
Chapter 16
Epilogue

Abstract This concluding chapter first summarizes the historical developments
exposed in a critical manner in all preceding chapters. It emphasizes the various
nonlinear generalizations proposed in the Twentieth century as also the role played
by remarkable schools and individuals in the fantastic progress reached in this
period. This concerns more realistic material behaviors (accounting for micro-
structures, involving coupled fields), a moreaxiomatic and thermodynamically
justified approach, and a clear internationalization of engineering science.
Simultaneously, progress in other collateral branches of sciences, both theoretical
and experimental, has fostered a rapid, sometimes unexpected, progress in the-
science of continuum mechanics. The latter has become more a mechanics of
materials while developing tremendously its applicable side with performing
numerical schemes andrequiring new developments in applied analysis and the
interpretation in terms of advanced geometrical concepts. Final remarks points at
the new marked interest of continuummechanics for living matter and the
unavoidable relationship, both intellectually and numerically, between different
scales of description, a trademark at the dawn of the Twenty first century.

16.1 What was Achieved

If we compare the main ideas and queries formulated at the dawn of the twentieth
century—as recalled in Chap. 2—with the developments exposed in Chaps. 3–15,
we witness a rather good fulfilment of the proposed programme.

First of all, the existing linear theories of elasticity and viscous fluids have been
extended to a true and applicable theory of nonlinear elasticity—essentially for
incompressible materials of the rubber-like type and more recently for bio-materials
such as soft tissues—and non-Newtonian fluids (Chap. 3). The last case, because of
its involvement of time, has necessitated a reflection that led to seriously accounting
for the notion of objectivity in order to define properly invariant time derivatives.
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The perspicacious views and works of luminaries such as Rivlin, Oldroyd and others
have been instrumental in this intellectual construct corroborated by appropriate
experiments and fostered by socio-economical needs (industry of rubber and artifi-
cial textiles, paints, food industry, and all strongly viscous products).

In the linear theory of elasticity, two main ingredients have been introduced
(Chap. 6). First anisotropy has established a better contact between classical con-
tinuum mechanics and the physics of materials, which is the realm of anisotropic
crystals. But new materials are also anisotropic (e.g., fibre-reinforced materials). The
second ingredient is the necessary consideration of the possible singularities of the
elastic field. The way was paved by scientists such as A.E.H. Love. But there was a
long way between the theoretical—kind of thought-experimental—notion of dislo-
cation introduced by Vito Volterra and the real physical considerations on disloca-
tions by G.I. Taylor and others. Similarly, the now obvious need to envisage the
occurrence of cracks and their catastrophic expansion (in particular in aeronautics
and nuclear-power industry) was dutifully answered by the formidable work
achieved by the British school (Sneddon, Eshelby, Stroh, etc.) and then by teams both
in the west (e.g., USA, France) and the east (Russia). The importance of some
mathematical methods such as the application of the technique of complex variables
by Kolosov and Muskhelishvili cannot be ignored in this context. This trend of
research culminated in the theory of configurational forces (Chap. 14) with the
seminal contributions of Eshelby, Cherepanov, Rice and others. Works of a more
experimental nature and engineering-type such as those of Griffith and Irwin were of
utmost importance in these developments.

Simultaneously, a necessary examination of the mathematical properties of the
systems principally deduced from elasticity has led to a definite progress in the
proof of theorems of uniqueness and existence. This is not gratuitous as there is no
need to look for a classical solution (analytical or numerical) if we know in
advance that the considered problem is ill-posed and a standard solution cannot
exist. This progress was mostly based on the creation of a true applied functional
analysis in the expert hands of mathematicians such as Sobolev, Leray, Schwartz,
Lions, Magenes, etc., and more recently on its application in the UK, by Knops,
and then John Ball in nonlinear elasticity (Chap. 6).

Of the three ‘‘real’’ mechanical behaviours mentioned in Sect. 2.2, friction and
plasticity are certainly those which have commanded the largest number of works
in the twentieth century. Plasticity and its application to the mechanics of struc-
tures made immense progress among those cultivating the ASME spirit, especially
in Stanford and Brown (Chap. 4), but also in the UK with Rodney Hill and his
disciples (Chap. 6), Poland (Chap. 8), and Russia with Ilyushin, Rabotnov and
others (Chap. 11). We can say that, to the posthumous satisfaction of Pierre
Duhem, elastoplasticity, but also allied theories of creep and damage (Odqvist,
Hull, Kachanov, Rabotnov, Lemaitre) were given a good thermodynamic foun-
dation thanks to the works of Hill, Mandel, Ziegler and the French school of
continuum thermomechanics (Chap. 7). This definitely included one of Duhem’s
‘‘nonsensical’’ branches of mechanics into a rational framework.
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The attempts of Duhem to organize the ‘‘energetics’’ of many processes in a
common frame were completed by the school of linear irreversible thermody-
namics in Belgium and the Netherlands. But it is with Truesdell and his partners,
Noll, Coleman, Toupin, that the whole field was re-organized in a more mathe-
matical and axiomatized manner (Chap. 5). This fulfils one point in the prospective
programme proposed by Hilbert. The offered thermodynamic formulation was
audacious but with a certain efficacy. Amendments or generalizations (extended
thermodynamics, introduction of internal variables of state, satisfaction of the
causality of solutions) were advanced that much improved on the too much
corseting original proposal. By the same token stringent conditions of invariance
(e.g., objectivity) were duly enforced in continuum mechanics, probably under the
influence of the flourishing of such principles in mathematical physics.

Another of Duhem’s ‘‘nonsensical’’ branches of mechanics was electromag-
netism. With the pioneering works of Toupin, Mindlin, Eringen and others, this
was successfully incorporated in modern continuum mechanics (Chap. 12). This
provided a possibility to couple deformation and all types of electric and magnetic
behaviours and to treat a large number of applications at the crossing point of
mechanics, materials science, and electrical engineering with the same rationality
as pure problems of continuum mechanics.

Poro-elasticity (in particular by Biot) and a theory of consolidation of soils
allowed a fruitful co-operation between continuum mechanics and an emerging
science of geo-materials to the benefit of civil-engineering applications. At the
same time, thermo-elasticity, one of the first theories of coupled fields thanks to
the pioneering work of Duhamel, developed tremendously to include couplings
with electric fields such as in thermo-piezo-electricity, with many contributions
from Japan and China. This will particularly apply to new microscopic electro-
magneto-mechanical components known as MEMS.

Other thermo-mechanical couplings are those that necessarily play a fundamental
role in phase transformations of deformable solids. The invaluable contributions of
mechanicians of the continuum (from all over the world, but particularly from the
USA, Russia, France, Germany, and Japan) to the mathematical description of such
phenomena have brought this community in useful co-operational contact with the
community of metallurgists and condensed-matter physics. No doubt that the way of
approach and tools favoured by mechanicians—exploitation of balance laws, jump
equations at moving discontinuities, considerations of configurational mechanics
and variational formulations, mathematical refinements with special classes of
functions—have permitted a rational but physically justified description that would
have largely escaped the traditional tools of metallurgists. Works by applied math-
ematicians such as Jerald Ericksen, D.S. Kinderlehrer, John Ball and Richard D.
James have been essential in such developments. Here the role played by the Uni-
versity of Minnesota should be underlined.

If we now recall the original works of Duhem and the Cosserats on elastic
materials with a microstructure, then after a rest period of some 56 years, their
original ideas developed into a real ‘‘industry’’ materializing in various paths to a
truly generalized continuum mechanics as exposed in Chap. 13. Three essential
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lines have expanded, being represented by polar and micromorphic materials,
materials described by higher order gradients of deformation, and the so-called
non-local theory of materials. In all these we must acknowledge the leading role
played by mechanicians such as Toupin, Mindlin, Eringen, Kröner, Kunin, Edelen,
not to forget the German pioneers and their followers. What was again instru-
mental in the most recent developments of these research paths was a now obvious
relation of such schemes of deformable matter with real materials, whether of
natural origin (crystals of various types) or man-made new materials (composites,
cellular materials, etc.). Of necessity this has led to considering representative
length scales, and scale effects in general.

16.2 The Influence of New Experimental Equipments
and Computational Means

What could not be guessed at the dawn of the twentieth century were ‘‘things to
come’’, future developments in both experimental and numerical means that would
often be the consequence of progress in small-scale physics, especially wave and
quantum mechanics that revolutionized solid-state physics. As a matter of fact,
mechanics in the early twentieth century is still based on (1) standard observational
means (e.g., the naked eye and optical microscopes) and testing machines in a most
elementary—entirely mechanical—form, and (2) the search for analytical solutions,
if not of graphical ones by hand. It is at this gauge that we must appreciate the
extraordinary achievements of some people in analytical solutions, often based on
astute Ansatze that reflect a gifted capture of the physics and symmetries of the
looked for solutions. Still, practically only ‘‘simple’’ academic problems could be
solved (e.g., in elasto-plasticity where problems are free-boundary ones).

With progress in atomic physics and the applications of modern physics to
electronics, experimental means progressed at giant steps (think of electronic
microscopy, atomic-force microscopy, image processing, etc.) with a tremendous
decrease in scale of observation, while new means of computations were created
(electronic computers, miniaturization) with easy access by the common user only
in the nineteen seventies. These two facts created a new situation in which large
computations of complicated real structures made of materials with complex
constitutive equations (think of plastic-forming in large deformations with visco-
elasto-plastic constitutive equations) could be performed in finite strains. Scientists
like Juan Simo in the USA and people around Erwin Stein in Germany, who
combined an excellent knowledge of continuum thermo-dynamics, performing
computational methods, and mathematical results, had the most efficient back-
ground to realize such wonderful computations. This also applies to large com-
putations in the bio-mechanics of soft tissues such as the practically complete
mechanical simulation of the human heart structure with its multi-layered enve-
lope made of variously oriented fibres (see Humphrey 2002).
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Personal touch: In the same way as they cannot remember Bakelite telephones and the
desperate look for a telephone booth with the requirement to carry dimes in your pocket to get
in touch with the phone operator—see old black-and-white mystery US movies of the 1950s,
(so-called ‘‘films noirs’’ in the jargon of aficionados); also remember the inenarrable
sequence in ‘‘Dr Strangelove’’ when the British officer tries to enter in contact with the White
House -, young readers may have difficulties to imagine a time (1950–1960s) at which only
electro-mechanical desk computers existed. These were essentially used to make boring
astronomical calculations, or to help tracing a curve starting from a painstakingly obtained
analytical solution. Just to illustrate this, the author recalls that he first did some computations
of fluid mechanics on an analogue computer in 1965. He had his first experience on a
cumbersome—but extremely weak—digital electronic computer doing only simple alge-
braic operations in 1966, with programming in machine language. It is only going to the
United States that he met more powerful large computers but with programming in Fortran
language. One had to bring a thick batch of prepared punched cards to the computer centre
and collect the results on large printed output sheets one or two days later. Only finite-
difference schemes were available to treat problems of fluid mechanics. The finite-element
method was invented only in 1965–1966 to make large computations on aeronautical
structures; it took some time to become a commonly used tool.

Another consequence of this drastic development in both experimental and
computational means was the rapid transformation of part of the mechanics of
structures into a real mechanics of materials, that is, the due consideration of the
intimate structure of the material with its inherent inhomogeneity, multi-compo-
nent contributions, and transformations. It is only with modern fast computations
that the mathematical theory of homogenization could be applied, delivering the
effective coefficients of the replacement material by solving a set of exemplary
problems on the relevant basic cell. Simultaneously, the new experimental means
produced the appropriate images and measurements to confirm the numerical
simulations. From these emerged this new science of the mechanics of materials,
the last avatar of continuum mechanics. This gives a rather good visual perspective
of developments to come in a near future.

A particular point to be emphasized is that while continuum mechanics was for
a long time reserved to the study of inert matter, this new mechanics of materials
now dares to attack the landscape of living matter in the framework of biome-
chanics and mechano-biology for the study of growth, resorption, ageing,
remodelling, and morphogenesis. If we already mentioned that non-linear elas-
ticity was in some sense saved from oblivion by its useful applications in bio-
mechanics (Chap. 3; many works by Odgen and Holzapfel), most recent
developments in biomechanics involve all new ingredients and ideas introduced in
thermo-mechanics within the last 50 years: multiplicative decomposition of the
finite deformation gradient, theory of mixtures, notion of internal variables of
thermodynamic state, higher-order gradient theory, configurational forces, non-
linear waves, and homogenisation techniques, all to a high degree of sophistication
[see, for instance, in alphabetic order, Ciarletta and Maugin (2011), Ciarletta et al.
(2012), Cowin (1996), Cowin and Hegedus (1976), Epstein (2012; Chap. 7),
Epstein and Maugin (2000), Ganghoffer (2005), Humphrey (2002), Maugin (2011;
Chap 10), Porubov and Maugin (2011), Rodriguez et al. (1994), Taber (1995)].
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16.3 Towards Interactions Between Scales

For a long time continuum mechanics benefited in its simplest form—Hooke’s law
with two Lamé coefficients—to the evaluation of the strength of large structures.
By this we mean human scale and above. The main trait that clearly emerges from
the above reminder is a complexification of the modelling allied to a focus on
smaller scales with a neat tendency towards the crystal size, microstructure, and an
approach to the discrete description. Already mentioned examples relate to the
fields of dislocations and phase transformations. Thanks to the power of present-
day computational tools, it is now possible to simulate the movement of a large
ensemble of interacting dislocations, as also to relate meso- and macro-scopic
mechanical responses to it. It is this mutual enrichment between scales that is most
characteristic of the developments in the beginning of the twenty first century. The
new multi-scale techniques involving matching between continuum (finite-ele-
ments) and atomistic computations vividly illustrate this tendency (see, e.g.,
Tadmor and Miller 2011).

Along a somewhat different line one may wonder if the exploitation of direct
simulation techniques such as molecular dynamics—with an appropriate choice of
interaction potentials (see Rapaport 1995)—does not relegate the very concept of
continuum to the ‘‘dark ages’’ of phenomenological physics. But if this technique
yields spectacular results in some cases (e.g., propagation of cracks and other local
structural rearrangements) there is no obvious proof that this may replace the
continuum approach—appropriately discretized—in the computed response of
structural elements at any scale.

Another question is whether the development of nano-mechanics brings a true
revolution in the field (see Bhushan 2007; Liu et al. 2006). Of course one has to
account for scale effects, noticeably for the natural enhancement of surface effects.
Surprisingly enough, many mechanical engineers approach this mechanics with a
rather simple adaptation of tools used in macroscopic physics. Progress will
necessarily be done in this field.

Also, we cannot avoid a return to geometrical concepts. No doubt that geometry
is the basis on which the kinematics and deformation theory of continuum
mechanics rely. Until recently only geometry as made analytical by René Des-
cartes and considering the three-dimensional Euclidean space as the normal arena
of continuum mechanics was acknowledged as the standard background. Differ-
ential geometry as formulated by nineteenth century mathematicians (above all
Gauss and Riemann) was the tool that introduced the notions of metric and
eventually curvature (and therefore, by negation, a good definition of flatness;
think of the Navier-Saint–Venant equations of compatibility). Two facts have
complicated the picture. One was the influence of the consideration of non-
Euclidean spaces in gravitational theory following Einstein and others. The sec-
ond, in fact related to the first, was the recognition that taking account of the
presence of many structural defects requires abandoning the peculiarity of the
Euclidean nature of material space in favour of more general concepts introduced
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by modern differential geometers such as Elie Cartan: non-Riemannian spaces and
the allied incursion of group theoretical concepts. A fundamental question is raised
for the future of such developments that have already reached an incredible level
of sophistication which unfortunately drastically reduces the potential readership
to a happy few while of course becoming extremely strict from a mathematical
viewpoint. A similar problem appears in the geometric approach to unified theories
of physics that is apprehended by a very few. In mechanics, this will require from a
selected group of scientists an education of equivalently high level in modern
differential geometry, materials science, and continuum mechanics. Some pub-
lished books go in that direction; see Epstein 2010; Frankel 2004.

Personal touch. It was the idea of the author to initiate in 1997 a series of International
seminars on the subject of Geometry, Continua and Microstructure with a view to gather
informally geometers, mechanicians of the continuum, and materials scientists. Eight such
seminars were held in various European countries since 1997.

As a final but trivial remark, like in all scientific fields, the second part of the
twentieth century has witnessed an internationalisation in notation and research
themes. All involved personnel now read the same scientific journals that have
gained a true international public, and they practically all have access to a stu-
pendous flux of information by electronic means. Although local scientific tradi-
tions and masters are still active, the ‘‘provincial’’ print that we highlighted in
some chapters is fading away, giving a chance to all, even in remote or more
recently scientifically developed regions, to participate in the marvellous
adventure of science of which, obviously, continuum mechanics is only a very
small part, but often one at the meeting point of various scientific disciplines.
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