taking into account (1.120) we
obtain (1.115);. To show (1.115), we write the RHS of (1.115), in components to

obtain

(T*n); = (n; Tix ni +nj Tig ng —ng Typ np ni nj) n;
= Tix ng +ni njng Tjx —n; np ng Ty
= Lijk . (1.121)

Hence the RHS of (1.115), = the LHS of (1.115); and this proves (1.115),.
Finally, writing the LHS of (1.115)3 in components we obtain
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(T'hn); = (T nj = Sip — ni np) Tpg(Sqj — ng nj)n; (1.122)

If Eq.(1.120), is substituted into (1.122) we obtain (1.115)3. This completes
solution to Problem 1.4.

Problem 1.5. Show that if S is a plane x3 = 0 with the unit outward normal vector
n = (0, 0, —1) then the decomposition formula (1.107) in Problem 1.4 reads

Ty Ty, T3 0 0 T3 Ty Tip O
Toy Tro T3 =10 0 T |+ |Ta T O
T31 T3 T3 31 T3 T3 0 0 0

Solution. Substituting n; = 0, np = 0, n3 = —1, into Egs. (1.116) and (1.117),
respectively, in the solution of Problem 1.4, we obtain

0 0 T3
TE=|0 0 Tn
T3 T3, T33
and
T T12 0
T =| 75 70
0O 0 O
Hence
T=T"+T!

which proves the decomposition formula of Problem 1.5.

Problem 1.6. Let T be a second-order tensor with components 7;;, and let T # 0.
Show that

det T = ¢k Ti1 Tj2 Tx3 (1.123)

qur(det T) = 8ijkTip qu Tir (1.124)
Tip Tiq Tir

Eiijké‘pq,(det T) = ij qu Tjr (1.125)
Tikp Tig Thr

Solution. To show (1.123) we use the result (1.123) of Eq.(1.10)
ay ay az
gijk ai bj cx = | by by b3 (1.126)

C1 €2 €3

where a, b, and ¢ are arbitrary vectors. By letting
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ai =Ty, bi=Tn, ¢ =T3 (1.127)
in (1.126) we obtain
T\ Ty T3
gijk Ti1 Tio Tis = | T2 1o T32 (1.128)
T3 To3 T33
Since
det(T) = det(TT) (1.129)

Equation (1.128) is equivalent to (1.123), and this proves (1.123).
To show (1.124) we let

ai =Tp, bi=Ty, c=T; (1.130)

in (1.126), where p, ¢, and r are fixed numbers from the set {1, 2, 3}, and obtain

Ty Top T3p
&ijk Tip Tiqg Tir = | T1ig Tog T3q (1.131)
Tlr T2r T3r
Next, multiplying (1.123) by &4, we get
Epqr det(T) = Epqr Eijk T TjZ T3 (1.132)
Since by Eq.(1.9)
8pi 8pj Spk
Spqr gijk = (Sqi qu qu (1.133)
ari 8rj ark

therefore, substituting (1.133) into (1.132) and multiplying 7;1, T)2,and T3, respec-
tively, by the first, second, and third column of the determinant on the RHS of (1.133),

we obtain
Ty Tpo Tp3
£pgrdet (T) = | T,1 Tpa Ty (1.134)
Trl Tr2 Tr3

Since det(T) = det(TT), the RHS of (1.131) is identical to the RHS of (1.134), and
this proves (1.124).
Finally, to show (1.125) we multiply (1.124) by ¢;; and obtain

Eijk Epqr(det T) = &ijk €abe Tup Thq Ter (1.135)

or by Eq.(1.9)
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Sia dip Sic
eijk €pgr(det T) = |8ja 8jb 8jc | Tap Tog Ter (1.136)
Ska Okb Ske

Now, multiplying the first, second, and third column of the determinant on the RHS
of (1.136) by Typ, Tpy, and T, respectively, we get

Tip Tiq Tir
Eijk Epgr(det T) = | T}, Tjy Tir (1.137)
Tkp qu Tier

This proves (1.125), and a solution to Problem 1.6 is complete.

Problem 1.7. Let T be a second-order tensor with components 7;; such that det
T # 0, and let T be the tensor with components

A 1
TU = EgipqgjrsTprqu (1138)

Show that R R
TTT =TT = (det 1 (1.139)
T = et ) 'T7 (1.140)

A

Note. The matrix [7;;] is called the cofactor of the matrix [7;;], while [YA"Z.]T] is called
the adjoint of [T};].

Solution. The relation (1.139) in components takes the form
Ty Tj; = T Tij = (det T) & (1.141)
Using (1.192) we obtain
Tix ﬁf =T fjk = %Ejab ked Tae Tpa Tik (1.142)
Since, in view of (1.139) in Problem (1.6)
&pgr(det TV) = &34 Tpi Tyj Tk (1.143)

and
det(TT) = det(T) (1.144)

therefore, Eq. (1.142) can be written in the form

1
Tu T} = 58iab Eiab(det T) (1.145)
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Now, using the ¢ — § identity (1.7)
Emis €jks = Omj Sik — Smik Oij (1.146)

which is equivalent to
Ejkb Eimb = Omk Sij — Omj ik (1.147)

and letting k = m = a in (1.147) we obtain
Ejab Eiab = 2 8ij (1.148)
Thus, because of (1.145) and (1.148) we obtain
Ty T, = (det T) 5 (1.149)
which proves the second part of (1.141).
To prove that N N
T T =T Ty (1.150)
we note that
~7 ~ 1
Ty Tij = Tii Tij = 5 Ekab Eicd Tauc Tpa Ti;j

1
= E Eicd Sjcd(det T) = (det T)S,‘j (1.151)

and this completes the proof of (1.139).
To show (1.140) we note that

TT !'=T'T=1 (1.152)

and by virtue of (1.139) .
TT' = (det T) 1 (1.153)

Multiplying (1.153) by T~!, taking into account (1.152) as well as the relations
ABC=AB C=ABCOC (1.154)
where A, B, and C are arbitrary matrices, we obtain
T' = (det T)T™! (1.155)

and this proves (1.140).
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Fig. 1.1 Coordinate axes Xy

0

X

Problem 1.8. The x/ system is obtained by rotating the x; system about the x3
axis through an angle 0 < 6 < m/2, as shown in Fig. 1.1. Let T be a symmetric
second-order tensor referred to the x; system. Show that

T = (T)T (1.156)

T}, = Ty1 cos® 6 4 Tip sin 26 + Ty sin® 0
1|, = %(Tzz — T11) sin 20 + Tyo cos 20 (1.157)
Ty, = Ty sin® 0 — Ty sin 20 + T cos 0

and

T{3 = T13c086 + Tr3 sin 0
Tyy = —Ti38in6 + Tr3 cos 6 (1.158)
T3 =Ts

Also, show that an alternative form of the transformation formulas (1.157) and (1.158)
reads

T\, + Ty =T+ T

T2/2 — Tl/l +2i TI/Z =exp 2i0) (Too — T11 +21T12) (1.159)
T{3 —iTy =exp (i0) (T13 — T23)
T35 =T33

wherei = +/—1.

Hence, if the coordinates (x|, x5, x3) are identified with the cylindrical coordi-
nates (r, 6, x3), we find
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T + Tog = Ti1 + T2

Too — Tpr + 21T = exp(2i0) (Top — T11 + 2iT12)

T3 —iTp3 = exp (i0) (T13 — iT»3) (1.160)
T3 =T33

[Do not sum over r and 6 in Eq. (1.160)].
Hint. Use the formula T = QTTQ where QT is the matrix

cosf sind O
QT =| —sin® cos® 0
0 0 1

Solution. The relations (1.156)—(1.158) follow from the formula
T =QT TQ (1.161)
where QT is the matrix
cosf sinf O
QT =| —sin® coshd 0 (1.162)
0 0 1
To show that (1.156) and (1.158) are equivalent to (1.159) use the identities

exp(ikf) = cosk@ +isinkf, k=1,2 (1.163)
0820 = cos> 0 — sin’ 6 (1.164)

Finally, using the correspondence
xXp=r, x,=0, xj=x3 (1.165)

and

Tl/l = Trr’ TZ/Q = T007 T1/2 = Tr0

, . , (1.166)
Ty =T3, Tyy=Tp3, T35 =13
we transform (1.159) into (1.160), and this completes a solution to Problem 1.8.

Problem 1.9. A tensor T is said to be positive definite if u- Ta > 0 for every u # 0.
Show that if T is invertible, then TTT and TTT are positive definite.

Solution. We are to show that TTT and TT T satisfy the inequalities

u- (TTDHu > 0 foreveryu # 0 (1.167)
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and
u- (TT T)u > 0 foreveryu # 0 (1.168)

To prove (1.167) and (1.168) note that (1.167) and (1.168) are equivalent to
(TTu) - (TTu) > 0 forevery u # 0 (1.169)

and
(Tu) - (Tu) > 0 foreveryu # 0 (1.170)

The equivalency is implied by the identities
u- (TTHu= (TTw) - (TTuw) (1.171)

and
u- (T T)u = (Tu) - (Tu) (1.172)

Now, since T is invertible, TT is invertible. Hence
Tu #0 foreveryu # 0 (1.173)

and
TTu #0 foreveryu # 0 (1.174)

As a result, the inequalities (1.169), (1.170), (1.173), and (1.174) imply that T TT
and TT T are positive definite, and this completes solution of Problem 1.9.

Problem 1.10. Show that eigenvalues and eigenvectors for the matrix

101
T=|0 20 (1.175)
103
are given by
M=2-V2, =2 AM=2+2 (1.176)
and
m_, L 1 1
n,’ =+—
! V21-V224 2 (1.177)
n§1)=0
(1)_ l 1
n) =t —
V2242 (1.178)

n? =0, nf?=+1, o’ =0
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11 1
3)
n,’ =+—
! V214422 -2
n =0 (1.179)
1 1
3)
n; =+—
V22 -2

In Egs. (1.176)—(1.179) A; is an eigenvalue corresponding to the eigenvector nV (i =
1,2,3).

Solution. By using steps leading to a solution of an eigenproblem for the tensor T
given by (1.175), we find that an eigenvalue A corresponding to an eigenvector n is
a solution of the algebraic equation

det (T—21)=0 (1.180)

while a unit eigenvector n corresponding to A satisfies the equations
(T—x21)n=0 (1.181)
n| =1 (1.182)

Also, it is easy to check that A1, X, and A3 given by (1.176) satisfy (1.180);
and nV, n® and n® given by (1.194), (1.195), and (1.196), respectively, sat-
isfy Eqs.(1.181) and (1.182). Hence A; and n') (i = 1, 2, 3) respectively, given by
(1.176) and (1.177)—(1.179) are the eigenvalues and eigenvectors for the matrix T
given by Eq. (1.176). This completes a solution to Problem 1.10.

Problem 1.11. Let T be the tensor represented by the matrix (1.183) in Problem
1.10, and let {e;"} be the orthonormal basis obtained from Eqgs. (1.185)—(1.187) in
Problem 1.10 in which the upper signs are postulated. Define the tensor QT in terms
of components by

0/ =¢ ¢ (1.183)

Show that
T = Q'TQ (1.184)

is a tensor represented by a diagonal matrix. Also, compute the components 77, 1.5,
and T35, and show that
T =acT=6 (1.185)

Solution. The orthonormal basis {e;‘ } obtained from Eqs. (1.185)—(1.187) in Prob-
lem 1.10 is defined by



1.10 Problems and Solutions Related to the Mathematical Preliminaries

1 1 1 1 1
el =|— ) Y —
! V2 1-V2 2+ 2 V2 V242
e =10, 1, 0]
PO I CE .
lV21+v2 Va2 V2V
Since
e =[1,0,0], ex=1[0,1,0], e3=10,0,1]
Eq. (1.183) implies that
1 1 1
T T
= — s =0
01 NN, 01
QT 1 1 QT 0
B= 7% T—m Yn=
V2 V2442
0 =1, 03;,=0,
or L ! I ol 0
31 ﬁ1+ﬁma 32 )
;1 1
0= —7 ———=
V222

Hence, we obtain

O = Q1T1, O12p=0, Q3= Q3T1

Since, by Eq. (1.184),

021=0, On=0>%h 0xn=0,

031 =01, 0n=0% 0xn=05%
T* _ T T, .
ij — Qik ka Qa]

25

(1.186)

(1.187)

(1.188)

(1.189)

(1.190)

therefore, substituting Ty, Ql.Tk, and Q,; from Egs. (1.183) in Problem 1.10, (1.188),
and (1.189), respectively, into the RHS of (1.190), we obtain

23 —2+/2

ri= 202 =
2-42

T =0, Tp=2 T;=0

2
T3 =0, T3, =0, T355= S

S

(1.191)
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Equation (1.191) imply that T* is represented by a diagonal matrix. In addition, it
follows from (1.191) that (1.194) holds true, and this completes a solution to Problem
1.11.

Problem 1.12. Prove the following identities in which ¢ is a scalar field, u is a
vector field, and S is a tensor field on a region R C E>. You may use the & — §
relation.

curl Vg =0 (1.192)
divcurlu =0 (1.193)
curl curl u = Vdiv u — Vu (1.194)
curl Vu =0 (1.195)
curl (Vu') = Veurl u (1.196)
If Va=—Vu’ then VVu=0 (1.197)
div curl S = curl div ST (1.198)
div (curl $)T =0 (1.199)
(curl curl $)T = curl (curl ST) (1.200)
curl (¢ 1) = —[curl (1)]T (1.201)
div(STu) =u-divS+S- Vu (1.202)
tr (curl S) = 0 for every symmetric tensor S (1.203)

If S is symmetric then
curl curl S = —V2S + 2V (div S) — VV(trS) + 1[V2(tr S) — div div S]  (1.204)
If S is symmetric and S = G — 1(tr G) then
curl curl $ = —V2G + 2@(div G) — 1divdiv G (1.205)
If S is skew and w is its axial vector then
curl S =1(divw) — Vo (1.206)

Solution. To show (1.192) we recall that for any vector field ¢ = ¢(x) the curl
operator is defined by [see Eq. (1.68)]

(curl 9); = &ijk @x,j (1.207)
By letting ¢ = V¢ in (1.207), we obtain

(curl V@), = ¢ijk ¢.kj (1.208)
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Since ¢,; is a second order tensor that is symmetric with respect to the indexes k
and j, while &;j; is asymmetric with respect to k, j, then by Eq.(1.42), the RHS of
(1.208) vanishes, and this proves (1.192).
To show (1.193) we let ¢ = u in (1.207) and obtain
(Cul‘l u),- = &jjk Uk,j (1.209)
By taking the operator div on (1.209) we get
[(curl ll),'],,' = Sijk uk,,-j (1.210)
Since uy ;; is a third order tensor that is symmetric with respect to the indices i and
J» while &;j; is asymmetric with respect to those indices, by Eq. (1.43), the RHS of

(1.210) vanishes, and this proves (1.193).
To show (1.194) we write (1.194) in components

Eida €abc Uc,bd = Ua,ai — Ui aa (1.211)
Since, by the ¢ — § relation [see Eq. (1.7)]
€ida €abe = €ida Ebca = Oib 85c — Jic Obs (1212)

therefore
Eida Eabe Ue,bd = (8ib 8de — ic Opa)Ue,bd (1.213)

and using the filtrating property of the Kronecker’s delta

Sab ap = aq (1.214)
we obtain
Eida €abc Uc,bd = Uc,ci — Ui bb (1.215)
This proves (1.194).
To show (1.195) we note that
(Vll),‘j = Uj,j (1.216)

and by the definition of curl of a second-order tensor field T = T(x) [see Eq.(1.71)]
(curl T)ij = €ipg Tjq,p (1.217)
Substituting T = Vu into (1.217) we get

(curl VT),‘j = gipq Ujqgp (1218)
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Equation (1.218) together with Eq. (1.43) implies (1.195), and this completes a proof
of (1.195).
To show (1.196) we replace T by TT in (1.217) and obtain
(curl TV ij = €ipg T}, , = €ipg Tyjp (1.219)
Next, by letting T = Vu in Eq. (1.219) we obtain

(curl VuT)U = &ipq Uq,jp = [&ipg Uq,pl,j = (V curl u);; (1.220)

This proves that (1.196) holds true.
To show (1.197) we need to prove that

uijjtuji=0=ujr=0 (1.221)
To this end we note that equationu; ; + u;; = 0 implies
uijk+ujr =0 (1.222)
By replacing j by k and k by j in (1.222) we get
ui jk +ug,ji =0 (1.223)
Now, if Eqs. (1.222) and (1.223) are added side by side we obtain
2uijk + Wjk +upj)i =0 (1.224)
Since the second term on the LHS of (1.224) vanishes by the hypothesis, Eq. (1.224)

implies (1.221).
To show (1.198), we write (1.198) in components and obtain [see Eq.(1.217)].

§ipq Sig,pi = €ipa Sqj,jp (1.225)
Since
Sjg =Sy (1.226)

Equation (1.225) is an identity, and this proves (1.198).
The relation (1.199) in components takes the form

€jpq Sig,pj =0 (1.227)
Equation (1.227) represents an identity as € j,, is asymmetric with respect to indices

p and j, and S;, ,; is symmetric with respect to p and j, and Eq. (1.43) holds true.
This proves (1.199).
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To show (1.200) introduce the notations
culS=A, culST=B (1.228)
Then Eq. (1.200) is equivalent to
(curl A)T = curl B (1.229)

Eq.(1.229) in components takes the form

€jpg Aig.p = €ipq Bjq.p (1.230)

where
Aig = €iab Sgb.a (1.231)
Bjg =¢jab Spya = Ejab Shq.a (1.232)

Substituting (1.231) and (1.232) into (1.230) we obtain
€jpg €iab Sqb,ap = Eipq € jab Shg.ap (1.233)
By letting a = p, b = g in the RHS of (1.233) we arrive at an identity, and this

proves (1.200).
To show (1.201), note that Eq. (1.201) in components takes the form

Eipg(® 8jq).p = —€jpg (¢ Sig).p (1.234)
or equivalently
Eipj sp= —Ejpi Psp (1.235)
Since
— &jpi = FEjip = —Eijp = Eipj (1.236)

therefore Eq. (1.235) is an identity, and this proves (1.201).
To show (1.202) we note that Eq. (1.202) in components reads

(SS wj)i = ur Sj.j + Sij i, (1.237)

Since
(S5 uj)ei=(Sji uj)i=Sjijuj+Sjiuji (1.238)

therefore (1.237) is an identity, and this proves (1.202).
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To prove (1.203) we note that Eq. (1.203) in components takes the form
€ipg Sig.p =0 (1.239)
Equation (1.239) is an identity since S;; = Sy; and &;,4 = —&4pi, and this completes
proof of (1.203).

To show (1.204) note that the LHS of (1.204), written in components, takes the
form

Lij = €ipq €jab qu,ap = &igp €jba qu,pa (1.240)
Using the identity [see Eq.(1.9)]
3ij Oib bia
Eigp €jba = |8qj 8qb Sqa | = 8ij(8gb Spa — 8qa Spb) — 8in(8qj Spa — 8pj S4a)
8pj 8pb Spa
+ Sia(aqj 3pb - Spj qu) (1.241)

as well as the filtrating property of the Kronecker symbol
Sab ap = ag (1.242)
where a, is an arbitrary vector, we reduce Eq. (1.240) to the form
Lij = 6ij(Sqq.aa — Sab,ab) — 8iv(Sjb.aa — Sab,ja) + 8ia(Sjb.ab — Sbb, ja) (1.243)

or
Lij = _Sij‘aa + Sia,aj + Sjb‘bi - Sbb,ij + Sij (Sqq,aa - Sab,ab) (1.244)

Therefore
Lij = R;j (1.245)

where R;; is the RHS of (1.204) written in components, and this completes a proof
of Eq. (1.204). Note that the symmetry of S was used to obtain (1.244) from (1.243).
To show (1.205) we substitute
Sij = Gij — 8ij Gik (1.2406)
into the RHS of (1.244) and obtain

Rij = —(Gij = 6ij Gik)saa + Giaaj + Gjvpi —2Gik,ij +2Gaa,ij — 8ij (Gaa,bb + Gab,ab)
= —Gijaa +2Ga,aj) — 8ij Gab,ab (1.247)

and this proves that (1.205) holds true.
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Finally, to show (1.206) we recall the definition of an axial vector ® corresponding
to a tensor P [see Eq. (1.24)]

w; = _%Eijk Pk (1.248)
An equivalent form of (1.248) reads
Pij = —&ji wg (1.249)
By letting P;; = S;; in (1.249) we obtain
Sij = —¢ijk wk (1.250)

Taking the curl of (1.250) we get

€ipq qu,p = —€ipq €jga Wa,p (1.251)
Since
— €ipg €jqa = €ipq €jaq = 8ij Spa — Bia 8jp (1.252)
Eq. (1.251) implies
€ipg Sjg.p = 8ij Wp.p — Wi (1.253)

and this proves (1.206).
As a result the solution to Problem 1.12 is complete.

Problem 1.13. Let f be a scalar field, u a vector field, and T a tensor field on a
regionR C E 3. Let n be a unit outer normal vector to dR, where dR stands for the
boundary of R. Show that

/(Vf) dv:/fn da (1.254)

R JR
/(curlu) dv = / (n xu)da (1.255)

R oR
/(Vu) dv:/u® n da (1.256)

R JR
/[u®diVT+(Vu)TT]dv=/u x Tn da (1.257)

R dR



32 1 Mathematical Preliminaries

Solution. To show (1.254) we use the formula [see Eq.(1.76) in which T;; = ii;
for a fixed index ]

/ﬁk,k dv:/ﬁk ny da (1.258)

R oR

where iy = 1, (x) is an arbitrary vector field. By letting i1y = &; f into (1.258),
where i is a fixed number from the set { 1,2, 3}, we obtain (1.254); and this completes
proof of (1.254).

To show (1.255) we note that Eq. (1.255) in components reads

/Sijk ug,j dv = / gijk nj ur da (1.259)
R R

By letting ity = &jrq gy in (1.258), where i is a fixed number from the set {1, 2, 3},
we get

/E,’ka Ug dv = /E,’ka ni ug da (1.260)
R oR

Equation (1.260) is equivalent to Eq.(1.256), and this completes proof of (1.256).
To show (1.257), note that (1.257) written in components, takes the form

/ Uujj dv :/ ujn; da (1.261)
R dR

By letting i = § jk u; in (1.258), where i and j are fixed numbers from the set
{1,2,3} we get

/Sjk Ui dv= /Sjk u; ni da (1.262)
R SR
or
/ ujj dv =/ uinjda (1.263)
R OR

Equation (1.263) is equivalent to (1.257), and this completes proof of (1.257).
To show (1.258) we note that Eq. (1.258) in components takes the form

/(u,- Tjkk + tia T)dv = /u,» Tk nx da (1.264)
R oR

Since
uj Tk g +uiq TL,S =u; Tjgx +uik Tik = (i Tji).x (1.265)
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therefore, by letting ity = u; T in (1.258), where i and j are fixed indices from the
set {1, 2, 3}, we obtain (1.264); and this completes proof of (1.258).

Problem 1.14. Let u be a vector field on R C E? subject to one of the conditions

u=0 on JR (1.266)
or
nxcurlu=0 on 9dR (1.267)
Show that
/u - (curl curlu) dv = / (curl u)2 dv (1.268)
R R

Solution. Define a scalar field f, and a vector field g by
f=u-(curlg), g=curlu (1.269)

or in components
f = uk €kab &b,as &b = Ebed Ud,c (1.270)

Also, note that

f = (uk &kab &b)ra —Uk,a Ekab &b
= (U Ekab &b)sa TEbak Uk,a Ebcd Ud,c
= (uk Ekab &b)»a +(curl uw)? (1.271)

By letting ity = u; &cxp gp in Eq.(1.269) of Problem 1.13, we obtain

/ (e Sep gp)oi dv = / e ety g5 ni da (1272)
R oR

Therefore, if either (1.266) or (1.267) holds true, the RHS of (1.272) vanishes. Hence,
integrating Eq. (1.271) over R and using (1.272), we find that Eq. (1.194) holds true
provided either Eq.(1.192) or Eq.(1.193) is satisfied. This completes solution to
Problem 1.14.

Problem 1.15. Let u = u(x,t) and S = S(x, t) denote a time-dependent vector
field on E3 x [0, o0) and a time-dependent tensor field on E 3%10, 00), respectively.
Let p = p(x) be a positive scalar field on E3, and let the pair [u, S] satisfy the
differential equation

divS—pii=0 on E’ x [0, 0c0) (1.273)
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subject to the conditions
ux,0) =up(x), ux,0) =uap(x) for xe E3 (1.274)

where ug and g are prescribed vector fields on E3. Show that [u, S] satisfies
Egs. (1.273) and (1.274) if and only if

u=p lrx(divS) +ug+rig on E* x [0, 00) (1.275)

Here * stands for the convolution product on the time-axis.

Solution. To show that (1.273) and (1.274) imply (1.275) we integrate Eq. (1.273)
twice with respect to time over the interval [0, 7], and take into account the initial
conditions (1.274).

To shows that (1.275) implies (1.273) and (1.274), we take the two steps:

(A) Welett = 0in (1.194) to obtain (b);. Next, we differentiate Eq. (1.275) with
respect to time and take the result at # = 0 to obtain (b),.
(B) We differentiate Eq.(1.275) twice with respect to time, take into account the

formula s

i)
s f)=f (1.276)

valid for an arbitrary function f = f(x,t), and arrive at Eq.(1.273). This
completes solution to Problem 1.15.



Chapter 2
Fundamentals of Linear Elasticity

In this chapter a number of concepts are introduced to describe a linear elastic body.
In particular, the displacement vector, strain tensor, and stress tensor fields are intro-
duced to define a linear elastic body which satisfies the strain-displacement rela-
tions, the equations of motion, and the constitutive relations. Also, the compatibility
relations, the general solutions of elastostatics, and an alternative definition of the
displacement field of elastodynamics are discussed. The stored energy of an elastic
body, the positive definiteness and strong ellipticity of the elasticity fourth-order
tensor, and the stress-strain-temperature relations for a thermoelastic body are also
discussed.

2.1 Deformation of an Elastic Body

A material body B is defined as a set of elements X, called particles, for which there
is a one-to-one correspondence with the points of a region k (B) of a physical space;
while a deformation of B is amap « of B onto aregion k (B) in E 3 with det (Vi) > 0.
The point « (x) is the place occupied by the particle x in the deformation «, and

ux) =xk(x) — x 2.1)
is the displacement of X.

If the mapping « depends also on time ¢ € [0, 00), such a mapping defines a
motion of B, and the displacement of x at time ¢ is

ux,t) =k(x,1) — x 2.2)

M. Reza Eslami et al., Theory of Elasticity and Thermal Stresses, Solid Mechanics 35
and Its Applications 197, DOI: 10.1007/978-94-007-6356-2_2,
© Springer Science+Business Media Dordrecht 2013
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By the deformation gradient and the displacement gradient we mean the tensor fields
F = Vi and Vu, respectively. A finite strain tensor D is defined by

1
D= E(FTF -1 (2.3)
or, equivalently, by
1
D=E+ E(Vu)(VuT) (2.4)
where |
E=_(Vu+ vu') = Vu (2.5)

The tensor field E is called an infinitesimal strain tensor.
An infinitesimal rigid displacement of B is defined by

u(x) = up + W(x — xo) (2.6)

where ug, Xg are constant vectors and W is a skew constant tensor.
An infinitesimal volume change of B is defined by

sv(B) = /div udv 2.7
B

while
divu=trE (2.8)

represents a dilatation field.
If a deformation is not accompanied by a change of volume, that is, if §v(P) = 0
for every P C B, the displacement u is called isochoric.

Kirchhoff Theorem. If two displacement fields u; and uy correspond to the same
strain field E then
Uy —m=w (2.9)

where w is a rigid displacement field.
A homogeneous displacement field is defined by

ux) =ug + AKX —Xxp) (2.10)

where A is an arbitrary constant tensor and ug, Xo are constant vectors. Clearly, if
A is skew, (2.10) represents a rigid displacement, while for an arbitrary A

u(x) = up(x) + ux(x) (2.11)
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where uj(x) is a rigid displacement field and uy(x) is a displacement field corre-
sponding to the strain E = sym A. The displacement uy (x) of the form

wm(x) = E (x — xq) (2.12)

corresponds to a pure strain from X.

Let e > 0 and let n be a unit vector. Then by substituting E = en ® n into (2.12)
we obtain a simple extension of amount e in the direction n; and by substituting
E = e 1into (2.12) we obtain uniform dilatation of amount e. Finally, let g > 0 and
let m be a unit vector perpendicular to n. Then substituting E = gm@n+n®@m]
into (2.12) we obtain a simple shear of amount g with respect to the pair (m,n).

Decomposition of a strain tensor E into spherical and deviatoric tensors
E=E® +E@ (2.13)

where |
E® = 5(tr E)1 (2.14)

is called a spherical part of E, and E® = E — E® is called a deviatoric part of E.
Clearly,
r (EY) =0 (2.15)

2.2 Compatibility

Theorem Let B C E> be simply connected. If u is a displacement field corre-
sponding to a strain field E on B, that is, if

1
E = 5(Vu +vu') on B (2.16)

then E satisfies the equations of compatibility
curl curl E=0 on B 2.17)
Conversely, let E be a symmetric tensor field that satisfies the equations of compat-
ibility (2.17), then there exists a displacement field u on B such that u and E satisfy
(2.16).
In components the equations of compatibility (2.17) take the form

Eijr~+ Ewij—Eixji—Ejik =0 (2.18)

An alternative form of (2.17) reads
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V2E + VV(tr E) — 2V(div E) = 0 (2.19)

2.3 Motion and Equilibrium

Let S be a surface in B with unit normal n. Let B be subject to a deformation, and
let s, = sp(x, t) denote a force per unit area at x and for ¢ > 0 exerted by a portion
of B on the side S toward which n points on a portion of B on the other side of S.
The force s, is called the stress vector at (X, t), while a second-order tensor field
S = S(x, t) such that

Sn=s, on S x[0,00) (2.20)

is called a time-dependent stress tensor field on S x [0, 00).

The equilibrium equations of elastostatics

divS+b=0 (2.21)

S=sT (2.22)

Equation (2.21) expresses the balance of forces, and Eq. (2.22) expresses the balance
of moments; and b in (2.21) is the body force vector.

The Beltrami representation of S
S = curl curl A (2.23)
where A is a symmetric tensor field, or
S =—V2G +2V(div G) — (div div G) 1 (2.24)

where G is a symmetric tensor field.

Self-equilibrated stress field

If S = ST on B, and
/Sn da=0 (2.25)
S

/X X (Sn) da =0 (2.26)
S

for every closed surface S in B, then S is called a self-equilibrated stress field.

One can show that S given by (2.23) is a self-equilibrated stress field, and S given
by (2.23) is complete in the sense that for any self-equilibrated S there is a symmetric
tensor A such that (2.23) is satisfied.
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The Beltrami-Schaefer representation of S
S = curl curl A +2Vh — (divh)1 (2.27)

where A is a symmetric tensor field and h is a harmonic vector field on B.

2.4 Equations of Motion

divS+b=pii on B x [0, 0) (2.28)

where p is density and b is the body force vector field.

Kinetic energy of B fort > 0

1
KO =3 / pu’dv (2.29)
B
Stress power of B fort > 0
P(t) = / S - Edv (2.30)
B

A dynamic process is identified with a triplet [u, S, b] that satisfies the equations of
motion (2.28).

Theorem An array of functions [u, S, b] is a dynamic process consistent with the
initial conditions

ux, 0) = up(x), u(x,0) =uy(x) for xeB (2.31)
if and only if
ixdivS+f=pu on B x [0, 0c0) (2.32)
where
f(x, 1) =ixb(x,t) + p(x) [ug(xX) + t0p(x)] (2.33)
and
i=i(t) =t (2.34)

The function f = f(x, t) given by (2.33) is called pseudo-body force field.
Clearly, since p > 0, Eq.(2.32) provides an alternative definition of the displace-
ment vector u = u(x,?) related to the stress tensor S = S(x,?).



40 2 Fundamentals of Linear Elasticity

2.5 Constitutive Relations

A body B is said to be linearly elastic if for every point x € B there is a linear
transformation C from the space of all symmetric tensors E into the space of all
symmetric tensors S, or

S =C|[E] (2.35)

In components
Sij = Cijki Enl (2.36)

The tensor C = C(x) is called the elasticity tensor field on B. It follows from

Eq. (1.54) that
Cijut = (¢ ®ej) - Cl(er @e)] (2.37)

and, since S and E are symmetric, we postulate that
Cijki = Cjit1 = Cijix (2.38)
The elasticity tensor C is also assumed to be invertible, that means that a restriction
of C to the space of all symmetric tensors is invertible. The elasticity tensor on the
space of all tensors cannot be invertible since its value on every skew tensor is zero.
The invertibility of C means that there is a fourth-order tensor K = K(x) such
that
K=c! (2.39)
Then equivalent form of (2.35) is
E = K[S] (2.40)

The tensor K = K(x) is called the compliance tensor.
The fourth-order tensor C is symmetric if and only if

A-C[B]=B-C[A] (2.41)

for any symmetric tensors A and B.
In components the symmetry of C means that

Cijrt = Chiij (2.42)
The tensor C is positive semi-definite if
A-C[A]>0 (2.43)

for every symmetric tensor A.
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The tensor C is positive definite if
A-C[A]>0 (2.44)
for every symmetric nonzero tensor A.
The compliance tensor K enjoys the properties similar to those of the elasticity
tensor C [see, Egs. (2.38) and (2.42)—(2.44)].

By an anisotropic elastic body we mean the body for which the tensor C possesses
in general 21 different components.

2.6 Isotropic Elastic Body

For an isotropic elastic body the Eqs. (2.35) and (2.40), respectively, take the form
S=2uE+A({rE) (2.45)

and
1

E=—|S——
2L 3L+2u

(trS) 1:| (2.46)

where A and p are Lamé moduli subject to the constitutive restrictions
w>0, 32+2u>0 (2.47)

An alternative form of Egs. (2.45) and (2.46), written in terms of Young’s modulus
E and Poisson’s ratio v, reads

s——L g+ w1 (2.48)
T 14 1—2v t ’
1
E = z [(IT+v)S—v(trS) 1] (2.49)
where
E>0 and —1<v<1/2 (2.50)
Strain energy density of B
1
W(E) = EE -C[E] (2.51)

Stress energy density of B
~ 1
W) = ES - K[S] (2.52)
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The tensor C is said to be strongly elliptic if
A-C[A]>0 (2.53)

for every A of the form
A=a®b (2.54)

where a and b are arbitrary nonzero vectors.

2.7 The Cauchy Relations

An anisotropic elastic body obeying, in addition to the symmetry relations (2.38)
and (2.42), the restrictions
Cijri = Cikji (2.55)

is said to be of the Cauchy type.

2.8 Constitutive Relations for a Thermoelastic Body

For an anisotropic body subject to an uneven heating the constitutive relations take
the form

S=CI[E]+TM (2.56)
and
E=KJ[S]+TA (2.57)
where
T=60-0y 6y)>0 (2.58)

is a temperature change, M = M is called the stress-temperature tensor, A = AT
is called the thermal expansion tensor, 0 is the absolute temperature, and 6 is a
reference temperature.
Since relations (2.56) and (2.57) are equivalent
K=C! and A=—K[M] (2.59)
for an isotropic body

S=2uE+)(rE) — GA+2)aT1 (2.60)

and
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1

E=—|S— ——
2 3In+2u

trS) 1} +aT1 2.61)

where « is the coefficient of thermal expansion,

or
E v E
- E wE) 1| - T1 2.62
S 1+v|: T, R } - (2:62)

and {
E:E[(l—i—u)S—v(trS)l]—i—aTl (2.63)

2.9 Problems and Solutions Related to the Fundamentals
of Linear Elasticity

Problem 2.1. Show thatif uis a pure strain from X, then u admits the decomposition
u=u; +u +u3 (2.64)

where u;, up, and us are simple extensions in mutually perpendicular directions
from xg.

Solution. Since u represents a pure strain from xg, u takes the form [see definition
of up in (2.12)]
u=EX-—Xxq) (2.65)

where E is the strain tensor corresponding to u. Now, by the decomposition spectral
theorem [see Eq.(1.45) in which T = E and A; = ¢;]

3
E = Zei n; @ n; (2.66)
i=1

where n; is a principal direction corresponding to a principal value ¢; of E.
Substituting (2.66) into (2.65) we obtain

3
u= > e ®n;)(x—xo) (2.67)
i=1
Since for two arbitrary vectors a and b

(a®a)b=(a-b)a (2.68)
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therefore, Eq. (2.67) is equivalent to
u=u; +u +u3 (2.69)

where
u; = ¢;[n; - (X — Xp)n; (no sum) (2.70)

Since u; represents a simple extension of magnitude e; in the direction of n; [see

Eq.(2.12)], and n, ny, and n3 are orthogonal, Eq. (2.69) is equivalent to (2.64). This
completes proof of (2.64).

Problem 2.2. Show that u in Problem 2.1 admits an alternative representation
u=uyg+u 2.71)

where uq is a uniform dilatation from x¢, while u. is an isochoric pure strain from xg.

Solution. We rewrite E of Problem 2.1 as
E=E® + E@ (2.72)

where 1 1
EW® = 1 E), E9 =E — F1E) (2.73)

Then Eq. (2.65) of Problem 2.1 takes the form

u=uy+u, (2.74)

where
u; = E¥(x — xq) (2.75)
u. = E9x —xq) (2.76)

It follows from Eqgs.(2.73) and (2.75) that uy represents a uniform dilatation of
magnitude e = %(tr E), while the condition tr EY = 0 implies that u,. represents
an isochoric pure strain. This completes solution to Problem 2.2.

Problem 2.3. Show thatif uis asimple shear of amount y with respect to the pair (m,
n), where m and n are perpendicular unit vectors, then u admits the decomposition

u=u; +uw 2.77)

where u; is a simple extension of amount y in the direction %(m +mn),and up is a

simple extension of amount —y in the direction \L@ (m —n).
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Solution. Since u represents a simple shear of amount y with respect to (m, n),
then the strain tensor corresponding to u takes the form [see the definition of a simple
shear below Eq. (2.12)]

E=y (m®n+n®m) (2.78)
Let A and a denote a principal value and a principal vector of E, respectively. Then

y(m-am—+y(m-an—ia=0 (2.79)

It is easy to check that Eq.(2.79) has the three eigensolutions

a=m x n, M =0 (2.80)
1

a = ﬁ(m +n), A=y (2.81)
1

a3 = ﬁ(m —n), Az=-y (2.82)

Therefore, using the solution (2.67) of Problem 2.1 we find that Eq. (2.77) holds true.
This completes solution of Problem 2.3.

Problem 2.4. Let uand E denote a displacement vector field and the corresponding
strain tensor field defined on B. Show that the mean strain E(B) is represented by
the surface integral

EB) = %B) / sym (u ® n) da (2.83)
oB

where v(B) is the volume of B.

Solution. The mean strain E(B) is defined by

=~ 1
E(B)=—— [ Ed 2.84
) = / v .89
B
In components we obtain
~ 1
E;j(B) = "B Ejj dv (2.85)
B
Since |
Eij = 5 (uij +uji) (2.86)

therefore, by the divergence theorem,
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1 1
E,‘j dv = 5 (ui,j —i-uj,l-)dv = 5 (u; nj+u;j ni)da (2.87)
B B dB

Equations (2.87) and (2.85) imply that Eq. (2.83) holds true, and this completes solu-
tion to Problem2.4.

Problem 2.5. Show that if u = 0 on 0B then

/(Vu)zdv < 2/ |E|? dv (2.88)
B B

where E is the strain tensor field corresponding to a displacement field u on B.

Solution. We recall the relation

Vu=E+W (2.89)
where 1

E=_(Vu+ vu') (2.90)
and .

W= E(Vu —vuh) (2.91)

Since E - W = 0, Eq. (2.89) implies that
[Vu|?> = |[E> + |W]? (2.92)

and it follows from Egs. (2.90) and (2.91), respectively, that

E|? = %[(Vu)z + (Vu) - (Vu")] (2.93)
and |
WP = S[(Vw)? — (Vu) - (Vu')] (2.94)
Hence,
IE|? — [W]> = (Vu) - (Vu") (2.95)
Now

T T
V) - (Vu') =ujju; j =uijuji
= (Wijj uj)si —uijiuj

2
= (ujjuj)— (uiiuj),j+ ;)
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2
= (uj; ui —ujjuj),;+ W)

= div[(Vu)u — (div w)u] + (div u)2 (2.96)

Therefore, integrating Eq. (2.96) over B, using the divergence theorem, and the homo-
geneous boundary condition: u = 0 on 9 B, we obtain

/ (Vu) - (Vu)dv = / (div u)2dv (2.97)
B B

Equations (2.95) and (2.97) imply that

/(|E|2 — |WP)dv = /(div u)’dv (2.98)
B B

and it follows from Eq. (2.92) that

/(|E|2 +|W|A)dv = / |Vu|>dv (2.99)
B B

Therefore, by adding Eqs. (2.98) and (2.99), we obtain

2/|E|2dv =/|Vu|2dv+/(div w)’dv (2.100)
B B B

and Eq. (2.100) leads to the inequality

2/|E|2dv 2/|Vu|2dv (2.101)
B B

This completes solution of Problem 2.5.

Problem 2.6. (i) Let E be a strain tensor field on E3 defined by the matrix

10 0
E=—|0-v 0 (2.102)
0

E
-V

where E, N, and v are positive constants. Show that a solution u to the equation
E = Vuon E? subject to the condition u(0) = 0 takes the form

N N N 1" 2.103)
=|—= —V— —V— .
u EX], E.Xz, E.X3
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(ii) Let E be a strain tensor field on E> defined by the matrix

M v0 O
E=—x |0v 0 (2.104)
EL 100 —1

where M, E, I, and v are positive constants. Show that a solution u to the
equation E = Vu on E3 subject to the condition u(0) = 0 takes the form

T
u=2 l(x2+vx2—vx2) VX[X2, —X|X3 (2.105)
EI 2 3 1 27 ’
Solution. (i) Using (2.103) we find that u(0) = 0 and

0 0
Vu = —v 0

| =
oo~

(2.106)

—v
Since Vu = Vu', the equation

Vu=E (2.107)

in which E is given by (2.102) is identically satisfied. This completes a proof
of (i).

(i) Using (2.105) we obtain u(0) = 0 and

M| v v ox3
Vu = I vxo vx;y O (2.108)
—X3 0 —X1

Hence
M VX{ VX) —X3
VuT:E —vxo vx; 0 (2.109)
X3 0 —X1
and
R M| v 0 O
Vu:a 0 vx; O (2.110)
0 0 —X1

Equation (2.110) implies that u given by (2.105) satisfies the equation
Vu=E (2.111)

where E is given by (2.104). This completes proof of (ii).
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Problem 2.7. Given a stress tensor S at a point A, find: (i) the stress vector s on a
plane through A parallel to the planen-x—vt =0 (In| =1, v > 0, t > 0), (ii)
the magnitude of s, (iii) the angle between s and the normal to the plane, and (iv) the
normal and tangential components of the stress vector s.

Answers. (i) s = Sn; (ii) |s| = |Sn|; (iii) cos @ =s-n/ |s|; (iv) s = sy + S;, Where
sp=(m-s)nands; =n x (s X n).

Solution. Solution to Problem?2.7 is presented by the answers (1)—(iv).

Problem 2.8. Let {e;} be an orthonormal basis for a stress tensor S, and let {e]'} be
an orthonormal basis formed by the eigenvectors of S. Then a tensor S* obtained
from S by the transformation formula from {e;} to {e}} takes the form

S*=1efQel +12e;Q¢€5+13€e; ®e} (2.112)
where A; is an eigenvalue of S corresponding to the eigenvector €. Show that the
function

g(n®) = |s¥| = [n* x (S*n* x n*)| (2.113)

representing the tangent stress vector magnitude with regard to a plane with a normal
n* in the {e]'} basis, assumes the extreme values

o
551, = 5 122 = al (2.114)
o1
s3], = 5 A3 = Al (2.115)
and |
[stl5 =5 141 = 22 (2.116)
at
ot =1[0, +£1/v2, +1/v2]" (2.117)
ny =[=£1/v2, 0, £1/v2]" 2.118)
and
n}=[+1/v2, +1/v2, 0 (2.119)

respectively. Hence, if A1 > A, > A3 then the largest tangential stress vector mag-
nitude is

1
|s¥], = 3 A3 — Aql (2.120)

and this extreme vector acts on the plane that bisects the angle between e and e3.
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Solution. It follows from (iv) of Problem 2.7 that

s*=s +5sk (2.121)
where
s* = S*n* (2.122)
and
sf=(s*-n")n, s*=n"x(s* xn) (2.123)

Using (2.112), (2.122) and (2.123), we obtain
s* = Ainje] + ronse; + rznje; (2.124)

and
s* ot =A% + A2 m3)? + A3(n)? (2.125)

Since s’ - s¥ = 0, by squaring (2.121), we get
Is° 2 = [st]” + [s* (2.126)
Now, introduce the function
Fa) =[s;" = 1" = [si]* = A0 + 23003 +33(n)°

2
— [M@D? + 2@ + 3@p?] @.127)

If there is an extremum of f = f(n*), treated as a function of n}, n}, and nz, it is

also an extremum of g = g(n™) = /f(n*).
To find the extreme values of f = f(n*) subject to the condition |n*| = 1 we

solve the algebraic equation for n*

d
on}

[f(m*) —¢t(n*]> = )] =0 (2.128)

where ¢ is a Lagrangian multiplier. In expanded form Eq. (2.128) takes the form
[x% —2h (" - n¥) — t] i =0 (2.129)
[A% — 2ha(s* ") — z] ni=0 (2.130)

[xg — 2h3(s* - n) —t] nt=0 (2.131)
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Fig. 2.1 The wedge region xh

0 X,

0< 0< T2

X

where (s* - n*) is given by (2.125). It can be verified that the unit vectors n}, n%, and
nz, given by Eqgs. (2.117), (2.118), and (2.119), respectively, satisfy Egs.(2.129)-
(2.131) with t = A2A3. In addition, by substituting n}, n}, and n§ into (2.127), we
obtain Egs.(2.114), (2.115), and (2.116), respectively. Also, the vector n3 that is
normal to the surface element on which the largest tangential stress vector (s’ﬁ)2 acts
bisects the angle between e} and e3. This completes solution of Problem2.8.

Problem 2.9. Let D = {x: x; >0, xjtan 6§ > xp > 0} be a two-dimensional
wedge region shown in the Fig.2.1, and let Sp5 = Sep(x), [X = (x1,x2); @, B =
1, 2] be a symmetric tensor field on D defined by
Siu=dxy+exi—pgxi, Sn=-yxi, Snp=95 =—-ex; (2.132)
where d, e, g, p, and y are constants [g > 0, p > 0, y > 0]. (i) Show that
divS+b=0 on D (2.133)

where
b=[pg O] on D (2.134)

(ii) Using the transformation formula from the system x, to the system x,
[see Eq.(1.157) in Problem 1.8] find the components S(;ﬁ in terms of Syg, and

show that
S}, =0 and S5 =0 for x; = xjtan 6 (2.135)
provided
2
e=—"_ and a=PL8 ¥ (2.136)
tan2 0 tan & tan3 0

0

(iii) Give diagrams of Sy and Sy, over a horizontal section x; = x| = constant.

(iv) Give a diagram of S7; over the vertical section xo = 0.
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Solution. To show (i) we note that S5 = Sep(x1, x2) given by Eq. (2.132) satisfies
the equilibrium equation
Sap,p+by =0 onD (2.137)

since
Sipp=-prg Spp=0 onD (2.138)

for arbitrary constants d, e, g, p, and y. To show (ii) we use the transformation
formulas [see Eq.(1.157) in Problem 1.8]

S}, = Si1cos? 0 + Si2sin 26 4 Sy sin’ 6 (2.139)
1

512 = E(S22 — S11)sin 260 + S12 cos26 (2.140)

Sh, = Si1 sin® @ — Sy sin20 4 Sy cos® O (2.141)

[see Fig.2.1].
The components S11, Si2, and S7; taken on the line xp = xj tanf assume the
forms

S11(x1, x1tanf) = (dtanb + e — pg)x; (2.142)
S12(x1,x1tanf) = —(etanf)x; (2.143)
S20(x1,x1tanf) = —Y X1 (2.144)

Therefore, substituting (2.142)—(2.144) into the RHS' of (2.140) and (2.141), and
equating the results to zero, we obtain the algebraic equations for the unknown
constants e and d, provided y and pg are prescribed

e(sin® 6 + tan 6 sin26) +d tanO sin>6

=y cos’ 6 + 08 sin® 6 (2.145)
e(sin26 + 2tan O cos26) +d tand sin 260
= —y sin26 + pg sin26 (2.146)

Dividing Eq. (2.145) by sin” 6 and Eq. (2.146) by sin 26 and introducing the notation
tan6 = u (2.147)
we obtain

14
3e+du=u—2+,og

Q2—u?e+du=—y+ pg (2.148)
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It is easy to check that a unique solution (e, d) of Eqs. (2.148) takes the form (2.136)
that is
e=y/u’, d=pg/u—"2y/u’ (2.149)

This completes proof of (ii).

Finally, when x| = x? = const, S1; and S are represented by straight lines
on the planes (x2, S11) and (x2, S12), respectively, and S»> at xo = 0 is represented
by a straight line passing through the origin O as shown in Fig.2.1. This completes
solution to Problem2.9.

Problem 2.10. Let B denote a cylinder of length / and of arbitrary cross section,
suspended from the upper end and subject to its own weight pg. Then the stress
tensor S = S(x) on B takes the form

00 O
s=|00 o (2.150)
0 0 pgx3

since, in this case, the body force vector field is given by b = [0, 0, —p g]T, and
div S + b = 0 on B. The stress vector s associated with S on 9B has the following
properties: s = [0, 0, p g/ ]T on the end plane x3 = /; and s = 0 on the plane x3 = 0
and on the lateral surface of the cylinder since n = [ny, na, 01T on the surface.
Assuming that the cylinder is made of a homogeneous isotropic elastic material, the
associated strain tensor field E takes the form [see Eqs. (2.49)]

0 g %3 —v 00
E— 0 —v0 (2.151)
E 0 01

where E and v are Young’s modulus and Poisson’s ratio, respectively.

(i) Show that a solution u of the equation
E=Vu on B (2.152)

subject to the condition
u(0,0,/)=0 (2.153)

takes the form

| T
u= 4 —VX1X3, —VX2X3, E()cl2 + x%) + —(xg2 — lz) (2.154)
E 2 27
(ii) Plot uz = u3(0, 0, x3) over the range 0 < x3 < [.

Solution. To solve the problem we use (2.154) and obtain
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Fig. 2.2 The cylinder of X3
arbitrary cross section

—VX3 0 —VX1_
Vu= 24 0 —vx3 —vxy (2.155)
E VX| vx2 X3 |
and _ _
—VX3 0 VX1
vu' = 21 0 —vx3vxo (2.156)
E | —vx1 —vx2 x3 |
Hence _
—VX3 0 0
Vu=51 0 —ux; 0 (2.157)
El 0 0 x

Therefore, u given by (2.154) satisfies (2.152). Also, it is easy to prove that u satisfies
(2.153). Finally, u3 = u3(0, 0, x3) is represented by a parabolic curve restricted to
the interval 0 < x3 < €. This completes solution to Problem2.10.

Problem 2.11. For a transversely isotropic elastic body each material point posses
an axis of rotational symmetry, which means that the elastic properties are the same
in any direction on any plane perpendicular to the axis, but they are different than
those in the direction of the axis. If the x3 axis coincides with the axis of symmetry,
then the stress-strain relation for such a body takes the form
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S11 cricizes 00 0 Eq
S22 czeineiz 00 0 Exn
S33 | _|cizcizes 00 0 E3;3
Sp | =10 0 0 cu o 0 2E3 (2.158)
S31 0 0 0 O caa 0 2E3;
S12 00 0 0 0 (c11—c12)/2 2Ep

where S and E are the stress and strain tensors, respectively, and five numerically
independent moduli c11, ¢33, €12, €13, and c44 are related to the components C;jy
of the fourth-order elasticity tensor C by [see Eq.(2.35)]

c11 =Crt, c12="Cr2, c13=C33, ¢33 =C3333, c44 = C1313 (2.159)

Show that if the axis of symmetry of a transversely isotropic body coincides with the
direction of an arbitrary unit vector e, then the stress-strain relation takes the form

S=CI[E] = (ci1 — c12)E+ {c12(tr E) — (c12 — c13)e - (Ee)} 1
— (c11 — 12 — 2ca4){e ® (Ee) + (Ee) ® e} (2.160)
—{(c12 = c13)(rE) — (c11 + ¢33 — 2c13 —4cag)e - (Ee)je® e

Solution. For a transversely isotropic body in which the axis of symmetry coincides
with an arbitrary unit vector e, the stress—strain relation takes the form'

S = C[E] (2.161)

where S and E are the stress and strain tensors, respectively, and the elasticity tensor
C is given by

C= C33C(1) + (c11 + 612)0(2) + V2 013(C(3) + C(4))
+ (c11 = ¢12)C® +2 ¢44C© (2.162)

In Eq. (2.162) the tensors C“), a = 1,2, 3,4, 5, 6, are defined by
D A Ay, €2 =Lp.p
ijkl = “ij Skls ijkl = 5 ij Dkl
1 1
Cil = —= Aij Bu,  Cjjly = —= Bij Au

V2 V2

1 (2.163)
5
C,%;z; = E(Bik Bj; + Bi; Bji — Bjj By)

1
6
C,-(j,zl = E(Aik Bji + Ayl Bjr + Aji Bii + Aji Bir)

I See P. Chadwick, Proc. R. Soc. London, A 422, p- 26 (1989).
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where
Ajj=eiej, Bij=3dij—eie; (2.164)

and e; are the components of e in the coordinates {x;}.
Using (2.163) and (2.164), we obtain

Ci(;IZl Ewn =eiejere Ey (2.165)

or in direct notation
COE]=[e- (Ee)le®e (2.166)

Similarly, by (2.163) and (2.164), we get

1
Cliu B = 5 @ij 