
Chapter 1
The Land Clearers and the ‘‘Classics’’

Abstract This chapter has for object to remind the reader of the early developments
of continuum mechanics-after the seminal works in mechanics by Descartes,
Huygens, Newton and Leibniz-in the expert hands of the initiators of this science (the
Bernoulli family, d’Alembert, Euler, Lagrange). This was rapidly followed by the
foundational contributions of the first half of the Nineteenth century with Cauchy and
Navier (in France), Piola (in Italy), Kirchhoff (in Germany), and those of various
giants of science such as Green, Kelvin, Stokes, Maxwell, Boussinesq, Poiseuille,
Clebsch, von Helmholtz, Voigt, Mohr, and Barré de Saint-Venant later in the
century. The emphasis is placed on the role played by so-called ‘‘ingénieurs-
savants’’, many of them educated at the French Ecole Polytechnique and the engi-
neering schools inspired by this school all over Europe. Lamé, Navier and Duhamel
in France and their Italian colleagues are examples of such people who harmoniously
combined works in a much wanted contribution to civil engineering and a sure
mathematical expertise in analysis. In contrast, the German and English contributors
were more inclined towards an emerging true mechanical engineering and some-
times a burgeoning mathematical physics. This means that various national styles
were being created despite the overall solution power of analysis and the birth of
linear and tensor algebras.

In general a direct intrinsic notation is used for vectors and
tensors, but a Cartesian index notation is introduced when a
risk of confusion arises with the intrinsic one.

1.1 Analysis and Partial Differential Equations:
18th Century

We will be dealing with the mechanics of continua. Accordingly, the primary
notion is that of analysis since the notion of continuity can only be defined within
the mathematical specialty called analysis. We admit that with the works of,
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among others, René Descartes (1596–1650), Isaac Newton (1643–1727) and
Gottfried W. Leibniz (1646–1716), we have at hand the standard formulation of
analysis—also called differential and integral calculus—but for functions of one
variable only. The necessary consideration of both time and space variations (in
dynamics) and of multi-dimensional problems (in two or three space dimensions)
requires the introduction of the notion of partial derivative. This we essentially
owe to the Bernoulli’s—John (1667–1748) and Daniel (1700–1782), John’s son—
and Jean Le Rond d’Alembert (1717–1783). In particular, the last author has
formulated the first equation of wave motion—a second-order partial differential
equation of the so-called hyperbolic type (finite velocity of propagation)—with its
paradigmatic solution. Thus the path was paved for the fundamental works of
Leonard Euler (1707–1783), Joseph Louis Lagrange (1736–1813) and Augustin
Louis Cauchy (1789–1857).

1.2 Transition to the 19th Century

In possession of the appropriate tools, Euler, Lagrange and Cauchy were able to
formulate the standard theory of perfect fluids and perfectly elastic solids, two
cases in which ideal descriptions cope with what we now call nondissipative
behaviours. It is this ‘‘perfection’’ that brings these modellings in a framework
equivalent to that given by preceding and contemporary scientists to point and
rigid-body mechanics, what was rapidly called ‘‘rational mechanics’’. Only reason
is at work in an intellectual construct that is entirely logical once the premises are
assumed as postulates. This is reflected in the absence of figures in the book (1788)
on ‘‘Méchanique analitique’’ (old French orthography) of Lagrange. These two
cases are also the extreme cases—pure fluidity and pure elasticity—in the land-
scape so beautifully described in his ‘‘continuity of states’’ by Walter Noll in 1955.
As we shall see, many of the developments in the 19th century and much more in
the second half of the 20th century, deal with the formulation of ‘‘imperfect’’ cases
now included in a thermo-mechanical theory of thermodynamically irreversible
behaviours (fluid viscosity, visco-elasticity of solids, plasticity of solids, etc).

What is perhaps more to the point at this stage of our story are the following two
elements. The first of these is the formulation of variational principles by Euler and
Lagrange, culminating in the already cited ‘‘Méchanique’’ of Lagrange of 1788. This
was to provide the essential tool in general field theory in the expert hands of William
Rowan Hamilton (1805–1865) and others, but also to set forth the necessary basis of
the modern formulation of the mechanics of continua both in its mathematical
properties and the required numerical methods (e.g., finite-elements, optimization).
The above mentioned ‘‘imperfect’’ cases cannot, in principle, be deduced from a
variational formulation in the manner of Lagrange and Hamilton.

The second element is none other than the introduction of the notion of stress
tensor (of course not called this when the notion of tensor did not exist yet) by
Cauchy in his first theory of continua (1822, published in 1828). This is the object
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r that relates linearly the externally pointing unit normal n to a facet cut in a
material body to the applied (in any direction) external traction Td at this point of
the facet, according to the now common formula

Td ¼ n:r: ð1:1Þ

The object r is often (but not always) a symmetric second-order tensor. It is also
generally thought that the relation (1.1) does not involve any constitutive
hypothesis—i.e., is independent of the considered material. We shall see when we
consider generalized continua (cf. Chap. 13) that this vision is not exactly correct.
In truth (1.1) is strictly valid only for so-called ‘‘simple’’ materials in Noll’s
classification (see Chap. 5). However, the formula (1.1), that is sufficiently general
for many practical cases, is a decisive advance compared to the case of perfect
fluids considered by Euler. Euler’s case corresponds to an applied traction aligned
with the unit normal n, reducing thus the notion of stress to a unique scalar
quantity, the pressure p, with (1.1) reduced to

Td ¼ � pn ; ð1:2Þ

where the minus sign is conventional.
We cannot simultaneously ignore that Cauchy was also instrumental in making

much more precise the basic notions of analysis (convergence, limits, derivatives,
integrals) all relevant to the mechanics of continua. We also owe to him a cele-
brated representation theorem for scalar-valued isotropic functions. This theorem
provides a way for deducing the set of quantities—so-called invariants—on which
such a function depends as a result of isotropy (equivalent response in any
direction = invariance by the orthogonal group of transformations of material
space). This important theorem for many mechanical behaviours of continua was
recalled by Herrmann Weyl in his famous book on classical groups of 1946.

1.3 Finite Deformations: Piola, Kirchhoff, Boussinesq

Euler and Lagrange are usually considered as responsible for the kinematic
descriptions of continua called, Eulerian and Lagrangian, respectively (although
this may not be exactly true). In the first description, all dependent variables are
expressed as function f x; tð Þ of the actual position x—so-called placement in the
modern jargon—of an infinitesimal element of matter at time t in Euclidean
physical space and of the Newtonian time t itself. In the so-called Lagrangian
vision the actual placement x is a function of time, but also of a previously
occupied position, say x0, a so-called initial placement. That is,

x ¼ �x x0; tð Þ: ð1:3Þ

The Italian scientist Gabrio Piola (1794–1850)—author of lengthy papers in the
period 1825–1848 and honoured by a beautiful pedestal statue in his native
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Milano—was a disciple of Lagrange. Accordingly, he prefers variational formu-
lations. But more than that, he introduced the somewhat more abstract notion of
‘‘material’’ coordinates that we denote collectively by the symbol X. This ‘‘con-
figuration’’, called the reference configuration KR is chosen as a most convenient
one for the problem under study. The resulting space-time parametrization of a
general deformation mapping is therefore written as

x ¼ ~x X; tð Þ: ð1:4Þ

If this relation is sufficiently regular, i.e., with

F ¼ rR~x ¼ o~x

oX
; JF ¼ det F [ 0; ð1:5Þ

we can define the inverse motion

X ¼ ~x�1 x; tð Þ: ð1:6Þ

Thus, on account of (1.4) and (1.3)

x ¼ ~x ~x�1 x0; t0ð Þ; t
� �

¼ x̂ x0; t; t0ð Þ ¼ �x x0; tð Þ: ð1:7Þ

Although obviously not equipped with the notion of tensor transformations,
Piola recognized that in the abstractly introduced configuration KR described by
the spatial parametrization X one could introduce a stress tensor (in fact not a
standard second-order tensor), by the so-called Piola transformation (1836, 1848):

T ¼ JFF�1:r; r ¼ J�1
F F:T; ð1:8Þ

where F�1is the inverse of F such that

F�1 ¼ o~x�1

ox
; FF�1 ¼ 1: ð1:9Þ

Conscious of the arbitrariness of the choice of his reference configuration KR,
Piola selects it as one of uniform density equal to one. Since we know that mass
conservation is expressed by

qR ¼ qJF; ð1:10Þ

Piola writes ‘‘his’’ transformation as

qT ¼ F�1:r: ð1:11Þ

Although Piola could not write his transformation in this simple condensed
intrinsic form, his writing of typical components reveals an understanding of a
hidden algorithm that will later be interpreted within tensor algebra.

The concept of Piola stress was comforted by Gustav R. Kirchhoff
(1824–1887), so that the object T in (1.7) is nowadays called the first Piola-
Kirchhoff stress. A second Piola-Kirchhoff stress S can also be introduced by
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completing the true tensor transformation between stresses in the actual and
reference configurations by the definition: (The symbol –T means the transpose of
the inverse).

S ¼ T:F�T ¼ JFF�1:r:F�T ; ð1:12Þ

where the superscript T denotes the operation of transposition. Both T and S have a
deep thermodynamic significance.

Joseph V. Boussinesq (1842–1929), in his study of finite deformations intro-
duces the stress object B such as [compare (1.11)]

B ¼ F�1: r: ð1:13Þ

That is why we consider Piola, Kirchhoff and Boussinesq the founding fathers
of the theory of finite transformations in spite of the pioneering works of Lagrange
and Cauchy.

1.4 The French ‘‘Ingénieurs-savants’’

In a further chapter (Chap. 7) we shall emphasize the role of the Ecole Poly-
technique in the formation of a special scientific trend and ‘‘spirit’’ in the early
19th century: the appearance of what the British historian of sciences Ivor Grattan-
Guinness (1993) calls ‘‘ingénieurs-savants’’. This is a group of alumni from that
engineering school who received from their masters (Monge, Bossut, Lacroix,
Lagrange, Cauchy, Fourier) a remarkable mathematical education although they
were usually destined to work on engineering projects, essentially in civil engi-
neering. They applied their mathematical technical skill and their physical inge-
nuity in fostering various facets of the ‘‘rational’’ mechanics of continua. Among
these individuals, for our present purpose, we single out C.M.L. Navier
(1785–1836), Gabriel Lamé (1795–1870), and J.M.C. Duhamel (1797–1872).
Albeit a disciple of Laplace in his Newtonian particle-action-at-a-distance view,
the first of these was instrumental in developing both continuum fluid mechanics
and elasticity. In the case of fluids, he constructed what is now called the Navier-
Stokes equation that involves shear motion and the allied viscosity. With this one
enters the domain of nonideal fluids as compared to Euler’s ideal fluid. In elas-
ticity, he was responsible for the introduction of the so-called Navier equations for
isotropic elasticity (although not on the basis of Cauchy’s stress argument) in
small strains. The difference in the technical approaches led to a thorough dis-
cussion about the number of existing elasticity coefficients (one or two in the case
of linear isotropic elasticity?). As we know now, the correct answer is two, and
these coefficients k and l are called after the second of our ‘‘ingénieurs-savants’’,
Lamé.
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In Cartesian indicial tensor notation and intrinsic notation, Hooke’s law for isotropic
materials reads

rji ¼ kekkdji þ 2leij; r ¼ k treð Þ1þ 2le: ðaÞ
In 1D in the x-direction this takes the simple form (all quantities are scalars)

r ¼ Ee; e ¼ ou=ox: ðbÞ
This reflects mathematically the celebrated Hooke’s law according to which ‘‘elonga-

tion is proportional to the applied force’’, i.e., (Robert Hooke 1635–1703)

dl=l0 ¼ kF; ðcÞ

where l0 is the initial length, k is a coefficient of proportionality, and the force F should
remain reasonably small. The coefficient E is called the Young modulus after Thomas
Young (1773–1829), a polymath in competition with Jean-François Champollion
(1790–1832) for the deciphering of Egyptian hieroglyphs, a competition that he lost.
Hooke’s law (c) belongs to what we shall call ‘‘physical mechanics’’ as it is based on
observation. Navier’s elasticity equations are the field equations obtained by substituting
from (a) in the balance of linear momentum.

The third of the ‘‘ingénieurs-savants’’ is Duhamel, probably less known than the
other two. But he was more a ‘‘savant’’ than an engineer as he never graduated
from the Ecole Polytechnique, having been expelled from the school in 1816 with
all his fellow classmates for political reasons. His originality stems from the fact
that he was the first to study a problem of coupled fields in continuum mechanics,
namely, thermo-elasticity (1838). Of course he could do that only after Carnot and
Fourier had developed the necessary ingredients for treating heat conduction
alone. But Duhamel had the right intuition in attacking this coupled-field problem,
even though the best applications of that new field would be only in the 20th
century. Furthermore, his was probably the first example of considering a non-
isotropic material response since he was conscious that some directions may be
more important than others and thus privileged contrary to the often assumed
isotropy (no preferred direction). This matter was studied in detail from the
viewpoint of epistemology by Gaston Bachelard, a French philosopher of sciences,
in 1927.

In 1D the Hooke-Duhamel constitutive equation of thermo-elasticity reads

r ¼ Eeþ m h� h0ð Þ; ðdÞ

where h is the thermodynamical temperature, h0 is a reference temperature, and m is the
thermo-elasticity coupling coefficient. Thermal expansion is obtained by putting r ¼ 0 in
(d) and solving for e, yielding thus

eh ¼ a h � h0ð Þ; ðeÞ

where a ¼ �m=E is the coefficient of thermal expansion.
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1.5 The British Giants: Green, Kelvin, Stokes, Maxwell

We are concerned with a group of British scientists whom we collectively call the
‘‘Cambridgians’’ (some may think that ‘‘Cantabridgians’’ would be better). They
share a similar vision of the physical world and also a practically identical for-
mation. They have been educated at Cambridge and some of them taught there
also. They have also in common to have been influenced by the French school of
mathematics of the late 18th century—early 19th century, a school that had chosen
to exploit Leibniz’ notation rather than Newton’s one in analysis, e.g., from
Bossut’s and Lacroix’s sources used at Polytechnique (cf. Bossut 1800). This was
a happy choice of far reaching consequence because it contributed to a new
blossom of British mathematical physics that brought British authors to the top of
the field in the 19th century. After these ‘‘Cambridgians’’, there came the
‘‘Maxwellians’’—who may also have been ‘‘Cambridgians’’—among whom we
must count Heaviside and Larmor.

(Abbé) Charles Bossut (1730–1814), a disciple of d’Alembert and a specialist of hydro-
dynamics, but also an underestimated historian of mathematics, was a remarkable peda-
gogue. His course of mathematics at the Military school of Mézières (cf. Sect. 7.1) was
first published in 1781. Its last edition (1800) was in seven volumes, of which two were
devoted to differential and integral calculus in the Leibniz notation. He was a colleague of
Laplace and Lagrange at the Paris Academy of Sciences, but not in the same class as these
two mathematicians-mechanicians from the point of view of creativity. He practically
ended his career as an examiner in mathematics at the Ecole Polytechnique
(1796–1808)—it seems to have been the oldest examiner ever at that school.

Among the ‘‘Cambridgians’’ George Green (1793–1841) is a very special case
in the sense that he practically concluded his scientific life with his studies as an
undergraduate at Cambridge. Indeed, a miller by profession and practically an
autodidact, he wrote some of his most beautiful memoirs after having studied by
himself the French pedagogues. It is as a consequence of these early successes that
he was sent to Cambridge University where, among other things, he unfortunately
learned gambling and drinking. For our purpose we obviously note the celebrated
Green theorem, also called the divergence theorem (Green 1828). He also estab-
lished the Green reciprocity theorem and introduced the notion of Green function,
all extremely useful notions in problems both in electromagnetism and in con-
tinuum mechanics. In a nutshell pertaining to continuum mechanics, combined
with Cauchy’s lemma (1.1), Green’s divergence theorem reads as follows if we
consider a surface distribution of given traction Tdon the regular boundary oBof a
body B with oB equipped with unit outward normal n:

Z

oB
Tdda ¼

Z

oB
n:r da ¼

Z

B
div r dv; ð1:14Þ

hence the importance of this theorem—also attributed to Gauss—for the formu-
lation of continuum mechanics in global form. In truth, the global balance of linear
momentum written as
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d

dt

Z

B
qvdv ¼

Z

B
qfdvþ

Z

oB
Tdda; ð1:15Þ

yields by localization on account of the assumed continuity of the present fields the
standard local balance of linear momentum in the following form in the actual—
Euler—frame of reference:

q
dv

dt
¼ qf þ divr; ð1:16Þ

where q is the matter density at time t, v is the velocity, and f is a density of bulk
force per unit mass. Then (1.1) is none other than the natural boundary condition
associated with (1.16) at the regular boundary oB. The left-hand side of (1.16)
holds good because the elementary mass dm ¼ qdv is assumed constant in time.

Another notion introduced by George Green is that of potential function for
elasticity. The introduction of such a potential means that any path of loading in
the elastic regime of deformations and strains closes to zero energy expenditure.
That is, let W be such a potential. According to Green, the Cauchy stress is derived
from it by the derivative function

r ¼ oW

oe
or rji ¼

oW

oeij
; ð1:17Þ

where the symmetric tensor e of components eij is defined by

e ¼ eij ¼ u i;jð Þ �
1
2

ui;j þ uj;i

� �� �
: ð1:18Þ

Here the vector u of Cartesian components ui is the elastic displacement. In
general, from (1.17) we have.

W je2
e1
¼
Z e2

e1

r: de; ð1:19Þ

which is none other than the elastic energy expended between the two limit strain
states. For a closed circuit this yields that no energy was spent, a statement that is
tautological with the definition of a potential. It is easy to imagine that this may
have had a strong influence on the thoughts of Kelvin pondering the notion of
energy conservation. This potential behaviour is translated into modern anthro-
pomorphic language by saying that the elastic material ‘‘remembers’’ only one
state, the initial one, usually a state of zero energy itself (virgin initial state) and
providing a minimum of energy, hence the required convexity of the function. This
convexity is trivially guaranteed in linear elasticity where W is quadratic in the
strain. To obtain an explicit form of the elasticity constitutive equation, it is
sufficient to know the expression of W. In the general isotropic case, one then
applies the above mentioned Cauchy theorem for isotropic scalar-valued functions,
and the true linear case results by considering only the contributions linear in the
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strain in the constitutive law, hence the Lamé-Navier expression with two coef-
ficients k and l (cf. Eq. (a) above).

Those interested in the person of Green may visit his rebuilt windmill in Nottingham; this
reconstruction and reviving of the mill was mostly due to the combined efforts of the local
university faculty members such as Lawrence J. Challis and Antony J. M. Spencer, the
latter himself a modern ‘‘Cambridgian’’ and renowned mechanician—see Chaps. 3 and 6.

In modern thermomechanics (e.g., in Maugin 2011), if W denotes the strain
energy function (potential) per unit reference volume, we have the elasticity
constitutive equations in the form

T ¼ o �W Fð Þ
oF

; S ¼ oŴ Eð Þ
oE

; E: ¼ 1
2

FT F� 1
� �

; ð1:20Þ

so that T and S are also called the nominal stress and the energetic stress,
respectively. If the second coinage is obvious, the first one comes from the fact
that T represents the stress component per unit surface of the reference configu-
ration. This comes from the property that oriented surface elements in the actual
and reference configurations are related by

nda ¼ JFN:F�1dA; NdA ¼ J�1
F n:Fda; ð1:21Þ

so that

n:rda ¼ N:TdA: ð1:22Þ

Equations (1.21)—relating actual and Lagrangian configurations—were estab-
lished in hydrodynamics in 1874 by another ‘‘Cambridgian’’, Edward J. Nanson
(1850–1936) who made an academic career in Australia (see Nanson 1874).

William Thomson—later called Lord Kelvin—(1824–1907) is the second of
our ‘‘Cambridgians’’. He was a great admirer of Green’s original memoir of 1828,
and he had it re-published in 1846, after which Green’s memoir became popular.
During a scientific visit in Paris Thomson discovered the original work of Sadi
Carnot (1796–1832) on the ‘‘motive power of heat’’ and also the work of B.P.E.
Clapeyron (1799–1864), another ‘‘ingénieur-savant’’ (so was the case of Sadi
Carnot—we shall return to all these French scientists in Chap. 7). It is by com-
bining these influences and that of James Prescott Joule (1818–1889) that
Thomson was led to a formulation of a principle now called the conservation of
energy or ‘‘first law of thermodynamics’’. He was in fact but one of three co-
discoverers of this ‘‘law’’, the other two being Julius R. Mayer (1814–1878) and
Hermann von Helmholtz (1821–1894), both from Germany. But Thomson aka
Kelvin, just as von Helmholtz, was an immense scientist with multiple scientific
interests such as in electromagnetism, electrotechnics, and continuum mechanics.
In the last field he was interested in both fluids and elastic solids. For further
consideration (cf. Chap. 13), we note that like other scientists of this pre-Max-
wellian period (even Cauchy!) he was trying to construct a model of continuum
that could afford the propagation of light in the form of pure transverse waves,
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because this is what was observed according to Augustin Fresnel (1788–1827).
This led to the notion of continuum capable of responding to a density of couple, a
medium with internal rotation now called ‘‘Kelvin medium’’, a precursor of the
generalized continua of which theories would be expended in the 20th century
starting with the work of the Cosserat brothers.

The third ‘‘Cambridgian’’ of interest in the present context is George Gabriel
Stokes (1819–1903) whose name is for ever associated with that of Navier for the
Navier-Stokes equation that governs the flow of linear viscous fluids.

Newton’s viscous constitutive law

r ¼ g
ov

ox
ðfÞ

in 1D, - where g is a viscosity coefficient—was experimentally checked by J.L.M.
Poiseuille (1797–1869, an alumnus from Ecole Polytechnique who became a medical
doctor and famed physiologist) in his study of blood flow, a first in ‘‘ bio-mechanics’’.

For a solid in small deformation we can write

ov

ox
¼ o

ox

ou

ot

� �
¼ o

ot

ou

ox

� �
¼ oe

ot
� _e; ðgÞ

so that (f) yields

r ¼ g _e: ðhÞ
Stokes’ name is also attached to a well known theorem of vector integral calculus in

several dimensions (passing from the circulation along a closed line C to the flux of the
curl across the surface S leaning on that line, i.e.,

I

C
A:dl ¼

Z

S
n: curl Að Þda:

This theorem is of the same nature as the divergence theorem evoked in (1.14)—it
expresses the passing of an integral over a manifold of dimension n-1 to one of dimension
n in the calculus of ‘‘exterior forms’’ (a generalized Stokes theorem); it is of obvious
importance in electricity (for currents) and hydrodynamics (for vortices).

Our fourth giant ‘‘Cambridgian’’ is none other than James Clerk Maxwell
(1831–1873) of electromagnetic fame. But few ‘‘electricians’’ (as Oliver Heaviside
would have called them) know that Maxwell was also the author of a fundamental
work on the mechanics of trusses (exploited in so-called graphic statics in pre-
computer times) and that in his studies of viscous media he introduced a realistic
model of rheological behaviour now called Maxwell model of visco-elasticity. In
terms of rheological models using the vivid image of springs and dashpots this
corresponds to a (Newtonian) viscous element—cf. (f) above—and a (Hookean)
spring element put in series. This, like the so-called Maxwell-Cattaneo conduction
law—that contains a relaxation time—was much influenced by Maxwell’s work in
the kinetic theory of gases.
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In 1D Maxwell’s visco-elastic constitutive equation can be expressed by

1
sM

rþ or
ot
¼ E

oe

ot
: ðiÞ

This can be rewritten as the relaxation equation

o

ot
r� rHð Þ þ 1

sM
r ¼ 0; rH ¼ Ee: ðjÞ

In turn this can be compared to the visco-elasticity law proposed by Thomson (Kelvin)
and Voigt as

r ¼ Eeþ EsKV _e ¼ E eþ sKV _eð Þ; ðkÞ

which clearly is a linear combination of Hooke’s law (b) and Newton’s law (h). This can
also be written as the relaxation equation

oe

ot
þ 1

sKV
e� eHð Þ ¼ 0; eH ¼ E�1r: ðlÞ

In terms of rheological models using the image of springs and dashpots this corresponds
to a (Newtonian) viscous element and a spring element put in parallel.

For the sake of completeness, comparison, and further reference, we mention the
Maxwell-Cattaneo law of heat conduction in the ‘‘relaxation’’ form [compare to (l)]

oq

ot
þ 1

sq
q� qFð Þ ¼ 0; qF ¼ �j

oh
ox
; ðmÞ

where qF is the classical Fourier heat-conduction law with conduction coefficient j in
isotropic bodies.

1.6 The German School and its Giants: Kirchhoff, Clebsch,
Voigt, Mohr, et al.

Many of the great German contributors to our subject matter could also be qual-
ified of ‘ingénieurs-savants’’ for they often were educated in Polytechnic schools
(‘‘Polytechnicum’’)—or Technischen Hochschulen in a more recent jargon—all
more or less founded as imitations of the French Ecole Polytechnique. One of the
first characters in that play is Karl Cuhlman (1821–1861). He received his engi-
neering education at the Polytechnicum in Karlsruhe. He was himself active in the
study of railways structures and bridges. He did mostly works related to the
strength of materials and graphic statics. More important than him for our purpose
is Franz E. Neumann (1798–1895) who graduated from the University of Berlin
(Doctoral degree in mineralogy and crystallography). His work in elasticity was
conducted in parallel with those of Navier, Cauchy and Poisson, establishing the
number of elasticity constants for anisotropic materials. For isotropic elasticity he
established without doubt that two coefficients—the Lamé coefficients—were
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necessary (and not only one as had been assumed by some French elasticians). He
may also be considered one of the founding fathers of photo-elasticity after his
study of double refraction in stressed transparent bodies. This he applied to
thermal stresses (Cf. Duhamel). He was a reputed lecturer and author of highly
appreciated books who mentored some of our relevant characters: Gustav R.
Kirchhoff (1824–1887), Alfred Clebsch (1833–1872), and Woldemar Voigt
(1850–1919). His influence on these scientists is mostly felt in the domain of
elasticity.

The first of Neumann’s disciples, Kirchhoff, was to become one of the German
giants in continuum mechanics for the 19th century, although his reputation in
electricity, spectroscopy, black-body radiation, and thermo-chemistry is at the
same if not higher prestigious level. It is in Königsberg that Kirchhoff took lectures
with Neumann. He later became a professor of physics in Breslau, Heidelberg and
finally Berlin. We already cited Kirchhoff in relation to the Piola-Kirchhoff stress
defined in (1.8). From this we can construct the Piola-Kirchhoff format of con-
tinuum mechanics. For instance, if we note the demonstrable identities

rR: JFF�1
� �

¼ 0; r: J�1
F F

� �
¼ 0; ð1:23Þ

by applying JFF�1 to the left of (1.16) and accounting for the continuity equation
q0 ¼ qJF between actual and reference configurations, we obtain the balance of
linear momentum in the form

o

ot
pR � divRT ¼ q0f or

o

ot
q0við Þ � o

oXK
TK

i ¼ q0fi: ð1:24Þ

That is, while now this equation makes use of independent time and space partial
derivatives (since t and XK - K = 1, 2, 3—form a set of time and space independent
variables in this parametrization), the equation still has components in the actual
configuration. Writing the associated natural boundary condition requires using the
Nanson formulas (1.21) and (1.22). Note that (1.24) holds true because in the absence
of growth or resorption of matter (see Chap. 14 for this case), the continuity equation
in the Piola-Kirchhoff format can simply be written as

oq0

ot

����
X

¼ 0: ð1:25Þ

Kirchhoff made another important contribution to continuum mechanics and the
mechanics of structures by constructing a model theory for the bending of plates.
The two-dimensional equation deduced from a variational principle (principle of
virtual work) that governs the deflection w at the mid-surface of the plate reads

D
o4w

ox4
þ 2

o4w

ox2oy2
þ o4w

oy4

� �
¼ q; ð1:26Þ

where D is the flexural rigidity of the plate. To arrive at this equation, Kirchhoff
had to formulate a reduced potential energy that accounts for a set of basic
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kinematic hypotheses concerning the section of the plate normal to the middle
surface and the neglect of any stretching of the elements of the middle plane for
small deflections. This much improved the tentative theory proposed earlier by
Sophie Germain (1776–1831) even after correction of S. Germain’s mistakes by
Lagrange. In a modern vision, establishing the crucial Eq. (1.26) is one example of
the reduction of a three-dimensional elasticity problem to one in two dimensions
by an asymptotic procedure (cf. works by Ambartsumian, Gold’enveizer, Ciarlet
and others in the period 1950–1980). Kirchhoff’s theory is now referred to as the
Love-Kirchhoff theory of plates after A.E.H. Love (1863–1940), another ‘‘Cam-
bridgian’’ who nonetheless had his whole scientific career at Oxford. Love
extended Kirchhoff’s approach to the case of thin shells. But Kirchhoff also studied
theoretically and experimentally the vibrations of plates on the basis of his model.
He also subsequently extended his theory of plates to include the case of not too
small deflections. All of Kirchhoff work on plates has provided the most important
basis for the computation of thin-walled structures. Thomson (Kelvin), already
cited, improved on Kirchhoff’s theory of plates by specifying the boundary con-
ditions concerning shearing forces and bending moments at an edge.

Another student of Neumann in Königsberg was Clebsch. He wrote a thesis in
fluid mechanics. He became a professor at the Polytechnicum in Karlsruhe when he
was only twenty five after spending a short time at the University in Berlin. It is
while at Karlsruhe that he wrote a famous book on elasticity—Theorie der
Elastizität fester Körper—when there existed only one such book, by Lamé,
available. He wrote it for engineers, but with special emphasis on mathematical
methods of solutions, often loosing the physical aspect. This gave the opportunity to
Barré de Saint-Venant in his French translation of this book to expand the matter in
such a way that the bulk of the book tripled in translation, resulting in a book that
was more his than Clebsch’s. The mathematical inclination of Clebsch and his
remarkable gift for it resulted in Clebsch becoming a professor of pure mathematics
and ending his brief career as one of the best German mathematicians of his period
(works on variational problems, Abelian functions, invariant theory, algebraic
geometry) in Göttingen after teaching in Giessen. Among his famous students we
find Max Noether (the father of Fritz and Emmy Noether—see Chap. 14) and Felix
Klein (1849–1925) who was to play an instrumental role in German mathematics.
He was a co-founder of one of the best journals in mathematics, Mathematische
Annalen. He died untimely of diphteria. His contribution to the mechanics of
continua, achieved during his youngest research period, remains a fundamental one
and was considerably enriched by Barré de Saint-Venant.

Woldemar Voigt was also one of the successful students and disciples of
Neumann. But he more closely than others followed his master in devoting much
work to the elasticity of crystals that culminated in his book ‘‘Lehrbuch der
Kristallphysik’’ (First German edition, Teubner, Leipzig, 1910). It is during this
work that he was led to introducing the recently created notions of tensor and
tensor-triad in the theory of continua, so much that tensor algebra and analysis
practically became synonymous with that field in the eyes of many physicists. Of
course, the word ‘‘tensor’’ smells of its mechanical origin. It is less known that
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Voigt anticipated the Lorentz-Poincaré transformation formulas in special rela-
tivity and that he was the first to propose a correct Lagrangian density in
electrodynamics.

Another line or remarkable chain of German contributors to continuum
mechanics in the large starts with Otto Mohr (1835–1918). This line extends to the
middle of the 20th century with August Föppl (1854–1924), Ludwig Prandtl
(1875–1953), and Theodor von Kármán (1881–1963). Mohr was a railway-structural
engineer who graduated from the Polytechnicum in Hannover. He taught engi-
neering mechanics first at the Polytechnicum in Stuttgart and then in Dresden.
Following along the path of Karl Cuhlman (see above), he was very much interested
in graphical methods (Graphische Statik). He is universally known for his two-
dimensional representation of the stress state by means of so-called Mohr circles.

After starting his engineering studies at the Polytechnicum, August Föppl
transferred to Stuttgart where he took courses with Mohr, but he finally graduated
from the Polytechnicum in Karlsruhe. He was basically a structural engineer with a
strong side interest in electricity. Regarding the later field, he popularized Max-
well’s theory of electromagnetism in a book published in 1894—the first of its
kind in Germany. This book is supposed to have left a definite print on Einstein as
a young man. A talented teacher in Munich, he also published the most popular
book on engineering mechanics in German-speaking countries. He counts among
his students Ludwig Prandtl who worked with him on solid mechanics. Prandtl
taught first at the Polytechnicum in Hannover and then at the university of Göt-
tingen. He is considered to be the father of modern aerodynamics. His works in
this field are marked by mathematical subtleties such as in his theory of the
boundary layer. Together with Richard von Mises (1883–1953) he founded the
(German) Society of Applied Mathematics and Mechanics (G.A.M.M). One of his
co-workers in Göttingen was von Kármán who came from Hungary and would
later become the founder of the Jet Propulsion Laboratory at Caltech and a
prominent figure in aeronautical government agencies in the USA. A theory for
large deflections of plates is named after Föppl and Kármán. Kármán was also
responsible for the basic dynamic theory of elastic crystal lattices together with
Max Born (of quantum-mechanical fame).

This overview of German contributions would not be complete without the
repeated mention of Hermann von Helmholtz. A medical doctor and physiologist
by formation, Helmholtz is one of the most brilliant and versatile mind of the 19th
century. His formidable scientific production covers sensing physiology, oph-
thalmic optics, nerve physiology, acoustics, electromagnetism and mechanics. Of
course, in the present context he is most well known for his co-discovery of the
first law of thermodynamics, a law of conservation that includes all forms of
energy, whether of mechanical, electrical, etc, origin. From the point of view of
elasticity and acoustics he introduced the Helmholtz decomposition of a vector
field—that is essential in many problems of elasticity and elastodynamics—as also
the well known Helmholtz equation. He mentored many famous physicists, among
them Max Planck, Wilhelm Wien, Henry Rowland, A.A. Michelson and Michael
Pupin. He has successively taught in Königsberg, Bonn, Heidelberg, and Berlin.
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Note that Heinrich Rudolph Hertz (1857–1894) was a student of Helmholtz and
Kirchhoff in Berlin. He in fact became Helmholtz’ assistant in 1880 for a period of
three years. Hertz is known among mechanical circles for his works on the
compression of elastic bodies and his theory of contact that he worked out while in
Berlin. After Berlin, Hertz was a professor first in Kiel and then at the Poly-
technicum in Karlsruhe, where he conducted his famous experimental work on
electromagnetic waves, thus proving the correctness of Maxwell’s equations. He
also wrote a highly praised book on the principles of mechanics.

1.7 Concluding Remark

In this chapter which rapidly spanned the 18th and 19th centuries, we have identified
the main landmarks in a concise historical view of the early developments of the
science of continuum mechanics. We have explored its strengthening and consoli-
dation in a true field of applied mathematics in the form of a mix of ‘‘rational
mechanics’’ and engineering. Leaning on the firm bases of Newtonian axioms and
necessarily starting with duly abstracted models exploiting essentially Cauchy’s
construct, we have witnessed a growing ‘‘mathematization’’ of the field. Starting
with idealizations and abstractions that avoid the true complexity of the mechanical
behaviour of existing materials, this development had mostly been the result of the
hard work of many civil engineers although these individuals were equipped with a
sound mathematical formation and a great ingenuity. Most of the breakthrough
results were obtained in three countries, France, the United Kingdom, and Germany,
in reason of the advance of these countries in civil engineering, their growing
industrial needs, and the existence of appropriate schools often providing the needed
‘‘ingénieurs-savants’’. A marked tendency in the observed 19th century develop-
ments was, apart from necessary experiments, the will to solve problems with
sophisticated mathematical tools, which tools were practically created purposefully
for these solutions. The near future would be to better describe the real mechanical
behaviour of materials at a macroscopic scale, incorporate more deeply the ther-
modynamic background, and also to take some time to ponder the general philoso-
phy—its structure and principles - behind this science. This is the main nature of the
progress achieved in the next period that we circumscribe to the time interval
1880–1914. This we consider to be a transition to the true, unfortunately agitated but
simultaneously rich, 20th century, the object of this book.

1.8 Further Reading

Selected historical landmark contributions are to be found in Cauchy (1828),
Duhamel (1837), Green (1828, 1839), Kirchhoff (1876), Piola (1836, 1848), and
Weyl (1946). Epistemological study of Duhem’s works is to be found in Bachelard
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(1927), and of Cauchy’s deep contributions in Belhoste (1991) and Dahan-
Delmonico (1984–1985). An interesting overview of Green’s life is given in
Cannell (1993). Pertinent historical reviews in continuum and solid mechanics are
given by Barré de Saint-Venant (1864), Todhunter (1886), Timoshenko (1953),
Truesdell (1968, 1976, 1984) and Soutas-Little (2011). More broadly, Dugas
(1950) and Szabò (1977) look at general mechanics, and Whittaker (1951) and
Schreier(1991) to physics. Warwick (2003) focuses on mathematical physics at
Cambridge. Gillispie (1974) remains a real mine concerning scientific biographies
written by specialists.
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