
Chapter 3
Rheology and Nonlinear Elasticity

Abstract This first specialized chapter deals with the awaited generalization to
mechanical behaviours that deviate from linear elasticity and standard Newtonian
viscous fluids, that is, elasticity in large deformations and the rheology of complex
fluids. These extensions were kindled by the mechanics of rubber elasticity and
artificial fabrics and of fluids with high viscosity and visco-plastic response. It
happens that the same scientists were involved in these two lines as a result of a
required focus on the bases of continuum mechanics, in particular the theory of
finite deformations in a rational geometric background, and the need to account for
complex flow features in some fluids. Ronald Rivlin, with his incommensurable
contributions, is the great hero in this adventure. Other scientists whose work was
seminal are initially E. Bingham, M. Reiner, L.G.R. Treloar, P. J. Flory, M.A.
Mooney, and F.D. Murnaghan, and more recently J.G. Oldroyd, A.E. Green, J.L.
Ericksen, C.A. Truesdell, B.D. Coleman, and W. Noll. The survey includes the
models of neo-Hookean materials, Mooney-Rivlin materials, Rivlin-Ericksen
fluids, and unsuccessful attempts such as those of Reiner-Rivlin fluids and
hypoelasticity. Appropriately introduced tools have been those of Rivlin-Ericksen
tensors, Oldroyd and Jaumann time derivatives, and invariant representations of
scalar and tensorvalued functions. Through Rivlin and his co-workers the whole
carries a strong print of British applied mathematics although Italian and Russian
contributions to nonlinear elasticity cannot be overlooked. The mechanics of soft
living tissues has now become the best field of application of these developments.

3.1 Beyond Standard Linear Elasticity and Viscous Fluids

3.1.1 General Remarks

As mentioned in Chap. 2, at the dawn of the twentieth century, we perceive shy
attempts to venture in the domain of the continuum mechanics of more complex
mechanical behaviours with the introduction of dissipative behaviours and some
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nonlinearity (such as in plasticity but not to the point of being able to solve difficult
problems of evolution). But the object of continuum mechanics remains the same
as before: to evaluate the deformation or flow that results from the application of a
system of forces to a body, whether solid or fluid. In the early twentieth century,
this is achieved only for elastic materials which undergo infinitesimal deforma-
tions (i.e., within linear elasticity) or for Newtonian viscous fluids, two cases fully
developed in the nineteenth century. The set of equations to be considered consists,
in the body, of the field equations, here written as the Euler-Cauchy equations of
motion [in direct and indicial (Cartesian tensor) notations],

q
dv

dt
¼ divrþ qf or q

d

dt
vi ¼

o

oxj
rji þ qfi; ð3:1Þ

where r ¼ rji

� �
stands for the symmetric Cauchy stress, v ¼ vif g denotes the

velocity field, and f ¼ fif g represents an external bulk force per unit mass.
Equation (3.1) is complemented by appropriate boundary conditions, and initial
conditions in the case of dynamics.

In linear (isotropic, homogeneous) elasticity, we have the Hookean constitutive
equation:

r ¼ k treð Þ1þ 2le or rji ¼ kekkdji þ 2leji; ð3:2Þ

where the infinitesimal strain e is defined as:

e ¼ ruð ÞS or eji ¼
1
2

uj;i þ ui;j

� �
: ð3:3Þ

Here u ¼ uif g is the displacement vector, while k and l are the Lamé
coefficients.

For Newtonian fluids, we have the Navier-Stokes constitutive equation:

r ¼ kv trDð Þ1þ 2lvD or rji ¼ kvDkkdji þ 2lvDji; ð3:4Þ

where the rate of strain D—or symmetric velocity gradient—is defined as:

D ¼ rvð ÞS or Dji ¼
1
2

vj;i þ vi;j

� �
: ð3:5Þ

Here v ¼ vif g is the velocity vector, while kv and lv are the two viscosity
coefficients. If the condition 3kv þ 2lv ¼ 0 is fulfilled, then (3.4) reduces to the
constitutive equation of a Stokesian fluid:

r ¼ 2lvDd ; Dd :¼ D� 1
3

trDð Þ1; ð3:6Þ

where now both r and Dd are trace-less (i.e., deviatoric) tensors.
The two Eqs. (3.2) and (3.4) can be seen as deriving from some potential

(energy in the first case, dissipation in the second one) as:
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r ¼ oW

oe
; W ¼ �W eð Þ ¼ 1

2
kI2

1 þ 2lI2
� �

; I1 ¼ tre; I2 ¼ tre2 ð3:7Þ

and

r ¼ oU
oD

; U ¼ �U Dð Þ ¼ 1
2

kvI2
1 þ 2lvI2

� �
; I1 ¼ trD; I2 ¼ trD2; ð3:8Þ

following the views of Green and Rayleigh, respectively. The semi-positive def-
initeness of W requires that

kþ 2l� 0; l� 0: ð3:9Þ

A similar set of inequalities holds for the viscosity coefficients.

3.1.2 Non-Newtonian Fluids

Let us first consider the case of fluids. The Navier-Stokes equations apply to fluids
of which we can say that they flow rather easily. First, they flow as soon as a small
force is applied (no threshold) and they correspond to a simple model of pro-
portionality in 1D, that of Newton given by equation (f) in Chap. 1, that we can
rewrite as:

s ¼ g _c; g ¼ const: Newtonð Þ; ð3:10Þ

for a shear rate _c. Here s denotes the tangential stress and g depends at most on
temperature. This was beautifully confirmed by Poiseuille’s experiment concern-
ing blood flow (1844, laminar flow in a cylindrical tube). The unit of viscosity, the
‘‘Poiseuille’’, was given to honour this scientist, but it is not an SI unit.

But early in the twentieth century the question was raised of the possible
mathematical description of liquids that are manifestly viscous but they can flow
only slowly and sometimes presenting a threshold in force for the activation of a
real flow. In the latter case it seems that the behaviour is somewhat mixed between
viscosity and plasticity. These fluids may be food stuff, fuels and biofluids, and in
more recent times personal-care products (various gels and pastes), electronic and
optical materials, and various polymers. This general problem was first identified
by chemical engineers and chemists. Among them, Eugene Bingham (1878–1945),
a professor and head of the Department of Chemistry at Lafayette College (not a
research institution) in Pennsylvania, coined the appropriate term ‘‘rheology’’—
together with his friend Markus Reiner (1886–1976) from Palestine (the state of
Israel did not exist yet) at the Technion—to denote the general study of such flows.
They also founded a corresponding scientific society under the name Society of
Rheology in 1929. The spot on motto of the Society is Pa9msa qei‹ or ‘‘panta rhei’’
[Greek for ‘‘everything flows’’, attributed to Heraclitus of Ephesus (c. 535–c. 475
BCE)]. Bingham revisited some ideas of Maxwell on what he calls ‘‘semi-fluids’’
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and paid special attention to the case of so-called visco-plastic fluids (or Bingham
fluids in modern terminology). This may be vividly illustrated by the tooth paste
that comes out of the tube as a flow of product with a rigid core when one presses
on the tube. Such a phenomenon may be observed in the extrusion production of
some metallic bars at high temperature. Other strange phenomena were observed
such as the so-called Poynting effect discovered in 1909—this is the same Poynting
as in the Poynting theorem in electromagnetism (See Chap. 12)—and related to the
existence of a difference in normal stresses or strains due to an impressed shear
stress. To tell the truth, according to Rivlin (1984), Poynting discovered the effect
not in a standard medium but in relation to light propagation in a kind of elastic
medium (the ill-fated aether). More recently, K. Weissenberg (1949) discovered
the ‘‘rod-climbing effect’’ according to which some ‘‘non-Newtonian’’ fluids have
a tendency to climb along the rod that is vertically rotated (torsional flow) in a
cylindrical container filled with such a fluid. Other non-linear effects proper to
non-Newtonian fluids are swelling upon emergence from a tube and the bulging if
allowed to flow downward in a through.

For further reference we can note the following nonlinear generalization of
(3.10):

s ¼ g _cð Þ _c; g _cð Þ ¼ m _cn�1; ð3:11Þ

where m ¼ lv; n ¼ 1 corresponds to a Newtonian fluid, while shear thickening
fluids are such that viscosity increases with the shear rate, i.e., m 6¼ 0; n [ 1, and
shear thinning fluids have a viscosity that decreases when driven to flow at a high
shear rate. A Bingham visco-plastic fluid is such that

g _cð Þ ¼ 1 if s� sg and g _cð Þ ¼ lv þ _c�1s if s� sg; ð3:12Þ

where sg is a threshold in shear stress.
But a fluid body is not generally a one-dimensional object so that we need the

proper formalism (in particular tensorial kinematic objects) for a true three-
dimensional formulation of non-Newtonian fluids (see Sect. 3.2 below).

3.1.3 Nonlinear Elasticity

Simple generalizations of linear elasticity to a nonlinear framework were proposed
for some metals at the end of the nineteenth century by considering a stress as a power
expansion in the infinitesimal strain and then trying an identification of coefficients
by testing the materials (see Bell’s encyclopaedia article, 1973, Sect. 2.23), since
(3.2) may appear as a first order approximation. The same kind of approximation may
be constructed on the basis of a lattice model of continuum by considering nonlinear
interactions between neighbouring ‘‘particles’’ in a discrete chain. In passing
asymptotically to a continuum this applies to the case of very small deformation
(of the order of 10�4) expected, for instance, in electro-acoustic crystals.

34 3 Rheology and Nonlinear Elasticity

http://dx.doi.org/10.1007/978-94-007-6353-1_12


But the obviously most interesting case, because offering a much more exciting
challenge, is that of elastic materials likely to admit very large strains (say, of the
order of 200 % or much more, e.g., 1,000 or 2,000 %) such as rubber-like
materials, certain polymers, and some biological tissues. In these cases we are
much better equipped than for non-Newtonian fluids, because the whole panoply
of useful stress tensors and required finite-strain tensors has been developed in the
nineteenth century and refined in the first half of the twentieth century. In par-
ticular, we mention the book of Murnaghan (1951) which was one of the first
books to provide all the required mathematical tools in finite deformations.

Francis D. Murnaghan (1873–1976) is an interesting character. He was originally from
Ireland and trained as a mathematician. He went to Johns Hopkins University in Baltimore
where Harry Bateman (the applied mathematician) had just been appointed. Obtaining his
PhD in 1916, he returned to Johns Hopkins in 1919 to become professor, and then head of
the mathematics department in 1928, after a short stay at the Rice Institute in Houston,
Texas. The later was a new institution founded thanks to a donation by Williams M. Rice;
this became a University only in 1960. A man of many scientific interests, Murnaghan was
in fact a rather pure mathematician with his main interest in the theory of group repre-
sentations (classical groups, unitary and rotation (orthogonal) groups, symplectic groups).
It is probably this specialty that brought him to write his famous book on finite defor-
mations. This book still is a fundamental reference for all those interested in the appli-
cation of finite strains and symmetries in continuum mechanics.

It is the proper relationship between the two sets of tensorial quantities (stresses
and strains) that must be constructed as the relevant constitutive equations, for
isotropic or anisotropic materials. In so far as possible, these should be thermo-
dynamically admissible and derivable from a potential. We shall examine this
matter in Sect. 3.2 where the seminal contributions of Ronald Rivlin (1915–2005)
are emphasized. This happens to be also the case of non-Newtonian fluids where
Rivlin left his name attached to various classes of fluids (Sect. 3.3).

3.2 Nonlinear Elasticity

3.2.1 Reminder

The following reminder is useful. The general deformation mapping is given by
Eq. (1.4) between a reference configuration KR and the actual configuration Kt. The
direct and inverse deformation gradients are given by (1.5) and (1.9), respectively.
The commonly used material tensor measures of finite-strains are the symmetric
Cauchy and Lagrange material strain tensors such that (T stands for the operation
of transposition):

C :¼ FT F; E ¼ 1
2

C� 1Rð Þ: ð3:13Þ
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For hyperelastic materials with an energy W per unit reference volume, the
material stress–strain relation is given by [cf. Eq. (1.20)]:

S ¼ 2
o ~W Cð Þ

o C
¼ oŴ Eð Þ

o E
: ð3:14Þ

The Cauchy stress follows by inverting the last of (1.12), i.e.,

r ¼ J�1
F F:S:FT ¼ J�1

F F:
oŴ

oE
:FT : ð3:15Þ

The Finger strain tensor (after Joseph Finger, 1841–1925)—sometimes noted
c�1—defined as:

c ¼ FFT ; ð3:16Þ

is also useful but in the actual configuration.
Many rubber elasticians (e.g., Treloar 2005) prefer to describe finite strains by

means of the (principal) stretches along the three material orthogonal coordinates.
These stretches are introduced thus. Consider a cube of edges of unit length in KR.
Under isothermal situations, after deformation this is transformed in a rectangular
block with edge lengths k1; k2; k3. If the considered deformation is substantially
incompressible—this is a reasonable working hypothesis for rubber like materi-
als—we will have the constraint k1 k2 k3 ¼ 1. Equivalently, we can think in terms
of the principal axes of the strain ellipsoid introduced by Cauchy. In a general way
the three basic invariants of tensor C are defined by:

I1 ¼ trC; I2 ¼
1
2

trCð Þ2�tr C2
� �h i

; I3 ¼ det C: ð3:17Þ

These are the three scalar invariants involved in the Cayley-Hamilton theorem
applied to matrix C. In terms of the stretches, this can be rewritten as

I1 ¼ k 2
1 þ k 2

2 þ k 2
3 ; I2 ¼ k 2

1 k 2
2 þ k 2

2 k 2
3 þ k 2

3 k 2
1 ; I3 ¼ k 2

1 k 2
2 k 2

3 : ð3:18Þ

If there exists a stored elastic energy W per unit reference volume, it must be
such that W ¼ W k1; k2; k3ð Þ. Associated ‘‘material responses’’ (internal forces)
are directly defined by the ‘‘Biot’’ constitutive relations:

fa ¼
oW

oka
; a ¼ 1; 2; 3: ð3:19Þ

For an incompressible ðJF ¼ 1; I3 ¼ 1Þmaterial, the corresponding forces per
unit deformed area are then given by [cf. Eq. (3.15)]

ra ¼ ka fa: ð3:20Þ
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3.2.2 The Works of Treloar, Mooney and Rivlin

The main contributors to the development of rubber elasticity theory in the
1930–1950s certainly are Paul J. Flory (Nobel Prize 1974), Guth and James,
Treloar, Mooney and Rivlin. They all worked closely with the related industry of
rubber and early artificial fabrics. They all considered first an approach based on
the physical description of polymers with long chains of molecules and thus
necessarily exploiting arguments of statistical physics. But Ronald S. Rivlin
(1915–2005)—although also a good experimentalist-, with his initial training as a
mathematician in Cambridge, was the one who tried to use a pure mathematical
standpoint to formulate the expression of relevant energies for rubber like mate-
rials. In doing so he contributed forcefully to the modern theory of continua in the
large. He is probably the greatest of our heroes in the field (and also an original
and difficult character; see below). In the theoretical and experimental develop-
ments of rubber elasticity, a critical and beneficial role was played in the UK by
the British Rubber Producers Research Association (BRPRA) and then the British
Rayon Research Association (BRRA).

Personal touch: Rivlin was educated at Cambridge (BA in Mathematics in 1937, MA in
1939). After a short stay at General Electric Co and two years as a Scientific Officer with
the ministry of Aircraft Production during WWII, he spent nine years at the BRPRA, from
1944 to 1953, doing both seminal theoretical and experimental works with a one-year
intermission/visit to the National Bureau of Standards in Washington (1946–1947) and a
fruitful stay at the Naval Research Laboratory in Maryland (1952–1953). There his
meetings with Jerald L. Ericksen and Richard A. Toupin were to produce also fundamental
contributions. He did not return to the UK but joined Brown University (1953–1967) after
which he settled at the Centre for the Application of Mathematics at Lehigh University
(1967–1980). His works are marked by excellent applied mathematics, a clear overall
vision of the field, and a sober style of writing (compared to Truesdell’s grandiloquent
style). In social contacts he had a sure sense of his own remarkable achievements, a
specifically British sense of humour, a certain condescendence for the work of many
people, and a devastating critical and sometimes unjust view of other great contemporary
scientists. I witnessed his original behaviour on two specific occasions. One was at the
Oberwolfach Center of Mathematics in the Black Forest—in the early 1980s—where he
forgot that the other people present also needed some food at night! The other was at the
IUTAM Colloquium celebrating his own former co-worker, Tony Spencer, where he spent
the entirety of his lecture time to expand a sharp critic of the Royal Society (where he was
not elected—although he definitely deserved this election) and to describe (his opinion)
the ever worsening quality of papers published in the journals of the Society; see in Chap.
5 his critic of the Truesdellian school.

As a useful information we insist that most developments that follow concern
isotropic bodies and most often incompressible ones.

Leslie R. G. Treolar (1906–1985), with a PhD from London (1938) was one of
the most active concept builders of the mechanics of rubber as shown by his
splendid book (first published in 1944, but with several editions—see the edition of
1975). He worked for the BRPRA before WWII and for the BRRA after WWII
before joining the University of Manchester Institute of Science and Technology
(period 1966–1974) as a Professor of Polymers and Fibre Science. He is most well
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known for his deduction from statistical physics of the following remarkably
simple energy expression for an incompressible material such as made of long
polymer chains (1946):

W ¼ mNkBh I1 � 3ð Þ; ð3:21Þ

where N is the number of chain segments per unit volume, h is the thermodynamic
temperature, kB is Boltzmann’s constant, m is a coefficient that depends on the
details of the assumed molecular model, and I1 is the first invariant from (3.18).
With p an arbitrary hydrostatic pressure accounting for incompressibility, Eqs.
(3.19) and (3.20) yield

fa ¼
oW

oka
� p

ka
; ra ¼ ka

oW

oka
� p: ð3:22Þ

This checks well with a previous result of Guth and James, and Flory, for the
tensile force f needed to extend a rod of unit cross section by a multiplicative factor
k, i.e.,

r ¼ 2mNkBh k� k�2� �
: ð3:23Þ

As to the shearing force necessary to maintain a simple shear of amount c, it is
given by:

r ¼ 2 m N kBh c: ð3:24Þ

Experimental data are in fair agreement with the results (3.23) and (3.24). But
note that all this applies to homogeneous deformations.

Now we turn to the works of Rivlin and co-workers. With a mathematical
vision of the problem, the strain energy for an isotropic rubber-like material must
be a function of the three basic invariants—reduced to two in the incompressible
case—of the deformation [cf. Eqs. (3.17) or (3.18)]. This follows from a celebrated
theorem due to Cauchy and reported in Murnaghan (1951). As a first approxi-
mation the following strain energy can be proposed:

W ¼ C I1 � 3ð Þ: ð3:25Þ

Rivlin (1948) called this a neo-Hookean form. The reason for this is that in
small strains (3.25) reduces to the Hookean (pure shear) form

W ¼ 1
2
l edð Þ2; l ¼ 2C: ð3:26Þ

Of course, in (3.25) the coefficient C must be determined experimentally
although (3.25) strongly resembles (3.21). The tensorial equation replacing the
second of (3.22) reads

r ¼ 2Cc� p1: ð3:27Þ
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By using such a constitutive relation, Rivlin was able to show that for simple
shear of amount c, not only a shear component of stress develops, but also unequal
normal components (proportional to c2) that are acting in mutually perpendicular
directions determined by the direction of shear and the normal to the plane of
shear. The difference between two of these normal components is related to the
Poynting effect mentioned in Sect. 3.1: the simple shear cannot be maintained by
shearing surface loads alone (a hydrostatic pressure—Kelvin effect—keeping the
volume constant is not enough)! Thus the theoretical proof of this effect is a crucial
asset for the nonlinear theory based on (3.25) or its generalizations.

The continuum model (3.25) relies on the highly idealized molecular model
yielding the energy density (3.21). One is therefore tempted—as was the case for
Ronald Rivlin—to strictly apply Cauchy’s representation theorem for the scalar
valued function W for isotropic materials, consider from the start a function
W ¼ W I1; I2; I3ð Þ, and envisage an approximation accounting, say, for incom-
pressibility. Thus, we have the reduction W ¼ W I1; I2ð Þ. For instance, for vulca-
nized rubbers, one can write

W ¼ C I1 � 3ð Þ þ F I2 � 3ð Þ; ð3:28Þ

where function F is a monotonically decreasing function of its argument in the
range of interest. It happens that Mooney (1940), on the basis of some experi-
mental observations, has proposed an energy density of the form:

W ¼ C1 I1 � 3ð Þ þ C2 I2 � 3ð Þ ð3:29Þ

where both C1 and C2 are constants. This is a special case of (3.28). Thus model
(3.29) is nowadays called a model of Mooney-Rivlin material. This has become the
most popular model for incompressible rubber-like materials. Just for this Rivlin
deserves to be honoured in the Hall of Fame of Elasticity.

3.2.2.1 Approximate Theories

These are theories that appear to be approximations of (3.29) by discarding some
degrees in the deformation of line elements and the rotation of volume elements
supposed to be small. A theory of this class had in fact been proposed by Mur-
naghan in a long paper of 1937.

3.2.3 Further Generalizations

3.2.3.1 Anisotropy

A technologically interesting case concerning the industry of tyres is that where
rubber is reinforced by fibres. These fibres introduce locally a privileged direction
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of unit vector d. The problem of representation of the corresponding energy was
initially considered by Ericksen and Rivlin (1954). The solution consists in
applying the representation theorem for the full orthogonal group to a function of
the finite strain and the vector d. This usually results in a function depending on
six joined invariants, but one of them is none other than the unit length of d, and
one has to account for the inextensibility of the fibres. This aspect was thoroughly
discussed and applied in various problems by J.E. Adkins, A.C. Pipkin, T.G.
Rogers, and A.J.M. Spencer. The last author, Anthony J.M. Spencer
(1929–2008)—Tony for his many friends—, a very kind person and an alumnus
from Cambridge, worked on his Doctoral degree with Frank Nabarro in Bir-
mingham and then with Ian Sneddon in Keele. During a stay of 2 years at Brown,
he established a fruitful co-operation with Rivlin and Albert Green, both original
Britons. He rapidly became one of the most important contributors to the theory of
invariants and its applications to the mechanics of continua (see his contribution of
1971). After serving 2 years at the Atomic Weapons Research Establishment in
Aldermaston (UK), he joined the University of Nottingham. There he succeeded
John Adkins as Professor of Theoretical Mechanics and Head of the Department in
1965 until retirement in 1994. His book of 1972 synthesizes his research results in
the mechanics of fibre-reinforced materials. Spencer also is the author of a nicely
readable little book on general continuum mechanics (1976).

Personal touch: During an extended stay (1985) at Nottingham the author had the occa-
sion to befriend Tony and to witness his talent in the peaceful organization of his
department, together with such bright scientists as David F. Parker, Arthur England, and
the regretted Tryfan G. Rogers, among others.

3.2.3.2 Generalized Mooney-Rivlin Materials

In modern terms let us introduce a multiplicative decomposition of the deforma-

tion gradient F that singles out the dilatational contribution J1=3
F 1 so that

F ¼ J1=3
F

�F and C ¼ J2=3
F

�C: ð3:30Þ

whence �F and �C refer to the distortional deformation alone. Using this formalism a
compressible generalization of the Mooney-Rivlin material is described by an
energy of the form:

W ¼
XN

p;q¼0

Cpq �I1 � 3ð Þp �I2 � 3ð Þqþ
XM

m¼1

Dm JF � 1ð Þ2m; ð3:31Þ

where the two summed terms represent the distortional and volumetric responses,
respectively, and we have set

�I1 ¼ J�2=3
F I1; �I2 ¼ J�4=3

F I2: ð3:32Þ
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A compressible Mooney-Rivlin material corresponds to the special case

W ¼ C01 �I2 � 3ð Þ þ C10 �I1 � 3ð Þ þ D1 JF � 1ð Þ2: ð3:33Þ

For C01 ¼ 0 and JF ¼ 1; we recover the neo-Hookean material. Otherwise, in
small strains, we recover the Hookean material with bulk modulus j ¼ 3kþ 2l ¼
2D1 and l ¼ 2 C01 þ C10ð Þ. The general formula (3.31) includes a rich number of
possibilities.

3.2.3.3 Odgen Model

In 1972, Ogden introduced another general model in the following form:

W ¼
X

n

ln

an
kan

1 þ kan
2 þ kan

3 � 3
� �

; ð3:34Þ

where an may be either positive or negative. Such a model opened up a large
variety of possibilities of modelling for rubberlike materials and biological tissues
as well. This proved to be extremely useful as compared to previously proposed
models especially in biomechanics, e.g., Fung’s one given by:

W ¼ 1
2

CKLMNEKLEMN þ c exp ðBKLMNEKLEMNð Þ � 1½ �; ð3:35Þ

where EKL is none other than the finite Lagrange strain of Eq. (3.13), c is a scalar,
and CKLMN and BKLMN are tensors of material coefficients. Sometimes, this is
referred to as Fung’s elastic material.

With all these models the elasticity of large deformations is now understood as
a rewarding and useful field of study. We may even say that ‘‘nonlinear elasticity’’
was rescued or saved from oblivion by the necessity to study the behaviour of
many exploited rubberlike materials of polymeric type and the biomechanics of
soft tissues. Examples of applications and other problems are to be found in Ogden
(2003) and other contributions in the same volume.

3.2.3.4 Mullins Effect

This effect refers to the stress softening that is observed when a rubber specimen is
subjected to cyclic loading. It was apparently first observed by the French scien-
tists Bouasse and Carrière in 1903. But Mullins of the BRPRA described it in 1947.
In this effect the resulting stress–strain response depends on the previously reached
maximum load so that it can be said that the model is stress-history dependent. It
resembles the damage of solid materials in which the elastic modulus is altered by
the previous loading (in general decreases after cycles of loads). It is clear that a
model involving an energy depending only on the standard strain invariants is not
sufficient to describe this behaviour of the hysteretic type (or pseudo-elastic type).
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At least one additional scalar parameter must be introduced to describe the effect.
Ogden and Roxburg (1999) have proposed such a modelling that includes a
damage variable 0 \ g � 1 with a typical energy density made of two terms:

W F; gð Þ ¼ gW0 Fð Þ þ / gð Þ: ð3:36Þ

We refer to these authors and further works by Dorfmann and Ogden for more
on this type of approach that strongly resembles the thermodynamic formulation of
modern theories of plasticity and damage (cf. Maugin 1999, and Chap. 5
hereinafter).

Note: Most non-French readers—and also most French students and professors—have
probably never heard of Henri Bouasse (1866–1955). But Bouasse, a brilliant mind
educated at the ENS in Paris (see Chap. 7 on the French masters) with doctoral degrees in
both physics and mathematics, spent most of his career (1892–1937) at the University of
Toulouse. He had a kind of idée fixe: he wrote a treatise in 45 (yes, forty-five) volumes—
each 300–500 pages long-, about all fields of classical physics in reaction against what he
estimated (his opinion) the bad quality of the teaching of physics in France, and against the
‘‘new physics’’ (relativity, quantum mechanics). This was called the ‘‘Scientific Library for
the Engineer and the Physicist’’. His best volumes are those on acoustics and capillarity.
This last one still is a useful reference. A few years ago, the present author bought a dozen
of never read near mint hardbound volumes of this large opus at the flea market in Paris for
less than fifty dollars the lot!.

3.3 Non-Newtonian Fluids

Now we turn to the possible generalizations of the fluid constitutive Eqs. (3.4) or
(3.6). According to the historical sketch given by Coleman et al. (1966), the initial
general idea of Stokes in 1845 about a viscous fluid constitutive equations would
have been of the form (here, incompressible, and using modern notation)

r ¼ �p1þ f Dð Þ; ð3:37Þ

where the last term is a (symmetric deviatoric) tensor-valued function of the
deviator of the rate of deformation tensor D. It is Reiner (1945) who, going beyond
the linear Stokes fluid, proposed that f be a symmetric polynomial in D. He thus
started with the assumption that

r ¼
Xn

a

baDa; ð3:38Þ

where the ba’s are functions of the density q. Upon using the Cayley-Hamilton
theorem to D and invoking incompressibility, one finds that (3.38) reduces to

r ¼ �p1þ b1Dþ b2D2; ð3:39Þ
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where b1 and b2 are still functions of the remaining invariants I2 ¼ traceD2 and
I3 ¼ traceD3. Apparently independently of Reiner, Rivlin proposed the constitu-
tive Eq. (3.39) that is therefore referred to as that of a Reiner-Rivlin fluid. It was
already remarked by Reiner that a model such as (3.39) yields not only non-linear
viscosity but also normal stress effects. But if the two normal stresses are equal—
as shown by applying (3.39) to specific flows—this does no explain the observed
Poynting effect. Indeed, Oldroyd (1950) strongly criticized (3.39) as being unable
to characterize so-called viscometric flows (See Coleman et al. 1966; Truesdell
1974, for this notion) if only a function of D alone is considered. The solution to
this problem was given by Ericksen and Rivlin (1954) who showed that the stress
had to depend on further time derivatives of the deformation gradient, e.g., the
acceleration gradient tensor, etc. To that purpose they introduced what are now
referred to as the Rivlin-Ericksen tensors noted An. These are defined by a
recurrence such as

A1 ¼ D; Anþ1 ¼ _An þ rvð Þ:An þ An: rvð ÞT ; n� 1: ð3:40Þ

At first one may think that the new general constitutive equation should involve
a dependence of the Cauchy stress r on the Finger tensor c and the sequence of
Rivlin-Ericksen tensors. For an incompressible isotropic fluid Ericksen and Rivlin
assumed that the deformation itself is not involved and they proposed the general
constitutive equation

r ¼ �p1þ f A1; A2; . . .ð Þ; ð3:41Þ

where f is an isotropic tensor-valued function of its arguments. Rivlin (1956) then
showed that this can account for non-equal normal stresses in viscometric flows,
thus definitely improving on the Reiner-Rivlin model.

Example of a consistent constitutive equation after (3.41):

r ¼ �p1þ a1A1 þ a2A2 þ a3A2
1;

where the ak
0s depend on trace A2

1 only.

Remark 3.1 A perhaps nicer definition than (3.40) can be given thus to the Rivlin-
Ericksen tensors. Let Ft sð Þ denote the deformation gradient of the material point
X at time s� t relative to time t. Call Ct sð Þ ¼ FT

t sð ÞFt sð Þ the corresponding
Cauchy-Green strain. Then

An :¼ dn

dsn
Ct sð Þ½ �js¼t: ð3:42Þ

This definition is due to Noll after Green and Rivlin (1957).

Remark 3.2 The idea behind the representation (3.41) is that if, following Old-
royd’s view (1950), the stress is to depend on the past history of the deformation
gradient, then for sufficiently smooth deformations, Taylor’s theorem enables one
to express it in terms of the instantaneous values of the deformation gradient and
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its time derivatives. Equation (3.41) is what results when the instantaneous value
of the strain is discarded (no standard elasticity) and incompressibility is imposed.

The last remark relates to the original model proposed by Oldroyd in 1950.
There, this author proposed that the stress at time t be determined by an integro-
differential tensor equation that relates the stress and the history of the convected
metric (i.e., a strain) tensor. The approximations made on this modelling in order
to be able to solve representative problems can be shown to provide solutions
equivalent to those that would follow in the framework of a second-order
approximation of the Rivlin-Ericksen constitutive equation. Although the idea of
involving the history of the past deformation in a constitutive behaviour goes back
to the hereditary model of Boltzmann (cf. Chap. 2 above), the first comprehensive
properly invariant (tensorial) continuum theory involving these integral repre-
sentations seems to be due to Green and Rivlin (1957). This resulted from a
general functional relation of the type

r tð Þ ¼ U C sð Þ; s� t½ �; ð3:43Þ

by means of an approximation by a series of multiple integrals (over past time),
assuming the functional U to be Fréchet differentiable. This will not be expanded
here because the present author thinks that this is not the most convenient math-
ematical form of constitutive equations in problem solving (see the notion of
internal variable of state in Chap. 5). What we note, however, is that the functional
relation (3.43) stands for Noll’s (1958) definition of a so-called ‘‘simple’’ material,
the ‘‘simple’’ being here rather euphemistic. The fundamental paper on the
approximation of time functionals in the framework of so-called ‘‘vanishing
memory’’ remains the paper by Coleman and Noll (1961). These functional
models allow one to account for the modelling of stress-relaxation. This naturally
brings us to the following item.

3.4 Rheological Models and Further Extensions

3.4.1 Zener’s One-Dimensional Models

In Eqs. (i) and (k) of Chap. 1 we have recalled the Maxwell and Kelvin-Voigt
models of linear visco-elasticity. These models account for a relaxation in stress
and strain, respectively. They are easily represented by so-called rheological
models, spring and dashpot in series, in the first case, spring and dashpot in parallel
in the second case. These rheological models—see Zener (1948)—are practically
hated and/or ridiculed by purists in continuum mechanics. Nonetheless they have a
heuristic value and help the ‘‘simple minded’’ rheologist to build models that can
become rather complex by a multitude of arrangements of simple elements—see
Chap. 2 in Maugin (1992) and Vyalov (1986). But these models are one-
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dimensional. To go from them to true three-dimensional models one must have at
hand the correct three-dimensional generalizations of the rates of strain and stress.
If the former is easily constructed (see above the Rivlin-Ericksen tensors), the
latter must be built so as to provide objective (i.e., independent of the observer)
entities. The answer to this query was provided by Oldroyd in his landmark paper
of 1950, with the notion of ‘‘Oldroyd time derivative’’, although we note that
Jaumann (1911) had already proposed a solution of a different type.

3.4.2 Oldroyd’s Time Derivative

This notion can be introduced thus. Consider the first of Eq. (3.15) and write the
two-ways relations

S

JF
¼ F�1:r:F�T ; r ¼ F:

S

JF

� �
:FT : ð3:44aÞ

In modern vocabulary these two equations represent the ‘‘pull back’’ and ‘‘push
forward’’ operations of convection between actual and reference configurations.
They could be represented symbolically by the following obvious notation

S=JFð Þ ¼ C
 

r½ �; r ¼ C
!

S=JF½ �: ð3:44bÞ

Then the Oldroyd convected time derivative r̂ of r is defined as

r̂ ¼ C
! o

ot

S

JF

� �� 	
;
o

ot

S

JF

� �
¼ C
 

r̂½ �: ð3:45Þ

The evaluation of r̂ in terms of the time derivative of r and the gradient of the
velocity requires only the knowledge of the expressions of the time derivatives of
F and F�1. The result of this easy computation is

r̂ ¼ _r� r: rvð Þ � rvð ÞT :r: ð3:46Þ

The acute observer from geometry will notice that this is none other than a Lie
derivative in following the velocity field in an appropriate four-dimensional space–
time. The so-called Truesdell time derivative ~r of r is deduced by considering
S rather than (S/JF) in the above equations, resulting in the formula

~r ¼ _r� r: rvð Þ � rvð ÞT :rþ r r:vð Þ: ð3:47Þ

Note that the exact expression of a Lie derivative depends on the variance of the
tensorial object to which it is applied. This leads to a distinction between so-called
‘‘upper’’ and ‘‘lower’’ Oldroyd derivatives, but we do not need to enter this
technical point here. Such derivatives have been used in constructing a lot of
different three-dimensional models of non-linear visco-elasticity. It is not our
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purpose here to discuss this branch of rheological modelling. We prefer to refer the
reader to an excellent book on the subject (e.g., Giesekus 1984).

In contrast the Jaumann time derivative (here noted DJ), while also objective,
involves only the vorticity X—or rate of rotation tensor—rather than the whole
velocity gradient. For instance, for a vector V and a second-order tensor r we have
the following expressions:

DJV ¼ _V� X:V; DJr ¼ _r� X:rþ r:X: ð3:48Þ

The last of these is equal to the Oldroyd derivative (3.46) up to (objective)
terms linear in D. The Jaumann derivative is a special case of co-rotational time
derivative (Eringen and Maugin 1990, p. 17).

Oldroyd, Truesdell and Jaumann derivatives are of interest not only in rheology
but also in the electrodynamics of continua (see Eringen and Maugin 1990, Vol-
umes I and II). However, as a simple example from pure mechanics, we can cite
the Truesdell isotropic (grade-zero) model of ‘‘hypo-elasticity’’

~r ¼ k r:vð Þ1þ 2l rvð ÞS: ð3:49Þ

With obvious time rates on both sides of this equation, this looks very much
like the time derivative of Hooke’s law. But it is ‘‘weaker’’ than the Hooke law
since it relates the derivatives of functions rather than the functions themselves,
hence the coinage of ‘‘hypo-elasticity’’. This kind of relationship between an
objective time rate of a stress and the rate of strain was introduced by Truesdell
with the hope to include the plastic behaviour in his ‘‘rational’’ scheme of con-
tinuum mechanics. This is now obsolete as plasticity now is most often presented
within the framework of the thermodynamics of bodies with internal variables of
state (cf. Maugin 1992). This is one more favorable argument for introducing
objective time derivatives. Indeed, the idea that goes back to Coleman and Gurtin
(1967)—and perhaps to Duhem—is to replace the time functional over the past
history in Eq. (3.43) by a traditional function dependence on a set (as small as
possible) of variables of which the time evolution is constrained by the second law
of thermodynamics: they produce dissipation. If these variables are vector or
tensor-valued, then we need to account for their dutifully defined objective time
rates such as the above given ones. The case where the description of the complex
fluid behaviour accounts for the time evolution of the internal microstructure is
thus dealt with by Maugin and Drouot (1983)—see also Maugin (1999). We shall
return to this type of approach in Chap. 5.

3.5 Concluding Remarks

In this chapter we have rapidly explored the innovative developments concerning
the rheology of fluids and the birth of an applicable nonlinear theory of elasticity.
The first of these bears traces of the influence of chemical engineers, while the
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second carries a strong print of British applied mathematics clearly dominated by
the emblematic person of Ronald Rivlin. The great names are those of Bingham,
Reiner, Treloar, Rivlin, Green, Oldroyd, Truesdell, Coleman and Noll. This
adventure is mostly British and American, with the exception of Reiner. Suc-
cessful developments have been achieved step after step. Some of these steps are
now forgotten, e.g., the Reiner-Rivlin model and the hypoelasticity of Truesdell.
Still these were useful in producing tools and a way of general thinking that
provided sound bases for the whole of continuum mechanics. The most interesting
period has been the one spanning between 1940 and 1970. This is not to say that no
further progress was achieved afterwards and by scientists in other countries, in
particular in Europe. New strongholds of rheological studies have appeared in the
1960–1980s as for instance in the USA with W. R. Schowalter at Princeton, A.S.
Lodge in Wisconsin (formerly in Manchester, UK), L.G. Leal in Santa Barbara,
D.D. Joseph in Minneapolis, L.G. Larson, in Canada with Pierre J. Carreau at
Montreal Polytechnic, with O. Hassager in Denmark, H. Giesekus in Germany,
and also in the UK with E.J. Hinch, K. Walters and R.I. Tanner, in Belgium with
J.-M. Crochet, in Australia with R.R. Huilgol and N. Phan-Thien, in France with
Angles d’Auriac and his Grenoble close co-workers (see Chap. 7 on the French
masters), and J.-M. Piau first in Paris-Orsay and then in Grenoble. But most
developments there are related to specifying special types of constitutive equations
using the tools constructed by the great masters, accounting for a microstructure,
solving particular problems and implementing numerical methods, where we
acknowledge that the behaviour of non-Newtonian fluids poses difficulties. The
European based journal Acta Rheologica played an important role in disseminating
research, and this probably as much as the Journal of Non-Newtonian fluid
mechanics or the Journal of Rheology in the USA.

On the non-linear elasticity front, we have emphasized again the contribution of
Ronald Rivlin and his various co-workers in the USA (e.g., J.L. Ericksen), and in
the UK (A.E. Green, A.J.M. Spencer,…). This again looks like a pure Anglo-
American adventure. But this does not mean that no deep and fruitful studies were
achieved in other places. In particular, we note the formidable achievements by the
Italian school in the 1910s (e.g., E. Almansi) and in 1930s with a quantity of
contributions in finite deformations, for instance by authors such as P. Burgatti, G.
Armani, D. Bonvicini, U. Cisotti, B. Finzi, C. Tolotti, and A. Tonolo (see
Truesdell 1952, for full citations) in the formal approach to finite-strain elasticity,
and also around Antonio Signorini (1888–1963) and his ‘‘allievi’’, Carlo Cattaneo
and Giuseppe Grioli, in the analytic solution of fundamental elasticity problems.
Among these we must cite the Signorini’s perturbation method in finite elasticity
(1930) that allows one to solve a class of traction boundary-value problems, his
work on finite-strain thermo-elasticity (1943 and on), and the celebrated ‘‘Signo-
rini problem’’: find the elastic equilibrium configuration of an anisotropic non-
homogeneous elastic body resting in a rigid frictionless surface and subjected only
to its weight. Truesdell had an immense admiration for these works. Also, we
cannot ignore any substantial contribution from the Soviet Union (e.g., by
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Novozhilov 1953; Goldenblatt 1962; Lurie 1980, and their students; see Chap. 11
below).

But finite-strain elasticity mostly concerns rubber-like materials and the
mechanics of soft biological tissues. No wonder, therefore, that most recent
advances were accomplished within these two fields, with a remarkable creativity
demonstrated in original developments of the theory of growth of biological tis-
sues. These materials, first described as purely elastic, albeit not linear, are now
governed by both elasticity and growth—both in volume and at the surface—due
to the action of nutrients. In this line of fruitful research which goes much beyond
the scope of this book, we find the works of S.C. Cowin, R. Skalak, L.A. Taber,
E.K. Rodriguez, A. Hoger, M.E. Gurtin, M. Epstein, G.A. Maugin, S. Imatani, S.
Guiligotti, A. Di Carlo, D. Ambrosi, L. Preziosi, J.-F. Ganghoffer, E. Kuhl, and P.
Ciarletta.

Personal touch. I feel that the present chapter fully exhibits the dynamics of a field in
expansion with its shy progresses, trials, errors, missed steps, and breakthroughs, and the
fact that new developments rapidly made previous ones obsolete. Thus the Reiner-Rivlin
modelling of fluids was rapidly superseded by a new model designed by Rivlin himself so
that the former fell into oblivion almost instantaneously (on the historical scale). The
‘‘adventure’’ of ‘‘hypo-elasticity’’ is also exemplary: in Eringen’s book of 1962—perhaps
written while the field was not ripe enough-, some 50 pages are devoted to hypo-elasticity
and its relation to plasticity. This has completely disappeared in the other Eringen text
book of 1967. It is with some melancholy that I recollect a period at which I was trying to
persuade some colleagues that we did not need hypo-elasticity at all in spite of the sacred
words of pundits.
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