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Preface

What is This Book About?

‘‘You reasoned it out beautifully…

It is so long a chain, and yet every link rings true’’

(Dr. Watson to Sherlock Holmes)

The proposed conspectus of the development of continuum mechanics
throughout the twentieth century seems to be unique in its scope and ambition.
Although reminding the reader of the early developments of the discipline with the
magisterial works of our elders (from Newton to the late nineteenth century or
more precisely the advent of the First World War), the book concentrates on the
twentieth century, and more particularly on its second half, as witnessed by the
author who has lived directly through these developments, and has humbly tried to
contribute to them. But the main reason for this delineation is that the post World-
War Two period saw an incredible burgeoning and progress in the enlargement of
the field, its mathematization and its rational organization, i.e., both in its objec-
tives and methods, to the benefit of fruitful applications to the mechanics of large
classes of materials and in reciprocal interaction with other fields. This has been a
fruitful period that saw a consolidation of analytical works, and a development of
new aspects, both in modeling and mathematical approach.

This is placed in a context where the marked interest of the author for the
history of Science, for Epistemology, and for People is obvious, having been much
influenced by Pierre Duhem and Clifford Truesdell. Accordingly, this is also a
study about individuals and scientific schools and institutions in an evolving social
and historical context that experienced tragic events. We hope the book succeeds
to present with objectivity a balanced appraisal of contributions from various parts
of the world. The chosen approach emphasizes the importance of the role played
by (i) organized professional groups, e.g., the A.S.M.E with its specific spirit in the
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USA, (ii) traditional strongholds such as the University of Cambridge in the UK or
the Technical University of Hannover in Germany, (iii) remarkable individuals
such as Clifford Truesdell in the USA, or Paul Germain in France, or still Leonid
Sedov in the Soviet Union, and others in Poland, Germany, and Japan, and (iv) a
well-structured network of teaching institutions and research units whether in
countries that inherited from the Austro-Hungarian Empire, or in the original
system of ‘‘grandes écoles’’ in France and their copies all over the world, or the
Academies of Sciences in formerly communist-led countries such as the Soviet
Union. That is, the development of modern continuum mechanics; in spite of its
technical subtleties (effects of nonlinearity, thermodynamic irreversibility,
microstructure, and singularities) that are carefully scrutinized, is shown to take
place within a true human background with its grandeurs and pettiness, and not as
a purely abstract teleological evolution. This permeates an exposition which is,
therefore, vivid and bears witness of an epoch making process, to which the author
contributes both his technical expertize and his international experience.

In order to fulfil this ambitious project and to satisfy the various needs of
potential readers, a three-way strategy has been implemented. After two pre-
liminary chapters that take the reader to post World War I and underline the newly
raised technical questions and the ongoing general reflections on the bases of
continuum mechanics, three chapters are devoted to: (i) new progress in nonlinear
aspects (in both elastic solids and the newly formulated rheology of non-Newto-
nian fluids), (ii) a specific spirit distilled to continuum mechanics by the influential
organized group represented by the American Society of Mechanical Engineers (in
particular with works in plasticity but also in coupled fields), and (iii) the aerial
view of continuum mechanics introduced by the Truesdell School with its efforts at
a true rationalization and axiomatization, as well as its construct of an efficient
thermomechanics, and its positioning in a real historical perspective.

The second strategic line is implemented in the next six chapters where a more
per-country or regional view has been chosen for reasons that should be clear
enough. This is due to the existence—still true at the time of most of the second
half of the twentieth century—of national styles, peculiar teaching and research
institutions inherited from the past, and the role played by some remarkable
individuals. This is the case in the UK, France, Poland, and Germany. The rest of
western and southern European contributions are described in one lengthy chapter
together with some indications on some Asian countries. It is to repair an unjust
too frequent belittling of the role played by the Soviet Union and Russia that a long
chapter is devoted to them. This allows for a more balanced view than usually
given.

The third line consists in the deeper and more technical examination of four
special avenues of developments which the author estimates to be most
emblematic-and original-of the last 50 years and to which he can devote a more
thoughtful approach having been much involved in these. They are: (i) the
interaction between continuum mechanics and electromagnetism, (ii) the
mechanics of generalized continua, (iii) the so-called configurational mechanics of
continua, and (iv) relativistic continuum mechanics. These four avenues bring us
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closer to other fields of physics in conjunction with typical twentieth century
developments (exploitation of coupled fields, physical acoustics, solid-state
physics, the ‘‘mechanics of materials’’, and relativistic physics). An epilogue
providing a general summary and pointing to recent and future developments
(going to smaller scales, influence of powerful computational means, and a true
internationalization of science) is given by way of conclusion. An appendix pre-
senting about one hundred short biographies of the most fruitful contributing
mechanicians in the considered period is given in encyclopedic form to the benefit
of all readers who can satisfy a legitimate curiosity by finding there useful, albeit
brief, information.

The bibliography given in different chapters is generous-in all, more than 900
entries. As it is conceived and written with an obvious generosity of information
and a rather open mindedness to many styles and objects of works, the book,
despite its inherent concision, should satisfy the curiosity and attract the interest of
all those involved in the study and development of continuum mechanics as a
general contemporary science.

In writing this book, I admit to have benefited from a powerful memory of
names, dates, and research papers, on which is grafted a certain interest for foreign
languages, at least in reading form. However, in the line of the teaching of one of
my mentors, Paul Germain in Paris, I always pondered all contributions, trying to
extract the best of each without prejudice, and being aware that scientific activity
remains the product of human beings, with their qualities and deficiencies. But
some enounced appraisals may be thought too severe, and others too lenient. In all
cases, the author takes the full responsibility of his judgment. For some largely
unknown reasons, but perhaps because of the exceptional quality and ego of many
involved scientists in our field in the examined period of time, there have been
vivid discussions on some privileged advances, not the least in the always debated
thermomechanics of continua. This is sometimes reflected in the book where I do
not hesitate to give my own viewpoint that might not be shared by all. In forming
my views, I also had the chance to be scientifically formed in two countries
(France and the USA) and to have entertained a professional position that allowed
me to benefit from cooperative scientific stays in many countries. I was also lucky,
and honored, to deliver series of graduate lectures to students and professors from
all over the world at the International Centre of Mechanical Sciences (so-called
CISM) in Udine, Italy, and this for a record number of eight times between 1977
and 2011. All these opportunities were dutifully exploited, first to establish
enriching contacts and build enduring friendships, and next to get acquainted with
other systems of higher education and research and their past history.

These words should be enough to explain to the reader the frame of mind in
which this book was written, as a mixture of plain scientific facts and personal
recollections. The level of required knowledge is that of graduate studies and of
professional researchers in continuum mechanics. I have avoided too many
equations, keeping only a few representative ones. As to the rather rich bibliog-
raphy, either it serves to substantiate a specific information or it provides an idea of
works published by some of the most fruitful scientists, often in the form of books.
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Finally, very close to the spirit of autobiographical notes, from time to time I give
within squared brackets [..] what I call a ‘‘personal touch’’, what mostly consists in
injecting some personal recollection to relax the reader from an obviously extre-
mely serious reading of a dense text. I wish the reader an utmost pleasant and
rewarding reading.

Heart full thanks are due to my worldwide friends who contributed valuable
information, and to my colleague, Dr. Martine Rousseau (Paris), for her critical
reading of most chapters.

Special thanks go to those who have been essential in the editing and production of
this book, namely: Professor G.M.L. Gladwell, Editor-in-Chief, who unhesitat-
ingly welcomed the book in his formidable series, Nathalie Jacobs and Cynthia
Feenstra for their friendly editing at Springer in Dordrecht, and the production
team at SPS in Chennai for their understanding and professional competence.

Paris, February 2013 The Author
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Chapter 1
The Land Clearers and the ‘‘Classics’’

Abstract This chapter has for object to remind the reader of the early developments
of continuum mechanics-after the seminal works in mechanics by Descartes,
Huygens, Newton and Leibniz-in the expert hands of the initiators of this science (the
Bernoulli family, d’Alembert, Euler, Lagrange). This was rapidly followed by the
foundational contributions of the first half of the Nineteenth century with Cauchy and
Navier (in France), Piola (in Italy), Kirchhoff (in Germany), and those of various
giants of science such as Green, Kelvin, Stokes, Maxwell, Boussinesq, Poiseuille,
Clebsch, von Helmholtz, Voigt, Mohr, and Barré de Saint-Venant later in the
century. The emphasis is placed on the role played by so-called ‘‘ingénieurs-
savants’’, many of them educated at the French Ecole Polytechnique and the engi-
neering schools inspired by this school all over Europe. Lamé, Navier and Duhamel
in France and their Italian colleagues are examples of such people who harmoniously
combined works in a much wanted contribution to civil engineering and a sure
mathematical expertise in analysis. In contrast, the German and English contributors
were more inclined towards an emerging true mechanical engineering and some-
times a burgeoning mathematical physics. This means that various national styles
were being created despite the overall solution power of analysis and the birth of
linear and tensor algebras.

In general a direct intrinsic notation is used for vectors and
tensors, but a Cartesian index notation is introduced when a
risk of confusion arises with the intrinsic one.

1.1 Analysis and Partial Differential Equations:
18th Century

We will be dealing with the mechanics of continua. Accordingly, the primary
notion is that of analysis since the notion of continuity can only be defined within
the mathematical specialty called analysis. We admit that with the works of,

G. A. Maugin, Continuum Mechanics Through the Twentieth Century,
Solid Mechanics and Its Applications 196, DOI: 10.1007/978-94-007-6353-1_1,
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among others, René Descartes (1596–1650), Isaac Newton (1643–1727) and
Gottfried W. Leibniz (1646–1716), we have at hand the standard formulation of
analysis—also called differential and integral calculus—but for functions of one
variable only. The necessary consideration of both time and space variations (in
dynamics) and of multi-dimensional problems (in two or three space dimensions)
requires the introduction of the notion of partial derivative. This we essentially
owe to the Bernoulli’s—John (1667–1748) and Daniel (1700–1782), John’s son—
and Jean Le Rond d’Alembert (1717–1783). In particular, the last author has
formulated the first equation of wave motion—a second-order partial differential
equation of the so-called hyperbolic type (finite velocity of propagation)—with its
paradigmatic solution. Thus the path was paved for the fundamental works of
Leonard Euler (1707–1783), Joseph Louis Lagrange (1736–1813) and Augustin
Louis Cauchy (1789–1857).

1.2 Transition to the 19th Century

In possession of the appropriate tools, Euler, Lagrange and Cauchy were able to
formulate the standard theory of perfect fluids and perfectly elastic solids, two
cases in which ideal descriptions cope with what we now call nondissipative
behaviours. It is this ‘‘perfection’’ that brings these modellings in a framework
equivalent to that given by preceding and contemporary scientists to point and
rigid-body mechanics, what was rapidly called ‘‘rational mechanics’’. Only reason
is at work in an intellectual construct that is entirely logical once the premises are
assumed as postulates. This is reflected in the absence of figures in the book (1788)
on ‘‘Méchanique analitique’’ (old French orthography) of Lagrange. These two
cases are also the extreme cases—pure fluidity and pure elasticity—in the land-
scape so beautifully described in his ‘‘continuity of states’’ by Walter Noll in 1955.
As we shall see, many of the developments in the 19th century and much more in
the second half of the 20th century, deal with the formulation of ‘‘imperfect’’ cases
now included in a thermo-mechanical theory of thermodynamically irreversible
behaviours (fluid viscosity, visco-elasticity of solids, plasticity of solids, etc).

What is perhaps more to the point at this stage of our story are the following two
elements. The first of these is the formulation of variational principles by Euler and
Lagrange, culminating in the already cited ‘‘Méchanique’’ of Lagrange of 1788. This
was to provide the essential tool in general field theory in the expert hands of William
Rowan Hamilton (1805–1865) and others, but also to set forth the necessary basis of
the modern formulation of the mechanics of continua both in its mathematical
properties and the required numerical methods (e.g., finite-elements, optimization).
The above mentioned ‘‘imperfect’’ cases cannot, in principle, be deduced from a
variational formulation in the manner of Lagrange and Hamilton.

The second element is none other than the introduction of the notion of stress
tensor (of course not called this when the notion of tensor did not exist yet) by
Cauchy in his first theory of continua (1822, published in 1828). This is the object
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r that relates linearly the externally pointing unit normal n to a facet cut in a
material body to the applied (in any direction) external traction Td at this point of
the facet, according to the now common formula

Td ¼ n:r: ð1:1Þ

The object r is often (but not always) a symmetric second-order tensor. It is also
generally thought that the relation (1.1) does not involve any constitutive
hypothesis—i.e., is independent of the considered material. We shall see when we
consider generalized continua (cf. Chap. 13) that this vision is not exactly correct.
In truth (1.1) is strictly valid only for so-called ‘‘simple’’ materials in Noll’s
classification (see Chap. 5). However, the formula (1.1), that is sufficiently general
for many practical cases, is a decisive advance compared to the case of perfect
fluids considered by Euler. Euler’s case corresponds to an applied traction aligned
with the unit normal n, reducing thus the notion of stress to a unique scalar
quantity, the pressure p, with (1.1) reduced to

Td ¼ � pn ; ð1:2Þ

where the minus sign is conventional.
We cannot simultaneously ignore that Cauchy was also instrumental in making

much more precise the basic notions of analysis (convergence, limits, derivatives,
integrals) all relevant to the mechanics of continua. We also owe to him a cele-
brated representation theorem for scalar-valued isotropic functions. This theorem
provides a way for deducing the set of quantities—so-called invariants—on which
such a function depends as a result of isotropy (equivalent response in any
direction = invariance by the orthogonal group of transformations of material
space). This important theorem for many mechanical behaviours of continua was
recalled by Herrmann Weyl in his famous book on classical groups of 1946.

1.3 Finite Deformations: Piola, Kirchhoff, Boussinesq

Euler and Lagrange are usually considered as responsible for the kinematic
descriptions of continua called, Eulerian and Lagrangian, respectively (although
this may not be exactly true). In the first description, all dependent variables are
expressed as function f x; tð Þ of the actual position x—so-called placement in the
modern jargon—of an infinitesimal element of matter at time t in Euclidean
physical space and of the Newtonian time t itself. In the so-called Lagrangian
vision the actual placement x is a function of time, but also of a previously
occupied position, say x0, a so-called initial placement. That is,

x ¼ �x x0; tð Þ: ð1:3Þ

The Italian scientist Gabrio Piola (1794–1850)—author of lengthy papers in the
period 1825–1848 and honoured by a beautiful pedestal statue in his native
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Milano—was a disciple of Lagrange. Accordingly, he prefers variational formu-
lations. But more than that, he introduced the somewhat more abstract notion of
‘‘material’’ coordinates that we denote collectively by the symbol X. This ‘‘con-
figuration’’, called the reference configuration KR is chosen as a most convenient
one for the problem under study. The resulting space-time parametrization of a
general deformation mapping is therefore written as

x ¼ ~x X; tð Þ: ð1:4Þ

If this relation is sufficiently regular, i.e., with

F ¼ rR~x ¼ o~x

oX
; JF ¼ det F [ 0; ð1:5Þ

we can define the inverse motion

X ¼ ~x�1 x; tð Þ: ð1:6Þ

Thus, on account of (1.4) and (1.3)

x ¼ ~x ~x�1 x0; t0ð Þ; t
� �

¼ x̂ x0; t; t0ð Þ ¼ �x x0; tð Þ: ð1:7Þ

Although obviously not equipped with the notion of tensor transformations,
Piola recognized that in the abstractly introduced configuration KR described by
the spatial parametrization X one could introduce a stress tensor (in fact not a
standard second-order tensor), by the so-called Piola transformation (1836, 1848):

T ¼ JFF�1:r; r ¼ J�1
F F:T; ð1:8Þ

where F�1is the inverse of F such that

F�1 ¼ o~x�1

ox
; FF�1 ¼ 1: ð1:9Þ

Conscious of the arbitrariness of the choice of his reference configuration KR,
Piola selects it as one of uniform density equal to one. Since we know that mass
conservation is expressed by

qR ¼ qJF; ð1:10Þ

Piola writes ‘‘his’’ transformation as

qT ¼ F�1:r: ð1:11Þ

Although Piola could not write his transformation in this simple condensed
intrinsic form, his writing of typical components reveals an understanding of a
hidden algorithm that will later be interpreted within tensor algebra.

The concept of Piola stress was comforted by Gustav R. Kirchhoff
(1824–1887), so that the object T in (1.7) is nowadays called the first Piola-
Kirchhoff stress. A second Piola-Kirchhoff stress S can also be introduced by
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completing the true tensor transformation between stresses in the actual and
reference configurations by the definition: (The symbol –T means the transpose of
the inverse).

S ¼ T:F�T ¼ JFF�1:r:F�T ; ð1:12Þ

where the superscript T denotes the operation of transposition. Both T and S have a
deep thermodynamic significance.

Joseph V. Boussinesq (1842–1929), in his study of finite deformations intro-
duces the stress object B such as [compare (1.11)]

B ¼ F�1: r: ð1:13Þ

That is why we consider Piola, Kirchhoff and Boussinesq the founding fathers
of the theory of finite transformations in spite of the pioneering works of Lagrange
and Cauchy.

1.4 The French ‘‘Ingénieurs-savants’’

In a further chapter (Chap. 7) we shall emphasize the role of the Ecole Poly-
technique in the formation of a special scientific trend and ‘‘spirit’’ in the early
19th century: the appearance of what the British historian of sciences Ivor Grattan-
Guinness (1993) calls ‘‘ingénieurs-savants’’. This is a group of alumni from that
engineering school who received from their masters (Monge, Bossut, Lacroix,
Lagrange, Cauchy, Fourier) a remarkable mathematical education although they
were usually destined to work on engineering projects, essentially in civil engi-
neering. They applied their mathematical technical skill and their physical inge-
nuity in fostering various facets of the ‘‘rational’’ mechanics of continua. Among
these individuals, for our present purpose, we single out C.M.L. Navier
(1785–1836), Gabriel Lamé (1795–1870), and J.M.C. Duhamel (1797–1872).
Albeit a disciple of Laplace in his Newtonian particle-action-at-a-distance view,
the first of these was instrumental in developing both continuum fluid mechanics
and elasticity. In the case of fluids, he constructed what is now called the Navier-
Stokes equation that involves shear motion and the allied viscosity. With this one
enters the domain of nonideal fluids as compared to Euler’s ideal fluid. In elas-
ticity, he was responsible for the introduction of the so-called Navier equations for
isotropic elasticity (although not on the basis of Cauchy’s stress argument) in
small strains. The difference in the technical approaches led to a thorough dis-
cussion about the number of existing elasticity coefficients (one or two in the case
of linear isotropic elasticity?). As we know now, the correct answer is two, and
these coefficients k and l are called after the second of our ‘‘ingénieurs-savants’’,
Lamé.
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In Cartesian indicial tensor notation and intrinsic notation, Hooke’s law for isotropic
materials reads

rji ¼ kekkdji þ 2leij; r ¼ k treð Þ1þ 2le: ðaÞ
In 1D in the x-direction this takes the simple form (all quantities are scalars)

r ¼ Ee; e ¼ ou=ox: ðbÞ
This reflects mathematically the celebrated Hooke’s law according to which ‘‘elonga-

tion is proportional to the applied force’’, i.e., (Robert Hooke 1635–1703)

dl=l0 ¼ kF; ðcÞ

where l0 is the initial length, k is a coefficient of proportionality, and the force F should
remain reasonably small. The coefficient E is called the Young modulus after Thomas
Young (1773–1829), a polymath in competition with Jean-François Champollion
(1790–1832) for the deciphering of Egyptian hieroglyphs, a competition that he lost.
Hooke’s law (c) belongs to what we shall call ‘‘physical mechanics’’ as it is based on
observation. Navier’s elasticity equations are the field equations obtained by substituting
from (a) in the balance of linear momentum.

The third of the ‘‘ingénieurs-savants’’ is Duhamel, probably less known than the
other two. But he was more a ‘‘savant’’ than an engineer as he never graduated
from the Ecole Polytechnique, having been expelled from the school in 1816 with
all his fellow classmates for political reasons. His originality stems from the fact
that he was the first to study a problem of coupled fields in continuum mechanics,
namely, thermo-elasticity (1838). Of course he could do that only after Carnot and
Fourier had developed the necessary ingredients for treating heat conduction
alone. But Duhamel had the right intuition in attacking this coupled-field problem,
even though the best applications of that new field would be only in the 20th
century. Furthermore, his was probably the first example of considering a non-
isotropic material response since he was conscious that some directions may be
more important than others and thus privileged contrary to the often assumed
isotropy (no preferred direction). This matter was studied in detail from the
viewpoint of epistemology by Gaston Bachelard, a French philosopher of sciences,
in 1927.

In 1D the Hooke-Duhamel constitutive equation of thermo-elasticity reads

r ¼ Eeþ m h� h0ð Þ; ðdÞ

where h is the thermodynamical temperature, h0 is a reference temperature, and m is the
thermo-elasticity coupling coefficient. Thermal expansion is obtained by putting r ¼ 0 in
(d) and solving for e, yielding thus

eh ¼ a h � h0ð Þ; ðeÞ

where a ¼ �m=E is the coefficient of thermal expansion.
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1.5 The British Giants: Green, Kelvin, Stokes, Maxwell

We are concerned with a group of British scientists whom we collectively call the
‘‘Cambridgians’’ (some may think that ‘‘Cantabridgians’’ would be better). They
share a similar vision of the physical world and also a practically identical for-
mation. They have been educated at Cambridge and some of them taught there
also. They have also in common to have been influenced by the French school of
mathematics of the late 18th century—early 19th century, a school that had chosen
to exploit Leibniz’ notation rather than Newton’s one in analysis, e.g., from
Bossut’s and Lacroix’s sources used at Polytechnique (cf. Bossut 1800). This was
a happy choice of far reaching consequence because it contributed to a new
blossom of British mathematical physics that brought British authors to the top of
the field in the 19th century. After these ‘‘Cambridgians’’, there came the
‘‘Maxwellians’’—who may also have been ‘‘Cambridgians’’—among whom we
must count Heaviside and Larmor.

(Abbé) Charles Bossut (1730–1814), a disciple of d’Alembert and a specialist of hydro-
dynamics, but also an underestimated historian of mathematics, was a remarkable peda-
gogue. His course of mathematics at the Military school of Mézières (cf. Sect. 7.1) was
first published in 1781. Its last edition (1800) was in seven volumes, of which two were
devoted to differential and integral calculus in the Leibniz notation. He was a colleague of
Laplace and Lagrange at the Paris Academy of Sciences, but not in the same class as these
two mathematicians-mechanicians from the point of view of creativity. He practically
ended his career as an examiner in mathematics at the Ecole Polytechnique
(1796–1808)—it seems to have been the oldest examiner ever at that school.

Among the ‘‘Cambridgians’’ George Green (1793–1841) is a very special case
in the sense that he practically concluded his scientific life with his studies as an
undergraduate at Cambridge. Indeed, a miller by profession and practically an
autodidact, he wrote some of his most beautiful memoirs after having studied by
himself the French pedagogues. It is as a consequence of these early successes that
he was sent to Cambridge University where, among other things, he unfortunately
learned gambling and drinking. For our purpose we obviously note the celebrated
Green theorem, also called the divergence theorem (Green 1828). He also estab-
lished the Green reciprocity theorem and introduced the notion of Green function,
all extremely useful notions in problems both in electromagnetism and in con-
tinuum mechanics. In a nutshell pertaining to continuum mechanics, combined
with Cauchy’s lemma (1.1), Green’s divergence theorem reads as follows if we
consider a surface distribution of given traction Tdon the regular boundary oBof a
body B with oB equipped with unit outward normal n:

Z

oB
Tdda ¼

Z

oB
n:r da ¼

Z

B
div r dv; ð1:14Þ

hence the importance of this theorem—also attributed to Gauss—for the formu-
lation of continuum mechanics in global form. In truth, the global balance of linear
momentum written as
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d

dt

Z

B
qvdv ¼

Z

B
qfdvþ

Z

oB
Tdda; ð1:15Þ

yields by localization on account of the assumed continuity of the present fields the
standard local balance of linear momentum in the following form in the actual—
Euler—frame of reference:

q
dv

dt
¼ qf þ divr; ð1:16Þ

where q is the matter density at time t, v is the velocity, and f is a density of bulk
force per unit mass. Then (1.1) is none other than the natural boundary condition
associated with (1.16) at the regular boundary oB. The left-hand side of (1.16)
holds good because the elementary mass dm ¼ qdv is assumed constant in time.

Another notion introduced by George Green is that of potential function for
elasticity. The introduction of such a potential means that any path of loading in
the elastic regime of deformations and strains closes to zero energy expenditure.
That is, let W be such a potential. According to Green, the Cauchy stress is derived
from it by the derivative function

r ¼ oW

oe
or rji ¼

oW

oeij
; ð1:17Þ

where the symmetric tensor e of components eij is defined by

e ¼ eij ¼ u i;jð Þ �
1
2

ui;j þ uj;i

� �� �
: ð1:18Þ

Here the vector u of Cartesian components ui is the elastic displacement. In
general, from (1.17) we have.

W je2
e1
¼
Z e2

e1

r: de; ð1:19Þ

which is none other than the elastic energy expended between the two limit strain
states. For a closed circuit this yields that no energy was spent, a statement that is
tautological with the definition of a potential. It is easy to imagine that this may
have had a strong influence on the thoughts of Kelvin pondering the notion of
energy conservation. This potential behaviour is translated into modern anthro-
pomorphic language by saying that the elastic material ‘‘remembers’’ only one
state, the initial one, usually a state of zero energy itself (virgin initial state) and
providing a minimum of energy, hence the required convexity of the function. This
convexity is trivially guaranteed in linear elasticity where W is quadratic in the
strain. To obtain an explicit form of the elasticity constitutive equation, it is
sufficient to know the expression of W. In the general isotropic case, one then
applies the above mentioned Cauchy theorem for isotropic scalar-valued functions,
and the true linear case results by considering only the contributions linear in the
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strain in the constitutive law, hence the Lamé-Navier expression with two coef-
ficients k and l (cf. Eq. (a) above).

Those interested in the person of Green may visit his rebuilt windmill in Nottingham; this
reconstruction and reviving of the mill was mostly due to the combined efforts of the local
university faculty members such as Lawrence J. Challis and Antony J. M. Spencer, the
latter himself a modern ‘‘Cambridgian’’ and renowned mechanician—see Chaps. 3 and 6.

In modern thermomechanics (e.g., in Maugin 2011), if W denotes the strain
energy function (potential) per unit reference volume, we have the elasticity
constitutive equations in the form

T ¼ o �W Fð Þ
oF

; S ¼ oŴ Eð Þ
oE

; E: ¼ 1
2

FT F� 1
� �

; ð1:20Þ

so that T and S are also called the nominal stress and the energetic stress,
respectively. If the second coinage is obvious, the first one comes from the fact
that T represents the stress component per unit surface of the reference configu-
ration. This comes from the property that oriented surface elements in the actual
and reference configurations are related by

nda ¼ JFN:F�1dA; NdA ¼ J�1
F n:Fda; ð1:21Þ

so that

n:rda ¼ N:TdA: ð1:22Þ

Equations (1.21)—relating actual and Lagrangian configurations—were estab-
lished in hydrodynamics in 1874 by another ‘‘Cambridgian’’, Edward J. Nanson
(1850–1936) who made an academic career in Australia (see Nanson 1874).

William Thomson—later called Lord Kelvin—(1824–1907) is the second of
our ‘‘Cambridgians’’. He was a great admirer of Green’s original memoir of 1828,
and he had it re-published in 1846, after which Green’s memoir became popular.
During a scientific visit in Paris Thomson discovered the original work of Sadi
Carnot (1796–1832) on the ‘‘motive power of heat’’ and also the work of B.P.E.
Clapeyron (1799–1864), another ‘‘ingénieur-savant’’ (so was the case of Sadi
Carnot—we shall return to all these French scientists in Chap. 7). It is by com-
bining these influences and that of James Prescott Joule (1818–1889) that
Thomson was led to a formulation of a principle now called the conservation of
energy or ‘‘first law of thermodynamics’’. He was in fact but one of three co-
discoverers of this ‘‘law’’, the other two being Julius R. Mayer (1814–1878) and
Hermann von Helmholtz (1821–1894), both from Germany. But Thomson aka
Kelvin, just as von Helmholtz, was an immense scientist with multiple scientific
interests such as in electromagnetism, electrotechnics, and continuum mechanics.
In the last field he was interested in both fluids and elastic solids. For further
consideration (cf. Chap. 13), we note that like other scientists of this pre-Max-
wellian period (even Cauchy!) he was trying to construct a model of continuum
that could afford the propagation of light in the form of pure transverse waves,
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because this is what was observed according to Augustin Fresnel (1788–1827).
This led to the notion of continuum capable of responding to a density of couple, a
medium with internal rotation now called ‘‘Kelvin medium’’, a precursor of the
generalized continua of which theories would be expended in the 20th century
starting with the work of the Cosserat brothers.

The third ‘‘Cambridgian’’ of interest in the present context is George Gabriel
Stokes (1819–1903) whose name is for ever associated with that of Navier for the
Navier-Stokes equation that governs the flow of linear viscous fluids.

Newton’s viscous constitutive law

r ¼ g
ov

ox
ðfÞ

in 1D, - where g is a viscosity coefficient—was experimentally checked by J.L.M.
Poiseuille (1797–1869, an alumnus from Ecole Polytechnique who became a medical
doctor and famed physiologist) in his study of blood flow, a first in ‘‘ bio-mechanics’’.

For a solid in small deformation we can write

ov

ox
¼ o

ox

ou

ot

� �
¼ o

ot

ou

ox

� �
¼ oe

ot
� _e; ðgÞ

so that (f) yields

r ¼ g _e: ðhÞ
Stokes’ name is also attached to a well known theorem of vector integral calculus in

several dimensions (passing from the circulation along a closed line C to the flux of the
curl across the surface S leaning on that line, i.e.,

I

C
A:dl ¼

Z

S
n: curl Að Þda:

This theorem is of the same nature as the divergence theorem evoked in (1.14)—it
expresses the passing of an integral over a manifold of dimension n-1 to one of dimension
n in the calculus of ‘‘exterior forms’’ (a generalized Stokes theorem); it is of obvious
importance in electricity (for currents) and hydrodynamics (for vortices).

Our fourth giant ‘‘Cambridgian’’ is none other than James Clerk Maxwell
(1831–1873) of electromagnetic fame. But few ‘‘electricians’’ (as Oliver Heaviside
would have called them) know that Maxwell was also the author of a fundamental
work on the mechanics of trusses (exploited in so-called graphic statics in pre-
computer times) and that in his studies of viscous media he introduced a realistic
model of rheological behaviour now called Maxwell model of visco-elasticity. In
terms of rheological models using the vivid image of springs and dashpots this
corresponds to a (Newtonian) viscous element—cf. (f) above—and a (Hookean)
spring element put in series. This, like the so-called Maxwell-Cattaneo conduction
law—that contains a relaxation time—was much influenced by Maxwell’s work in
the kinetic theory of gases.
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In 1D Maxwell’s visco-elastic constitutive equation can be expressed by

1
sM

rþ or
ot
¼ E

oe

ot
: ðiÞ

This can be rewritten as the relaxation equation

o

ot
r� rHð Þ þ 1

sM
r ¼ 0; rH ¼ Ee: ðjÞ

In turn this can be compared to the visco-elasticity law proposed by Thomson (Kelvin)
and Voigt as

r ¼ Eeþ EsKV _e ¼ E eþ sKV _eð Þ; ðkÞ

which clearly is a linear combination of Hooke’s law (b) and Newton’s law (h). This can
also be written as the relaxation equation

oe

ot
þ 1

sKV
e� eHð Þ ¼ 0; eH ¼ E�1r: ðlÞ

In terms of rheological models using the image of springs and dashpots this corresponds
to a (Newtonian) viscous element and a spring element put in parallel.

For the sake of completeness, comparison, and further reference, we mention the
Maxwell-Cattaneo law of heat conduction in the ‘‘relaxation’’ form [compare to (l)]

oq

ot
þ 1

sq
q� qFð Þ ¼ 0; qF ¼ �j

oh
ox
; ðmÞ

where qF is the classical Fourier heat-conduction law with conduction coefficient j in
isotropic bodies.

1.6 The German School and its Giants: Kirchhoff, Clebsch,
Voigt, Mohr, et al.

Many of the great German contributors to our subject matter could also be qual-
ified of ‘ingénieurs-savants’’ for they often were educated in Polytechnic schools
(‘‘Polytechnicum’’)—or Technischen Hochschulen in a more recent jargon—all
more or less founded as imitations of the French Ecole Polytechnique. One of the
first characters in that play is Karl Cuhlman (1821–1861). He received his engi-
neering education at the Polytechnicum in Karlsruhe. He was himself active in the
study of railways structures and bridges. He did mostly works related to the
strength of materials and graphic statics. More important than him for our purpose
is Franz E. Neumann (1798–1895) who graduated from the University of Berlin
(Doctoral degree in mineralogy and crystallography). His work in elasticity was
conducted in parallel with those of Navier, Cauchy and Poisson, establishing the
number of elasticity constants for anisotropic materials. For isotropic elasticity he
established without doubt that two coefficients—the Lamé coefficients—were
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necessary (and not only one as had been assumed by some French elasticians). He
may also be considered one of the founding fathers of photo-elasticity after his
study of double refraction in stressed transparent bodies. This he applied to
thermal stresses (Cf. Duhamel). He was a reputed lecturer and author of highly
appreciated books who mentored some of our relevant characters: Gustav R.
Kirchhoff (1824–1887), Alfred Clebsch (1833–1872), and Woldemar Voigt
(1850–1919). His influence on these scientists is mostly felt in the domain of
elasticity.

The first of Neumann’s disciples, Kirchhoff, was to become one of the German
giants in continuum mechanics for the 19th century, although his reputation in
electricity, spectroscopy, black-body radiation, and thermo-chemistry is at the
same if not higher prestigious level. It is in Königsberg that Kirchhoff took lectures
with Neumann. He later became a professor of physics in Breslau, Heidelberg and
finally Berlin. We already cited Kirchhoff in relation to the Piola-Kirchhoff stress
defined in (1.8). From this we can construct the Piola-Kirchhoff format of con-
tinuum mechanics. For instance, if we note the demonstrable identities

rR: JFF�1
� �

¼ 0; r: J�1
F F

� �
¼ 0; ð1:23Þ

by applying JFF�1 to the left of (1.16) and accounting for the continuity equation
q0 ¼ qJF between actual and reference configurations, we obtain the balance of
linear momentum in the form

o

ot
pR � divRT ¼ q0f or

o

ot
q0við Þ � o

oXK
TK

i ¼ q0fi: ð1:24Þ

That is, while now this equation makes use of independent time and space partial
derivatives (since t and XK - K = 1, 2, 3—form a set of time and space independent
variables in this parametrization), the equation still has components in the actual
configuration. Writing the associated natural boundary condition requires using the
Nanson formulas (1.21) and (1.22). Note that (1.24) holds true because in the absence
of growth or resorption of matter (see Chap. 14 for this case), the continuity equation
in the Piola-Kirchhoff format can simply be written as

oq0

ot

����
X

¼ 0: ð1:25Þ

Kirchhoff made another important contribution to continuum mechanics and the
mechanics of structures by constructing a model theory for the bending of plates.
The two-dimensional equation deduced from a variational principle (principle of
virtual work) that governs the deflection w at the mid-surface of the plate reads

D
o4w

ox4
þ 2

o4w

ox2oy2
þ o4w

oy4

� �
¼ q; ð1:26Þ

where D is the flexural rigidity of the plate. To arrive at this equation, Kirchhoff
had to formulate a reduced potential energy that accounts for a set of basic
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kinematic hypotheses concerning the section of the plate normal to the middle
surface and the neglect of any stretching of the elements of the middle plane for
small deflections. This much improved the tentative theory proposed earlier by
Sophie Germain (1776–1831) even after correction of S. Germain’s mistakes by
Lagrange. In a modern vision, establishing the crucial Eq. (1.26) is one example of
the reduction of a three-dimensional elasticity problem to one in two dimensions
by an asymptotic procedure (cf. works by Ambartsumian, Gold’enveizer, Ciarlet
and others in the period 1950–1980). Kirchhoff’s theory is now referred to as the
Love-Kirchhoff theory of plates after A.E.H. Love (1863–1940), another ‘‘Cam-
bridgian’’ who nonetheless had his whole scientific career at Oxford. Love
extended Kirchhoff’s approach to the case of thin shells. But Kirchhoff also studied
theoretically and experimentally the vibrations of plates on the basis of his model.
He also subsequently extended his theory of plates to include the case of not too
small deflections. All of Kirchhoff work on plates has provided the most important
basis for the computation of thin-walled structures. Thomson (Kelvin), already
cited, improved on Kirchhoff’s theory of plates by specifying the boundary con-
ditions concerning shearing forces and bending moments at an edge.

Another student of Neumann in Königsberg was Clebsch. He wrote a thesis in
fluid mechanics. He became a professor at the Polytechnicum in Karlsruhe when he
was only twenty five after spending a short time at the University in Berlin. It is
while at Karlsruhe that he wrote a famous book on elasticity—Theorie der
Elastizität fester Körper—when there existed only one such book, by Lamé,
available. He wrote it for engineers, but with special emphasis on mathematical
methods of solutions, often loosing the physical aspect. This gave the opportunity to
Barré de Saint-Venant in his French translation of this book to expand the matter in
such a way that the bulk of the book tripled in translation, resulting in a book that
was more his than Clebsch’s. The mathematical inclination of Clebsch and his
remarkable gift for it resulted in Clebsch becoming a professor of pure mathematics
and ending his brief career as one of the best German mathematicians of his period
(works on variational problems, Abelian functions, invariant theory, algebraic
geometry) in Göttingen after teaching in Giessen. Among his famous students we
find Max Noether (the father of Fritz and Emmy Noether—see Chap. 14) and Felix
Klein (1849–1925) who was to play an instrumental role in German mathematics.
He was a co-founder of one of the best journals in mathematics, Mathematische
Annalen. He died untimely of diphteria. His contribution to the mechanics of
continua, achieved during his youngest research period, remains a fundamental one
and was considerably enriched by Barré de Saint-Venant.

Woldemar Voigt was also one of the successful students and disciples of
Neumann. But he more closely than others followed his master in devoting much
work to the elasticity of crystals that culminated in his book ‘‘Lehrbuch der
Kristallphysik’’ (First German edition, Teubner, Leipzig, 1910). It is during this
work that he was led to introducing the recently created notions of tensor and
tensor-triad in the theory of continua, so much that tensor algebra and analysis
practically became synonymous with that field in the eyes of many physicists. Of
course, the word ‘‘tensor’’ smells of its mechanical origin. It is less known that
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Voigt anticipated the Lorentz-Poincaré transformation formulas in special rela-
tivity and that he was the first to propose a correct Lagrangian density in
electrodynamics.

Another line or remarkable chain of German contributors to continuum
mechanics in the large starts with Otto Mohr (1835–1918). This line extends to the
middle of the 20th century with August Föppl (1854–1924), Ludwig Prandtl
(1875–1953), and Theodor von Kármán (1881–1963). Mohr was a railway-structural
engineer who graduated from the Polytechnicum in Hannover. He taught engi-
neering mechanics first at the Polytechnicum in Stuttgart and then in Dresden.
Following along the path of Karl Cuhlman (see above), he was very much interested
in graphical methods (Graphische Statik). He is universally known for his two-
dimensional representation of the stress state by means of so-called Mohr circles.

After starting his engineering studies at the Polytechnicum, August Föppl
transferred to Stuttgart where he took courses with Mohr, but he finally graduated
from the Polytechnicum in Karlsruhe. He was basically a structural engineer with a
strong side interest in electricity. Regarding the later field, he popularized Max-
well’s theory of electromagnetism in a book published in 1894—the first of its
kind in Germany. This book is supposed to have left a definite print on Einstein as
a young man. A talented teacher in Munich, he also published the most popular
book on engineering mechanics in German-speaking countries. He counts among
his students Ludwig Prandtl who worked with him on solid mechanics. Prandtl
taught first at the Polytechnicum in Hannover and then at the university of Göt-
tingen. He is considered to be the father of modern aerodynamics. His works in
this field are marked by mathematical subtleties such as in his theory of the
boundary layer. Together with Richard von Mises (1883–1953) he founded the
(German) Society of Applied Mathematics and Mechanics (G.A.M.M). One of his
co-workers in Göttingen was von Kármán who came from Hungary and would
later become the founder of the Jet Propulsion Laboratory at Caltech and a
prominent figure in aeronautical government agencies in the USA. A theory for
large deflections of plates is named after Föppl and Kármán. Kármán was also
responsible for the basic dynamic theory of elastic crystal lattices together with
Max Born (of quantum-mechanical fame).

This overview of German contributions would not be complete without the
repeated mention of Hermann von Helmholtz. A medical doctor and physiologist
by formation, Helmholtz is one of the most brilliant and versatile mind of the 19th
century. His formidable scientific production covers sensing physiology, oph-
thalmic optics, nerve physiology, acoustics, electromagnetism and mechanics. Of
course, in the present context he is most well known for his co-discovery of the
first law of thermodynamics, a law of conservation that includes all forms of
energy, whether of mechanical, electrical, etc, origin. From the point of view of
elasticity and acoustics he introduced the Helmholtz decomposition of a vector
field—that is essential in many problems of elasticity and elastodynamics—as also
the well known Helmholtz equation. He mentored many famous physicists, among
them Max Planck, Wilhelm Wien, Henry Rowland, A.A. Michelson and Michael
Pupin. He has successively taught in Königsberg, Bonn, Heidelberg, and Berlin.
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Note that Heinrich Rudolph Hertz (1857–1894) was a student of Helmholtz and
Kirchhoff in Berlin. He in fact became Helmholtz’ assistant in 1880 for a period of
three years. Hertz is known among mechanical circles for his works on the
compression of elastic bodies and his theory of contact that he worked out while in
Berlin. After Berlin, Hertz was a professor first in Kiel and then at the Poly-
technicum in Karlsruhe, where he conducted his famous experimental work on
electromagnetic waves, thus proving the correctness of Maxwell’s equations. He
also wrote a highly praised book on the principles of mechanics.

1.7 Concluding Remark

In this chapter which rapidly spanned the 18th and 19th centuries, we have identified
the main landmarks in a concise historical view of the early developments of the
science of continuum mechanics. We have explored its strengthening and consoli-
dation in a true field of applied mathematics in the form of a mix of ‘‘rational
mechanics’’ and engineering. Leaning on the firm bases of Newtonian axioms and
necessarily starting with duly abstracted models exploiting essentially Cauchy’s
construct, we have witnessed a growing ‘‘mathematization’’ of the field. Starting
with idealizations and abstractions that avoid the true complexity of the mechanical
behaviour of existing materials, this development had mostly been the result of the
hard work of many civil engineers although these individuals were equipped with a
sound mathematical formation and a great ingenuity. Most of the breakthrough
results were obtained in three countries, France, the United Kingdom, and Germany,
in reason of the advance of these countries in civil engineering, their growing
industrial needs, and the existence of appropriate schools often providing the needed
‘‘ingénieurs-savants’’. A marked tendency in the observed 19th century develop-
ments was, apart from necessary experiments, the will to solve problems with
sophisticated mathematical tools, which tools were practically created purposefully
for these solutions. The near future would be to better describe the real mechanical
behaviour of materials at a macroscopic scale, incorporate more deeply the ther-
modynamic background, and also to take some time to ponder the general philoso-
phy—its structure and principles - behind this science. This is the main nature of the
progress achieved in the next period that we circumscribe to the time interval
1880–1914. This we consider to be a transition to the true, unfortunately agitated but
simultaneously rich, 20th century, the object of this book.

1.8 Further Reading

Selected historical landmark contributions are to be found in Cauchy (1828),
Duhamel (1837), Green (1828, 1839), Kirchhoff (1876), Piola (1836, 1848), and
Weyl (1946). Epistemological study of Duhem’s works is to be found in Bachelard
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(1927), and of Cauchy’s deep contributions in Belhoste (1991) and Dahan-
Delmonico (1984–1985). An interesting overview of Green’s life is given in
Cannell (1993). Pertinent historical reviews in continuum and solid mechanics are
given by Barré de Saint-Venant (1864), Todhunter (1886), Timoshenko (1953),
Truesdell (1968, 1976, 1984) and Soutas-Little (2011). More broadly, Dugas
(1950) and Szabò (1977) look at general mechanics, and Whittaker (1951) and
Schreier(1991) to physics. Warwick (2003) focuses on mathematical physics at
Cambridge. Gillispie (1974) remains a real mine concerning scientific biographies
written by specialists.
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Chapter 2
Transition to the 20th Century

Abstract Chapter Two deals with the transition period between circa 1880 and
1914, which prepares the way for the Twentieth century. It also advocates an
attitude towards a development that is characteristic of a period when many
engineering scientists believe in a then fixed paradigm and no further evolution is
thought possible in spite of a contemporary revolution in theoretical and mathe-
matical physics. Of course this corresponds to a period of natural consolidation
with the general creation of efficient engineering schools all over Europe and the
appearance of newborn ones in the USA. Of particular interest in this rather quiet
landscape are queries concerning going beyond the most traditional behaviours
(linear elasticity and Newtonian viscous fluids). Here are distinguished the
emerging attempts at the description of more involved behaviours such as visco-
elasticity (Voigt, Boltzmann, Volterra), and friction and plasticity (Tresca, Barré
de Saint-Venant, Lévy, Huber, Mises). In spite of the relative quietness of the
period, new interests of investigation are considered, mainly in the dynamic frame,
the consideration of continua with internal degrees of freedom (Duhem, the
Cosserat brothers), and elements of homogenization theory. Perhaps more
attractive at the time were the discussions about the general principles of
mechanics by people like Hertz, Mach, Duhem (with his general energetics),
Poincaré, Hamel and Hellinger. This pondering will prove extremely useful in the
second half of the Twentieth century.

2.1 Setting the Stage

We consider the period extending between circa 1880 and 1914. The French call it
the ‘‘Belle époque’’. For the Germans and the Austrians it was ‘‘der guten alten
Zeit’’. Parodying a well known English writer, we could also say that ‘‘it was the
best of times’’, but the ‘‘worst of times’’ was to come soon. Indeed, Queen Victoria
was ruling over an Empire that never saw the sun going down; Britannia ruled the
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world with the largest fleet ever. Victoria’s son Edward was going to succeed her
after enjoying life in Paris where the ‘‘French cancan’’ was being illustrated by the
most fashionable painters. Oxford and Cambridge still were the best universities in
the United Kingdom, if not in the world. Victoria’s family was reigning in many
countries in Europe. The Kaiser was taking care of a powerful industrial country
where Technische Hochschulen had replaced the Polytechnic schools (with a much
too French sounding name, according to Prussian philology). St Petersburg, also
ruled by one of Victoria’s family relation, had a strong Polytechnic Institute. The
Austro-Hungarian Empire was ruled by a benevolent ageing emperor. Technical
universities existed in all parts of this empire, whether in Austria (Vienna) itself
but also in Hungary (Budapest) and Galicia (Krakow, Lvov).

Italy was a rather young kingdom but with old universities—among the oldest in
the world (Ferrara, Bologna) -, but also with two Polytechnic schools in Torino and
Milano and a Scuola Normale Superiore in Pisa, a remnant of French (Napoleonic)
influence. Switzerland had his two polytechnic institutions in Zürich (German
speaking) and Lausanne (French speaking), both created by alumni form French
‘‘grandes écoles’’. As to France, living in its third republic and thinking about a
possible revenge against the Prussians who had taken over Alsace and Lorraine in a
brief war in 1870–1871, it was extending its colonial empire by imitation of the
British while having instituted a charge free education at almost all levels. But it
kept the formation of its elite in the ‘‘grandes écoles’’ such as the Ecole Normale
Supérieure and the Ecole Polytechnique and its engineering schools of application
(example of so formed scientist: Henri Poincaré; See Chap. 7). The country was
working towards an exemplary full laicity, separating the Church and the State.
Marcelin Berthelot—a thermo-chemist—epitomized the hero of republican science
opposite to the clerical ‘‘reaction’’ identified with Pierre Duhem, while Georges
Clemenceau—the future French Prime Minister victor of WWI—was representing
the radical atheist left on the political spectrum.

The Chinese Empire was soon to suffer mortal attacks from its own socialists.
European countries had succeeded to unite against some of the Chinese in Peking.
Japan was accommodating European and American culture and creating univer-
sities and schools as imitations of those in these two parts of the world. But its
industry was growing, having transformed its shoguns into industrialists, and
creating a network of universities to replace the former scarce teaching of
‘‘Hollandish studies’’ (as European science was denominated). Moreover, Japan
could now defeat countries like Russia in a military confrontation.

Finally, the United States, recovering from a painful civil war but the benefi-
ciaries of an important immigration from European countries (Ireland, Germany,
Russia, Italy, Sweden, etc.), were building an enormous industrial potential where
the automobile would soon become one of the main output. With Edison, Tesla,
Pupin, Bell and others, electricity and telephone had left the laboratory to become
essential elements in everyday life. Simultaneously, John D. Rockefeller was
building his immense fortune with the exploitation of oil fields, while moguls from
steel industry (Andrew Carnegie) and transcontinental railroads (Leland Stanford)
made huge donations that contributed to the creation of new teaching institutions
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(Carnegie Technical Schools, CALTECH, Stanford University)—that were going
to play an important role in the development of mechanical engineering in the 20th
century. Still the USA were not exactly part of the ‘‘concert’’ of the nations,
although they were also involved in wars and occupations that now look quite
colonial in character (Cuba, Mexico, Puerto Rico, Hawaii, the Philippines).
Concerning higher education, while the Ivy League colleges (Harvard, Yale,
Princeton, etc.) remained the most powerful institutions for the formation of the
elite, the Massachusetts Institute of Technology, created in 1866, really opened
engineering sections in the 1880s, and ‘‘Agricultural and Mechanical (A&M)’’
colleges were being founded in various states (Texas, Virginia, Ohio, etc.) for the
training of technicians.

This sets the stage for new developments that are more international in nature,
refer more than before to a real behaviour of materials in their mechanical
response, and require a deeper thinking about the bases of the theory of continua,
and mechanics in general. The following three sections are devoted to these
aspects. Moreover, following the French physicist Léon Lecornu who writes in
1918, we can distinguish between ‘‘rational mechanics’’ (a pure construct of the
mind), ‘‘physical mechanics’’ (based on observation and experiments) and
‘‘applied mechanics’’, the later in fact meaning ‘‘engineering mechanics’’. We
shall use this denomination.

2.2 Describing More Real Mechanical Behaviours

According to Lecornu (1918), more realistic mechanical behaviours primarily
come into the picture via observation and experiments. In agreement with this
remark we single out the behaviours of friction, plasticity and visco-elasticity. All
these have for main property to be related to dissipation.

2.2.1 Friction

It is Charles Augustin de Coulomb (1736–1806), a former student of the (military)
‘‘Ecole du Génie’’ of Mézières in France, a pioneer in geotechnical engineering,
who created the science of friction in the 18th century. He did that at a time when
the notion of vector did not exist so that we let the reader imagine the difficulties
(still present with our students) met with questions of signs. This does not relate to
continua, but still it may provide some constructive idea about the behaviour
known as (perfect) plasticity. Furthermore, everyone experiences the production of
heat wherever friction is in action. But Coulomb and his contemporaries did not
have any knowledge about thermo-dynamics. As a matter of fact, we believe that a
correct inclusion of the phenomenon of friction in irreversible thermodynamics
had to await the second part of the 20th century to find a satisfactory formulation.
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2.2.2 Plasticity

Here also it was soon realized that in testing elastic materials to a higher
mechanical load a kind of limit—the elastic limit—appeared after which one could
hardly control the deformation. In 1D one simply reaches a level, say r0, of stress
(force per unit area of the section of the sample), at which one looses the control of
the elongation. We now say that we observe plastic flow, while mathematically we
formalize this by saying that we loose the uniqueness in the response in defor-
mation. But real materials are three-dimensional, the stress is a more complex
object (tensor) than a scalar, and the datum of one single scalar to characterize the
entry into the plastic regime is not always sufficient. One must think in terms of a
convenient representation of a tensorial state of stress and deformation. Thanks to
Cauchy who related this to the representation in terms of ellipsoids, we also know
that the length of principal axes of the ellipsoids representing stresses and strains
are convenient representations of the actual state.

Henri E. Tresca (1814–1885), a professor at a Paris institution known as the
Conservatoire National des Arts et Métiers (for short, CNAM) conducted in the
early 1870s a series of fine experiments on metals whereby he constructed in an
appropriate representation of the principal stresses the elastic limit of the said
metals (cf. Tresca 1872). Practically simultaneously, Adhémar J.C. Barré de Saint–
Venant (1797–1886) gave the mathematical formulation of these results (1871).
Three important remarks are in order: first, it is noticed that no change in volume
(so called isochoric deformation in the modern jargon) is observed during plastic
deformation; second, the directions of the principal stresses coincide with those of
the principal stresses (this assumes an isotropic response); third, the maximum
shearing (or tangential) stress at a point is equal to a specific constant. This can be
written as sM ¼ k. In mathematical terms, we have

Supa;b ra � rb

�� �� ¼ 2k; a; b ¼ 1; 2; 3; ð2:1Þ

where the Greek indices label the principal stresses. Introducing the tangential
stresses, this can also be expressed by the following set of three inequalities:

2 s1j j � r2 � r3j j � k; etc; ð2:2Þ

by circular permutation. In an astute plane representation this is represented by a
hexagon (see Maugin 1992, Fig. 1.18). The interior domain (a convex domain with
angular corners) is the domain of elasticity. Although the criterion provided by
(2.2) gives good results in the case of metals, this definition of the elastic limit by
pieces of intersecting straight lines offers some difficulties in analytic treatment of
problems. Nonetheless, Barré de Saint–Venant was able to give the solution of
exemplary problems such as: the torsion of a circular shaft, the plane deformation
of a hollow circular cylinder under the action of an internal pressure, etc. These are
problems that we still give students to solve without the help of a computer (see,
e.g., Maugin 1992, Appendix). It was a simple but formidable idea of Huber
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(1903–1904, in Poland; see Chap. 8) to replace the hexagon of Tresca by a cir-
cumscribed circle (obviously a convex domain; see Maugin 1992, Fig. 1.18) of
radius k and equation

r1 � r2ð Þ2þ r2 � r3ð Þ2þ r3 � r1ð Þ2¼ 2k: ð2:3Þ

This elastic limit is said to provide a maximum-distortion-energy theory of
yielding. This shows that a plasticity criterion must involve the notion of energy.
But it will take almost a 100 years to include such criteria within a good thermo-
mechanical description of plasticity (cf. Maugin 1992). We note that other criteria
were proposed before to measure the energy of deformation, including by the
famed William J.M. Rankine (1820–1872; a precursor of Pierre Duhem with his
‘‘science of energetics’’; he also worked on the fatigue of metals)—maximum-
stress theory—in Scotland and Beltrami (maximum-strain-energy theory) in Italy.
Richard von Mises (1913) proposed the same criterion as Huber in 1913 on a pure
mathematical basis in order to facilitate calculations. In the future other criteria
would be proposed for anisotropic media, the plasticity of soils, the case of porous
media, etc.

Maurice Lévy (1838–1910), proposed to discard the elastic behaviour—as
negligible for some materials—and to consider only the plastic one, thus in so-
called rigid-plastic bodies (cf. Lévy 1871). This is a rather highly singular
behaviour since nothing happens to the strain, not even an elastic one, in so far as
the plasticity threshold is not reached and then we have an uncontrolled plastic
flow occurring along a plateau in stress.

Prandtl and von Kármán solved other problems of elasto-plasticity in the early
20th century. Other well known scientists who worked in plasticity in that period
were Bauschinger (1886), and Mohr (1900).

We do not know if the French are that much conservative but we can say here that they do
not throw things away: according to my friend James Casey from Berkeley, you can still
find the specimens used by Tresca in his (1870) experiments kept in a box in the basement
of the actual CNAM. In early times CNAM, created during the French revolution, was an
institution somewhat similar to the Royal Institution in London where both Humphry Davy
and Michael Faraday gave public lectures and conducted experiments. It is complemented
by a rich museum of science and technology.

Although we cannot claim that this belongs to ‘‘physical mechanics’’ (on the
contrary) we mention here the remarkable mathematical model of dislocation
obtained in a pure ideal construct—or a thought experiment—by the Italian
mathematician Vito Volterra (1860–1940) in 1907, at a time when no dislocation
had really been observed (this had to await 1956 with the use of electronic
microscopy). This concerns lines along which discontinuities in the elastic dis-
placement field occur. This is mentioned here because of its timeliness and the fact
that it would later on play a role in the study of ductile materials (i.e., essentially
plastic materials). [Volterra’s astute thought-experiment consists in cutting a
cylinder (devoid of its central axial part—because this ‘‘core’’ corresponds to a
singularity-) displacing the two faces of the cut in a certain way and welding them
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back so as to create a special type of discontinuous material displacement
(cf. Volterra 1907, 1909, 1939)].

2.2.3 Visco-Elasticity

Two models of visco-elasticity were mentioned in Chap. 1: the Maxwell and Kelvin-
Voigt models that both involve a relaxation time, but with relaxation in stress and
strain, respectively. Ludwig Boltzmann (1844–1906), renowned for his seminal
work in the kinetic theory of gases and for his statistical definition of entropy, also
proposed a model of visco-elasticity for solids, but in an original form. The idea is to
take account in a good mathematical way of what happened in the past to the material:
the past history of the strain should be involved, with an obvious more important
influence of the recent past. In modern terms, this can be exemplified by a 1D stress–
strain functional relation over time of the type (cf. Boltzmann 1874).

r x; tð Þ ¼ Erelaxe x; tð Þ þ
Z t

�1
K t � t0ð Þ _e x; t0ð Þdt0; ð2:4Þ

where Erelax is the instantaneous modulus for relaxation, and K is a relaxation
function. The later must be such as to favour the influence of the recent past, thus
decreasing sufficiently fast in its argument. Using a modern illustrative jargon, we
can say that the material so described possesses a fading memory of the past. In
substituting (2.4) in the dynamical equation of linear momentum, we would be led
to a new kind of equation, an integro-differential equation. It happens that func-
tionals over time such as (2.4) and integro-differential equations were one of the
fields to which Vito Volterra (already cited but also Volterra and Pérès 1936)
contributed much with applications, not to mechanics, but to a kind of population
dynamics [competition between species yielding a celebrated equation obtained
independently by Alfred Lotka (1880–1949)]. The generalization of equations
such as (2.4) will have a blossoming heritage in the 1960s (see Chaps. 5 and 11).

All three behaviours highlighted in the present section were still missing a
good, if any, thermodynamic basis although some authors, e.g., Pierre Duhem,
were pondering this matter, but as mere wishful thinking at the time.

2.3 New Interests of Investigation

2.3.1 Dynamics

With the pioneering work of Georg Bernhard Riemann (1826–1866) and those of
William J.M. Rankine (1820–1872), Pierre H. Hugoniot (1815–1887), and Jacques
C. E. Jouguet—known as Emile Jouguet (1871–1943)—one attacks the field of the
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nonlinear dynamics in continua. Having established the required equations
governing the discontinuities of fields, these scientists could prove the existence
and propagation of shock waves and also detonation waves (Jouguet 1906).
Duhem also studied such waves in nonlinear elasticity and his friend Jacques
Hadamard (1865–1963) provided a useful classification of propagating disconti-
nuities depending on what is the order of the derivative of the basic field that is
discontinuous (cf. Hadamard 1903). Jouguet was much influenced by Duhem in
adopting a thermo-mechanical viewpoint. These studies in various schemes of
deformable-solid mechanics will be taken over in the 1950–1970s, in particular by
Truesdell, Ericksen and others (e.g., Peter J. Chen for a long time at Sandia
National Laboratories; see his book, Chen 1976). Ernst Mach, in his experimental
study of shock waves in fluids, was led to introducing the ‘‘Mach’’ number (as a
measure of relative velocity compared to the sound speed) and the ‘‘Mach’’ angle
(in the reflection of such shock waves). No need to mention the role of these
studies in the future developments of aerodynamics. In that field, a seminal work
was that of Prandtl with the notion of boundary layer and its elegant mathematical
formulation using asymptotics for a mathematically singular problem.

2.3.2 Internal Degrees of Freedom

The period 1880–1910 saw the introduction of the idea that, perhaps, a material
point in a continuum would be characterized by more than a simple translation
(displacement) in space. It seems that Duhem (1893) was responsible for the idea
to consider a triad of rigid vectors (so-called ‘‘directors’’) at each material point in
order to describe the orientational changes in some kind of internal rotation. But
this was more an idea than a true complete development. The Cosserat brothers
were also led to consider the possible existence of internal couples (1909). They
more or less were forced to do that by imposing an invariance (so-called Euclidean
invariance) in a Lagrangian-Hamiltonian formulation, which invariance treats on
an equal footing translations and rotations. This gave rise to the possible existence
of a new type of internal force, the couple stress along with that of stress, and the
possibility to have non-symmetric stresses. This was a first application of an
argument of elementary group theory in continuum mechanics. As such, it was
applauded by Elie Cartan (1869–1951), the famous geometer and specialist of the
theory of Lie groups. Hellinger (1914) acknowledged the possible enrichments
provided by Duhem and the Cosserats but without further elaboration. The argu-
ment of Euclidean invariance was exploited in papers by Sudria (1926, 1935).
More recently it was applied by Toupin (1964) and Maugin (1970) for Cosserat
continua and micromorphic ones, respectively.

Following the Cosserats, it is tempting to use a Lagrangian-Hamiltonian formu-
lation to generalize the theory of classical elasticity, still in the absence of any
dissipative process. Since small-strain elasticity corresponds to a theory that involves
only the first gradient of the displacement in the energy, the next step would be to
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consider a better approximation of the displacement function at each material point,
hence to envisage an energy density that depends also on the second-gradient of this
displacement (and higher-order gradients if needed). This step was taken by J. Le
Roux in 1911 and 1913 in his doctoral thesis published as two memoirs in the
Scientific Annals of the Ecole Normale Supérieure in Paris. The second gradient of
the displacement will be felt only in problems where a sufficiently spatially non-
uniform state of strains exists. This is the case of torsion, a case duly examined by Le
Roux in his pioneering work. But this type of considerations was left dormant for
practically 50 years. We shall return to this matter and the Cosserats’ media in detail
with the developments of the 1960–1970s (Chap. 13).

2.3.3 Elements of Homogenisation

Just for the sake of completeness we mention the first, naïve, technique of
homogenization for inhomogeneous bodies made of grains, e.g., for dielectrics by
Maxwell. This technique is essentially one that is called the rule of mixtures,
according to which effective properties are defined by an average accounting for
the relative proportion of different components in the material. Precise mathe-
matical techniques of homogenization will be proposed in the 1970–1980s only.

2.4 Pondering the Principles

When we carefully scrutinize the scientific atmosphere of the finishing 19th
century and the dawn of the 20th century, we get the feeling that most scientists
have agreed on a view that concludes that everything has settled. There is nothing
in view such as an epistemological rupture (in the words of Gaston Bachelard) or a
radical change of paradigm (in the words of Thomas Kuhn), although Albert
Einstein is formulating his theory of special relativity (1905), and Max Planck is
introducing his quantum (taken over by Einstein in his theory of the photo-electric
effect; also 1905). This kind of attitude that marks an accomplishment, favours the
reflection on the bases of the theory (Newton’s one for mechanics) and the for-
mulation of an axiomatic approach.

Concerning mechanics per se, even Heinrich Hertz (1857–1894) published a
successful book on the principles of mechanics (Hertz 1899). Of course, Henri
Poincaré (1854–1912), with his truly aerial view of science in its totality wrote
beautiful books (e.g., Science and Method) that are still spot on, even though we
may not share his epistemological views. Being himself an active participant in the
field, he knows well the problem posed by the relativity of motion. He is the one
who identified the group structure of Lorentz transformations between frames.
Ernst Mach (1838–1916), an Austrian physicist and philosopher whose name is
definitively attached to aerodynamics with the Mach number, wrote an articulated
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criticism of Newton’s views in his book on the Science of Mechanics (cf. Mach
1911). The reading of this book is said to have deeply influenced the young
Einstein. Mach pays special attention to the notion of inertia and its physical
origin. Lecornu, writing in 1918, is more conscious of the forthcoming develop-
ments as he already knows elements of Einstein’s gravitation theory.

In a different class we note the axiomatization of classical mechanics by Georg
Hamel (1877–1954) in Hamel (1908). This was to have a long standing influence
especially in Germany. The mathematician Ernst Hellinger (1883–1950), in an
encyclopaedia article for mathematicians, provided in a nut shell a remarkable
synthesis of the bases of continuum mechanics as of the 1910s. He captured all
essential recent developments such as those due to Boltzmann (visco-elasticity),
Duhem, and the Cosserat brothers. Finally, we shall consider the view of Duhem in
greater detail.

Pierre Duhem (1861–1916) is a remarkable character who combines in one person
a brilliant and sharp mind, a prolific writer and contributor to phenomenological
physics, the champion of energetics, a philosopher of science, and the true creator of
the history of medieval science. He made a big ‘‘mistake’’ early in his career. Aged
only 24, as a student at the Ecole Normale Supérieure in Paris, he definitely criticized
the work of Marcelin Berthelot in thermo-chemistry (he blatantly asserted that some
principle regarding thermodynamic potentials and proposed by that hero of French
republican science, was wrong—but Duhem was later proved to be absolutely right).
This hindered the whole university career of Duhem who nonetheless produced a lot
of good science, philosophy and epistemology, but in Bordeaux and not in Paris. In
centralized France this was as bad as the original sin.

In the philosophy and methodology of science Duhem wrote two remarkable
books, one on the Aim and Structure of Physical Theory (original French in 1906)
and the other with a title repeating Plato’s moto ‘‘To save the phenomena’’ (ori-
ginal French in 1908 with Greek title). In the first of these he exposes at length the
under determination of theory by fact, the rejection of metaphysics and models (as
used by, e.g., Kelvin and Maxwell in the UK and Boussinesq in France), and
natural classification, rather than explanation, as the very object of physical theory
(this can be discussed). The contents of the second book are clearly explained by
its title. His view on the unifying role of thermodynamics in all of physical
sciences (mechanics, electricity and magnetism, heat, etc.) is masterly but quite
lengthily expended in his treatise on ‘‘energetics’’ or ‘‘general thermodynamics’’
(Duhem 1911). This has a flavour of axiomatic nature that will influence C.A.
Truesdell in the 1950–60s. Duhem was a good friend of mathematicians Henri
Poincaré (1854–1912) and Jacques Hadamard (1865–1963).

Personal touch. Both Duhem and Poincaré died untimely while Hadamard reached almost
a hundred, using the facility of the library at Institut Poincaré in Paris until the end.
According to the librarian—a certain Paul Belgodère—of this institute that the author
knew as a student, Hadamard used to come to the library every afternoon in the late 1950s,
asked to consult one of Poincaré’s or Duhem’s works of bygone days (say, from 1890 to
1905), and systematically fell asleep, being wakened up by the librarian at the closing
time. The same scenario was repeated from day to day.
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For our main concern in this book and forthcoming chapters, the most relevant
writing of Duhem is the one on the ‘‘evolution of mechanics’’ (Duhem 1903). In one
section of this opus, Duhem examined what, at the time, he called the ‘‘nonsensical’’
branches of mechanics. What he means by this somewhat eccentric expression are
the fields of physics, mechanics and electromagnetism that do not fit yet in his general
framework of thermodynamics. It is interesting to note the list of these fields: so-
called false equilibria, hysteresis phenomena, and electro-magnetic theory in
materials. These are precisely dissipative phenomena such as thermodynamically
irreversible reactions, friction, plasticity, etc. Now looked upon with our present
knowledge, this sounds like a tentative proposal of research programme for the next
generation, something quite equivalent in its own field to the Erlangen program
(1872) of Felix Klein in geometry and the list (1900–1902) of unsolved—at the
time—problems proposed by David Hilbert in pure mathematics—that in fact
included the axiomatization of the whole of physics as Problem no six.

The flame of Duhem’s approach to general thermodynamics was successfully
carried over by Th. De Donder (1872–1957) and other physicists from the Neth-
erlands and Belgium between 1930 and 1970, resulting in the now commonly
admitted theory of irreversible processes (S. De Groot, P. Mazur, I. Prigogine).
However, both Duhem and these scientists did not possess the mathematical
tools—such as convex analysis and nonlinear optimization—to deal with some of
the properties (plasticity, hysteresis), so that they could deal only with linear
irreversible processes. The solution would come in the 1970–1980s for nonlinear
irreversible processes.

2.5 Concluding Remark

The considered interval of time was the last period during which the same sci-
entists worked in so many different fields, but still within phenomenological
physics. This marks the end of an era that was typically that of the 19th century.
Examples of exceptions in more recent times will be Lev D. Landau and P. G. de
Gennes. From now on, some specialization will be necessary, and this will be the
case in practically all forthcoming chapters.

2.6 Further Reading

On the principles of mechanics first-rank contributions are by Barré de Saint-
Venant (1851), Hertz (1899), Duhem (1906, 1908, 1911), Hamel (1908, 1927),
Mach (1911) and Hellinger (1914). On Pierre Duhem see Ariew (2007) and
Manville (1927). On Boussinesq we recommend Bois (2007). On the general
history of the strength of materials, Timoshenko (1953) remains an unavoidable
reference.
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Chapter 3
Rheology and Nonlinear Elasticity

Abstract This first specialized chapter deals with the awaited generalization to
mechanical behaviours that deviate from linear elasticity and standard Newtonian
viscous fluids, that is, elasticity in large deformations and the rheology of complex
fluids. These extensions were kindled by the mechanics of rubber elasticity and
artificial fabrics and of fluids with high viscosity and visco-plastic response. It
happens that the same scientists were involved in these two lines as a result of a
required focus on the bases of continuum mechanics, in particular the theory of
finite deformations in a rational geometric background, and the need to account for
complex flow features in some fluids. Ronald Rivlin, with his incommensurable
contributions, is the great hero in this adventure. Other scientists whose work was
seminal are initially E. Bingham, M. Reiner, L.G.R. Treloar, P. J. Flory, M.A.
Mooney, and F.D. Murnaghan, and more recently J.G. Oldroyd, A.E. Green, J.L.
Ericksen, C.A. Truesdell, B.D. Coleman, and W. Noll. The survey includes the
models of neo-Hookean materials, Mooney-Rivlin materials, Rivlin-Ericksen
fluids, and unsuccessful attempts such as those of Reiner-Rivlin fluids and
hypoelasticity. Appropriately introduced tools have been those of Rivlin-Ericksen
tensors, Oldroyd and Jaumann time derivatives, and invariant representations of
scalar and tensorvalued functions. Through Rivlin and his co-workers the whole
carries a strong print of British applied mathematics although Italian and Russian
contributions to nonlinear elasticity cannot be overlooked. The mechanics of soft
living tissues has now become the best field of application of these developments.

3.1 Beyond Standard Linear Elasticity and Viscous Fluids

3.1.1 General Remarks

As mentioned in Chap. 2, at the dawn of the twentieth century, we perceive shy
attempts to venture in the domain of the continuum mechanics of more complex
mechanical behaviours with the introduction of dissipative behaviours and some

G. A. Maugin, Continuum Mechanics Through the Twentieth Century,
Solid Mechanics and Its Applications 196, DOI: 10.1007/978-94-007-6353-1_3,
� Springer Science+Business Media Dordrecht 2013
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nonlinearity (such as in plasticity but not to the point of being able to solve difficult
problems of evolution). But the object of continuum mechanics remains the same
as before: to evaluate the deformation or flow that results from the application of a
system of forces to a body, whether solid or fluid. In the early twentieth century,
this is achieved only for elastic materials which undergo infinitesimal deforma-
tions (i.e., within linear elasticity) or for Newtonian viscous fluids, two cases fully
developed in the nineteenth century. The set of equations to be considered consists,
in the body, of the field equations, here written as the Euler-Cauchy equations of
motion [in direct and indicial (Cartesian tensor) notations],

q
dv

dt
¼ divrþ qf or q

d

dt
vi ¼

o

oxj
rji þ qfi; ð3:1Þ

where r ¼ rji

� �
stands for the symmetric Cauchy stress, v ¼ vif g denotes the

velocity field, and f ¼ fif g represents an external bulk force per unit mass.
Equation (3.1) is complemented by appropriate boundary conditions, and initial
conditions in the case of dynamics.

In linear (isotropic, homogeneous) elasticity, we have the Hookean constitutive
equation:

r ¼ k treð Þ1þ 2le or rji ¼ kekkdji þ 2leji; ð3:2Þ

where the infinitesimal strain e is defined as:

e ¼ ruð ÞS or eji ¼
1
2

uj;i þ ui;j

� �
: ð3:3Þ

Here u ¼ uif g is the displacement vector, while k and l are the Lamé
coefficients.

For Newtonian fluids, we have the Navier-Stokes constitutive equation:

r ¼ kv trDð Þ1þ 2lvD or rji ¼ kvDkkdji þ 2lvDji; ð3:4Þ

where the rate of strain D—or symmetric velocity gradient—is defined as:

D ¼ rvð ÞS or Dji ¼
1
2

vj;i þ vi;j

� �
: ð3:5Þ

Here v ¼ vif g is the velocity vector, while kv and lv are the two viscosity
coefficients. If the condition 3kv þ 2lv ¼ 0 is fulfilled, then (3.4) reduces to the
constitutive equation of a Stokesian fluid:

r ¼ 2lvDd ; Dd :¼ D� 1
3

trDð Þ1; ð3:6Þ

where now both r and Dd are trace-less (i.e., deviatoric) tensors.
The two Eqs. (3.2) and (3.4) can be seen as deriving from some potential

(energy in the first case, dissipation in the second one) as:
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r ¼ oW

oe
; W ¼ �W eð Þ ¼ 1

2
kI2

1 þ 2lI2
� �

; I1 ¼ tre; I2 ¼ tre2 ð3:7Þ

and

r ¼ oU
oD

; U ¼ �U Dð Þ ¼ 1
2

kvI2
1 þ 2lvI2

� �
; I1 ¼ trD; I2 ¼ trD2; ð3:8Þ

following the views of Green and Rayleigh, respectively. The semi-positive def-
initeness of W requires that

kþ 2l� 0; l� 0: ð3:9Þ

A similar set of inequalities holds for the viscosity coefficients.

3.1.2 Non-Newtonian Fluids

Let us first consider the case of fluids. The Navier-Stokes equations apply to fluids
of which we can say that they flow rather easily. First, they flow as soon as a small
force is applied (no threshold) and they correspond to a simple model of pro-
portionality in 1D, that of Newton given by equation (f) in Chap. 1, that we can
rewrite as:

s ¼ g _c; g ¼ const: Newtonð Þ; ð3:10Þ

for a shear rate _c. Here s denotes the tangential stress and g depends at most on
temperature. This was beautifully confirmed by Poiseuille’s experiment concern-
ing blood flow (1844, laminar flow in a cylindrical tube). The unit of viscosity, the
‘‘Poiseuille’’, was given to honour this scientist, but it is not an SI unit.

But early in the twentieth century the question was raised of the possible
mathematical description of liquids that are manifestly viscous but they can flow
only slowly and sometimes presenting a threshold in force for the activation of a
real flow. In the latter case it seems that the behaviour is somewhat mixed between
viscosity and plasticity. These fluids may be food stuff, fuels and biofluids, and in
more recent times personal-care products (various gels and pastes), electronic and
optical materials, and various polymers. This general problem was first identified
by chemical engineers and chemists. Among them, Eugene Bingham (1878–1945),
a professor and head of the Department of Chemistry at Lafayette College (not a
research institution) in Pennsylvania, coined the appropriate term ‘‘rheology’’—
together with his friend Markus Reiner (1886–1976) from Palestine (the state of
Israel did not exist yet) at the Technion—to denote the general study of such flows.
They also founded a corresponding scientific society under the name Society of
Rheology in 1929. The spot on motto of the Society is Pa9msa qei‹ or ‘‘panta rhei’’
[Greek for ‘‘everything flows’’, attributed to Heraclitus of Ephesus (c. 535–c. 475
BCE)]. Bingham revisited some ideas of Maxwell on what he calls ‘‘semi-fluids’’
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and paid special attention to the case of so-called visco-plastic fluids (or Bingham
fluids in modern terminology). This may be vividly illustrated by the tooth paste
that comes out of the tube as a flow of product with a rigid core when one presses
on the tube. Such a phenomenon may be observed in the extrusion production of
some metallic bars at high temperature. Other strange phenomena were observed
such as the so-called Poynting effect discovered in 1909—this is the same Poynting
as in the Poynting theorem in electromagnetism (See Chap. 12)—and related to the
existence of a difference in normal stresses or strains due to an impressed shear
stress. To tell the truth, according to Rivlin (1984), Poynting discovered the effect
not in a standard medium but in relation to light propagation in a kind of elastic
medium (the ill-fated aether). More recently, K. Weissenberg (1949) discovered
the ‘‘rod-climbing effect’’ according to which some ‘‘non-Newtonian’’ fluids have
a tendency to climb along the rod that is vertically rotated (torsional flow) in a
cylindrical container filled with such a fluid. Other non-linear effects proper to
non-Newtonian fluids are swelling upon emergence from a tube and the bulging if
allowed to flow downward in a through.

For further reference we can note the following nonlinear generalization of
(3.10):

s ¼ g _cð Þ _c; g _cð Þ ¼ m _cn�1; ð3:11Þ

where m ¼ lv; n ¼ 1 corresponds to a Newtonian fluid, while shear thickening
fluids are such that viscosity increases with the shear rate, i.e., m 6¼ 0; n [ 1, and
shear thinning fluids have a viscosity that decreases when driven to flow at a high
shear rate. A Bingham visco-plastic fluid is such that

g _cð Þ ¼ 1 if s� sg and g _cð Þ ¼ lv þ _c�1s if s� sg; ð3:12Þ

where sg is a threshold in shear stress.
But a fluid body is not generally a one-dimensional object so that we need the

proper formalism (in particular tensorial kinematic objects) for a true three-
dimensional formulation of non-Newtonian fluids (see Sect. 3.2 below).

3.1.3 Nonlinear Elasticity

Simple generalizations of linear elasticity to a nonlinear framework were proposed
for some metals at the end of the nineteenth century by considering a stress as a power
expansion in the infinitesimal strain and then trying an identification of coefficients
by testing the materials (see Bell’s encyclopaedia article, 1973, Sect. 2.23), since
(3.2) may appear as a first order approximation. The same kind of approximation may
be constructed on the basis of a lattice model of continuum by considering nonlinear
interactions between neighbouring ‘‘particles’’ in a discrete chain. In passing
asymptotically to a continuum this applies to the case of very small deformation
(of the order of 10�4) expected, for instance, in electro-acoustic crystals.
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But the obviously most interesting case, because offering a much more exciting
challenge, is that of elastic materials likely to admit very large strains (say, of the
order of 200 % or much more, e.g., 1,000 or 2,000 %) such as rubber-like
materials, certain polymers, and some biological tissues. In these cases we are
much better equipped than for non-Newtonian fluids, because the whole panoply
of useful stress tensors and required finite-strain tensors has been developed in the
nineteenth century and refined in the first half of the twentieth century. In par-
ticular, we mention the book of Murnaghan (1951) which was one of the first
books to provide all the required mathematical tools in finite deformations.

Francis D. Murnaghan (1873–1976) is an interesting character. He was originally from
Ireland and trained as a mathematician. He went to Johns Hopkins University in Baltimore
where Harry Bateman (the applied mathematician) had just been appointed. Obtaining his
PhD in 1916, he returned to Johns Hopkins in 1919 to become professor, and then head of
the mathematics department in 1928, after a short stay at the Rice Institute in Houston,
Texas. The later was a new institution founded thanks to a donation by Williams M. Rice;
this became a University only in 1960. A man of many scientific interests, Murnaghan was
in fact a rather pure mathematician with his main interest in the theory of group repre-
sentations (classical groups, unitary and rotation (orthogonal) groups, symplectic groups).
It is probably this specialty that brought him to write his famous book on finite defor-
mations. This book still is a fundamental reference for all those interested in the appli-
cation of finite strains and symmetries in continuum mechanics.

It is the proper relationship between the two sets of tensorial quantities (stresses
and strains) that must be constructed as the relevant constitutive equations, for
isotropic or anisotropic materials. In so far as possible, these should be thermo-
dynamically admissible and derivable from a potential. We shall examine this
matter in Sect. 3.2 where the seminal contributions of Ronald Rivlin (1915–2005)
are emphasized. This happens to be also the case of non-Newtonian fluids where
Rivlin left his name attached to various classes of fluids (Sect. 3.3).

3.2 Nonlinear Elasticity

3.2.1 Reminder

The following reminder is useful. The general deformation mapping is given by
Eq. (1.4) between a reference configuration KR and the actual configuration Kt. The
direct and inverse deformation gradients are given by (1.5) and (1.9), respectively.
The commonly used material tensor measures of finite-strains are the symmetric
Cauchy and Lagrange material strain tensors such that (T stands for the operation
of transposition):

C :¼ FT F; E ¼ 1
2

C� 1Rð Þ: ð3:13Þ
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For hyperelastic materials with an energy W per unit reference volume, the
material stress–strain relation is given by [cf. Eq. (1.20)]:

S ¼ 2
o ~W Cð Þ

o C
¼ oŴ Eð Þ

o E
: ð3:14Þ

The Cauchy stress follows by inverting the last of (1.12), i.e.,

r ¼ J�1
F F:S:FT ¼ J�1

F F:
oŴ

oE
:FT : ð3:15Þ

The Finger strain tensor (after Joseph Finger, 1841–1925)—sometimes noted
c�1—defined as:

c ¼ FFT ; ð3:16Þ

is also useful but in the actual configuration.
Many rubber elasticians (e.g., Treloar 2005) prefer to describe finite strains by

means of the (principal) stretches along the three material orthogonal coordinates.
These stretches are introduced thus. Consider a cube of edges of unit length in KR.
Under isothermal situations, after deformation this is transformed in a rectangular
block with edge lengths k1; k2; k3. If the considered deformation is substantially
incompressible—this is a reasonable working hypothesis for rubber like materi-
als—we will have the constraint k1 k2 k3 ¼ 1. Equivalently, we can think in terms
of the principal axes of the strain ellipsoid introduced by Cauchy. In a general way
the three basic invariants of tensor C are defined by:

I1 ¼ trC; I2 ¼
1
2

trCð Þ2�tr C2
� �h i

; I3 ¼ det C: ð3:17Þ

These are the three scalar invariants involved in the Cayley-Hamilton theorem
applied to matrix C. In terms of the stretches, this can be rewritten as

I1 ¼ k 2
1 þ k 2

2 þ k 2
3 ; I2 ¼ k 2

1 k 2
2 þ k 2

2 k 2
3 þ k 2

3 k 2
1 ; I3 ¼ k 2

1 k 2
2 k 2

3 : ð3:18Þ

If there exists a stored elastic energy W per unit reference volume, it must be
such that W ¼ W k1; k2; k3ð Þ. Associated ‘‘material responses’’ (internal forces)
are directly defined by the ‘‘Biot’’ constitutive relations:

fa ¼
oW

oka
; a ¼ 1; 2; 3: ð3:19Þ

For an incompressible ðJF ¼ 1; I3 ¼ 1Þmaterial, the corresponding forces per
unit deformed area are then given by [cf. Eq. (3.15)]

ra ¼ ka fa: ð3:20Þ

36 3 Rheology and Nonlinear Elasticity

http://dx.doi.org/10.1007/978-94-007-6353-1_1
http://dx.doi.org/10.1007/978-94-007-6353-1_1


3.2.2 The Works of Treloar, Mooney and Rivlin

The main contributors to the development of rubber elasticity theory in the
1930–1950s certainly are Paul J. Flory (Nobel Prize 1974), Guth and James,
Treloar, Mooney and Rivlin. They all worked closely with the related industry of
rubber and early artificial fabrics. They all considered first an approach based on
the physical description of polymers with long chains of molecules and thus
necessarily exploiting arguments of statistical physics. But Ronald S. Rivlin
(1915–2005)—although also a good experimentalist-, with his initial training as a
mathematician in Cambridge, was the one who tried to use a pure mathematical
standpoint to formulate the expression of relevant energies for rubber like mate-
rials. In doing so he contributed forcefully to the modern theory of continua in the
large. He is probably the greatest of our heroes in the field (and also an original
and difficult character; see below). In the theoretical and experimental develop-
ments of rubber elasticity, a critical and beneficial role was played in the UK by
the British Rubber Producers Research Association (BRPRA) and then the British
Rayon Research Association (BRRA).

Personal touch: Rivlin was educated at Cambridge (BA in Mathematics in 1937, MA in
1939). After a short stay at General Electric Co and two years as a Scientific Officer with
the ministry of Aircraft Production during WWII, he spent nine years at the BRPRA, from
1944 to 1953, doing both seminal theoretical and experimental works with a one-year
intermission/visit to the National Bureau of Standards in Washington (1946–1947) and a
fruitful stay at the Naval Research Laboratory in Maryland (1952–1953). There his
meetings with Jerald L. Ericksen and Richard A. Toupin were to produce also fundamental
contributions. He did not return to the UK but joined Brown University (1953–1967) after
which he settled at the Centre for the Application of Mathematics at Lehigh University
(1967–1980). His works are marked by excellent applied mathematics, a clear overall
vision of the field, and a sober style of writing (compared to Truesdell’s grandiloquent
style). In social contacts he had a sure sense of his own remarkable achievements, a
specifically British sense of humour, a certain condescendence for the work of many
people, and a devastating critical and sometimes unjust view of other great contemporary
scientists. I witnessed his original behaviour on two specific occasions. One was at the
Oberwolfach Center of Mathematics in the Black Forest—in the early 1980s—where he
forgot that the other people present also needed some food at night! The other was at the
IUTAM Colloquium celebrating his own former co-worker, Tony Spencer, where he spent
the entirety of his lecture time to expand a sharp critic of the Royal Society (where he was
not elected—although he definitely deserved this election) and to describe (his opinion)
the ever worsening quality of papers published in the journals of the Society; see in Chap.
5 his critic of the Truesdellian school.

As a useful information we insist that most developments that follow concern
isotropic bodies and most often incompressible ones.

Leslie R. G. Treolar (1906–1985), with a PhD from London (1938) was one of
the most active concept builders of the mechanics of rubber as shown by his
splendid book (first published in 1944, but with several editions—see the edition of
1975). He worked for the BRPRA before WWII and for the BRRA after WWII
before joining the University of Manchester Institute of Science and Technology
(period 1966–1974) as a Professor of Polymers and Fibre Science. He is most well
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known for his deduction from statistical physics of the following remarkably
simple energy expression for an incompressible material such as made of long
polymer chains (1946):

W ¼ mNkBh I1 � 3ð Þ; ð3:21Þ

where N is the number of chain segments per unit volume, h is the thermodynamic
temperature, kB is Boltzmann’s constant, m is a coefficient that depends on the
details of the assumed molecular model, and I1 is the first invariant from (3.18).
With p an arbitrary hydrostatic pressure accounting for incompressibility, Eqs.
(3.19) and (3.20) yield

fa ¼
oW

oka
� p

ka
; ra ¼ ka

oW

oka
� p: ð3:22Þ

This checks well with a previous result of Guth and James, and Flory, for the
tensile force f needed to extend a rod of unit cross section by a multiplicative factor
k, i.e.,

r ¼ 2mNkBh k� k�2� �
: ð3:23Þ

As to the shearing force necessary to maintain a simple shear of amount c, it is
given by:

r ¼ 2 m N kBh c: ð3:24Þ

Experimental data are in fair agreement with the results (3.23) and (3.24). But
note that all this applies to homogeneous deformations.

Now we turn to the works of Rivlin and co-workers. With a mathematical
vision of the problem, the strain energy for an isotropic rubber-like material must
be a function of the three basic invariants—reduced to two in the incompressible
case—of the deformation [cf. Eqs. (3.17) or (3.18)]. This follows from a celebrated
theorem due to Cauchy and reported in Murnaghan (1951). As a first approxi-
mation the following strain energy can be proposed:

W ¼ C I1 � 3ð Þ: ð3:25Þ

Rivlin (1948) called this a neo-Hookean form. The reason for this is that in
small strains (3.25) reduces to the Hookean (pure shear) form

W ¼ 1
2
l edð Þ2; l ¼ 2C: ð3:26Þ

Of course, in (3.25) the coefficient C must be determined experimentally
although (3.25) strongly resembles (3.21). The tensorial equation replacing the
second of (3.22) reads

r ¼ 2Cc� p1: ð3:27Þ
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By using such a constitutive relation, Rivlin was able to show that for simple
shear of amount c, not only a shear component of stress develops, but also unequal
normal components (proportional to c2) that are acting in mutually perpendicular
directions determined by the direction of shear and the normal to the plane of
shear. The difference between two of these normal components is related to the
Poynting effect mentioned in Sect. 3.1: the simple shear cannot be maintained by
shearing surface loads alone (a hydrostatic pressure—Kelvin effect—keeping the
volume constant is not enough)! Thus the theoretical proof of this effect is a crucial
asset for the nonlinear theory based on (3.25) or its generalizations.

The continuum model (3.25) relies on the highly idealized molecular model
yielding the energy density (3.21). One is therefore tempted—as was the case for
Ronald Rivlin—to strictly apply Cauchy’s representation theorem for the scalar
valued function W for isotropic materials, consider from the start a function
W ¼ W I1; I2; I3ð Þ, and envisage an approximation accounting, say, for incom-
pressibility. Thus, we have the reduction W ¼ W I1; I2ð Þ. For instance, for vulca-
nized rubbers, one can write

W ¼ C I1 � 3ð Þ þ F I2 � 3ð Þ; ð3:28Þ

where function F is a monotonically decreasing function of its argument in the
range of interest. It happens that Mooney (1940), on the basis of some experi-
mental observations, has proposed an energy density of the form:

W ¼ C1 I1 � 3ð Þ þ C2 I2 � 3ð Þ ð3:29Þ

where both C1 and C2 are constants. This is a special case of (3.28). Thus model
(3.29) is nowadays called a model of Mooney-Rivlin material. This has become the
most popular model for incompressible rubber-like materials. Just for this Rivlin
deserves to be honoured in the Hall of Fame of Elasticity.

3.2.2.1 Approximate Theories

These are theories that appear to be approximations of (3.29) by discarding some
degrees in the deformation of line elements and the rotation of volume elements
supposed to be small. A theory of this class had in fact been proposed by Mur-
naghan in a long paper of 1937.

3.2.3 Further Generalizations

3.2.3.1 Anisotropy

A technologically interesting case concerning the industry of tyres is that where
rubber is reinforced by fibres. These fibres introduce locally a privileged direction
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of unit vector d. The problem of representation of the corresponding energy was
initially considered by Ericksen and Rivlin (1954). The solution consists in
applying the representation theorem for the full orthogonal group to a function of
the finite strain and the vector d. This usually results in a function depending on
six joined invariants, but one of them is none other than the unit length of d, and
one has to account for the inextensibility of the fibres. This aspect was thoroughly
discussed and applied in various problems by J.E. Adkins, A.C. Pipkin, T.G.
Rogers, and A.J.M. Spencer. The last author, Anthony J.M. Spencer
(1929–2008)—Tony for his many friends—, a very kind person and an alumnus
from Cambridge, worked on his Doctoral degree with Frank Nabarro in Bir-
mingham and then with Ian Sneddon in Keele. During a stay of 2 years at Brown,
he established a fruitful co-operation with Rivlin and Albert Green, both original
Britons. He rapidly became one of the most important contributors to the theory of
invariants and its applications to the mechanics of continua (see his contribution of
1971). After serving 2 years at the Atomic Weapons Research Establishment in
Aldermaston (UK), he joined the University of Nottingham. There he succeeded
John Adkins as Professor of Theoretical Mechanics and Head of the Department in
1965 until retirement in 1994. His book of 1972 synthesizes his research results in
the mechanics of fibre-reinforced materials. Spencer also is the author of a nicely
readable little book on general continuum mechanics (1976).

Personal touch: During an extended stay (1985) at Nottingham the author had the occa-
sion to befriend Tony and to witness his talent in the peaceful organization of his
department, together with such bright scientists as David F. Parker, Arthur England, and
the regretted Tryfan G. Rogers, among others.

3.2.3.2 Generalized Mooney-Rivlin Materials

In modern terms let us introduce a multiplicative decomposition of the deforma-

tion gradient F that singles out the dilatational contribution J1=3
F 1 so that

F ¼ J1=3
F

�F and C ¼ J2=3
F

�C: ð3:30Þ

whence �F and �C refer to the distortional deformation alone. Using this formalism a
compressible generalization of the Mooney-Rivlin material is described by an
energy of the form:

W ¼
XN

p;q¼0

Cpq �I1 � 3ð Þp �I2 � 3ð Þqþ
XM

m¼1

Dm JF � 1ð Þ2m; ð3:31Þ

where the two summed terms represent the distortional and volumetric responses,
respectively, and we have set

�I1 ¼ J�2=3
F I1; �I2 ¼ J�4=3

F I2: ð3:32Þ
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A compressible Mooney-Rivlin material corresponds to the special case

W ¼ C01 �I2 � 3ð Þ þ C10 �I1 � 3ð Þ þ D1 JF � 1ð Þ2: ð3:33Þ

For C01 ¼ 0 and JF ¼ 1; we recover the neo-Hookean material. Otherwise, in
small strains, we recover the Hookean material with bulk modulus j ¼ 3kþ 2l ¼
2D1 and l ¼ 2 C01 þ C10ð Þ. The general formula (3.31) includes a rich number of
possibilities.

3.2.3.3 Odgen Model

In 1972, Ogden introduced another general model in the following form:

W ¼
X

n

ln

an
kan

1 þ kan
2 þ kan

3 � 3
� �

; ð3:34Þ

where an may be either positive or negative. Such a model opened up a large
variety of possibilities of modelling for rubberlike materials and biological tissues
as well. This proved to be extremely useful as compared to previously proposed
models especially in biomechanics, e.g., Fung’s one given by:

W ¼ 1
2

CKLMNEKLEMN þ c exp ðBKLMNEKLEMNð Þ � 1½ �; ð3:35Þ

where EKL is none other than the finite Lagrange strain of Eq. (3.13), c is a scalar,
and CKLMN and BKLMN are tensors of material coefficients. Sometimes, this is
referred to as Fung’s elastic material.

With all these models the elasticity of large deformations is now understood as
a rewarding and useful field of study. We may even say that ‘‘nonlinear elasticity’’
was rescued or saved from oblivion by the necessity to study the behaviour of
many exploited rubberlike materials of polymeric type and the biomechanics of
soft tissues. Examples of applications and other problems are to be found in Ogden
(2003) and other contributions in the same volume.

3.2.3.4 Mullins Effect

This effect refers to the stress softening that is observed when a rubber specimen is
subjected to cyclic loading. It was apparently first observed by the French scien-
tists Bouasse and Carrière in 1903. But Mullins of the BRPRA described it in 1947.
In this effect the resulting stress–strain response depends on the previously reached
maximum load so that it can be said that the model is stress-history dependent. It
resembles the damage of solid materials in which the elastic modulus is altered by
the previous loading (in general decreases after cycles of loads). It is clear that a
model involving an energy depending only on the standard strain invariants is not
sufficient to describe this behaviour of the hysteretic type (or pseudo-elastic type).
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At least one additional scalar parameter must be introduced to describe the effect.
Ogden and Roxburg (1999) have proposed such a modelling that includes a
damage variable 0 \ g � 1 with a typical energy density made of two terms:

W F; gð Þ ¼ gW0 Fð Þ þ / gð Þ: ð3:36Þ

We refer to these authors and further works by Dorfmann and Ogden for more
on this type of approach that strongly resembles the thermodynamic formulation of
modern theories of plasticity and damage (cf. Maugin 1999, and Chap. 5
hereinafter).

Note: Most non-French readers—and also most French students and professors—have
probably never heard of Henri Bouasse (1866–1955). But Bouasse, a brilliant mind
educated at the ENS in Paris (see Chap. 7 on the French masters) with doctoral degrees in
both physics and mathematics, spent most of his career (1892–1937) at the University of
Toulouse. He had a kind of idée fixe: he wrote a treatise in 45 (yes, forty-five) volumes—
each 300–500 pages long-, about all fields of classical physics in reaction against what he
estimated (his opinion) the bad quality of the teaching of physics in France, and against the
‘‘new physics’’ (relativity, quantum mechanics). This was called the ‘‘Scientific Library for
the Engineer and the Physicist’’. His best volumes are those on acoustics and capillarity.
This last one still is a useful reference. A few years ago, the present author bought a dozen
of never read near mint hardbound volumes of this large opus at the flea market in Paris for
less than fifty dollars the lot!.

3.3 Non-Newtonian Fluids

Now we turn to the possible generalizations of the fluid constitutive Eqs. (3.4) or
(3.6). According to the historical sketch given by Coleman et al. (1966), the initial
general idea of Stokes in 1845 about a viscous fluid constitutive equations would
have been of the form (here, incompressible, and using modern notation)

r ¼ �p1þ f Dð Þ; ð3:37Þ

where the last term is a (symmetric deviatoric) tensor-valued function of the
deviator of the rate of deformation tensor D. It is Reiner (1945) who, going beyond
the linear Stokes fluid, proposed that f be a symmetric polynomial in D. He thus
started with the assumption that

r ¼
Xn

a

baDa; ð3:38Þ

where the ba’s are functions of the density q. Upon using the Cayley-Hamilton
theorem to D and invoking incompressibility, one finds that (3.38) reduces to

r ¼ �p1þ b1Dþ b2D2; ð3:39Þ

42 3 Rheology and Nonlinear Elasticity

http://dx.doi.org/10.1007/978-94-007-6353-1_5
http://dx.doi.org/10.1007/978-94-007-6353-1_7


where b1 and b2 are still functions of the remaining invariants I2 ¼ traceD2 and
I3 ¼ traceD3. Apparently independently of Reiner, Rivlin proposed the constitu-
tive Eq. (3.39) that is therefore referred to as that of a Reiner-Rivlin fluid. It was
already remarked by Reiner that a model such as (3.39) yields not only non-linear
viscosity but also normal stress effects. But if the two normal stresses are equal—
as shown by applying (3.39) to specific flows—this does no explain the observed
Poynting effect. Indeed, Oldroyd (1950) strongly criticized (3.39) as being unable
to characterize so-called viscometric flows (See Coleman et al. 1966; Truesdell
1974, for this notion) if only a function of D alone is considered. The solution to
this problem was given by Ericksen and Rivlin (1954) who showed that the stress
had to depend on further time derivatives of the deformation gradient, e.g., the
acceleration gradient tensor, etc. To that purpose they introduced what are now
referred to as the Rivlin-Ericksen tensors noted An. These are defined by a
recurrence such as

A1 ¼ D; Anþ1 ¼ _An þ rvð Þ:An þ An: rvð ÞT ; n� 1: ð3:40Þ

At first one may think that the new general constitutive equation should involve
a dependence of the Cauchy stress r on the Finger tensor c and the sequence of
Rivlin-Ericksen tensors. For an incompressible isotropic fluid Ericksen and Rivlin
assumed that the deformation itself is not involved and they proposed the general
constitutive equation

r ¼ �p1þ f A1; A2; . . .ð Þ; ð3:41Þ

where f is an isotropic tensor-valued function of its arguments. Rivlin (1956) then
showed that this can account for non-equal normal stresses in viscometric flows,
thus definitely improving on the Reiner-Rivlin model.

Example of a consistent constitutive equation after (3.41):

r ¼ �p1þ a1A1 þ a2A2 þ a3A2
1;

where the ak
0s depend on trace A2

1 only.

Remark 3.1 A perhaps nicer definition than (3.40) can be given thus to the Rivlin-
Ericksen tensors. Let Ft sð Þ denote the deformation gradient of the material point
X at time s� t relative to time t. Call Ct sð Þ ¼ FT

t sð ÞFt sð Þ the corresponding
Cauchy-Green strain. Then

An :¼ dn

dsn
Ct sð Þ½ �js¼t: ð3:42Þ

This definition is due to Noll after Green and Rivlin (1957).

Remark 3.2 The idea behind the representation (3.41) is that if, following Old-
royd’s view (1950), the stress is to depend on the past history of the deformation
gradient, then for sufficiently smooth deformations, Taylor’s theorem enables one
to express it in terms of the instantaneous values of the deformation gradient and
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its time derivatives. Equation (3.41) is what results when the instantaneous value
of the strain is discarded (no standard elasticity) and incompressibility is imposed.

The last remark relates to the original model proposed by Oldroyd in 1950.
There, this author proposed that the stress at time t be determined by an integro-
differential tensor equation that relates the stress and the history of the convected
metric (i.e., a strain) tensor. The approximations made on this modelling in order
to be able to solve representative problems can be shown to provide solutions
equivalent to those that would follow in the framework of a second-order
approximation of the Rivlin-Ericksen constitutive equation. Although the idea of
involving the history of the past deformation in a constitutive behaviour goes back
to the hereditary model of Boltzmann (cf. Chap. 2 above), the first comprehensive
properly invariant (tensorial) continuum theory involving these integral repre-
sentations seems to be due to Green and Rivlin (1957). This resulted from a
general functional relation of the type

r tð Þ ¼ U C sð Þ; s� t½ �; ð3:43Þ

by means of an approximation by a series of multiple integrals (over past time),
assuming the functional U to be Fréchet differentiable. This will not be expanded
here because the present author thinks that this is not the most convenient math-
ematical form of constitutive equations in problem solving (see the notion of
internal variable of state in Chap. 5). What we note, however, is that the functional
relation (3.43) stands for Noll’s (1958) definition of a so-called ‘‘simple’’ material,
the ‘‘simple’’ being here rather euphemistic. The fundamental paper on the
approximation of time functionals in the framework of so-called ‘‘vanishing
memory’’ remains the paper by Coleman and Noll (1961). These functional
models allow one to account for the modelling of stress-relaxation. This naturally
brings us to the following item.

3.4 Rheological Models and Further Extensions

3.4.1 Zener’s One-Dimensional Models

In Eqs. (i) and (k) of Chap. 1 we have recalled the Maxwell and Kelvin-Voigt
models of linear visco-elasticity. These models account for a relaxation in stress
and strain, respectively. They are easily represented by so-called rheological
models, spring and dashpot in series, in the first case, spring and dashpot in parallel
in the second case. These rheological models—see Zener (1948)—are practically
hated and/or ridiculed by purists in continuum mechanics. Nonetheless they have a
heuristic value and help the ‘‘simple minded’’ rheologist to build models that can
become rather complex by a multitude of arrangements of simple elements—see
Chap. 2 in Maugin (1992) and Vyalov (1986). But these models are one-
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dimensional. To go from them to true three-dimensional models one must have at
hand the correct three-dimensional generalizations of the rates of strain and stress.
If the former is easily constructed (see above the Rivlin-Ericksen tensors), the
latter must be built so as to provide objective (i.e., independent of the observer)
entities. The answer to this query was provided by Oldroyd in his landmark paper
of 1950, with the notion of ‘‘Oldroyd time derivative’’, although we note that
Jaumann (1911) had already proposed a solution of a different type.

3.4.2 Oldroyd’s Time Derivative

This notion can be introduced thus. Consider the first of Eq. (3.15) and write the
two-ways relations

S

JF
¼ F�1:r:F�T ; r ¼ F:

S

JF

� �
:FT : ð3:44aÞ

In modern vocabulary these two equations represent the ‘‘pull back’’ and ‘‘push
forward’’ operations of convection between actual and reference configurations.
They could be represented symbolically by the following obvious notation

S=JFð Þ ¼ C
 

r½ �; r ¼ C
!

S=JF½ �: ð3:44bÞ

Then the Oldroyd convected time derivative r̂ of r is defined as

r̂ ¼ C
! o

ot

S

JF

� �� 	
;
o

ot

S

JF

� �
¼ C
 

r̂½ �: ð3:45Þ

The evaluation of r̂ in terms of the time derivative of r and the gradient of the
velocity requires only the knowledge of the expressions of the time derivatives of
F and F�1. The result of this easy computation is

r̂ ¼ _r� r: rvð Þ � rvð ÞT :r: ð3:46Þ

The acute observer from geometry will notice that this is none other than a Lie
derivative in following the velocity field in an appropriate four-dimensional space–
time. The so-called Truesdell time derivative ~r of r is deduced by considering
S rather than (S/JF) in the above equations, resulting in the formula

~r ¼ _r� r: rvð Þ � rvð ÞT :rþ r r:vð Þ: ð3:47Þ

Note that the exact expression of a Lie derivative depends on the variance of the
tensorial object to which it is applied. This leads to a distinction between so-called
‘‘upper’’ and ‘‘lower’’ Oldroyd derivatives, but we do not need to enter this
technical point here. Such derivatives have been used in constructing a lot of
different three-dimensional models of non-linear visco-elasticity. It is not our
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purpose here to discuss this branch of rheological modelling. We prefer to refer the
reader to an excellent book on the subject (e.g., Giesekus 1984).

In contrast the Jaumann time derivative (here noted DJ), while also objective,
involves only the vorticity X—or rate of rotation tensor—rather than the whole
velocity gradient. For instance, for a vector V and a second-order tensor r we have
the following expressions:

DJV ¼ _V� X:V; DJr ¼ _r� X:rþ r:X: ð3:48Þ

The last of these is equal to the Oldroyd derivative (3.46) up to (objective)
terms linear in D. The Jaumann derivative is a special case of co-rotational time
derivative (Eringen and Maugin 1990, p. 17).

Oldroyd, Truesdell and Jaumann derivatives are of interest not only in rheology
but also in the electrodynamics of continua (see Eringen and Maugin 1990, Vol-
umes I and II). However, as a simple example from pure mechanics, we can cite
the Truesdell isotropic (grade-zero) model of ‘‘hypo-elasticity’’

~r ¼ k r:vð Þ1þ 2l rvð ÞS: ð3:49Þ

With obvious time rates on both sides of this equation, this looks very much
like the time derivative of Hooke’s law. But it is ‘‘weaker’’ than the Hooke law
since it relates the derivatives of functions rather than the functions themselves,
hence the coinage of ‘‘hypo-elasticity’’. This kind of relationship between an
objective time rate of a stress and the rate of strain was introduced by Truesdell
with the hope to include the plastic behaviour in his ‘‘rational’’ scheme of con-
tinuum mechanics. This is now obsolete as plasticity now is most often presented
within the framework of the thermodynamics of bodies with internal variables of
state (cf. Maugin 1992). This is one more favorable argument for introducing
objective time derivatives. Indeed, the idea that goes back to Coleman and Gurtin
(1967)—and perhaps to Duhem—is to replace the time functional over the past
history in Eq. (3.43) by a traditional function dependence on a set (as small as
possible) of variables of which the time evolution is constrained by the second law
of thermodynamics: they produce dissipation. If these variables are vector or
tensor-valued, then we need to account for their dutifully defined objective time
rates such as the above given ones. The case where the description of the complex
fluid behaviour accounts for the time evolution of the internal microstructure is
thus dealt with by Maugin and Drouot (1983)—see also Maugin (1999). We shall
return to this type of approach in Chap. 5.

3.5 Concluding Remarks

In this chapter we have rapidly explored the innovative developments concerning
the rheology of fluids and the birth of an applicable nonlinear theory of elasticity.
The first of these bears traces of the influence of chemical engineers, while the
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second carries a strong print of British applied mathematics clearly dominated by
the emblematic person of Ronald Rivlin. The great names are those of Bingham,
Reiner, Treloar, Rivlin, Green, Oldroyd, Truesdell, Coleman and Noll. This
adventure is mostly British and American, with the exception of Reiner. Suc-
cessful developments have been achieved step after step. Some of these steps are
now forgotten, e.g., the Reiner-Rivlin model and the hypoelasticity of Truesdell.
Still these were useful in producing tools and a way of general thinking that
provided sound bases for the whole of continuum mechanics. The most interesting
period has been the one spanning between 1940 and 1970. This is not to say that no
further progress was achieved afterwards and by scientists in other countries, in
particular in Europe. New strongholds of rheological studies have appeared in the
1960–1980s as for instance in the USA with W. R. Schowalter at Princeton, A.S.
Lodge in Wisconsin (formerly in Manchester, UK), L.G. Leal in Santa Barbara,
D.D. Joseph in Minneapolis, L.G. Larson, in Canada with Pierre J. Carreau at
Montreal Polytechnic, with O. Hassager in Denmark, H. Giesekus in Germany,
and also in the UK with E.J. Hinch, K. Walters and R.I. Tanner, in Belgium with
J.-M. Crochet, in Australia with R.R. Huilgol and N. Phan-Thien, in France with
Angles d’Auriac and his Grenoble close co-workers (see Chap. 7 on the French
masters), and J.-M. Piau first in Paris-Orsay and then in Grenoble. But most
developments there are related to specifying special types of constitutive equations
using the tools constructed by the great masters, accounting for a microstructure,
solving particular problems and implementing numerical methods, where we
acknowledge that the behaviour of non-Newtonian fluids poses difficulties. The
European based journal Acta Rheologica played an important role in disseminating
research, and this probably as much as the Journal of Non-Newtonian fluid
mechanics or the Journal of Rheology in the USA.

On the non-linear elasticity front, we have emphasized again the contribution of
Ronald Rivlin and his various co-workers in the USA (e.g., J.L. Ericksen), and in
the UK (A.E. Green, A.J.M. Spencer,…). This again looks like a pure Anglo-
American adventure. But this does not mean that no deep and fruitful studies were
achieved in other places. In particular, we note the formidable achievements by the
Italian school in the 1910s (e.g., E. Almansi) and in 1930s with a quantity of
contributions in finite deformations, for instance by authors such as P. Burgatti, G.
Armani, D. Bonvicini, U. Cisotti, B. Finzi, C. Tolotti, and A. Tonolo (see
Truesdell 1952, for full citations) in the formal approach to finite-strain elasticity,
and also around Antonio Signorini (1888–1963) and his ‘‘allievi’’, Carlo Cattaneo
and Giuseppe Grioli, in the analytic solution of fundamental elasticity problems.
Among these we must cite the Signorini’s perturbation method in finite elasticity
(1930) that allows one to solve a class of traction boundary-value problems, his
work on finite-strain thermo-elasticity (1943 and on), and the celebrated ‘‘Signo-
rini problem’’: find the elastic equilibrium configuration of an anisotropic non-
homogeneous elastic body resting in a rigid frictionless surface and subjected only
to its weight. Truesdell had an immense admiration for these works. Also, we
cannot ignore any substantial contribution from the Soviet Union (e.g., by
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Novozhilov 1953; Goldenblatt 1962; Lurie 1980, and their students; see Chap. 11
below).

But finite-strain elasticity mostly concerns rubber-like materials and the
mechanics of soft biological tissues. No wonder, therefore, that most recent
advances were accomplished within these two fields, with a remarkable creativity
demonstrated in original developments of the theory of growth of biological tis-
sues. These materials, first described as purely elastic, albeit not linear, are now
governed by both elasticity and growth—both in volume and at the surface—due
to the action of nutrients. In this line of fruitful research which goes much beyond
the scope of this book, we find the works of S.C. Cowin, R. Skalak, L.A. Taber,
E.K. Rodriguez, A. Hoger, M.E. Gurtin, M. Epstein, G.A. Maugin, S. Imatani, S.
Guiligotti, A. Di Carlo, D. Ambrosi, L. Preziosi, J.-F. Ganghoffer, E. Kuhl, and P.
Ciarletta.

Personal touch. I feel that the present chapter fully exhibits the dynamics of a field in
expansion with its shy progresses, trials, errors, missed steps, and breakthroughs, and the
fact that new developments rapidly made previous ones obsolete. Thus the Reiner-Rivlin
modelling of fluids was rapidly superseded by a new model designed by Rivlin himself so
that the former fell into oblivion almost instantaneously (on the historical scale). The
‘‘adventure’’ of ‘‘hypo-elasticity’’ is also exemplary: in Eringen’s book of 1962—perhaps
written while the field was not ripe enough-, some 50 pages are devoted to hypo-elasticity
and its relation to plasticity. This has completely disappeared in the other Eringen text
book of 1967. It is with some melancholy that I recollect a period at which I was trying to
persuade some colleagues that we did not need hypo-elasticity at all in spite of the sacred
words of pundits.
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Chapter 4
The American Society of Mechanical
Engineers Spirit

Abstract Of great importance is the innovative and enduring influence that a well-
organized professional society may have on the development of a science. This is the
case of mechanical engineering with the American Society of Mechanical Engi-
neers. As documented in this chapter, this society provided a specific forum to its
members at a spot-on time. It brought a spirit that permeated many American works
in continuum mechanics. This may be described as: good modelling (without too
much abstraction and unnecessary formalism), good applied mathematics providing
real applicable solutions with numbers and curves, and a specific interest in the
relationship of these solutions with experimental facts. The prominent figure
obviously is the founder of the Applied Mechanics Division of the ASME, Stephen
P. Timoshenko. For easiness in presentation, a few most influential centres are
highlighted in this chapter. These are Stanford (with Timoshenko himself), the
M.I.T (with Eric Reissner), Brown (with William Prager) and Columbia (with
Raymond Mindlin). Each of these is most representative of identified avenues of
research: advanced strength of materials, mathematics applied to problems of
engineering, tremendous and contagious developments in the theory of plasticity,
and accurate dynamical theory of structural elements (e.g., plates and shells) and
coupled fields (electroelasticity). This was to swarm all over the USA and then the
whole world community of mechanics.

4.1 Introduction

One way to find out to which science group a scientist thinks he belongs is to ask
him his own answer to that question (that is the most honest way). Another way is
to find out in what scientific journals this person publishes most often since he is
expecting this place to be the most suitable forum for his work and in turn to
receive the best feedback possible. Accordingly, a professor who officially belongs
to a department of engineering but publishes essentially in journals with the
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‘‘applied mathematics’’ label may be called an ‘‘applied mathematician’’. The
person herself should agree with that since there is no visible insult in this cate-
gorization. In this chapter we focus on a rather large group of contributors to
continuum mechanics who are affiliated with the American Society of Mechanical
Engineers (for short, the A.S.M.E) and who published essentially in the journals of
this society, principally, the Journal of Applied Mechanics (Transactions of the
A.S.M.E). We think this to be justified by the fact that both society and journals
carry with them a specific spirit that can be delineated thus: good modelling
(without too much abstraction and unnecessary formalism), good applied mathe-
matics providing real applicable solutions with numbers and curves, and a specific
interest in the relationship of these solutions with experimental facts. This departs
very much from the other view that will be exposed in the next chapter.

Because of the clear-cut US professional context this concerns mostly American
mechanical engineers or foreign scientists who made a career in the USA. Of course
we are above all concerned by the Applied Mechanics Division (A.M.D) of the
ASME. This division is involved in the fundamental and applied field of mechanics,
including solids, fluids and systems. According to the Society’s definition,

it strives to foster the intelligent use of mechanics by engineers and to develop this science
to serve the needs of the engineering community. Areas of activity cover all aspects of
mechanics, irrespective of approach, including theoretical, experimental, and computa-
tional methodology. The field of mechanics, which is the study of how media responds to
external stimuli, includes fundamental analytical and experimental studies in: Biome-
chanics, Composite materials, Computing methods, Dynamics, Elasticity, Experimental
Methods, Fluid dynamics, Fracture, Geomechanics, Hydrodynamics, Lubrication,
Mechanical properties of materials, Micromechanics, Plasticity and failure, Plates and
shells, Wave propagation, other related fields.

Many of these sub-fields fall in the large subject matter of this book.
The possibilities of publishing papers originally fitting the ASME journals were

much enlarged in the 1960s with the creation by Pergamon Press (Oxford, UK) of
a series of international journals dealing with subjects of engineering sciences, but
often at a more formal level (e.g. the International Journal of Engineering Science,
the International Journal of Solids and Structures, the International Journal of
Non-linear Mechanics, etc.). The Journal of Elasticity, founded in 1971 by Marvin
Stippes (1922–1979), was also a good forum for the same papers, but in times it
turned more to the style that we shall examine in Chap. 5. Also, many American
mechanical engineers of British origin continued to publish in British journal of
applied mathematics and mechanics. A short history of the AMD-ASME was
given by Naghdi (1979).

4.2 The Stanford Connection and Timoshenko

The ASME was founded in 1880 explicitly ‘‘to provide a setting for engineers to
discuss the concerns brought by the rise of industrialization and mechanization’’.
Its Applied Mechanics Division is one of the oldest and largest divisions of the
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ASME. This division was founded by Timoshenko and others, Timoshenko acting
as its first chairman. The relevance of this division to our subject matter is made
crystal-clear when we scan the list of recipients of the three famous medals
bestowed by this division, the Timoshenko, Drucker and Koiter medals. Here we
find, among others, the names of Goodier, Biot, Mindlin, Prager, Koiter, Lee,
Eshelby, Ericksen, Naghdi, Argyris, Drucker, Irwin, Rivlin, Budiansky, Fung,
Rice, Willis, Tvergaard, Maier, etc. between the years 1957 and 2000. All theses
names appear in due place in the present book.

The prominent figure obviously is Timoshenko (1878–1972) of Ukrainian
origin. Educated as a Railway engineer in St Petersburg, Timoshenko had a rather
erratic career in the Russian Empire and Zagreb in Croatia before he moved to the
USA in 1922 at the age of 44. At this time he had already contributed to several
areas of engineering mechanics: complex structures, computation of eigen fre-
quencies, simple approximate methods, stability of frames, etc. This was already
an all round activity in the field. It is in Kiev in the years 1907–1911 that he
developed an interest in studies of buckling and that he wrote the first version of
his famous textbook on the Strength of materials (Timoshenko 1930). On his move
to the USA he first worked for the Westinghouse Electric Corporation
(1923–1927). He joined the University of Michigan in 1927 and transferred to
Stanford in 1936 to stay there until he took a well deserved retirement in Germany
in 1960 where his daughter was living. He published books on all aspects of
engineering mechanics; these books were translated in more than thirty languages,
a record achievement in the field. Among his many books (Timoshenko 1930,
1948, 1951, 1953, 1959, 1961) we like to single out his unique and well docu-
mented History of the strength of materials (1953). He may be considered the
father of modern engineering mechanics in the USA. The Institute of Mechanics of
the Ukrainian Academy of Sciences in Kiev is named after him.

Timoshenko was also a tremendous lecturer and supervisor of students’ doc-
toral works (about 40 in the USA). Among those he mentored, we note in
Michigan: Donnell (1930), Goodier (1931), Horger (1935), Hetényi (1936), and in
Stanford: Lee (1940), Hoff (1942), and Popov (1946). His own most famous
contributions are to the beam theory, the deflection of membranes, the bending of
plates with Ritz method, and buckling in general. But the variety of his interests is
also reflected in the title of the many books he wrote and the domains to which his
doctoral students contributed, e.g. Hetényi (beams on elastic foundations, photo-
elasticity, general elasticity problems), Donnell (bending of beams, bucking of
shells, thick plates, the Donnell-Vlasov equation), Goodier (thin-walled struc-
tures), Horger (fatigue, photo-elasticity), Hoff (aeronautical structures), Popov
(strength of materials). Remarkably enough, four of Timoshenko’s students
(Goodier, Donnell, Hoff, Hetényi) became chairmen of the AMD of the ASME.

Herrmann (1921–2007), after stays at Columbia and Northwestern University,
joined Stanford in 1970 to remain there until his retirement. He perpetuated the
ASME spirit although he also created a new journal, the ‘‘International Journal of
Solids and Structures’’. A Swiss/American polyglot born in Russia, he was for a
long time editor of the English translation of the top Russian journal of mechanics
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and applied mathematics Prikladnaya Mekhanika i Matematika (P.M.M.). He
worked in many fields including shell theory, stability of structures, vibrations of
elastic bodies, wave propagation, fracture, and the theory of material forces
(configurational mechanics). He was instrumental in bringing to Stanford Juan
Simo (1952–1994), a foremost authority on computational mechanics in finite
strains, and Alicia Golebiewska (1941–1983), a noted specialist of the theory of
defects and configurational mechanics, both unfortunately for a rather short time.

4.3 The M.I.T Connection and Reissner

The MIT in Cambridge, Mass., with its announced banner, is most often seen as
the temple of technology, what meant mechanical, civil, electrical and chemical
engineering in the first half of the 20th century. In time, this has evolved by
including new sectors of engineering as they were born, electronics, nuclear
engineering, computer sciences, and then embracing all scientific fields to the
highest degree. But in the period of interest here—say, when the writer was
admitted to, but did not join, the MIT graduate school—‘‘classical’’ engineering
still was an obvious lighthouse. An excellent recruit for the MIT faculty in 1937
was Eric Reissner (1913–1996) who had previously been educated at the Technical
University of Berlin. Rather typical of MIT policy, Reissner obtained a profes-
sorship in mathematics that he held from 1939 to 1969. This was the vision of
mathematics at MIT at the time, by which should be understood ‘‘mathematics
applied to problems of engineering’’. The mathematical dexterity and rigour of
Reissner perfectly suited this definition. Reissner more than fulfilled the expec-
tations of the faculty board by becoming one of the most productive, successful
and internationally recognized engineer-scientist in the field of structural analysis
with applications to both civil and aeronautical engineering. In particular, Reissner
improved on solutions by Timoshenko in the elastic theory of beams, thin-walled
structures, plates and shells. This is illustrated by his theory of shear deformation
in plate theory. His works are marked by the exploitation of variational principles
(e.g. the celebrated Hellinger–Reissner variational principle that accounts simul-
taneously for both displacement and stress conditions); cf. Reissner (1953) and an
obvious easiness in dealing with complex analytic problems.

Personal touch: During a lecture by the writer in Blacksburg, Virginia, Prof. Reissner
intervened publicly to tell that, even with special efforts on his part, he could not
understand why the name of Hellinger was associated with his own name for the so-called
two-field variational principle. This tells something on the personality of Eric Reissner
with whom the author should have worked, had he joined the MIT for graduate studies.

The best known doctoral student of Reissner at MIT may have been James K.
Knowles (1931–2009) who is the author of many seminal works in elasticity and
phase-transition problems. This he achieved in close collaboration with Eli
Sternberg (1917–1988) and younger colleagues, e.g. Horgan and Abeyaratne.
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He was a professor at Caltech from 1965 until retirement. Knowles and Abey-
aratne are the authors of a remarkable monograph on phase-transitions fronts
(2006), a domain to which they contributed with energy and ingenuity in the
period 1990–2000 with works on shape-memory alloys, the dynamics of propa-
gating phase boundaries, and the kinetics of austenite–martensite phase transfor-
mations. Rohan Abeyaratne (PhD Caltech 1979) joined MIT in the late 1980s and
became head of its Department of Mechanical engineering (2001–2008).

4.4 The Brown Connection and Prager

The disproportionately important contribution of Brown University to engineering
and continuum mechanics is somewhat of a mystery. This rather small but old
university resides in Providence, Rhode Island, in the smallest state of the USA
with only about one million of inhabitants. It was founded in 1764, belongs to the
Ivy League—along with Harvard, Yale, Princeton—and has the oldest under-
graduate program in engineering in this class of colleges. A single division of
engineering gathering small departments was created in 1926. Still the engineering
faculty remains relatively small with—at the time of writing—about forty full-
time members and a body of about one hundred and fifty graduate students. It is
complemented by an active division of applied mathematics. But Brown suc-
ceeded to be almost the centre of the World for studies on elasticity and plasticity
starting in the 1940–1960s. The following list of professors and PhD students at
some time at Brown speaks for itself, looking like a real ‘‘dream team’’: Prager,
Drucker, Rivlin, Symonds, Sternberg, Kestin, Rice, Weiner, Freund, Clifton,
Needleman, Budiansky (PhD 1950), and in applied mathematics dealing with
problems of continuum mechanics Gurtin (PhD 1962) and Dafermos.

Prager was the driving force behind all developments in plasticity theory at
Brown. He is most well known for his proposal (1949) of the format of plasticity
with kinematic hardening (plasticity surface moving with the evolving state of
plastic strains; Prager (1955, 1961), his introduction of the notion of locking
materials (i.e. materials exhibiting a saturation in strain; Prager (1957)) and his
deeply thought books in the field of plasticity and general continuum mechanics ().
Drucker (1951) gave his name to the Drucker inequality (non negative product of
stress rate and plastic strain rate), i.e.

_rji _e
p
ij� 0; ð4:1Þ

and Drucker’s stability postulate in the self explanatory form

W ¼
Z t

0
rji � r0

ji

� �
_e p
ij dt� 0; ð4:2Þ

where r0 is the original state of stresses and 0; t½ � is a closed time-cycle of loading
and unloading. Greenberg (1949), also at Brown, was one of those who proposed
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in 1949 a variational formulation of plasticity (minimum principle exploiting a
convexity argument). This was improved by Budiansky and Pearson (1956/1957).
Symonds (1951) introduced the ingenious notion of plastic hinges that allows one
to treat the collapse of truss structures, and set forth the elements of shake down
(or limit) analysis (Drucker et al. 1952). The seminal works of Rivlin were
examined in Chap. 3. Gurtin and Sternberg (1962) worked in the linear theory of
visco-elasticity (also Sternberg, 1964). Rice (1968) produced his famous works on
path-independent integrals and the thermodynamics of plasticity, while Kestin
became the most acute observer and critic of the thermo-mechanics of continua
(see his celebrated treatise on thermodynamics 1966). Weiner expanded the sta-
tistical theory of elasticity (see his wonderful book of 1983). Freund produced his
theoretical works on dynamic fracture, while Clifton performed landmark exper-
iments in the same. Constantine Dafermos, a former PhD student of Ericksen, is an
applied mathematician specialist of the dynamics of continua and hyperbolic
systems. The world reputation—especially Prager’s—of the Brown school, a true
‘‘Mecca’’ of plasticity, reached such a level that many foreign visitors came to
Brown to get acquainted with the then most recent developments in plasticity
(among them, Paul Germain from France in 1952–1953; See Chap. 7); also Hans
Ziegler from Switzerland. Those formed in Brown then spread over the USA to
continue the successful expansion of the Brown spirit.

4.5 The Columbia Connection and Mindlin

To be able to fully understand the University of Columbia in New York City, it
might be requested be a born New-Yorker. Indeed so many people seem to have
been born in New York, made their basic high-school training, college and uni-
versity studies in the same city, and finally ended teaching also there. I even know
some of these people who never travelled farther than New Jersey, spending in
their youth some week-ends and later on some holidays in Atlantic City (otherwise
famous for its Mafia connection and Frank Sinatra). One such character seems to
have been Raymond D. Mindlin (1908–1978), although I met him abroad occa-
sionally (CISME Lectures in Udine in 1970). Born in New York, Mindlin obtained
all his university degrees (BA, BS, CE, and PhD) at Columbia where he taught
from 1936 to 1975, with a few visits in Michigan to attend summer lectures from
Timoshenko in the summers of 1933–1935, and a War scientific service at the
Applied Physics Laboratory in Maryland in the period 1942–1945.

Mindlin’s PhD work published in 1936 was already a masterpiece. He solved in
it what is now called the ‘‘Mindlin problem’’: determine (analytically) the stresses
in an elastic half-space subjected to a sub-surface point load. This is a general-
ization of results obtained by Kelvin and Boussinesq in the 19th centuries. It
receives applications in geotechnical engineering. The roster of mechanical sub-
jects treated, modelled and/or solved by Mindlin is extremely rich including such
different items as: photoelasticity, classical elasticity problems, generalized elastic
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continua (strain-gradient theory, media with deforming microstructure and couple
stresses—see Chap. 13), frictional contact and granular materials, waves and
vibrations in isotropic and anisotropic plates (in the so-called Mindlin’s theory of
plates), wave propagation in rods and cylinders (cf. the Love-Mindlin lateral
inertia), electro-elasticity and piezoelectric crystal resonators, crystal lattice the-
ories. His work in vibrations of plates set forth standards in the theory of real and
imaginary multiple coupled branches of dispersion. In the 1950s, he wrote on the
subject a monograph for the US Army Signal Corps, which monograph stands out
as a classic in the field (published in book form and edited recently by J. Yang
2007; Mindlin 2007). His theory of electro-elasticity with polarization gradients
(1968–1972; cf. Chap. 12) opened up new horizons in the description of electro-
mechanical couplings in materials that do not allow for the existence of standard
linear piezoelectricity (for which no centre of symmetry is allowed). Mindlin has
been a chairman of the AMD of the ASME. He collected many honours, among
them a Presidential Medal of Merit (1946) for his scientific contribution to the War
effort during WWII and the National Medal of Science in 1979 in recognition of
his all round contributions to American engineering and applied physics. Collected
works of Mindlin are given in Mindlin (1989).

One of Mindlin’s doctoral students, Tiersten (1930–2006), seems to have inher-
ited some traits of his mentor. Also born in New York, Tiersten also obtained all his
degrees (BS, MS, and PhD) at Columbia. But he spent six years at Bell Telephone
Laboratories (in nearby New Jersey), before joining the Rensselaer Polytechnic
Institute in Troy (still in New York State) in 1967. But the writer succeeded to bring
him to Paris for an international conference in 1983. He also had a continued and
fruitful co-operation with the US Army Laboratory in Fort Monmouth in New Jersey,
with Arthur Balluto, another New Yorker with mobility limited to New York City
and the coast of New Jersey. Tiersten contributed to the elaboration of continuum
theories exhibiting the role of a microstructure. His most powerful contributions,
however, are in the field of piezoelectric couplings (cf. Tiersten 1969), vibrations,
and the nonlinear theories of magnetized deformable bodies and electro-elasticity
including thermal effects and the case of semi-conductors.

Raymond Parnes (born 1933, PhD 1962 with Mindlin), another New Yorker,
who remained in New York and Columbia before moving to Israel became a noted
specialist of problems in elasticity. Yih-Hsing Pao (born 1930, PhD with Mindlin
in 1989) became in Cornell a well known specialist of physical acoustics and wave
propagation in solids, with some excursion in electro-magneto-mechanical inter-
actions. Lee carried the flame of piezo-electricity in the Department of Civil
Engineering at Princeton with his PhD students Xanthippi Markenscoff and Jiashi
Yang, themselves now professors of mechanics in California and Nebraska,
respectively. George Herrmann spent some of his first years in North America in
Columbia with Mindlin; he considered himself a disciple of both Prager (who
advised him on his doctoral work in Zürich) and Mindlin, in the honour of whom
he edited in 1974 a complimentary volume that provides a detailed technical
description of Mindlin’s scientific contributions by his main co-workers
(Herrmann 1974).
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Another colleague of Mindlin at Columbia was Boley (born 1924). Although
born in Trieste (Italy), Boley may also be considered a New Yorker. Indeed, he
obtained all his diplomas in New York City (College of the City of New York,
Brooklyn Polytechnic—where Hoff was teaching) and left New York only for a
short experience in industry, a short stay at Cornell (1968–1972), and a longer stay
at Northwestern (1972–1986) where he served as Dean of Engineering. But he
joined Columbia in 1952 until 1968 and back in 1986 until retirement, and then
with emeritus status. A good friend but not a co-worker of Mindlin, he is most well
known for his contribution to the theory of thermo-elasticity for which he wrote a
classic in the field (1960) together with Columbia’s colleague Weiner. He founded
the journal titled ‘‘Mechanics Research Communications’’ of which the aim
remains the rapid publication of short contributions (somewhat in the spirit of
‘‘letters’’).

4.6 Concluding Remarks

Here above we have selected a few places which, in our opinion, are representative
of a style of some scientific/engineering developments in the 1940–1960s as they
smell good the ASME spirit. This is not to say that these are the only such places.
We cannot ignore other institutions where some luminaries contributed to definite
advances in the same spirit. To the risk of missing some important places (but this
is only due to our ignorance), such places are: Harvard (with Budiansky and Rice),
Cornell (with Pao and Moon), Yale (with Onat), Purdue and Princeton (with
Eringen), the University of Pennsylvania (with Hashin and others), Lehigh Uni-
versity (with Rivlin, Erdogan and others), the University of Michigan, the Uni-
versity of Chicago and Northwestern University in Evanston (with Achenbach and
Bazant, and more recently Belytschko), the Illinois Institute of Technology, the
University of Minnesota (with Ericksen), the University of Illinois at Urbana-
Champaign, the University of Houston, the Texas A&M University, and, obvi-
ously, the University of California at Berkeley (with Naghdi), and Caltech. On
perusing the short biographies of mechanicians given in the Appendix the reader
should be able to form some good idea of the contribution of these institutions,
taking however, account of the great mobility of many researchers (save for the
above mentioned New Yorkers). It is the opinion of the present writer that some
names already cited in this chapter (e.g. Gurtin) have also contributed to another
‘‘spirit’’, that of the axiomatization line launched in the 1940–1950s by Truesdell.
This is examined in the next chapter.
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Chapter 5
Axiomatization and Thermo-Mechanics

Abstract In contradistinction with Chapter 4, the present chapter deals with a
more voluntary tendency at axiomatization and abstraction, probably inherited
from the early writings of Hamel in Germany and Duhem in France at the dawn of
the Twentieth century. Such a program was essentially expanded under the
magisterial leadership of Clifford Truesdell in the USA, after his careful historical
perusal of mechanics from the origin to the 1940s. The pursued aim was a rational
reconstruction of the whole of continuum mechanics in a somewhat Bourbakian
style. Impressive encyclopedic contributions by Truesdell, Toupin and Noll were
the lighthouses that ‘‘illuminated’’ the world community of mechanics. Simulta-
neously, a scientific journal (the A.R.M.A.) set forth standards and a definite style.
A rather strict thermodynamic frame work was proposed by B.D. Coleman and
W. Noll. The notions of fading memory and the required satisfaction of the
Clausius-Duhem (thermodynamic) inequality are fundamental ingredients in this
presentation. However, attractive as it was, some parts of this true credo imposed
too much constraint on the thermomechanical modelling so that some freedom had
to be granted and some generalization were necessary in a too much corseting
frame work. As dutifully exposed in this chapter, this led to the conception of a
rational extended thermodynamics (in particular by I. Müller) as also a less
revolutionary but very efficient thermo-mechanics with well-chosen internal state
variables.

5.1 Introduction

We have seen in Chap. 2 that the turn of the century around 1900 was pregnant of
a mature insight in which the principles of mechanics in general and those of
continuum mechanics in particular were discussed and somewhat formalized.
Scientists such H. Hertz, E. Mach, H. Poincaré, G. Hamel, and perhaps above all
P. Duhem were involved in this critical assessment trying to fix some definite doxa
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for this science in its classical framework. This may sound strange retrospectively
because this period also corresponds to the birth of quantum mechanics and rel-
ativity, and the early development of the elementary-particle viewpoint, therefore
requiring a harsh questioning of the bases of classical mechanics and of the notion
of the ‘‘continuum’’ concept. Furthermore, there was an obvious effort to place
everything in an historical context so that many authors—but this was already
shown by Cauchy in his Méchanique Analitique and by Barré de Saint–Venant in
his much enlarged translation of Clebsch’s book—felt a need to give precise
references from the past steps and achievements. Clifford A Truesdell
(1915–2000), in the immediate post WWII period, engaged in a similar program of
reconstruction and historical presentation of continuum mechanics. Duhem, with
his complete devotion to the continuum view and his recourse to original sources,
whatever the language used, probably is the model that Truesdell wanted to imitate
and perhaps surpass definitely. Anyhow both Duhem and Truesdell are considered
scientists of the continuum and historian of sciences, although Duhem specialized
in the oldest texts with a keen interest in medieval science. Furthermore, Duhem
was an advocated champion of the thermo-dynamic approach, something that
Truesdell strongly encouraged with the works of B.D. Coleman and W. Noll, when
he did not himself contribute directly to this trend.

5.2 Truesdell’s Approach to Continuum Mechanics

C.A. Truesdell received a broad formation in mathematics and also a flavour if
applied mathematics with Harry Bateman. His PhD thesis at Princeton during
WWII was not along modern tracks. But he had also acquired a good knowledge of
some foreign languages (Italian, French, German), what will help him in his future
bibliographical search. In the introduction to a long critical synthesis that was
published in 1952, he tells his own story of how he got involved in the field of
nonlinear continuum mechanics. He began to study the foundations of continuum
mechanics in 1946 and claims that within a few months ‘‘he had set the whole field
in order, to his own satisfaction’’. But an editor told him that he had underesti-
mated the work of earlier authors. This convinced him to return to the sources cited
by authors of books, and then to the sources of these sources and so on. He also
realized that he had overlooked the then recent works by Reiner, Rivlin and
others—see Chap. 3. Anyway, the result of this historical search and a special
effort at a synthesis was the long contribution published in the first issue (1952) of
the Journal of the Rational Mechanics and Analysis, a kind of home journal for the
Graduate Institute for Applied Mathematics at Indiana University in Bloomington.
This opus of 175 pages written at the latest in 1949, was adorned by an incredible
list of references—with the oldest references to the seventeenth century, a large
number of footnotes, and an index of cited authors spreading over six pages on two
columns. Truesdell (see the reprint of the preface in Truesdell 1984a, b) admitted
later that he had made many mistakes and overlooked important authors. But this
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set forth the style and aim of further encyclopaedic articles, a rigour allied to an
obsessive mania for citations and correcting other scientists, all this in a rich but
sometimes pedantic language. Clearly, Truesdell was trying—and succeeded to a
large degree—to supersede his great predecessors, e.g., Lagrange in his book on
analytical mechanics with his historical notes, and of course Pierre Duhem.

While he was himself developing some aspects of continuum mechanics [theory
of hypoelasticity (1955), study of wave motion (1961) in the line of Duhem and
Hadamard, mixture theory or reacting media (1957)], he came to the idea to
publish a general exposition of continuum mechanics. This was to be the two
celebrated volumes in the Handbuch der Physik published by Springer-Verlag and
edited by Siegfried Flügge. The agenda for these publications contained a full
development of the field equations and their general properties, with an emphasis
on principles of invariance for constitutive equations, and accounting for the latest
works by Rivlin, Ericksen, Coleman, Toupin, and Noll. Rivlin was already a
matured scientist with many seminal contributions (see Chap. 3). Ericksen and
Toupin had done their doctoral studies with other people, but Walter Noll came
from Berlin and wrote an original ambitious thesis in 1954 (Noll 1955). Volume
III/1 of the Handbuch (also referred to for short as CFT) was written by Truesdell
and Toupin (1960) and dealt with general principles with an appendix on tensors
by Ericksen. Volume III/3 (for short, referred to as NFTM) dealt more closely with
the formulation of nonlinear constitutive equations defining classes of ideal
materials, and was authored by Truesdell and Noll (1965). The latter volume drew
heavily on papers published by the same group of authors in the Archives for
Rational Mechanics and Analysis that became the regular—but possibly not suf-
ficiently self-critical—forum for the exposition of works by the ‘‘Truesdellian’’
school.

In retrospect the two volumes can be viewed as full of idiosyncrasies, preju-
dices, and harsh criticism (often expressed in footnotes) of the works by people
from other lines of thought, if not condescendence for ‘‘lower level’’ scientists.
Rivlin (1984, pp. 2799–2800), with his usual wit, commented on Truesdell’s style
and influence in the following words:

In his writing Truesdell evidences a strong taste for the dramatic and so there has been
created a fantasy world in which various savants produce stream of principles, funda-
mental theories, capital results, and work of unusual depth. No matter that, on exami-
nation and stripped of the, often irrelevant, mathematical verbiage with which they are
surrounded, they frequently turn out to be known results in a disguise, or trivial, or
physically unacceptable, or mathematically unsound, or some combination of these.
Nonetheless, they have been widely and uncritically reproduced in the secondary literature
and have provided the starting point for many, correspondingly flawed, theses and papers.

Of course we must leave aside the usual exaggerations of Rivlin in the mostly
negative appraisal of works by other scientists. But there is some truth in the
arguments vividly expressed in this true ‘‘war declaration’’.

Personal touch. I must be quite honest concerning this devastating critic of Truesdell’s
style in, and contribution to, continuum mechanics. As a young student in Paris, I felt a
very strong attraction towards the ‘‘rational’’ presentation of continuum mechanics. It was
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not so much the pedantic and convoluted style that impressed me—because my knowledge
of the language was insufficient to capture its exaggerations, subtleties or ‘‘defects’’
(depending on one’s view). It was more the—perhaps misleading—feeling that, just like
with Bourbaki’s style much appreciated in Paris at the time, if you started at the beginning
with very few basic definitions and followed rigorously the developments through the two
volumes of the Handbuch der Physik written by Truesdell, Toupin and Noll, you could in
principle apprehend the whole of continuum mechanics. Furthermore, with the Coleman-
Noll rational thermodynamics—so much advertised by Truesdell (1969) as the nec plus
ultra in the field—and the notion of fading memory as the solution of every evolution, I
had found my ‘‘Holy book’’. It seemed that you did not need to read anything outside the
Archives for Rational Mechanics and Analysis (and the last ‘‘Truesdellians’’ are still acting
so). This, practically elevated to the status of a religion (but sect would be more appro-
priate), rapidly led its members to pronouncing excommunication and the like, a true
church spirit. To be repelled by the sect it was sufficient that you be a graduate student
with someone who did not belong to the sect! Furthermore, with more professional
experience I realized, like people confronted to Bourbakism in mathematics, that the path
of innovation and creation could be outside this credo that was corseting spirits. One had
to take some liberties with the so-called ‘‘principles’’ enunciated by the Truesdellian
School, in particular concerning thermodynamics, variational formulations, and the
fruitful consideration of models. In summary, research is not truly done and written in the
Truesdellian style. What remains, therefore, is a collection of useful expressions that have
left a print on our mind by repetition and for lack of better expressions, so that we are all
more a less a bit ‘‘Truesdellian’’, all the more that Truesdell succeeded in showing us the
validity and fruitfulness of a general framework for a global science known as continuum
mechanics.

In spite of these remarks, the Truesdellian style rapidly influenced the text-book
market. This influence is illustrated by the books of Leigh (1968) and Eringen
(1962, 1967), although the last author tried to take an original stand. Sometimes,
the chapel spirit touches the ridiculous as in the subtitle of Smith’s book of 1993
(‘‘after Truesdell and Noll’’ that sounds like ‘‘the gospel according to…’’).

It is outside the scope of the present work to describe in detail the contents of
CFT. Albeit not the Holy book, this impressive opus stands the passing of time as
an unavoidable reference in the field. It indeed covers most of what was achieved
in continuum mechanics and electromagnetism from the seventeenth century to
circa 1958. It is perfectly Newtonian in the sense that the whole presentation is
based on the statement of balance laws. Variational principles—efficient and
fruitful as they have been in the overall development of mathematical physics and
engineering approaches—are left aside or belittled, if not criticized in many
footnotes. They are probably considered as too much ‘‘continental’’ compared to
the British Newtonian tradition. This prejudice is not forgivable at a time when it
is realized that it left out works that were going to have a glorious destiny (e.g.,
Eshelby’s works and modern computational means). But apart from the introduced
notation that became somewhat standard in nonlinear continuum mechanics, CFT
also provides useful conducting threads in what Truesdell wants to be a ‘‘rational’’
construct, essentially along some basic principles and questions related to
invariance. Concerning the first point, we mention the principle of equipresence.
This is sometimes attributed to M. Brillouin (1900; the father of Léon Brillouin,
the latter mentioned in Chap. 7 herein after). Hardly a principle at all (because
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always negated in the end), this is more like a precautionary measure advising the
scientist to consider all possibilities of dependence of state functions and consti-
tutive equations from the start. Concerning invariance, Truesdell (1984a, b) admits
that he neglected too much this aspect in his 1952 contribution/review. We must
see the influence of Noll behind this new emphasis, whence the principle of
material-frame indifference (now often referred to as the principle of objectivity,
and originally called ‘‘the principle of isotropy of space’’ according to Noll’s
comment on Zaremba’s work of 1903). It is difficult to trace back the origin of this
principle. There seems to be no early questioning about the formulation of elas-
ticity where all fields are defined at the same actual Newtonian time and no time
rates are involved. The question may have arisen from the formulation of
mechanical behaviours that do involve time rates, typically flowing fluids. The
present author remembers that he was once told (but by who?) that the great
Boussinesq had pondered the question why the constitutive equation for linear
viscous fluids involved only the symmetric part of the velocity gradient and not
this whole gradient itself. As we know, the vorticity tensor (skewpart of the
velocity gradient)—unless appropriately combined with another tensor having the
same properties (e.g., in polar fluids)—cannot be there because it would yield a
non-invariant constitutive equation under spatial rotations of the observer’s frame.
McCullagh in the nineteenth century indeed proposed a non-invariant theory—for
a rotationally elastic aether—where the stress is directly proportional to the
rotation matrix. The question was carefully examined in the early twentieth cen-
tury by Zaremba (1903) and Jaumann (1911) while dealing with time fluxes of
stresses or electromagnetic fields.

Stanisław Zaremba (1863–1942) was a Polish mathematician with a doctoral
degree obtained in Paris under Darboux and Picard. His own most famous student
was Wacław Sierpinski (set theory, topology, the ‘‘Sierpinski carpet’’ often
illustrated in the theory of fractals). Gustav Jaumann (1863–1924) was an Austrian
physicist, former assistant of Ernst Mach, with main interest in electromagnetism.
They introduced so-called ‘‘objective’’ time derivatives (see Chap. 3). With the
energy and justified insistence of Truesdell and co-workers, material-frame
indifference (i.e., the requirement that constitutive behaviour should not depend on
the observer) has become a tenet of the basic formulation of constitutive equations.
Field equations, however, are not ‘‘objective’’ and satisfy only a certain relativity
(Galileo’s or Einstein’s one) for they include inertial terms and possibly external
forces. No matter Rivlin’s critical comments, sometimes one (in particular the
youth) needs clear statements of guiding principles. This is where the experience
of the elder is most useful although it should not be abused. Furthermore, in full
agreement with Duhem’s view of the scientific method, the purpose of the work
was not to explain, but to classify knowledge. This is even truer of the second
volume, NFTM.

The volume NFTM is quite different from CFT in that it is more thought
provoking, including the then last works by Noll and Coleman and their associates.
Retrospectively, I think that it came a little too early as leaving not enough
ripening time between its publication and the related research. The authors aim at
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generality with a simultaneous clarification of used terms in spite of the intro-
duction of many neologisms, a trademark of the school. The general approach
presented is based upon a few principles, namely, the principles of determinism,
local action, and material frame-indifference. Noll (2002) has described the gen-
esis of this volume. Practically, the whole book is based on the notion of simple
materials. These are materials in which, according to Noll, the stress at a particle
(material point) is determined by the cumulative history of the deformation gra-
dient at the same particle. Typically, we will have a stress constitutive law of the
functional form (compare (3.43))

r X; tð Þ ¼ U F X; t0ð Þ½ �;�1\t0 � t: ð5:1Þ

Then all three fundamental principles can be expressed in a final and explicit
mathematical form. Various materials are then characterized by invariant prop-
erties of their response functional. Such notions as ‘‘material uniformity’’,
‘‘homogeneity’’, ‘‘solid’’, ‘‘fluid’’, and ‘‘isotropy’’ are then made precise in
mathematical terms. Furthermore, a sufficient smoothness in time of the relevant
functional together with its approximation allow one to recover a visco-elastic
behaviour of the Boltzmann type. Elasticity corresponds to the functional reduced
to a standard function at the time of observation of the particle. ‘‘Simple fluids’’
are simple materials having the maximum possible isotropy group: they are
necessarily isotropic. This general behaviour allows for the exhibition of
stress-relaxation and long-range memory. But for viscometric flows mentioned in
Chap. 3, the resulting response functional is shown to manifest itself through three
experimentally useful viscometric functions only.

The writer thinks that the NFTM puts too much emphasis on the so-called
Cauchy elasticity and hypoelasticity that have become obsolete. The former, con-
trary to Green’s elasticity, does not require the notion of potential energy and is
therefore constructed mathematically as an a priori invariant representation of the
stress tensor in terms of a finite strain – a manner very similar to what was done for
nonlinear viscous fluids by Reiner and Rivlin but in terms of a strain rate (Chap. 3).
This technique of approach, introduced by Cauchy himself in his original work,
suits well the isotropic case. We have already expressed a negative opinion about
hypoelasticity. So much good mathematics for practically nothing! That is the
destiny of scientific research.

With this the reader will easily understand the enthusiasm of young readers of
the 1960s–1970s as reported by the writer in the above personal touch.

5.3 Rational Thermodynamics

For scientists like Duhem or Truesdell who envision phenomenological physics
(continuum mechanics, electromagnetism, theory of heat) in its globality,
accounting correctly for thermodynamic bases in the exposition of continuum
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mechanics is more than natural: it is a logical requirement. In this line of view,
going further than the NFTM requires coupling mechanics and thermal effects to
the same degree of generality. This was mostly achieved by Coleman and Noll in a
series of papers which, although rigorous from the mathematical view point, may
be discussed—or even thought heretic—from the point of view of physical
thermodynamics.

There were efforts at combining mechanics and sound thermodynamics before
WWII and until the early 1960s. The works of Eckart (1940, 1948) as well as the
paper by Eringen (1960), and the general discussion by Bridgman (1945) must be
singled out. But it is the school around de Donder in Belgium and the Netherlands
that took the lead, finally expressing the so-called (linear) theory of irreversible
processes (for short TIP) in its splendour in the celebrated book by de Groot and
Mazur (1962). This was based on the thermostatic definition of temperature and
entropy, and a supposedly infinitesimal deviation (hence the ‘‘linear’’) from
equilibrium. An axiom of local (equilibrium) state is involved according to which
‘‘each part of a material system can be approximately considered at each time as
being in thermal equilibrium’’. Accordingly, all thermodynamic evolutions should
be ‘‘slow enough’’. This can be seriously discussed only by introducing and
comparing time scales (see Maugin 1999, Sect. 3.2). This approach is supported by
a microscopic analysis due to Onsager and Casimir.

The ambition of the school of rational thermodynamics is much above that of
TIP. It takes as a model the rational mechanics of the mathematicians of the eigh-
teenth and nineteenth centuries (especially the French mathematicians Lagrange
and Cauchy) and the embryonic thermomechanics of Duhem (1911). It openly
ignores, or bypasses, the experience acquired in thermostatics. It basic postulates
seem to be that those notions that precisely could be defined only at equilibrium in
thermostatics, exist a priori for any thermodynamical state whatever, even largely
outside equilibrium. This attitude belongs to an axiomatic trend with a typical list of
axioms giving the appearance of pure mathematics (this is described as a rigidly
fixed doxa in Chap. 12 of Ignatieff 1996). The notions of temperature h
(h[ 0; inf h ¼ 0) and entropy g (per unit mass) are a priori granted to any state, so
that the formal bases of rational thermodynamics are the a priori statement of the
second law and the usual first law, the former in the following global form (body
B with regular boundary oB equipped with unit outward normal n):

dS

dt
�
Z

B
qsdB�

Z

oB
s:nda: ð5:2Þ

Here,

S ¼
Z

B
qg dB ð5:3Þ

while it is assumed that the entropy source s and the entropy (in)flux s are given by

s ¼ h=h; s ¼ q=h; ð5:4Þ
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where h is a possible heat source per unit mass, and q is the heat (in)flux. Equation
(5.2) is the differential form in time of the inequality of Clausius—who postulated
it in 1854 for a vanishing right-hand side.

For a standard thermomechanical (simple) material the first law of thermody-
namics combined to the balance of kinetic energy yields the equation of internal
energy in the local form

q _e ¼ r : Dþ qh�r:q; ð5:5Þ

while (5.2) provides the local inequality

q _g� q h=hð Þ � r: q=hð Þ: ð5:6Þ

The combination of (5.5) and (5.6) leads to the Clausius–Duhem inequality as
popularised by rational thermodynamics:

�q _wþ g _h
� �

þ r : Dþ hq:r h�1� �
� 0; ð5:7Þ

where w ¼ e� gh is the free (Helmholtz) energy per unit mass.
Then it is thought that the whole past history—i.e., the collection of all values

taken by the fields of motion and temperature at a current point x for all past times
and the present time—determines the thermo-mechanical behaviour at the present
time, the only constraint being that the inequality (5.7) be respected. An obvious
remark is that the recent past influences more the present state of a body than its
distant past does. This is rigorously translated into the axiom of fading memory due
to Coleman and Noll (1961; Dill 1975). The a priori considered constitutive
equations are in the functional form (compare to (5.1))

r X; tð Þ ¼ U F X; t � sð Þ; h X; t � sð Þ½ �; s 2 ½0;þ1Þ ð5:8Þ

for so-called thermodynamically admissible processes. This can also be general-
ized to deformable electromagnetic materials (see Eringen and Maugin 1990,
Chap. 13; Fabrizio and Morro 2003). The application to thermo-elasticity in finite
strains is reported in all modern books on continuum mechanics (e.g., Maugin
1999, Chap. 3).

This kind of approach due to Coleman and Noll was presented by Truesdell in a
militant monograph (Truesdell 1969, 1984b) as also by other authors (e.g., Day 1972;
Coleman 1964; Coleman and Owen 1974). It radiates a wonderful elegance to which
it is difficult to resist intellectually. But it was seriously criticized by the tenants of
TIP for its lack of touch with the experimental definition of concepts such as tem-
perature. An international meeting held in Bussaco (Portugal) in 1973 to discuss the
various trends in continuum thermodynamics was—I was told—snubbed by the
invited members of the Trusdellian school (cf. Domingos et al. 1973).

The author’s restrictions on the above view also relate to the special working
hypotheses encapsulated in Eqs. (5.4–5.8). For instance:
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1. The second of (5.4) is not generally true as is known in the theory of mixtures:
the entropy flux is not always reducible to the ratio of the heat flux to the
temperature;

2. Equations (5.1), (5.5) and (5.8) apply as such only to ‘‘simple materials’’. The
reason for this is that there exists an intimate relationship (duality) between the
existence of only one type of internal forces—the stresses—and the notion of
simple materials (or a theory of first-order gradient as described by the author in
more general framework; cf. Maugin 1980; see also Chap. 13 herein after). A
strict application of the form (5.7) of the Clausius–Duhem inequality to other
constitutive equations different from (5.8) led some authors to conclude to the
thermodynamical inadmissibility of models that should necessarily exist. This
is like negating physical evidence and logics on the basis of wrongly applied
principles;

3. The notion of constitutive functional, although aesthetically pleasing, requires
knowledge of the whole past state and is not the most manageable and realistic
one in many applications save perhaps in some problems of biomechanics as
emphasized by Epstein (2012, Chap. 3). In spite of this obvious difficulty, the
Truesdellian School tried to include in this functional approach rather singular
behaviours such as plasticity.

4. The notion of simple fluid with its reduction to a necessary isotropy may be
misleading in fluids with an internal structure (e.g., liquid crystals).

As a consequence of the recognition of these shortcomings and intrinsic limi-
tations, some ‘‘de-Truesdellisation’’ started to be manifested along several lines by
more pragmatic scientists, having for main object to relax away from a strict
orthodoxy—that would have frozen the field if not counteracted in time—while of
course keeping the assets brought in by this approach, in particular an efficient
methodology. This is what is examined in the few next sections.

Note: Bernard D. Coleman (born 1930) originally is a chemical engineer with a PhD from
Yale obtained at the early of age of 24. Therefore, he should be a ‘‘Gibbsian’’ (remember
Josiah W. Gibbs (1839–1903), one of the greatest and most original American scientists,
was a graduate of Yale and one of the first PhD’s in Engineering in the USA. He spent his
whole scientific career at Yale after a three-year stay in Europe. He was responsible for the
mathematical development of physical chemistry and for the invention of dyadic algebra,
one of the paths to modern vector and tensor notations). Coleman’s inclination towards
more abstract formulations is probably due to Truesdell’s and Noll’s influence. Walter
Noll (born 1925) is a German/American mathematician originally formed at T.U. Berlin
and in Paris (where he was injected the ‘‘Bourbaki’’ virus). His thesis (Noll 1955) on the
‘‘continuity of states’’ in Bloomington, Indiana, was written during his stay there with C.A.
Truesdell. It is clear that he was more familiar than Truesdell with modern mathematics
(in particular topology and geometry). This he demonstrated with maestria in his math-
ematical theory of simple continua (Noll 1958, 1972) and in his approach to material
uniformity and inhomogneities (Noll 1967). He is very much responsible for the extensive
use of an intrinsic notation avoiding tensorial indices in contemporary continuum physics.
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5.4 Deviation from the Standard Definition
of the Entropy Flux

Further improvements of rational thermodynamics can be found in the works of
Ingo Müller (1973, 1985), and in a remarkable paper by Liu (1972). First it was
observed that the general notion of coldness—considered by several authors
including Müller—as an integrating factor for entropy is essential. This reduces to
the reciprocal of thermodynamic temperature with an appropriate scaling of
temperature. Second, as the special choice (5.4)2 is contradicted by kinetic theory
(dixit Müller), some freedom must be left to the expression of the entropy flux s by
letting it differ from the ratio of heat flux to temperature. That is, the second of
(5.4) can be rewritten as

s ¼ h�1qþ k; ð5:9Þ

where the extra entropy flux k, in a phenomenological approach, has to be
determined by a constitutive equation. Accordingly, it theoretically varies in form
from one material to another. But it is possible that it proves to be nil after some
tedious and cumbersome algebra. This is not the case for systems that exhibit a
diffusion-like behaviour. As to Liu, he introduced the spot-on idea that in applying
the condition of thermodynamic admissibility (satisfaction of the Clausius–Duhem
inequality for all thermo-dynamical processes), it is generally thought necessary to
account for the field equations (these are the conservation of mass, the balance of
momentum, and the energy equation). This can be done by considering them as
mathematical constraints and introducing them together with appropriate Lagrange
multipliers in the Clausius–Duhem inequality. It is true, however, that in many
cases this astute but cumbersome manipulation results in very little changes. Note
that with (5.9) the C-D inequality (5.7) is replaced by

�q _wþ g _h
� �

þ r : Dþr: hkð Þ � s:rh� 0: ð5:10Þ

A possible expression for k follows from the above Liu procedure together with
the other generalized constitutive equations.

5.5 Extended Thermodynamics

In order to go beyond standard rational thermodynamics, extended thermody-
namics—essentially the child of Ingo Müller (cf. Müller and Ruggeri 1993) but
also expanded by Jou et al. (1993)—envisages the consideration of the usual
dissipative fluxes (e.g., viscous stresses, heat flux, electric conduction current) as
additional independent variables. As a direct consequence the entropy itself
becomes a function of these fluxes so that entropy will deviate from its thermo-
static definition g ¼ gs :¼ �ow=oh. This is in agreement with an early proposal
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made in 1953 by Machlup and Onsager (1953). Moreover, the dissipative fluxes
will themselves satisfy evolution-diffusion equations inspired by higher-order
kinetic-theory developments. This thoughtful interaction between two different
levels of description of physical reality is original but would be rejected by tenants
of pure phenomenology. However, this new thermodynamic approach is certainly
comforted by the fact that it allows a satisfaction of causality, resulting in the end
in hyperbolic systems of equations with a limited speed of propagation (see Müller
and Ruggeri 1993). As an example, the modified heat-conduction law by Cattaneo
in 1948—see Equation (m) in Chap. 1—that involves a relaxation time, enters this
framework. But this extended thermodynamics bears such a strong print from the
kinetic theory that it is difficult to apply it to complex solid-like behaviours
exhibiting hysteresis such as plasticity. Another avenue must be opened to cope
with such cases. The thermodynamics with internal variables of state seems to be
the looked for framework.

5.6 Thermodynamics with Internal Variables of State

Rational thermodynamics with its functional constitutive equations of the type
(5.8) and an a priori requirement for the knowledge of the whole past history is not
a very convenient tool both in computations and in confrontation with experi-
mental data. The thermodynamics with internal variables of state, while presenting
the least deviation from the classical theory of irreversible processes, proposes to
replace the functional dependence by that on a finite set of variables that satisfy
evolution equations constrained by the second law. The idea of such variable can
be traced back to Duhem (1911; according to Truesdell), but probably more to
Bridgman (1945). A modern introduction is due to Coleman and Gurtin (1967).
The best analyst of this thermodynamics has been Kestin (see, e.g., Bataille and
Kestin 1979). Maugin and Muschik (1994) have specified and analysed many of its
facets. A recent book on this thermodynamics is one by the author (Maugin 1999).
Its general features can be presented as follows.

Internal variables of state are introduced in addition to the usual observable
variables of state (e.g., deformation, temperature). They are supposed to account
for the complex internal microscopic processes that occur in the material and
manifest themselves at a macroscopic scale in the form of dissipation. They should
not be mistaken for internal degrees of freedom that possess their own dynamical
equations (see Chap. 13). Being of a pure dissipative nature, their time evolution is
constrained by the second law of thermodynamics. Being internal and not obser-
vable—although certainly identifiable by a gifted physicist—they do not appear in
the usual statement of the first law of thermodynamics as they are not directly
acted upon by bulk or surface actions. But they do evolve under the action of
external loads as a result of complex processes that follow from a re-distribution of
internal forces (internal rearrangements of matter, etc.). For instance, the local
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density of dislocations (responsible for the macroscopic phenomenon of plasticity)
evolves when a system of standard forces (tractions) is applied to a body.

For the sake of illustration but with a minimum of formalism, we note v the set
of observable variables and a that of internal variables. In all generality, the
dependent variables (e.g., the stress r) become simultaneously functions of the
values of both v and a. We can envisage the law of state (constitutive equation,
here mechanical):

r ¼ �r v; að Þ; ð5:11Þ

evolution equation:

_a ¼ f v; að Þ þ g v; að Þ _v; ð5:12Þ

We may suppose that an instantaneous time variation of v does not cause an
instantaneous variation of a (this is a question of time scales), so that we can set
g = 0, reducing (5.12) to the equation

_a ¼ f v; að Þ: ð5:13Þ

This must be compatible with the second law. Simultaneously, discarding
thermal effects, the free energy density has the form

w ¼ �w v; að Þ: ð5:14Þ

The exploitation of the remaining standard Clausius–Duhem inequality (5.7)
yields the constitutive equation (5.11) and the remaining dissipation as

r ¼ o �w
ov

; ð5:15Þ

and

A _a� 0;A ¼ � o�w
oa
; ð5:16Þ

where A is the thermodynamic force associated with a. Now the constitutive theory
is closed by proposing a relationship between the two members of the product in
the left-hand side of the first of (5.16). If there exists a potential of dissipation U in
the manner of Rayleigh (but expressed in terms of the force A), we will have the
required evolution equation for a in the form

_a ¼ o U
o A

: ð5:17Þ

Contrary to Rayleigh’s dissipation potential, we may select the degree of
homogeneity of the function U at our convenience in so far as the inequality
(5.16)1 is satisfied. This is what allows one to construct a good theory of plasticity
when the dissipation potential is homogeneous of degree one only. This provides a
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strain-rate independent plasticity, a valid approximation for many materials. In this
case (5.17) is made more explicit as

_a ¼ _k
o F

o A
; ð5:18Þ

where _k is a so-called plastic multiplier and F Að Þ ¼ 0 is the equation of the
elasticity surface delimiting the convex domain C in A space. The notation with
superimposed dots in both sides of (5.18) emphasizes the absence of time scale in
the process. Here we have

_k� 0 if F ¼ 0 and _F ¼ 0; ð5:19aÞ

_k ¼ 0 if F\0; or F ¼ 0 and _F\0: ð5:19bÞ

This can also be expressed in the formalism of convex analysis (cf. Rockafellar
1970)

_a 2 NC Að Þ ) _a: A� A�ð Þ� 0; 8A� 2 C: ð5:20Þ

The first of these reads: ‘‘the time rate of a belongs to the cone of outward
normals to the convex set C’’. This is a law of normality which dictates the
direction of the time evolution once the elasticity limit is reached. With a ¼ ep and
A ¼ sigma we recognize the usual case of plasticity. This general formulation
allows for the existence of angular or apex points along the surface (or limiting
curve in a plane representation) of C. This is the case of Tresca’s criterion of
plasticity. The second of (5.20) is a variational inequality which means that plastic
dissipation possibly occurs only once the elastic limit is reached.

This is documented at length with the accompanying mathematical framework in
the author’s book of 1992. There, is in fact applied the theory of so-called generalized
standard materials due to Halphen and Nguyen Quoc Son (1975) where the existence
of a convex dissipation potential is assumed together with the convexity of the energy
density. In the framework delineated by these authors, some of the essential theorems
of plasticity theory such as Drucker’s inequality and Drucker’s stability postulate—
Eqs. (4.1, 4.2)—follow almost automatically. This is also the case of the Ilyushin
postulate (see Chap. 11). The theory of fracture itself can be put in a similar general
abstract framework (Sect. 7.7 in Maugin 1992).

In contrast to the functional theory embedded in the rational thermodynamics of
Coleman and Noll, the theory with internal variables of state yields a mathematical
problem in terms of evolution equations. This is much more adapted to numerical
computations as it directly fits techniques and a good mathematical frame known
in other fields such as nonlinear programming. This explains the remarkable
efficacy and success met by this theory within the last 30 years. The applications
are multiple in plasticity, visco-elasticity, visco-plasticity, damage, phase-trans-
formation theory, electromagnetic hysteresis, etc. From the formal point of view of
thermodynamics, as remarked before, this is the least deviation from the well
understood theory of irreversible processes. What must be amended is the axiom
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of local (equilibrium) state. This was formulated in a persuasive manner by
Bataille and Kestin (1979) by introducing the notions of accompanying processes
and local accompanying states (for each instantaneous value of the internal
variables) to replace the axiom of local state (see Chap. 4 in Maugin 1999). This
fruitful idea may be originally due to Meixner (1972). The last question concerns
the number of internal variables to be considered. For obvious convenience, it
should be kept as small as possible and, although not directly controllable, these
variables should be easily identifiable and measurable by a gifted experimentalist.
A great asset of the approach is that in general a few internal variables or a well
chosen tensor one is sufficient. Other views on the theory of internal variables of
state have been given by Day (1976), Grmela and Öttinger (1977), Maugin and
Drouot (1983) and Maugin (1990)—the latter with a possibility of diffusion
yielding evolution-diffusion equations for the said variables and a consistent
re-definition of the entropy flux vector.

At the time of writing of this book, the ultimate progress in a rational approach
to continuum thermodynamics in the presence of dissipative processes seems to be
along a line expanded by authors such as A. N. Beris and B. J. Edwards (see their
book of 1994), Grmela (1984), and Hans C. Öttinger (Zurich; see his book of
2005). These authors succeeded in introducing a kind of bracket formulation of
kinetic equations (for both observable and internal variables) with many appli-
cations to complex non-Newtonian fluids. The last version of this approach is
called GENERIC (short for ‘‘General Equation for the Non-Equilibrium Rever-
sible-Irreversible Coupling’’). In a nut-shell this is represented by a general evo-
lution equation of the type

dx

dt
¼ LðxÞ: dE xð Þ

dx
þM xð Þ: dS xð Þ

dx
; ð5:21Þ

where (Öttinger 2005, p. 11) ‘‘x represents a set of independent variables that are
required for a complete description of the system outside equilibrium, the real
functionals E(x) and S(x) are the total energy and entropy—generating functions—
expressed in terms of the state variables x, and L(x) and M(x) are the Poisson and
friction matrices representing geometric structures and dissipative material prop-
erties in terms of linear operators’’. The fundamental point here remains the choice
of the most representative variables x, because, whereas the formalism (5.21) is
canonical, there is no universal set of non-equilibrium variables. A statement
equivalent to (5.21) is one in terms of appropriately defined brackets where, with

dA

dt
¼ dA xð Þ

dx
:
dx

dt
; ð5:22Þ

dA

dt
¼ A; Ef g þ A; S½ �: ð5:23Þ

Here the first bracket is an antisymmetric Poisson bracket, while the second is a
symmetric ‘‘dissipative’’ bracket. Accordingly, the first and second laws of ther-
modynamics read
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dE

dt
¼ E; Ef g ¼ 0;

dS

dt
¼ S; S½ � � 0: ð5:24Þ

One difficulty is in the definition of the second bracket. We do not pursue the
interesting details of this elegant and powerful approach that brings irreversible
thermodynamics in the domain of symplectic geometry (see Öttinger’s book 2005).

5.7 Conclusions

The contents of this chapter, somewhat an intermezzo between the elasticity of
Chap. 3 and the return to elasticity and applied plasticity in Chap. 6, probably
helped the author, as also the reader, to ponder the question of the axiomatization
and modern mathematization of a field of physics. Such an endeavour was among
the list of fundamental problems proposed by David Hilbert in 1900 (this was the
sixth problem posed at the second international congress of mathematics) and
obviously a wish of Pierre Duhem. Truesdell and his co-workers claim to have
fulfilled such a programme for continuum physics in the Newtonian-Galilean
framework. Some of them (Toupin, Noll) also tried their hands at the relativistic
framework, but without much response and enthusiasm from relativists. What the
author gathers from the above is the usefulness of such an axiomatization when a
field has quietly reached a stable state of progress and no new paradigm seems to
appear. This is more difficult and perhaps not justified when the field still is in
expansion and presents great expectations of further developments. Otherwise,
fixing the framework at some definite time and deciding that everything that does
not fit in is pure heresy, may be the source of a true intellectual terrorism. This
happened with some ‘‘Truesdellians’’. As a consequence, on the one hand
Truesdell and others succeeded in framing the whole of continuum thermody-
namics in an attractive logically built body of knowledge. On the other hand, a
reaction from many engineers who felt insulted and belittled, has been to fully
separate again fluid and solid mechanics in two different subject matters. This is
also an intellectual faux pas. Other general views on the axiomatics of continuum
thermodynamics are given by Gurtin and Williams (1971), Hutter (1977), Muschik
(1986) and Ericksen (1991).
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Chapter 6
The British School of Elasticity, Plasticity
and Defects: Applied Mathematics

Abstract Although pertaining to specific aspects of the development of continuum
mechanics in the period of interest, it happens that this coincides with a technical
expertise in applied mathematics particularly well cultivated in the United Kingdom,
hence, an unavoidable regional bias in spite of the international nature of science.
The prevailing influence of some institutions such as the University of Cambridge is
obvious, while, unexpectedly, research fostered by technical problems met during
the Second World War, also had a strong influence on the selection of projects.
A recurring theme is a specific interest in mathematical problems posed by the theory
of elasticity, no doubt a consequence of the enduring influence of past ‘‘elasticians’’
of great mathematical dexterity among whom A.E.H. Love must be singled out.
A clear-cut emphasis was placed on problems dealing with the existence of field
singularities such as happens with cracks, dislocations, and other material defects.
Here great names are those of A.A. Griffith, Ian Sneddon, ‘‘Jock’’ Eshelby, and A.N.
Stroh. Simultaneously, an ‘‘immoderate’’ but fruitful taste for problems of elastic
wave propagation with applications in both mechanics and geophysics was dem-
onstrated and still remains a subject of attraction. Furthermore, a geometrical
approach to defect theory was proposed by a group around Bruce Bilby, while
Rodney Hill produced among the most powerful results in plasticity theory and
homogenisation procedure. Still it is the mathematical dexterity and elegance allied
to a deep physical insight that best characterizes most of these works.

6.1 The General Landscape

This chapter is devoted to the aspects of the theory of elasticity cultivated in the
United Kingdom during the twentieth century at the exclusion of those concerning
nonlinear elasticity (e.g., the works of R. S. Rivlin, A. E. Green, A.J.M. Spencer,
and R.W. Ogden) which have already been examined in Chap. 3. That means that
we are here concerned by linear elasticity and its allied problems such as the
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existence of singularities and cracks, the question of defects such as dislocations,
some problems of wave propagation, and the transition to a plastic regime of
deformation. Practically no constitutive modelling and little thermodynamic bases
are involved. This agrees well with a pragmatic and non-speculative attitude
entertained by a large part of the British school of continuum mechanics. It fits
well in the British tradition of applied mathematics which, in the past, essentially
dealt with the solution of partial differential equations with its paraphernalia of
special functions and the like, what requires a high dexterity for which the British
have not been surpassed. Of course, the period concerned is pre-computer time.
Some scientific centres emerge naturally in this landscape, as the traditional uni-
versities of Cambridge and Oxford, but also Bristol, Sheffield, Nottingham,
Manchester, Keele, and Glasgow and Edinburgh in Scotland. As to the top indi-
vidualities, they certainly are Lord Rayleigh, A. E. H. Love, G. I. Taylor,
I. N. Sneddon, and Rodney Hill; and in more recent times, A. J. M. Spencer,
P. Chadwick, J. D. Eshelby, A. N. Stroh, J. R. Willis, R. Knops, and J. Ball.

6.2 The Tradition of Applied Mathematics, Elasticity
and Waves

Perhaps that the best characterization of the involved style of applied mathematics
is illustrated by the book written by the Jeffreys—husband and wife—in 1946 on
the methods of mathematical physics (cf. Jeffreys and Jeffreys 1946). It provides
the essential elements that an applied mathematician working in continuum
mechanics and geophysics must grasp. Sir Harold Jeffreys (1891–1989) was
himself a famous geophysicist and astronomer. He was educated in Newcastle-
upon-Tyne and Cambridge. He spent his entire scientific career in Cambridge,
teaching there in succession mathematics, geophysics, and astronomy. This
emphasis on geophysics may sound strange to the reader. But it happens that the
other three contributors that we mention now are also related to geophysical
studies to a greater or lesser extent.

One is Lord Rayleigh (J. W. Strutt 1842–1919), also a Cambridgian, Nobel
Prize in Physics in 1904, author of the celebrated treatise on the ‘‘Theory of
sound’’, who gave in 1887 the first surface wave solution in elasticity (propagation
at the surface of a free semi-infinite, linear elastic isotropic half space). The author
recommends the reading of this beautiful paper (Rayleigh 1887) to all readers as a
perfect example of how a scientific paper should be written. Among his many
works that cover all fields of the physics of the time, Rayleigh also contributed to
the theory of vibrations of various structures (strings, bars, membranes, plates,
shells). Bear his name the ‘‘Betti-Rayleigh’’ reciprocity theorem (exploiting gen-
eralized forces and generalized coordinates) and the ‘‘Rayleigh–Ritz’’ method for
computing frequencies from energy considerations. The connection with geo-
physics is that elastic surface waves play a fundamental role in earthquakes.
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This is comforted by the second character, A. E. H. Love (1863–1940), another
Cambridgian, but who spent his whole academic career at Oxford. He may be
considered both an elastician and a geophysicist, but above all an applied math-
ematician. He is the author of two landmark treatises. One is none other than the
now classic ‘‘Treatise on the mathematical theory of elasticity’’ (First edition
published in 1892–1893 in two volumes), and the other is the no less classic work
on the structure of the Earth entitled ‘‘Some problems in geodynamics’’ published
in 1911. The first of these, reaching four editions, set up standards for several
decades in the theory of elasticity. The second (Love 1911), obviously related to
geophysics, introduces the notion of ‘‘Love’’ surface waves: these are elastic
surface waves with a so-called shear-horizontal polarization that can propagate at
the surface of a body made of an elastic half-space on which a layer of ‘‘slower’’
elastic material is superimposed and perfectly glued. These waves are said to be
the most destructive ones for structures (buildings, etc.) during an earthquake.

Along the same line, a third actor is also a Cambridgian and a geophysicist,
Robert Stoneley (1894–1976) who became one of the most famous British seis-
mologists. In one of his first papers (Stoneley 1924) he considered the possible
propagation of waves guided by the plane interface between two welded elastic
solids. He proved the existence of this possibility for certain ranges of elastic
coefficients of the two media. These waves are rightly called ‘‘Stoneley waves’’. In
his successful career he wrote, either alone or in collaboration, many papers on
surface waves and some on micro seisms and tsunamis (sea waves produced by
earthquakes).

Two remarks are in order concerning surface waves in elasticity. First, at the time
of discovery of the exemplary surface waves of the Rayleigh, Love and Stoneley
types, only applications to geophysics could be conceived. The last type, Stoneley’s,
was in fact first thought to be only a mathematical curiosity. But now we have a whole
group of applications in nondestructive testing devices in physical acoustics
(detection of material defects and obstacles on the path of the waves) and surface-
wave devices in the treatment of electro-mechanical signals (e.g., in convolver and
correlator ‘‘machines’’ as used in the treatment of RADAR signals, cf. Maugin 1985).
Second, the dynamical properties of propagating surface elastic waves—e.g., the
Rayleigh wave velocity—are also characteristic properties in dynamical fracture,
i.e., the propagation of cracks, our next object of attention.

6.3 Cracks, Always Cracks

6.3.1 Griffith’s Theory

The English engineer Alan Arnold Griffith (1893–1963) can be called the father
of the modern theory of fracture. He was educated (B.Eng., M.Eng, D.Eng.) at the
school of Mechanical Engineering of the University of Liverpool, and then had a
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very fruitful career in aeronautics. Before he got involved in the aerodynamic
theory of turbine design—that was to lead to the successful technical development
of the jet engine—he achieved two works of remarkable consequences. One was
the conception in 1917—together with G. I. Taylor (the future Sir Geoffrey; see
Griffith and Taylor 1917)—of the use of soap films in solving torsion problems,
providing a membrane analogy as a method of solution of complex elasticity
problems. The other paper published in 1920 single-handedly opened the way for a
true mechanical and thermodynamic theory of fracture in the elastic regime
(so-called brittle fracture). It has become a ‘‘Metallurgical classic’’ (Griffith 1920).

According to G. I. Taylor’s words (cited by Gilman 1998) that we paraphrase:
Griffith

realized that the weakening of a material by a crack could be treated as an equilibrium
problem in which the reduction on strain elastic energy of the material, when the crack
extends, could be equated to the increase in surface energy due to the increase in surface
area at the crack.

The beauty of Griffith’s theory stems from the fact that ‘‘it uses the elegance of
a thermodynamic argument to deal with the singularity that appears at the tip of a
crack in linear elasticity’’ (Taylor’s words). But Griffith’s theory, in its original
form, only applies directly to truly brittle substances such as hard non-metallic
glasses. Further improvements had to account for a possible anisotropy in elastic
behaviour, an application to inelastic materials, dependence on time, stress state,
and other factors. Anyway, with the efforts of George R. Irwin (1907–1998) —at
the US Naval Research Laboratory in Washington—and others, it became the
basis of a new branch of engineering mechanics called ‘‘fracture mechanics’’. A
thermo-mechanical and mathematical approach is given in the author’s textbook of
1992. Nowadays, Griffith’s approach, together with the notions of stress-intensity
factor (developed by Irwin), energy-release rate and path-independent integrals of
fracture due to Eshelby, Cherepanov and Rice, belongs in the theory of ‘‘config-
urational forces’’ (cf. Chap. 14 below and the author’s book of 2011).

6.3.2 Sneddon’s Mathematical Works

The singularity of the stress field at the tip of a crack was masterly dealt with in a
celebrated paper of Westergaard (1939). Using a complex-variable representation
of plane elastic problems, this author established the 1=

ffiffi
r
p

singularity for stresses
and the accompanying formulas for the so-called stress-intensity factor. This was
done in the USA. But we can return to the UK with a touching personality and
gifted analyst, Ian N. Sneddon (1919–2000).

A Scotsman educated in Glasgow and Cambridge, Sneddon’s early career was
necessarily marked by the experience of WWII. He served as a Junior Scientific
Officer at the British Ministry of Supply during the period 1942–1945. In this
position he spent some time at the Cavendish Laboratory in the solid mechanics
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group and started to work on problems involving the fracture of metals. He met
and worked with the famed physicist (Sir) Nevill F. Mott (1905–1996; Nobel Prize
in Physics, 1977). This co-operation resulted in two important facts. One was the
publication in 1948 of a pioneering book (Mott and Sneddon 1948) on wave
mechanics (something surprising for a scientist who devoted all his life to con-
tinuum mechanics). The second fact was to decide on the future of Sneddon as an
applied mathematician.

Indeed, Mott suggested to Sneddon to examine the determination of the stress
field in an infinite elastic body containing a disc-shaped crack. This was related to
the mechanical resistance of steel tank armour plates where bubbles of gas flattened
in the roll process transformed into disc-shaped cracks. This led Sneddon to his
landmark paper of 1946 which provided the first three-dimensional solution of a
problem in elasticity involving a crack. This featured the first use of integral
transforms in crack theory (Sneddon 1946). The paper was instrumental in stimu-
lating research on mixed boundary-value problems. It exploited a novel technique
already introduced by Sneddon in 1945 to deal with the so-called axisymmetric
Boussinesq problem (determination of the displacement and stress fields produced in
a semi-infinite isotropic elastic solid by pressing a rigid punch normally to its
surface). This involved solving a system of dual integral equations, a recurring
matter in problems of waves impinging an interface crack between two elastic solids.
From then on Sneddon became the acknowledged specialist of the mathematics of
such problems. This led him to write pioneering books on Fourier transforms
(Sneddon 1951), integral transforms in general, the mathematics of elasticity and
cracks (Sneddon and Berry 1958; Sneddon and Lovengrub 1969), and mixed
boundary-value problems in potential theory (see bibliography below). A truly never
tired writer of books and papers, Sneddon was also a pleasant companion always
enjoying to tell stories on science, the Second World War, and people.

Personal touch: On a social gathering in a café in Oxford, I heard Mary Sneddon kindly
tell her husband (who had found a benevolent listener in the present writer): ‘‘you already
told that story several times to Gerard; perhaps he would like to hear something else’’.

Brilliant as he was, Sneddon became in Keele the youngest professor of
mathematics in the UK at the age of 30. He was later on to move to his dear
Glasgow (1956–1984). He was succeeded by Ray Ogden on his chair of Mathe-
matics. It is there that Sneddon co-authored with J. G. Defares an original book on
an ‘‘Introduction to the mathematics of biology and medicine’’ (1961). It was
while still at Keele that he supervised the PhD. Thesis (1955) of Tony Spencer
who had started to work with Frank Nabarro (1915–2006) on the brittle fracture of
elastic–plastic materials in Birmingham. Sneddon also developed a keen interest in
thermo-elasticity (cf. Chadwick and Sneddon 1958; Chadwick 1960). Peter
Chadwick (born 1931) had a long career at the University of East Anglia in
Norwich (1965–1991). He had been a colleague of Tony Spencer at Aldermaston
(Atomic Weapons Establishment in the UK). He was among the first authors to
produce a paper on waves in electricity conducting deformable solids (Chadwick
1956). Later on he became interested in the thermo-mechanics of rubberlike
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materials, but also in general elastic-wave problems and the Stroh formalism (see
below Chadwick and Smith 1977; Chadwick 1997). He is the author (Chadwick
1976) of a short but very efficient textbook on continuum mechanics.

Crack studies continued non-stop in the UK representing some kind of endemic/
totem field for British applied mathematics. The field was of interest to both
mechanicians and materials scientists. Here we should mention the seminal works
of Eshelby, Stroh and Willis. Of necessity, the studies of cracks (a macroscopic
easily observed process) and dislocations (a microscopic phenomenon not visible
at the naked eye) are intermixed. The vivid view of a dislocation associated with a
missing half plane of atoms in an otherwise ordered regular arrangement of atoms
and the vision of a through crack as a semi-infinite plane cut in an elastic body
favour a common view within a general theory, that of configurational forces
(Cf. Chap. 14). The ‘‘sucking force’’ acting on the tip of a crack and making the
crack extend in an elastic body and the force acting on a dislocation line—the
border of the missing plane of atoms—established by Peach and Koehler in 1950
therefore find a common framework in the theory of configurational forces. Fur-
thermore, the evolution of dislocation patterns seen as the microscopic mechanism
behind the macroscopically observed plasticity property of ductile materials pro-
vides the leading thread of the next sections. No wonder also that we find the same
names and groups of authors involved in these various but intellectually close
interests.

6.3.3 Eshelby, Stroh and Co-Workers

According to Alfred Seeger from Stuttgart, in the late 1940s-early 1950s the
‘‘British schools (of physical metallurgy and structural defects) under (Sir) Nevill
Mott in Bristol and (Sir) Alan H. Cottrell (1919–2012) in Birmingham were most
prominent and influential in the world at that time’’. For instance both Alfred
Seeger (born 1927) from Stuttgart and Jacques Friedel (born 1921) from Paris—
who both became eminent contributors to the theory of crystal defects—were
visiting scientists at Bristol when John (‘‘Jock’’) D. Eshelby (1916–1981) entered
the field of dislocations through his PhD Thesis (‘‘Stationary and moving dislo-
cations’’, University of Bristol, 1949) after working on defence related projects
(1940–1946). From here on all his published works permeate a striking elegance,
analytic dexterity, imagination, physical acumen, and a deep knowledge of fun-
damental mathematical physics. His work on dislocation theory will be examined
in the next section. In this early period at Bristol in parallel with his dislocation
studies, Eshelby wrote his fundamental paper on ‘‘The force on an elastic singu-
larity’’ (Eshelby 1951). This paper proposed a proper intellectual construct to
apprehend the notion of singularity-driving forces (now included in the theory of
configurational forces; see Chap. 14). However, it was not until 1968, when
Genady P. Cherepanov and Jim R. Rice published their works on path-independent
integrals in fracture, that Eshelby’s innovative work of 1951 was fully understood
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and recognized as a basic theoretical and practical instrument in fracture theory.
From that year on Eshelby devoted most of his research and diffusion of knowl-
edge to fracture theory, being invited to write several overviews on the subject
matter (e.g., Eshelby 1970, 1971, 1975a, b, 1982; Eshelby and Bilby 1968).
C. Atkinson—who went to teach at Imperial College in London—was one of his
co-workers in this theme of ‘‘configurational forces’’ (see, e.g., Atkinson and
Eshelby 1968). For landmark papers in the field see Cherepanov (1998).

Eshelby (1957, 1961) also entered the mechanics of some complex elastic
materials (e.g., with inclusions of a foreign constituent) by solving the problem of
ellipsoidal inclusions of which elastic coefficients differ from those of the matrix.
The method introduced by Eshelby in elasticity in this memorable paper was
inspired by problems of electrostatics (the ellipsoidal form allows for a homoge-
neous strain inside the inclusion, in the same way as an electrically polarizable
ellipsoid—or a degenerate form of this shape—admits a uniform electric polari-
zation—see the notion of demagnetising factor in electromagnetism). It itself
inspires those who formalized it in more complex cases (e.g., elasto-plasticity; cf.
works by E. Kröner, A. Zaoui, M. Berveiller). After leaving Bristol, Eshelby
worked in Birmingham (1953–1964), where Nabarro had moved. He spent two
years in Cambridge in the Metal Physics Group at the Cavendish Laboratory
(1964–1966), after which he joined the Department of the Theory of Materials at
the University of Sheffield where he stayed until the end of his life. He was of
course elected a Fellow of the Royal Society of London.

It is while still at Bristol that Eshelby supervised the initial research work of
another remarkable scientist, Alan N. Stroh (1926–1962), originally from South
Africa. Nevill Mott replaced Eshelby in this tutorial role when the latter left Bristol
in 1952. Stroh obtained his PhD in Bristol in 1952. Then he moved for a couple of
years to the Cavendish Laboratory in Cambridge, and thereafter joined the
Department of Physics in Sheffield. He went to the USA at MIT in 1958, but he
was killed in a car accident in 1962 while he was on the move to a new post at the
Boeing Scientific Research Laboratories in Seattle. He published papers with J.
D. Eshelby, F. C. Frank, B. A. Bilby and L. R. T. Gardner, all on dislocation theory
and kinks. He also published a few papers on cracks and brittle fracture (Stroh
1954, 1955a, b, 1957, 1960, 1962a, b). However, it is with two of his papers (Stroh
1958, 1962a) that Stroh laid down the foundations of a new formalism for treating
the two-dimensional deformations of anisotropic elastic media, and deserves to
have his name engraved at the pantheon of elasticity and wave propagation (if such
a thing exists at all). What he cleverly did was to introduce a six-dimensional
vector of unknowns comprised of the elastic displacement and the traction (not the
stress) in a direction, and the appropriate matrix formalism in R6. This reduces the
mathematical problem to finding eigenvalues and two associated eigenvectors in
the proper space. Obviously, this ‘‘sextic’’ formalism, now referred to as ‘‘Stroh
formalism’’, is most convenient in quasi-automatically accounting for boundary
and transition conditions in elastic structures such as multi-layers and in treating
the wave propagation in such structures. This mathematically elegant and tech-
nically powerful formalism was discussed, perfected and applied to many cases by,
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among others, D. M. Barnett (Stanford), J. Lothe (Norway), P. Chadwick (UK;
already cited), V. I. Alshits (Moscow), and T. C. T. Ting (1996) who has clearly
demonstrated the general superiority of Stroh’s formalism over the technique
proposed by the Russian scientist S. G. Lekhnitskii (1963) for treating elastostatics
and steady-wave motion in anisotropic elastic bodies. Furthermore, the sextic
formalism can be given a Hamiltonian interpretation (Y. B. Fu 2007). As we know,
Stroh’s promising career was suddenly interrupted on September 21, 1962.

6.3.4 Willis’ Works

John R. Willis (born 1940) was educated in London (PhD 1964 at the Imperial
College). He was a research associate at the Courant Institute of Mathematical
Sciences in New York (1964–1965), and then went on to Cambridge (1965–1972),
the University of Bath (1972–1994; 2000–2001), and became a professor of
Theoretical Solid Mechanics at the University of Cambridge (1994–2000,
2001–2007). His long fruitful roster of works illustrates perfectly the continued
British interest in the mathematical investigation of problems that arise in the
mechanics of solids: the inclusion problem (cf. Eshelby), the theory of disloca-
tions, fracture mechanics, the elastodynamics of crack propagation (cf. Eshelby,
Stroh), statics and dynamics of composite materials, and the homogenisation of
composites. Among the names of his main co-workers we note those of
R. Bullough, R. Burridge, F. J. Sabina (from Mexico), D. R. S. Talbot, P. Ponte
Castaneda (from Pennsylvania, USA), A. B. Movchan, V. P. Smyshltyaev,
N. A. Fleck, and G. W. Milton (from Utah, USA).

In Willis’ formidable list of publications, we identify his early works concerned
with anisotropic elasticity (inclusion problem, Willis 1964, 1965; second-order
effects of dislocations, Willis 1967, 1971), the fracture mechanics of interfacial
cracks (Willis 1971, 1972), and the equation of motion for propagating cracks. In
elastic-wave studies and the mechanics of composites, he introduced (Willis 1980)
the seminal idea of ‘‘polarization’’ (inspired by the vacuum as a model of com-
parison in electromagnetism), variational principles for dynamic problems in
inhomogeneous media (Willis 1981a, b), variational estimates of effective
dynamical properties in random composites (with Talbot and Willis 1982), the
homogenisation of various nonlinear composites and the bounds on overall
properties of the same (e.g., 1991). These variational formulations are creative
landmarks. In crack propagation, he introduced dynamic weight functions and
successfully dealt with perturbation problems (with A. B. Movchan). In this
framework he has proved the existence of a new type of waves, so-called ‘‘crack-
front waves’’. Recent works with Fleck (2009) provide a mathematical basis for
the strain-gradient theory of plasticity (cf. Chap. 13 herein after). All these con-
tributions are of utmost importance in solid mechanics and place Willis among the
outstanding specialists of advanced mathematical techniques in this field of
application. Still his style of writing remains remarkably sober.
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6.4 Dislocations and Plasticity

6.4.1 The Pioneers

After plastic deformation slip bands are usually observed at the previously
polished surfaces of single crystals. It is Geoffrey I. Taylor (1886–1975) who in
1934 first proposed an explanation of this observed effect by the sliding mecha-
nism by crystal defects, which he identified with the mathematically conceived
dislocations of Vito Volterra in 1905 (see Chap. 2). This idea was practically
advanced simultaneously by M. Polanyi and E. Orowan. This insight is all the
more remarkable that the experimental proof of the existence of dislocations as
individual objects had to await the 1950s after the invention of electron micros-
copy. A word is necessary about these three scientists.

Both Polanyi and Orowan were originally from Hungary. Michael Polanyi
(1891–1976) took a chair of physical chemistry at the University of Manchester
after he left Germany in 1933. He made essential contributions to crystallography
including dislocation theory. Egon Orowan (1902–1989) was educated at TH
Berlin. After working for sometime in Germany and Hungary, he moved to the
University of Birmingham to work with Rudolph Peierls and then to Cambridge
with W. L. Bragg. He finally moved to MIT in the USA in 1950. Of course, G.
I. Taylor is a scientist of another calibre (see his biography by G. K. Batchelor
1994—probably the most well known student of Taylor). A Cambridgian like
many others, he is known above all for his outstanding contributions to dynamical
meteorology and fluid mechanics, especially in turbulent flows. His name remains
for ever attached to such phenomena as the Rayleigh–Taylor instability and Taylor
vortices. During WWII he became famous for his theoretical prediction of the
yield (16.8 kilotons of TNT) of the first atomic explosion by working out a
similarity solution for a blast wave and examining the (then unclassified) relevant
pictures of the explosion that were released. But Taylor was a man of many
scientific interests. Our colleagues from fluid mechanics are usually quite surprised
to learn that he played a seminal role in plasticity theory (Taylor and Quinney
1931) and dislocation theory via his breakthrough paper of 1934 (Taylor 1934). It
may be anecdotic to mention that one his grandfathers was none other than George
Boole of Boolean algebra fame.

6.4.2 Eshelby’s Contributions

It is true that Taylor’s insight was critical in developing several aspects of the
modern sciences of solid mechanics and materials science (metallurgy). This was
happily completed by J. M. Burgers’ introduction of the notion of ‘‘Burgers’’
vector in 1939 (See Chap. 10). The theory of dislocations was taken over by
metallurgists and solid-state scientists such as F. C. Frank and F. R. N. Nabarro.
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We recall that J. D. Eshelby had entered the field of dislocations through his PhD
Thesis of 1949. Many of his publications in the period 1949–1968 are devoted to
the field of dislocation theory although we cannot ignore the already mentioned
epoch-making contribution to the theory of configurational forces and his no less
important contribution to the problem of elastic inclusions. Among his co-authors
on the subject of dislocations and defects we note a group of famed scientists:
B. A. Bilby, F. R. N. Nabarro, A. N. Stroh, F. C. Frank, W. T. Read (the latter two
with their names associated for ever in the ‘‘Frank-Read’’ source of dislocations),
and W. B. Shockley from Bell Telephone Laboratories (Nobel Prize in Physics for
the invention of the transistor). The quality of a researcher is also to be judged
from that of his co-authors. One of the masterpieces of Eshelby was the paper he
co-authored with Frank and Nabarro on the equilibrium of a linear array of dis-
locations (Eshelby et al. 1951).

Of noticeable value and great ingenuity in the mathematical solution, we like to
emphasize the recurring theme of the motion of a dislocation in Eshelby’s works.
He pondered this matter for several years (Eshelby 1949, 1953, 1956, 1982). What
here is typically a mark of Eshelby’s is his deep understanding of mathematical
physics and the evident analogies he draws from electro-magnetism (relativistic
factor, Lennard potentials).

6.4.3 Geometry, Dislocations, and Plasticity

Bruce A. Bilby (FRS 1977) has been a fruitful contributor to the theory of dis-
locations for more than fifty years starting with the publication of a breakthrough
paper with Cottrell (Cottrell and Bilby 1949). Another famous paper co-authored
with Cottrell and Swinden is dated 1964 (cf. Bilby et al. 1964). These works,
although innovative, may be said to be in the standard framework of dislocation
theory, like most of the works by this author. But in 1955 Bilby and some of his
colleagues in the Department of Metallurgy in Sheffield started to develop a
geometric theory of the continuous distribution of dislocations. This must have
been inspired by the early work of K. Kondo in Japan (See Sect. 10.7 herein after).
Kondo himself had noticed that some geometric ideas at work in Einstein’s theory
of gravitation could be useful in order to represent the special deformation field of
defective elastic solids. This would be taken over by E. Kröner in Germany in his
theory of strain incompatibility. What Bilby and co-workers did was much more
ambitious. They remarked that in the presence of an assumed continuous distri-
bution of dislocations—this means a very high density of dislocation lines—the
notion of ‘‘good crystal’’ no longer exists. So there appear difficulties to define
Burgers’circuits and a dislocation density tensor. This dislocation density can be
defined only by defining the dislocated state by relating a local basis at each point
to that of a reference lattice. Then (in words adapted from the authors’ abstract
with little alteration)
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the geometry of the continuously dislocated crystal is most conveniently analyzed by
treating the manifold of lattice points in the final state as a non-Riemannian one with a
single asymmetric connexion. The coefficients of that connexion are then expressed in
terms of the generating deformations that relate the dislocated crystal to the reference
lattice.

In these conditions the local dislocation density can be identified with the
torsion tensor associated with the connexion [see Sect. 14.3 below, especially the
last of Eq. (14.29)]. The introduced connexion possesses the property of so-called
distant parallelism [a notion introduced in non-Riemannian geometry by the
French geometer Elie Cartan (1869–1951); See Maugin 1993, p. 128]. Bilby and
his co-workers developed their theory in a series of six long papers between 1955
and 1966. It is aesthetically rewarding but probably of limited use (In particular,
Bilby et al. 1955).

Furthermore Bilby et al. (1957, presented in 1956) were the first to introduce a
multiplicative decomposition of the finite deformation gradient in the presence of
defects and plasticity. This was to have a glorious future in the description of the
deformation field where local rearrangements of matter take place (e.g., in plas-
ticity, visco-plasticity, damage, heat conduction, phase transformations). This
decomposition is sometimes attributed to E. H. Lee in 1969—see Maugin 2011,
Chap. 6. Note that Stroh was one of the co-authors of this 1957 contribution.

In his most recent works (early 2000s) Bilby also worked on the continuum
theory of damage.

6.5 Rodney Hill: Mathematical Plasticity

With the fundamental works of Rodney M. Hill (1921–2011), we return to the
(perhaps dry) mathematics of phenomenological plasticity. It seems that Rodney
Hill was a remarkable person in many ways. Educated in mathematics at Cam-
bridge, he worked on defence projects under Nevill Mott during WWII, and joined
Egon Orowan (already cited) in 1946 at the Cavendish Laboratory in Cambridge
where he became a specialist of plasticity. His doctoral thesis (1949) was devoted
to ‘‘Theoretical studies of the plastic deformation of metals’’. He was in Sheffield
for a short time and then for three years in Bristol. This was the time at which he
founded the Journal of the Mechanics and Physics of solids (1952) that was to
become one of the most influential journals in the field. In Nottingham from 1953
to 1963, he created there the Department of Theoretical Mechanics in 1960. He
finally joined the University of Cambridge in 1963 first as a research fellow and
then on a personal professorship (1972). His many scientific works are charac-
terized by fresh thinking, concision, and an unsurpassed scholarship.

Hill’s outstanding works in mathematical plasticity were performed at a bur-
geoning time for this theory. This was reported in Chap. 4 when dealing with the
case of William Prager and Brown University, although the Soviet Union had also
a share in this movement (cf. Kachanov and Ilyushin in Chap. 11). But Hill
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brought a fresh view by introducing seminal ideas while providing a remarkable
synthetic approach for the period. The most powerful idea probably is that of
maximum plastic work (Hill 1948) now classically referred to as the principle of
maximal dissipation (the French call it the Hill-Mandel maximal-dissipation
principle). In modern form this principle can be expressed by the following var-
iational inequality [cf. Eq. (5.20); see also Maugin 1992]:

r� r�ð Þ : _ep � 0 ; 8 r� 2 C; ð6:1Þ

where r represents the stress tensor whose representative point in the appropriate
space should remain in a convex set C, and _epis the rate of plastic strain. Equation
(5.20) is none other than a modern representation of (6.1) within the framework of
the convex analysis with internal variables of state, plastic strain being possibly
one such variable. The important feature of Eq. (6.1) is that together with the
convexity of the strain energy, it guarantees the validity of Drucker’s inequality
and Drucker’s postulate—cf. Eqs. (4.1) and (4.2). In other words, it provides a
solid foundation for the plasticity of materials that accept the normality law
contained in (6.1). These works eventually led to general studies of uniqueness and
stability in nonlinear continuum mechanics. This makes Rodney Hill the father of
modern plasticity theory in a thermodynamic context. This was expanded by Hill
in his book of 1950, published while he was just reaching age twenty nine. This
book remains the classic opus and indispensable reference in plasticity theory. As
mentioned before concerning Hill’s style, the book was written with a typical
economy of thought and words. The book also generously presented the treatment
of typical plasticity problems by means of the theory of slip lines, a then recent
introduction for solutions of plasticity problems before the advent of computers.
This applies in quasi-static loadings to plane strain problems in rigid-plastic
bodies. Hill gave such a solution for the exemplary problem of a rigid punch
indenting a rigid-plastic half-space. With the publication of his book at the early
age of 29, Hill was recognized as a leading authority in the field.

Hill made many other memorable contributions to the mechanics of solids in his
more than 150 published articles. What I like to single out in this long roster, are
the foundational papers that he produced in the mechanics of composite materials,
i.e., his essential contributions the theory of homogenization (Hill 1965, 1987). In
this approach one first selects an Representative Volume Element (REV) V that
characterizes the size of variations (in coordinates y) of properties at a microscopic
scale. Let r and e the stress and strain tensors at that scale. At the macroscopic
scale of observation, let R and E denote the volume averages of the stress and
strain defined by (x denotes the macroscale coordinates)

R xð Þ ¼ \ r [ � Vj j�1
Z

V
r x; yð Þ dy; ð6:2Þ

E xð Þ ¼ \ e [ � Vj j�1
Z

V
e x; yð Þ dy: ð6:3Þ
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The crucial Hill principle of macrohomogeneity is expressed as follows:

\ �r : e �uð Þ [ ¼ �R : �E ð6:4Þ

where �r and �u are, respectively, a statically admissible stress field and a kine-
matically admissible displacement field, i.e., fields respecting the data in forces
and displacements, respectively. The energy equivalence contained in Eq. (6.4) is
proved for the three basic types of boundary conditions that may take place at the
boundary of V (what is called the local problem of homogenization). The French
also refer to (6.4) as the Hill-Mandel principle following Mandel (1971). But in
statistical theories of composite materials (e.g., in Kröner 1972), (6.4) is but an
ergodic hypothesis. Anyway, Hill’s condition (6.4) provided the basic hypothesis
of the energy type in all future approaches to homogenization (i.e., replacing a
strongly inhomogeneous medium with rapid spatial variations in its mechanical
properties by an equivalent ‘‘homogenized’’ medium).

Hill was a man of few words, personally quite reserved and eminently quiet.
This may explain why he did not mentor so many students although he did not
hesitate to provide advices. One of his successful PhD students was Ray W. Ogden
at Cambridge. Robin Knops (see next section) also wrote a doctoral thesis under
the supervision of Hill, but in Nottingham.

Hill’s works are incorporated in the author’s book of 1992 on plasticity in
homogeneous and inhomogeneous solids. Hopkins and Sewell (1982) have edited
a very interesting special volume of relevant contributions in the honour of Hill.

6.6 Mathematical Problems

Now we go one step further towards applied functional analysis and pure analysis.
The first scientist in this class is Robin J. Knops (born 1932). In 1952 Knops won an
Open Entrance Scholarship to Nottingham University. As mentioned above he wrote
a PhD thesis under Rodney Hill when the latter was in Nottingham. This memoir was
devoted to inequalities bounding elastostatic solutions and properties produced by a
variation in elastic moduli (Knops 1958). This gave rise to his first published paper in
1958. Then Knops’ career unwound as follows. He stayed at Nottingham until 1962,
taking a leave of absence at Brown in 1961–1962. On his return to the UK he
accepted a call from A. E. Green to join Newcastle as a lecturer in continuum
mechanics. He was promoted Lecturer in this field in 1968. In 1966, he wrote one of
the first papers on the continuum mechanics of electrostriction for two-dimensional
problems (Knops 1966). In 1971 he was appointed Professor of Mathematics and
Head of Department at Heriot-Watt University (founded 1821) in Edinburgh. This
institution had achieved university status in 1966 only. Knops was very active not
only with his own research but also as a successful organizer in an expanding
department that created a favourable environment for research in non-linear analysis
and mechanics, and reached international reputation through his tireless efforts. In

6.5 Rodney Hill: Mathematical Plasticity 91



particular, he was successful in attracting creative and innovative scientists, a fact
well illustrated by the doctoral work of Stefan Müller from Germany, and the
coming of John Ball to Heriot-Watt.

Most of Knops’ mathematical researches are in the framework of applied
functional analysis. This means a focused interest for problems of uniqueness,
existence and non-existence, ill-posed problems, stability, continuous dependence
of solutions on data, decay and growth of solutions, and spatial and asymptotic
behaviour (e.g., Saint–Venant principle), This is supported by a long roster of
publications, often in collaboration with other noted analysts, e.g., Michael Hayes
and J. N. Flavin from Ireland, L. E. Payne from Cornell University, R. N. Hills,
Piero Villaggio from Pisa, and Brian Straughan from Edinburgh who himself
became a professor at Heriot-Watt and contributed (Straughan 1991, 1998) to the
solution of problems of stability and convection. Robin Knops has contributed
superbly written useful syntheses on uniqueness problems in linear elasticity
(Knops and Payne 1971) and elastic stability (Knops and Wilkes 1973; Knops
2001), all real mines of information and frequently referenced authoritative works.

(Sir) John Macleod Ball (born 1948) is a true analyst whose main field of
research includes basic mathematical properties in finite-strain elasticity, the cal-
culus of variation in the large, and infinite-dimensional systems. He was educated
in Cambridge and obtained his doctoral degree at the University of Sussex under
the supervision of David E. Edmunds. He was on a post-doctoral fellowship at
Brown in 1972–1974. He then joined the Department of Mathematics at Heriot-
Watt University where he remained until 1996. He finally became the Sedleian
Professor of Natural Philosophy at Oxford, where he was most instrumental in
organizing the Oxford Centre for Non-linear Partial Differential Equations. He
visited for extended periods Berkeley, Paris (UPMC) and the Institute for
Advanced Studies in Princeton.

Ball’s most famous paper (Ball 1977) deals with convexity conditions and
existence theorems in nonlinear elasticity. In this paper and others he proved for
the first time in the history of nonlinear elasticity the existence of configurations
that achieve minimal energy under realistic conditions. He introduced the notions
of quasi-convexity and poly-convexity in elasticity. Quasi-convexity was origi-
nally introduced by Morrey (1952) in pure mathematics. Poly-convexity is a
weaker form of convexity introduced to deal with functions defined on a space of
matrices (case of deformations). Another landmark paper (Ball and James 1987)
was co-authored with Richard D. James (from Minneapolis) and showed the
possibility of having cases without energy-minimizing configurations with appli-
cations to the theory of martensites, materials with a fine structure resulting from
solid-to-solid phase transformations. Indeed, for martensites there exists neither
true minimizer nor true infimum, but the minimizer-infimum can be approached
indefinitely closely by a sequential development of finer and finer structures, what
is experimentally verified. It is no question here to discuss the immense contri-
butions of John Ball to applied mathematics, as they far exceed the understanding
of the author. It was more than justified that Ball, a remarkable mathematician of
international standing, received many honours including prizes, honorary
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doctorates, and memberships in academies. Among his co-workers is François
Murat from Paris (cf. Ball and Murat 1984).

Note. There are many ‘‘John Ball’’ in the history of Great Britain. But our mathematician
should not be mistaken for John Ball (died 1381; a kind of mythical figure, leader of a
rebellion of peasants and craftsmen in the fourteenth century), John Ball (1818–1888;
honourable member of the Royal Geographical Society) or John Ball (1861–1940; a most
famous golfer).

6.7 Conclusion: From and Back to Materials Science
via Mathematics

The perspicacious reader will have uncovered an Ariadne’s thread in the above
described developments. One fact was essential although not very pleasant. It was
the tragic occurrence of the Second World War. Two individuals were the initi-
ators of some of these developments, Sir Nevill Mott and Sir Alan Cottrell (and
also E. Orowan). Albeit not themselves mechanicians, they cleverly invited young
applied mathematicians drafted in their laboratories to ponder problems con-
cerning materials and their defects in terms of what these young men knew best,
applied mathematics. This fitted precisely in a favourable pre-existing spirit that
expanded previously with such individuals as Maxwell, Rayleigh and Love, while
creating a real network of interrelations and co-operations.

Thus was born a mechanics of materials (not the traditional mechanics of
structures dear to the nineteenth century engineers and also to most continental
mechanicians of the first part of the twentieth century). Of course with an acquired
momentum of its own, this framework developed its own autonomy. But it was
noticed in the 1970s–1980s that new modellings were required following the
demands of metallurgists (now often called ‘‘materials scientists’’). Thus a return
to an intimate co-operation between applied mathematicians, mechanicians of the
continuum, and materials scientists has become a necessity. This is true in the
study of the fine structure of martensites, but also with the inception of new man-
made materials for which one must know and model the mechanical properties, all
the more that some of these properties may be exceptional (think of honeycomb
structures in aeronautics). This is well illustrated by the works of Michael F.
Ashby (born 1935) and Norman A. Fleck (born 1958), both in Engineering at
Cambridge, although similar trends are observed all over the world. The former is
a true materials engineer entirely educated and formed at Cambridge (PhD 1961).
After long term stays in Göttingen (1962–1965) and at Harvard (1966–1973), he
became a Research Professor at Cambridge. Suffice it to mention his many works
on such new materials as cellular materials (see Ashby and Gibson 1997), and his
general views on engineering materials (book by Ashby and Jones 1996). As to
Fleck, with a PhD obtained in Cambridge in 1984, he turned his attention to a
variety of interests including the mechanics of metallic foams, powder compaction,
and strain-gradient plasticity, with applications of micromechanical modelling.
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At the same time, Guy T. Houlsby, also with a PhD (1981) from Cambridge (on the
plasticity of soils), developed in Civil Engineering at Oxford a marked interest for
the thermomechanics of geotechnical materials such as clay and granular materials
(see Collins and Houlsby 1997; Houlsby and Puzin 2002, 2006). All these works are
clear deviations from the previous ‘‘applied mathematics’’ trend. They point to the
future evolution at the beginning of the twenty first century. This justifies the title of
this concluding section.
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Chapter 7
The French Masters

Abstract The French case is peculiar because of the well-known ‘‘French
exception’’. In the present case, this exception is provided—in spite of attempts at
changes—by the enduring distinction between university education and the cele-
brated engineering schools familiarly known in French as ‘‘Grandes Ecoles’’ and of
which the Ecole polytechnique remains the world acknowledged paragon. After an
attempt at explaining this duality in higher French education as well as the ever
present centralization of all things in France, of necessity the development of
mechanical engineering sciences in this country through the Twentieth century is
examined by schools and centres of influence with mention of the most remarkable
individuals who have allowed a renascence of continuum mechanics in the country:
namely, the University of Paris (Paris 6 also called UPMC to be more precise) with
Paul Germain, the Ecole Polytechnique with Jean Mandel, the University of
Grenoble with its polytechnic institute, and other centres which have developed in
the period 1950–2000 in spite of the Parisian Jacobinism. Each centre has succeeded
to develop special trends in continuum mechanics at the international level of
competition, often in the fields of continuum thermomechanics, nonlinear defor-
mations, plasticity and visco-plasticity, rheology, fracture mechanics, coupled
fields, homogenization techniques, and other mathematical methods. This is pre-
sented in great detail with as much neutrality as possible from the part of a long-time
Parisian.

7.1 The Originality of the French System of Higher
Education: A Necessary Introductory Explanation

One cannot deal with the 20th century French system of education and research
without trying to explain the historical reasons for its originality and singularity,
mostly in its strange dichotomy between universities and so-called ‘‘grandes
écoles’’. By these we here mean essentially ‘‘engineering schools’’, a system that is
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now foreign to most people around the world although it provided a leading
example in many countries in the 19th century.

Before the great revolution of 1789 there existed universities in France in
various places, Paris (the ‘‘Sorbonne’’ whose name derives from that of a Sieur
Sorbon) and Montpellier being the most prestigious and oldest ones. The common
curricula were law and medicine; many students graduated in both simultaneously.
A few exceptions to this rule were schools created with a special technical purpose
in the middle of the 18th century. These were the Royal school of bridges and
Highways (E.R.P.C = Ecole Royale des Ponts and Chaussées, founded in 1747)
in Paris and the Military school of Mézières (in the Champagne-Ardennes region,
North-East of France). This opposed ‘‘civil engineers’’ and ‘‘military engineers’’,
although both were instructed to serve the kingdom, in—what is now called—civil
engineering and artillery, respectively. The second school is not well known
outside France, but it was the ancestor of the present Ecole Polytechnique.
Napoleon Buonaparte (not yet ‘‘Bonaparte’’), sometimes presented by his enemies
as ignorant and uncultured, was a student there acquiring an excellent formation in
mathematics and mechanics. This allowed him to participate actively in the ses-
sions of the French Academy of Sciences—in the Section ‘‘Mechanics’’—where
he nominated himself in the best dictatorial tradition, and this when he was not
trying to conquer Europe during his multiple wars.

Scientific research by ‘‘savants’’ before the French revolution was conducted
either on a private basis by members of the clergy with some leisure time, gifted
rich amateurs or by members of the Academy of Sciences in Paris (founded by
King Louis XIV in the 17th century as a reaction to the founding of the Royal
Society of London). These members—who could be rather young—were paid by
the state so that this academy resembled one of the modern state research insti-
tutions (e.g., the Soviet academy of sciences or the French C.N.R.S in the 20th
century).

The 1789 revolution changed everything, starting by abolishing universities.
The main idea was to suppress these supposedly reactionary temples while
replacing the self proclaimed elite by an elite based on pure scholarly merits.
Remember that one had to be a noble to enter the Mézières school (Buonaparte’s
family was assimilated to small nobility from Corsica). The selection of this new
elite had to be through entrance competition (like for the selection of the man-
darins in imperial China) to specially devised schools. From that viewpoint the
E.R.P.C was readily transformed into the E.N.P.C (Ecole Nationale des Ponts et
Chaussées) while former professors from Mézières, most actively the mathema-
tician Gaspard Monge, worked out the creation of the Ecole Polytechnique in
Paris. This was to become a model in many countries, e.g. in Switzerland (the
Polytechnicum in Zürich), Germany (various polytechnic schools in Darmstadt,
Munich, Aachen, etc.; later renamed ‘‘Technische Hochschulen’’, and then
‘‘Technische Universitäten’’), Austria (Vienna), Russia (St Petersburg), Sweden
(Stockholm), Italy (Torino, Milano), Poland, and much later even in the USA (the
M.I.T. in Cambridge, Mass.). In principle the Ecole Polytechnique—simply
referred to as ‘‘X’’, the unknown variable in mathematics—offered a rather general
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education with an emphasis on mathematics, so that students had to further attend
another school—said of application—to become purposeful servants of the state.
The E.N.P.C was one of these schools. Those who completed this curriculum
became members of the so-called ‘‘corps’’ (‘‘bodies’’). To be a member of these
‘‘corps’’ was—and still is—the highest ambition in the French state service. Many
of the great French scientists (specially in mechanics) of the early 19th century
belong to this elite, to name a few: Cauchy, Navier, Lamé, Clapeyron, Poncelet,
Liouville, Coriolis, Arago and Barré de Saint–Venant, while Monge, Lagrange,
Laplace, Ampère and Fourier taught at the Polytechnique school. Schools of
application for ‘‘polytechnicians’’ were created according to technical needs, e.g.
the school of Mines in Paris (now called E.N.S.M.P) with branches in Nancy, St
Etienne and Alès (i.e. where there were mines), and then in the 20th century the
school of Aeronautics (E.N.S.A. nicknamed ‘‘Sup Aéro’’, the first of its kind in the
world in 1909), and the school of Telecommunications (E.N.S.T). Thus Henri
Poincaré belonged to the ‘‘corps des Mines’’. Each specialization school depen-
ded—and still depends—on the corresponding Ministry (Equipment, Defence,
Post and Telecommunications, etc.). Many of the already cited people were to
become what Ivor Grattan-Guinness (1993) calls ‘‘ingénieurs-savants’’, often
sharing their time between technical works (e.g. design of bridges or new har-
bours) and true scientific research.

In parallel with grandes écoles, Napoleon’s Empire (Buonaparte had become
self-crown emperor in 1804) reorganised teaching at the primary (‘‘Ecoles prim-
aires’’ from age 6 to age 12) and secondary (‘‘lycées’’ from age 12 to age 18) levels.
The formation of teachers for these two levels was to be delivered in the ‘‘Ecoles
normales (of teachers)’’—one per department—and the (unique) Ecole Normale
Supérieure (ENS) in Paris, respectively. Entrance in the latter had to be by com-
petition. As the level of this examination was similar to that to the admission to
Polytechnique, these two schools became rivals, although not intended to fulfil the
same purpose. It was soon discovered that alumni from the ENS could also become
creative scientists in pure science. Fourier was among the first alumni from the ENS.
Under the influence of Louis Pasteur, the ENS became a true centre of formation of
high-level scientists late in the 19th century. Another originality is that students in
the cited ‘‘grandes écoles’’ were paid by the state, so that they owed some years of
service to the state as a partial re-payment for this facility.

But what about universities, which continued to form lawyers, medical doctors,
humanists, and a few scientists, when they were re-instituted in the 19th century?
To speak of universities in the plural form is a mistake. There was only one
university, called imperial or national, provinces welcoming only faculties; thus
the Faculty of sciences in Bordeaux where Pierre Duhem spent most of his career.
All of these were under the directorship of the Ministry of Education that made all
nominations. This system, far from the present democratic system, could not avoid
political biases (of which Duhem was a victim, although himself a brilliant
alumnus from the ENS). This centralized system with an ultimate recognition
reached only once one was nominated in Paris, favoured a kind of careerism with a
typical path from education in Paris (preferably the ENS or Polytechnique), a
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succession to a few positions in provinces such as in Rennes, Lille, or Poitiers, and
then back to the Sorbonne in Paris at the apogee. This system lasted practically
until the 1960s. Except for hard-tempered and very gifted individuals such as
Boussinesq—originally student at the Faculty in Montpellier—it was hard to
follow a similar conventional path for students from provincial faculties.

The noted dichotomy was not much in favour for research in the ‘‘grandes
écoles’’. It is not until the 1960s that research laboratories were established in
many of the ‘‘grandes écoles’’, in mechanics principally through the influence of
Paul Germain, and the encouragement and financial support of the Centre National
de la Recherche Scientifique (CNRS). The later was created in 1939 by the nuclear
physicist and Nobel-Prize winner Frédéric Joliot-Curie, certainly inspired by the
Soviet Academy of Sciences.

We have not mentioned two original institutions. One is the ‘‘Collège de
France’’ in Paris, created by king François I early in the 16th century. This is
considered to be the highest institution of education in France where a selected
group of professors teach a few hours per year the last developments in their
speciality, usually their own most recent research. This institution delivers no
diploma and the lectures are open to all. The second institution is the Ecole
Supérieure de Physique et Chimie Industrielles (ESPCI). This « grande école »
depends on the city of Paris: It was created after the defeat of the French opposite
to the Prussian in 1870, with a view to accommodate refugees from a technical
school in Mulhouse in the then Prussian occupied Alsace. The curriculum of the
ESPCI puts the emphasis on experimental observation and training.

7.2 The University of Paris and Paul Germain

The history of the development of modern continuum mechanics in France bears the
print of the French centralized educational system: ‘‘No hope outside Paris’’.
Furthermore, in the best French tradition of the 19th century, ‘‘mechanics’’ had to be
understood as ‘‘rational mechanics’’, a field of applied analysis. Accordingly, uni-
versity courses in the field were often delivered by professors expecting a future true
chair of mathematics, analysis or geometry. This did not encourage much research in
the field of continuum mechanics, fluid or solid mechanics. Boussinesq in Mont-
pellier was an exception. In Paris, because of his interest in the rapid development of
aeronautics in the 1930s, Joseph Pérès—another alumnus from the ENS, and co-
worker of Vito Volterra on functional equations—felt that various lines of research
had to be promoted, in particular, in the field of theoretical and experimental
aerodynamics. He persuaded three brilliant individuals, Lucien Malavard (Aero-
nautical engineer from ‘‘Sup Aéro’’), Germain and Roger Siestrunck—the last two,
respectively mathematician and physicist from the ENS—to work on advanced
problems of fluids mechanics. Malavard was to develop some of the first analogue
numerical simulations, and then created with CNRS the first French centre of
computational mechanics in Orsay (south of Paris). Siestrunck devoted himself first
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to aerodynamics and then to applied mechanics in the large. Germain, as we shall
see, was the pivotal and crucial element in founding a true school of continuum
thermo-mechanics. A biography of Pérès is given by Germain (1977).

Paul Germain (1920–2009) was destined to become a geometer. But his sci-
entific career took a new turn at the end of WWII when Pérès sent him to the UK
for a stay at the National Physical Laboratory. As a matter of fact, this kind of visit
abroad became a mark of Germain who did not hesitate (this was not frequent at
the time) to make extended stays in various foreign institutions, notably in the
USA at Caltech, Brown and Stanford, and to get the best out of these foreign
experiences. Note that the system of sabbatical leaves did not exist at the time in
France. Simultaneously, Germain did not escape from the traditional tour of
provincial universities (Poitiers, Lille) before obtaining a chair in Paris in 1956 and
also becoming later on General Director of the Office National d’Etudes et de
Recherches Aéronautiques (ONERA). It is in Paris that Germain accomplished a
tremendous pedagogical, organizational and research work in continuum
mechanics. This he did with a remarkable open-mindedness by gathering a group
of young researchers from various horizons, although professorships were prac-
tically still reserved to alumni from the ENS. There was also an active campaign of
inviting foreign visitors who all left a print on the locally expanded research
themes. For some time the emphasis was still placed on mathematical problems of
fluid dynamics and magneto-hydrodynamics. In particular, Germain worked out
and encouraged the application of new methods of asymptotics. (e.g. matched
asymptotic expansions). He also had to implement a curriculum in general con-
tinuum mechanics. He had started to write organized notes for undergraduate
studies when still in Poitiers and Lille. These notes materialized in a book pub-
lished in 1962. This opus had a formidable efficacy and became a standard text for
the whole country. Although of a larger format than Chairman Mao Tse Toung’s
little red book, because of its red cover Germain’s 1962 book was often called
‘‘Popol’s’’ (affectuous diminutive for Paul) red book. Simultaneously, Germain
started to give a selection of lectures at the graduate level where he introduced the
most recent works of Truesdell, Toupin, Noll, Coleman, and Rivlin. Thus he
lectured on the general structure of constitutive theory, on hereditary materials and
viscoelasticity, on thermodynamic principles with the Clausius–Duhem inequality,
etc. These lectures were directly abstracted from research papers essentially
published in the A.R.M.A. before the publication of the celebrated volume III/3 of
the Handbuch der Physik by Truesdell and Noll. This was material hard to
swallow by young minds (according to the author’s own experience).

Among his direct assistants and doctoral students, a variety of fields were
explored and improved in works at an international level. The group included
Duvaut, Lanchon, Hartman, Muller, and then Piau, Drouot, Sidoroff, Gérard,
Maugin, and others, many of them alumni from ‘‘grandes écoles’’. This work force
rapidly contributed to newly opened research trends. Thus Duvaut worked on
nonlinear elasticity and waves and then was instrumental in implementing applied
functional analysis and variational inequalities in mechanics (with a landmark
pioneering book co-authored by Lions and published in 1972). Hartman worked in
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the field of polar materials, a field that had been practically left untouched in
France since the Cosserats. Hélène Lanchon worked with Duvaut. Patrick Muller
paid special attention to the strength of materials and the rewriting of Germain’s
book for undergraduates (See Germain and Muller 1997). Monique Piau (1975)
was among the first French scientists to consider finite-strain elastoplasticity and
wave propagation therein. Raymonde Drouot dealt with non-Newtonian fluids
under the supervision of Ratip Berker (a Turkish mathematician who obtained his
state doctoral degree in Lille before WWII under Kampé de Fériet) and Michel
Lucius, himself a disciple of Noll. Sidoroff was instrumental in introducing the
notion of internal variables of state and multiplicative decomposition of the
deformation gradient in finite-strain viscoelasticity (Sidoroff 1975). Gérard worked
on wave propagation in spherical structures (typically the Earth). As an original
move for the period, Maugin continued his graduate studies at Princeton to come
back later in 1972 after serving in the French Air Force.

In parallel but not necessarily under Germain’s supervision, a true school of
asymptotic studies and nonlinear waves developed under the leadership of Jean-
Pierre Guiraud (himself a former co-worker of Germain at ONERA), Maurice
Roseau and Henri Cabannes: This group included Thérèse Lévy, Philippe Gatig-
nol, Bois, Renée Gatignol, Daniel Euvrard, Roger Peyret, Jacques Mauss, Alain
Rigolot, and Enrique/Evariste Sanchez-Palencia. The latter—originally formed as
an aeronautical engineer in Madrid—was among those who created the asymptotic
method of homogenisation (Sanchez-Palencia 1980). Other mathematical prob-
lems were studied by Maurice Roseau, Claude Do, and Pierre Brousse. The
resulting burgeoning was formidable. The more recent generation included Michel
Potier-Ferry (stability) and Suquet (mathematical problems in plasticity, homog-
enisation; e.g. Suquet 1985, 1987). Furthermore, the formed doctoral students were
to spread the ‘‘Gospel’’ in various provincial universities, including Rouen, Lille,
Compiègne, Bordeaux, Toulouse, Nancy, Metz, Lyon, Nantes, Grenoble, Mont-
pellier, and Marseille, this time with very little hope to return to Paris, but creating
a real national web.

The influence of Paul Germain was also felt in studies encouraged at the
ONERA, not only in fluid mechanics and aerodynamics (this was the time of
development of the ‘‘Concorde’’ supersonic commercial plane and of famous
military fighters), but also in solid mechanics with Jean Lemaître (born 1934) who,
after studies on fatigue and viscoelasticity, became famous for his theory of
damage in solids developed together with Jean-Louis Chaboche (cf. Lemaître and
Chaboche 1985). He later on became a professor at the University of Paris (now
Université Pierre et Marie Curie) while creating the ‘‘Laboratoire de Mécanique et
Technologie’’ in Cachan (south suburb of Paris) with the help of Raymond
Siestrunck.

The flow of original research by Germain was obviously slowed down by his
many university and organizational activities, but also by the fact that he was
practically in charge of the French Academy of Sciences of Paris, in the position of
‘‘perpetual’’ (albeit limited to age 75) secretary. Nonetheless, he contributed
efficiently to a modern formulation of the principle of virtual power that proved to
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be the safest and best available method to devise theories of complex media and
specific structural elements (plates, shells). This was implemented in complex
theories of electromagnetic continua by Maugin on his return from the USA.

Paul Germain published in 1973 the first volume—with an emphasis on ther-
modynamic bases—of a general course on continuum mechanics but the other
volumes were never published (this was to become known a ‘‘Popol’s green book’’
as compared to the previously published ‘‘red’’ one). In 1975 he became for ten years
the professor of mechanics at the Ecole Polytechnique, while remaining attached to
the research laboratory he had contributed to create at the university in Paris. The
Polytechnique course itself gave birth to a two-volume book in French (Germain
1986) of which the English translation was never finalized (although the author
together with his English speaking wife was ready to supervise this translation).
Germain published his last scientific paper in 1998, and died early in 2009. No other
scientist had such a wide and marked influence in both teaching and research in
continuum mechanics in France in the last fifty years. The original research unit (first
‘‘group of continuum mechanics’’ and then Laboratoire de Mécanique Théorique)
created by Paul Germain was later renamed Laboratoire de Modélisation en
Mécanique (with successive directors: Renée Gatignol, Rigolot, and Maugin). This
one was integrated in a much larger unit called the Institut Jean Le Rond d’Alembert
(including physical and musical acoustics and energetics with heavy experimental
facilities) in 2007 by the author. Biographical elements on Germain are to be found
in Germain (1990), Maugin et al (2000) and Maugin (2010).

7.3 The Ecole Polytechnique and Jean Mandel

Jean Mandel (1907–1982) belonged to the ‘‘Corps de Mines’’ (formation:
X ? Mines). This, in a sense, explains that. Before Germain became professor in
1975, only engineers belonging to one of the ‘‘corps’’ (Mines or Ponts and
Chaussées) could possibly become professor of Mechanics at the Ecole Poly-
technique. But Mandel who taught mechanics at Polytechnique from 1942 to
1973—occupying the chair of professor in the period 1951–1973, was also
exceptional from other viewpoints. On the one hand (the ‘‘bad’’ side), he did not
speak English. On the other hand (the ‘‘good’’ side) he was both a theoretician and
an experimentalist. His first interest as ‘‘mining engineer’’ was necessarily in soil
mechanics where he already achieved remarkable work. But more generally his
scientific interest was in the anelastic behaviour of materials (plasticity, visco-
elasticity, visco-plasticity). He is recognized as a pioneer in the application of
plasticity to soil and rock mechanics. He created the Laboratoire de Mécanique
des Solides at Polytechnique in 1961, a laboratory common to Polytechnique and
the application schools of Mines and Ponts and Chaussées, hence its acknowl-
edged strength. He also created the ‘‘French Group of Rheology’’ in 1964, of
which he was the first president. But he was somewhat alien to the University
system. He did not encourage so much his students to take a Doctoral degree. At
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the time ‘‘grandes écoles’’—how ‘‘grandes’’ they may have been—could not
deliver Doctoral degrees; This privilege was reserved to universities. As a con-
sequence Mandel’s students had to register at a university with a university
supervisor (e.g. very often, Paul Germain or Raymond Siestrunck in Paris). Indeed
some of his students were very successful in the French system (so much as
becoming head of the French Atomic Energy Commission) without holding a
Doctoral degree, no doubt the ‘‘Corps’’ helping in this strategy. Strangely enough,
Mandel was never elected to the French Academy of Sciences, a position that he
clearly deserved in view of his great scientific achievements that we briefly
examine now.

Among Mandel’s scientific achievements we must single out the following
essential contributions because they had a direct influence on his students and
French and world continuum mechanics in the large. Thus he solved the problem
of soil deformation under a load accounting for what is called consolidation
(expulsion of water from the soil in time), obviously a situation more realistic than
the standard Boussinesq problem. He dealt experimentally with the creep of plastic
materials and in particular plexiglas. He was also active in viscoelasticity of the
Boltzmannian type. In problem solving of this theory he favoured the exploitation
of the Laplace-Carson transform instead of the standard Laplace transform, and
proposed, simultaneously with Lee in the USA, but independently, the ‘‘corre-
spondence principle’’ between the linear dynamic viscoelastic problem and the
corresponding elastic one. In dynamic plasticity he demonstrated the existence of
additional wave fronts with velocity bounded by those of the pure elastic waves. In
homogenisation, he formulated independently of Rodney Hill the now-called Hill-
mandel principle of macrohomogeneity, that proposes an energy equivalent
between micro and macro scales, a principle later shown as an ergodic hypothesis
by E. Kroner. Finally, he was a critical but constructive contributor to the general
thermo-mechanics of continua (see his contribution at the ‘‘thermodynamics of
continua’’ meeting in Bussaco, Portugal, in 1972), especially in the theory of finite-
strain elasto-plasticity where he solved the problem of the indetermination of the
so-called intermediate or released configuration (yielding a multiplicative
decomposition of the deformation gradient up to an orthogonal transformation) by
introducing the idea of the director frame—that specifies the orientation of the
matter element. In a crystal, this frame is none other than the lattice frame, from
which it follows that the elastic deformation per se is nothing but the lattice
deformation. In a polycrystal one would take as director frame any one of the
frames attached to the constituent crystals (Mandel 1971).

Like Germain, Mandel rarely co-signed papers with his students or disciples.
But his works had a deep influence on their works which he discussed thoroughly
with them. He thus created a true school that produced a nice roster of original
works. Among these we must cite the creative works of Bui on fracture (e.g. Bui
1978), those of Zarka on the plasticity of the monocrystal (Zarka 1972, 1973),
those of André Zaoui on the case of polycrystal, the introduction of the notion of
‘‘generalized standard materials’’ (dealing with internal variables of state, con-
vexity, and the existence of a dissipation potential) by Halphen and Nguyen QS
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(1975), and the works on finite-strain anelasticity, numerical schemes and stability
matters by Nguyen QS (2000) and Claude Stolz. All these works did not have first
much influence outside of France because of the lack of enthusiasm showed by
Mandel’s students—who somewhat imitated their master—for the use of the
English language. But now these works are internationally recognized. I gave a
mathematical presentation of most of these works in my book on the ‘‘thermo-
mechanics of plasticity and fracture’’ (Maugin 1992).

Somewhat separate but also influenced by Mandel’s general ideas and teaching,
we note the importance of the Laboratoire Central des Ponts et Chausées, in Paris
and then in Marne-la-Vallée, east of Paris. Here we should note the remarkable
works of Frémond (2002), a disciple of Moreau in the application of convex
analysis to non-smooth problems of continuum mechanics, including shocks, and
then in the framework of the Institut Navier of Civil Engineering founded in 2003
the creative works of its director, Olivier Coussy (1953–2010) who, in a rigorous
almost Truesdellian style, much improved the thermo-mechanics of porous media
by considering finite strains, thermal effects, unsaturated poro-elastic solids, and
involving physico-chemical properties (cf. Coussy 1995, 2010).

As a final remark on the case of Mandel’s works and influence, we must note
that many of the works were achieved in close relation with the French National
Electricity distribution company (Electricité de France), the Ponts and Chaussées
administration, and the ongoing atomic-energy developments (construction of
atomic-power plants for electricity production). No doubt again: the intimate
connection between members of the ‘‘corps’’ here played a definite role.

Mandel’s course at Polytechnique was published in two volumes in Paris in 1966
(no foreign editions). Although it contains many deep thoughts about the matter, it
did not get the same reception as Germain’s book of 1962 that was translated in
many languages. Mandel (1974) also published more advanced lecture notes in
French but in Warsaw. A biography of Mandel is given by Habib (1983).

7.4 The University of Grenoble and its Polytechnic
Institute (INPG)

The city of Grenoble is situated in the Isère Department in the south-west of
France, in a valley with direct access to the French Alps in a region called the
‘‘Dauphiné’’. It is thus very popular with French students who like skiing during
the week end in the snowy season. It has always been a strong hold of local
government (so-called provincial ‘‘parliament’’ before the French revolution of
1789). In Napoleonic times it had a famous prefect for the Isère Department in the
person of Jean-Baptiste Joseph Fourier, the scientist of heat-conduction and series
and integrals fame. The gentleman did his best in this capacity although it is not
what he did best in his life! Apart from the deciphering of Egyptian hieroglyphs by
Jean-François Champollion, the city of Grenoble did not play any great role in the
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national education landscape in France until the development of hydrological
production of electricity from dams developed at some rapid pace. The aluminium
industry followed with its large consumption of electricity. Simultaneously a
school of engineering specialized in hydrology and then geophysical problems—
initially the EIH = Ecole des Ingénieurs Hydrauliciens founded in 1929, and later
on transformed into the ENSHMG = Ecole Nationale Supérieure d’hydraulique et
de Mécanique de Grenoble—took a specific importance (very much with students
fans of skiing—in my young years this school was nick-named ‘‘Sup-ski’’, an
expression we need not explain if we remember that the prefix ‘‘sup’’ was used to
qualify all specialized schools of engineering attended after a general curricu-
lum—e.g. ‘‘Sup-Aéro’’ for the already named ENSA in Paris). This engineering
school worked in conjunction with the appropriate departments of the University
of Grenoble. Later on, with the successful efforts of Louis Néel (Nobel Prize
winner in physics for his works on ferro- and ferri-magnetism), a research centre
for atomic studies was also installed at Grenoble while a school specialized in
applied (numerical) mathematics was also created. With these new structures and
the creation of laboratories affiliated with CNRS, research bloomed in Grenoble
that became one of the most active scientific centres in France.

No need to emphasize that the teaching and laboratories at the EIH and the
ENSHMG were very much influenced by the proximity, and the engineers, of the
Société Grenobloise d’Etudes et d’Applications Hydrauliques (SOGREAH), a
company very much involved in the design and safety studies of hydraulic dams,
especially after WWII. In 1957 a graduate curriculum was created jointly at the
University and the engineering schools. Continuum mechanics was part of this
curriculum. The main actors in this action were Julien Kravchenko (a mathema-
tician from a family of Polish-Ukrainian origin, formed in Paris at the celebrated
ENS and who did analytic works in fluid mechanics), Jean Biarez (an engineer to
become later on professor of Soil Mechanics at the Ecole Centrale in Paris) and
Paul Anglès d’Auriac. The latter, engineer formed at the Ecole Polytechnique in
Paris, and at the time Scientific director of the SOGREAH, proved to be a
remarkable pedagogue. He introduced in his teaching of continuum mechanics as a
fundamental science the most modern elements at the time (including works by the
American mechanicians such as Truesdell et al.). He published one of the first
monographs on the subject in French (1955, with a preface by Kravchenko). He
was also constantly using tensorial analysis, a formalism not so much entertained
by French engineers at that time. Unfortunately, the chosen place of publication
was ill-fated. Most French authors, except a few from Grenoble, completely
ignored this monograph. After leaving the SOGREAH Anglès d’Auriac became
Professor of Mechanics at the University of Grenoble but he does not seem to have
been active in scientific publications in journals—with the exception of general
views on continuum mechanics at some colloquia—e.g. his contribution of 1966 at
the IUTAM Symposium on the ‘‘Rheology and soil mechanics’’. Nonetheless,
Anglès d’Auriac had a strong influence on several doctoral students who estab-
lished a true school of rheology in Grenoble (among them, Philippe Le Roy and
Jean-Marie Pierrard). This has lasted until the present time with the venue at
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Grenoble from Paris of Professor Monique Piau and her husband, Jean-Michel
Piau. Also, with the many friendly connections of Kravchenko in Poland, a flux of
Polish scientists was established between Warsaw and Grenoble, including in
particular specialists of plasticity and viscoplasticity (Nowacki and Sawczuk).

7.5 Other Places: Marseille, Lille, Toulouse, Montpellier,
Poitiers

In comparison with the already examined three centres, the activity and creativity
of the other French centres seem to be more modest. Still, their creation is also
related to the action of Joseph Pérès with the creation of a Ministry of the Air
Force in 1929 and the inception of various Institutes of fluid mechanics (in French,
IMF) in the 1930s and 1940s in Marseille, Lille and Toulouse. This was very much
the result of the marked interest of Pérès for aeronautics and the related theoretical
and experimental studies in aerodynamics and turbulence.

The first Institut de Mécanique des Fluides (IMF) was created by Pérès when
this scientist was in post in Marseille in the 1930s. This was later complemented
by an Institute specialized in the study of Turbulence. Furthermore, with studies on
submarine armaments, a laboratory devoted to submarine acoustics was also
developed starting in the 1940s. This was later integrated in a larger laboratory of
physical research destined to become the actual Laboratoire de Mécanique et
Acoustique. Under the influence of various scientists (e.g. Vogel and Nayroles) this
laboratory became involved in studies on deformable solids, with a special
emphasis on mathematical problems in general wave problems, viscoelasticity,
numerical techniques, and homogenisation of composites (in particular with Su-
quet who had been educated in Paris). Musical acoustics was also expanded but
this is another story.

The University of Lille, in the north of France, had a different experience. First
of all, Joseph V. Boussinesq (1842–1929), the famous elastician who also worked
in fluid mechanics—coming from Montpellier—was a professor there before
joining the University of Paris when he was elected to the French Academy of
Sciences. He left a deep print in Lille. Another IMF was created in Lille in the
1930s, of which Marie-Joseph Kampé de Fériet (1893–1982), basically a theore-
tician, took the leadership. He was joined by André Martinot-Lagarde
(1903–1982), a graduate from the ENS in Paris. They both developed theoretical
and experimental studies in aerodynamics, creating there a true school. The IMF
still exists being attached to the now Office National d’Etudes et de Recherches
Aérospatiales (ONERA) in contact with mathematicians of the University and the
actual Laboratoire de Mécanique de Lille. Arthur Dyment was fruitfully active as
one of its directors. Concerning continuum mechanics per se, we remember that
Paul Germain had taught there. In the 1960s he was succeeded by Gérard Gontier
who wrote a rather nice and complete course on continuum mechanics (1969).
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This book included many of the then recent developments from the Truesdellian
school, and was somewhat in competition with Germain’s book of 1962 and
Mandel’s course of 1966. Apparently, this was not as successful as these two
books: probably the disadvantage of not being in Paris! Furthermore, there does
not seem to have been a true school pondering new developments. The big man
there still was Kampé de Fériet. He has made remarkable contributions not only to
theoretical and experimental mechanics but also to the theory of hypergeometric
functions, stochastic functions and information theory. The teaching of good
continuum mechanics was revisited with the coming of Pierre-Antoine Bois (2000)
from Paris. The latter is a specialist of theoretical fluid mechanics with a specific
interest in asymptotic methods and the Boussinesq approximation, a spot on
subject for Lille.

The university of Toulouse still had another different experience. This time,
while an IMF was also created in this beautiful historical city—a true provincial
capital—the IMF benefited from the presence of a recently opened engineering
school, the Institut d’Electrotechnique et Mécanique Appliquée de l’Université de
Toulouse in 1907. This was to become the Ecole Nationale Supérieure d’Elect-
rotechnique et Hydraulique de Toulouse (ENSEHT) under the directorship of
Leopold Escande (1912–1980), a renowned specialist of computations of dams and
problems in hydraulics. With the addition of electronics and applied mathemat-
ics—soon transformed into ‘‘informatics’’—at the proper place in its name, the
school was given the longest acronysm ever: ‘‘ENSEEIHT’’, while being integrated
in 1948 in a national network of Ecoles Nationales Supérieures d’Ingénieurs
(ENSI) that share a common entrance competition exam. The school is the largest
‘‘Grande Ecole’’ in the south west of France. Jean Nougaro (1922–1980) suc-
ceeded Escande. Both Escande and Nougaro were instrumental in building a true
local school of mechanics dealing with all aspects of fluid mechanics and ener-
getics, the more mathematically minded mechanicians remaining as well members
of the department of mathematics at the university. Here also the local school was
enriched with the recruitment of young professors coming from Paris in the early
1970s, e.g. Christian Hartman and Jacques Mauss. The IMFT remains a stronghold
of original research in fluid mechanics in France. This became even more true
when Toulouse became the French capital of Aeronautics and Space research and
development with the local design and construction of very successful commercial
planes. The ENSA (‘‘Sup Aéro’’) moved from Paris to Toulouse in 1968, in fact
joining another pre-existing school devoted to more technological matters. This
whole group of institutions constitutes the strongest pole in aeronautical and space
teaching and research in France.

Montpellier is a nice city in the Languedoc-Roussillon region, very close to the
Mediterranean sea and also close to the North east of Spain with which it shares
the Occitan-Catalan spirit. This city had one of the first French universities in the
Middle Ages. Its medical school, the first of its type in the world, was founded in
1220. It was for a long time the best medical school forming the first French
masters of this science in the Renaissance period. In the author’s opinion,
Montpellier has only one defect: it is too windy. The Faculty of sciences was
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re-opened in 1810 after its closure for about 20 years. But with the centralization
typical of France, it was difficult for Montpellier to remain at the level of Paris.
However, continuum mechanics and the relevant mathematics burgeoned there in
the 1960s–1980s thanks to the action of some individuals; among them Jean-
Jacques Moreau and Olivier Maisonneuve. The university is now called the
Université des Sciences et Techniques, alias Montpellier-2.

Moreau, a gifted mathematician formed at the ENS and the University of Paris,
first worked on theoretical fluid mechanics. But much more than that, he became—
with Rockafellar—one of the most productive contributors to convex analysis.
Moreau conducted a seminar in this field during many years in Montpellier, also
with a landmark series of lectures at Collège de France in Paris (Moreau 1966).
This proved to provide a breakthrough in continuum mechanics. As a matter of
fact, this provided the looked for mathematical formalism to treat mathematical
problems involving unilateral constraints, friction, and plastic behaviour (see
Moreau 1971). Among the successful applicants of this formalism in continuum
mechanics, we must single out Bernard Halphen and Nguyen QS (already cited as
disciples of Mandel at Polytechnique) in their thermo-mechanical theory of so-
called ‘‘generalized standard materials’’ (simultaneous existence of a potential
energy and of a pseudo-potential of dissipation subjected to convexity conditions),
Michel Frémond at the Ponts and Chaussées, Bernard Nayroles, first in Poitiers
and then in Marseille, Suquet, successively in Paris, Montpellier and Marseille,
Michel Jean in Marseille, and André Chrysochos (thermo-mechanics) in Mont-
pellier. The enormous success of his work on convex analysis should have justified
the election of Moreau at the Paris Academy of Sciences. Moreau and his close
colleagues went on to apply these concepts in numerical applications resulting in
spectacular simulations of the fall of structures and the flow of granular materials
affected by frictional forces.

Olivier Maisonneuve, himself a noted specialist of the mathematics of struc-
tures formed in Poitiers, was instrumental in building a successful research unit at
the university, which combined both mathematicians (including Moreau) and more
engineering oriented researchers.

Finally, we mention the case of Poitiers. This city, beautiful with its Roman-
Gothic monuments, situated in the central west part of France, is historically rich.
There exists in Poitiers an engineering school of mechanics and aeronautics
(E.N.S.M.A = Ecole Nationale Supérieure de Mécanique et d’Aéronautique),
created in 1948 as the Institut de Mécanique et d’Aérotechnique de Poitiers. Paul
Germain had taught there in the early 1950s. In the 1960s–1980s two individuals
gave a special impulse to researches in mechanics; they are Thierry Alziary de
Roquefort who worked in supersonic flows and mixing layers, and Alexis Lagarde
who devised beautiful experimental optical techniques such as in photo-elasticity.
The school has developed extensive researches in aerodynamics, aerothermics,
detonics and the mechanics and physics of materials. Somewhat outside these
main lines, we also note the works of Claude Vallée and co-workers mostly on the
application of differential geometry to large deformations of solids and specific
structures (shells).

7.5 Other Places: Marseille, Lille, Toulouse, Montpellier, Poitiers 111



7.6 Concluding Remarks

Not all teaching and research centres of interest have been scanned in the fore-
going sections. In particular, we have left out the so-called ‘‘Ecoles Centrales’’, of
which the Paris one (ECP) is the oldest and most celebrated one. It provided many
of the famous railroad engineers in the 19th and 20th centuries as well as a large
number of industry managers. Its sister school in Lyon—the ECL—developed
extensive researches in both fluid and solid mechanics. François Sidoroff, a former
student of Germain in Paris, taught there a beautiful course on continuum
mechanics while pursing his nice work on the thermo-mechanical modelling of
anelastic and damaged materials. Both ECP and ECL were, and are, very active in
the developments of numerical approaches in solid and soil mechanics. The
Technological University at Compiègne (UTC), north of Paris, was created as an
imitation of American institutes of technology. The research emphasis was placed
on numerical computations of structures, acoustics, and some parts of bio-
mechanics.

The Institut National des Sciences Appliquées (INSA) in a suburb of Lyon was
also created to provide a more democratic type of recruitment than the standard
‘‘grandes écoles’’ (i.e. direct entrance upon perusing the student’s record from the
high school and thus avoiding—or incorporating—these special two or three years
of preparation that are followed by incredible entrance competition exams for the
admission to traditional ‘‘grandes écoles’’). Although considered with some scorn
by the more traditionally formed engineers, this proved to be an excellent idea.
Soon some very good research was done there especially in the physics and
mechanics of materials. One of its alumni, Marcel Berveiller, developed under the
supervision of André Zaoui at the Paris-North University the Kröner technique for
evaluating the effective properties of elasto-plastic polycrystals (Berveiller and
Zaoui 1978). Berveiller contributed then to the creation of a true school of physics
and mechanics at the University of Metz. Other INSAs have been opened in other
parts of France, especially in Rouen. In Nantes, on the Atlantic coast, an Ecole
Supérieure de Mécanique was transformed in the ECN. A somewhat similar school
dealing also with electricity had been established in Nancy, in Loraine. In that
school, thermal sciences, theoretical fluid mechanics—including Non-Newtonian
fluids—and some modern thermo-mechanics were the main objects of research
(e.g. recently by Jean-François Ganghoffer (cf. Ganghoffer 2003) and Christian
Cunat), sometimes with active contribution of former students from the Paris
school (e.g. Hélène Lanchon-Ducauquis).

Besançon, in the heart of the watch and clock industry (this is close to Swit-
zerland) opened a school specialized in forming technicians for this industry in
1902. This was transformed into the Institute for chronometry and micro-
mechanics in 1928. With the technical evolution of the 1960s–1980s, this institute
became the Ecole Nationale Supérieure de Mécanique et Micro-mécanique
(ENSMM), incorporating much robotics and mechanics of materials (e.g. with

112 7 The French Masters



Christian Lexcellent, a specialist of the modern thermo-mechanical modelling of
shape-memory alloys).

The above described landscape of continuum mechanics in France in the 20th
century and more particularly in its second half, bears the print of remarkable
individuals, above all Joseph Pérès, Paul Germain and Jean Mandel. They suc-
ceeded to influence both subjects of study and institutions of research in the field,
in both universities and ‘‘grandes écoles’’, to the point of re-placing France at the
international level of competition that had somewhat disappeared in the interval
between the two world wars. In the general theme of study, we witness an evo-
lution from the traditional ‘‘rational mechanics’’ to a more physical view, some-
times yielding a true mechanics of materials. From the standpoint of basic teaching
it seems that the general approach coupling intimately continuum mechanics and
thermodynamics has been definitely adopted. For instance, the thermodynamics
with internal variables of state has been integrated in most modelling all over the
country.

7.7 Remark on Isolated Cases

This chapter would not be complete without the mention of two isolated cases of
interest. One is the solitary work in elasticity by the Cosserat brothers at the end of
the 19th century and in the first years of the 20th century (Cosserat and Cosserat
1909). As we know, this led to the publication by these authors of their (now)
celebrated book on the theory of deformable bodies (1909). This originally
received few echoes. It seems that only Joachim Sudria (1875–1950) published
along the same line in Sudria (1926, 1935) (variational formulation of non-linear
elasticity including couple stresses and consideration of a so-called Euclidean
invariance, probably the first application of group theory to continuum mechanics).

Another isolated case is the publication by Brillouin (1889–1969)—a physicist
formed at the ENS and of the Nobel-prize calibre (quantum theory of solids,
Brillouin scattering, Brillouin zones, WKB method, Brillouin-Wigner formula,
notion of neg-entropy, etc.) who later taught at Columbia and Harvard and became
a specialist of information theory at IBM in the USA—of a remarkable book on
the exploitation of Tensors in Mechanics and Elasticity (original French edition in
Paris, Brillouin 1938; Dover 1946; English translation, Academic Press, New
York, 1963). This was the first book of its kind in France and in the world with the
exception of books on general relativity that necessarily involved tensors. It was
supposed to be the first volume of a two-volume introductory course to theoretical
physics, but the advent of WWII interrupted this project. We remind the reader
that it is Woldemar Voigt (Germany, 1850–1919) who had identified tensors as the
appropriate mathematical notion in his studies of the physics of crystals. Brill-
ouin’s book includes his own results in wave mechanics, radiation stresses, and the
quantum theory of the solid state. This makes it one of the most original books in
its class.
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Chapter 8
The Polish Strength

Abstract Poland is a country that suffered much from it various neighbors for
almost 200 years. Having finally reached a certain stability after World War II, but
under the acute and ‘‘benevolent’’ control of its big eastern brother, the Polish
mechanics community succeeded in developing a remarkable research activity. Such
activity justifies this independent chapter, all the more that the author knows well the
country, having started his friendly visits there in the 1970s. No doubt that this
development, out of proportion with the size of the country, is due to the excellence
and hard work of a selected group of engineers, physicists, and applied mathema-
ticians, among them W. Olszak, W. Nowacki, S. Kaliski, A. Sawszuk, and H. Zorski,
and their disciples. These people rebuilt Polish mechanics on a ground that was
solidly established early in the Twentieth century (by scientists such as Huber,
Zaremba, Natanson, Zorawski, and Banach) as recalled at the beginning of the
chapter. As exposed next, the main subject matters entertained in the second half of
the Twentieth century have been plasticity, thermoelasticity, coupled fields
(electroelasticity), wave dynamics, and generalized continuum mechanics in its
different avatars. This undoubtedly received world applause. The positive role
played by the Polish Academy of Sciences with its research centres is emphasized.

8.1 Historical Remark

It is not possible to grasp and appreciate the 20th century developments of Polish
continuum mechanics without a clarifying brief historical survey of Poland in the
19th and 20th centuries.

Of course the great, almost mythical, scientific figure of Poland is Nicolaus
Copernicus (Mikołaj Kopernik 1473–1543). The second figure is the internation-
ally known Marie Curie (née Maria Skłodowska). Although Polish, Copernicus
was a Renaissance man, a quadrilingual polyglot, who belongs to the international
world of education as he received a large part of his formation in Italy and the
region where he lived was strongly influenced by the Germanic Lutheran world.

G. A. Maugin, Continuum Mechanics Through the Twentieth Century,
Solid Mechanics and Its Applications 196, DOI: 10.1007/978-94-007-6353-1_8,
� Springer Science+Business Media Dordrecht 2013
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Marie Curie was scientifically educated in France and spent her whole career in
Paris, being French by marriage with Pierre Curie, himself a remarkable physicist
(symmetry, piezoelectricity, Curie temperature, etc.) and probably a deeper thinker
than his wife. But Marie Curie in some sense epitomizes the typical Polish scientist
at the end of the 19th century because she had to emigrate from her native country
then under Russian rule where she could not receive any university education. This
characterizes one of the historical points that we want to stress.

Indeed, after the Vienna congress of 1815 that restructured a large part of post-
Napoleonic Europe, the Grand Duchy of Warsaw was split and its various pieces
were redistributed. One part fell under Prussian rule (the Poznan area), one part
including Warsaw—was attributed to the Russian Empire, and the ‘‘Galicia’’
region (Krakow and Lwow—now called Lviv in Ukraine) rapidly became part of
the multi-national Austro-Hungarian Empire. Higher and technical educations fell
under the direction of various more or less generous systems. For instance, a
‘‘School of Civil Engineering, Ways and Bridges’’ copying the French Ecole des
Ponts & Chaussées (see Chap. 10) was opened in 1823 in Warsaw. But this was
closed by the Russian authorities after the 1830–1831 insurrection. A Warsaw
polytechnic school was re-opened only in 1901 with Russian language of
instruction. Many Polish engineers were therefore educated in Russia, essentially
at the St Petersburg University and the St Petersburg Institute for Engineers of
Ways and Communications (another imitation of the French Ponts & Chaussées
school). In Galicia, a polytechnic school was created in Lwow while an Academy
of Arts and Sciences opened in Krakow (1871–1919). Both admitted Polish
scientists independently of their citizenship. But as mentioned above, many of the
Polish engineers were educated in Russia. Also, in the period 1825–1875, many
Polish engineers were educated in France, especially at the Ecole Polytechnique
and the Ecole des Ponts & Chaussées. Many diplomed engineers emigrated from
Poland to join a variety of countries in Europe, North and South Americas, and
even to Turkey and Australia. This explains the practice of many foreign lan-
guages by Polish scientists, notably German and/or Russian, and also French as a
more literary and elite tradition in Slavic countries.

While Poland regained its independence in 1919 it was to suffer its more drastic
period during WWII when it lost three quarters of its intellectuals and people with
academic diploma. The blow was terrible so that practically everything had to be
started again from scratch in 1945–1946. The communist regime that shortly
followed re-organized science and technological research along its own lines
(see below) with a strong print of Soviet influence.

8.2 Polish Mechanicians in the Early 20th Century

The early 20th century in continuum mechanics in Poland is marked by a few
scientists and engineers who had most of their career in occupied Poland (until
1919). Among them we must single out Marian Smoluchowski (1872–1917), not
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strictly an engineer—he contributed much to the theory of Brownian motion in
friendly competition with A. Einstein. A professor first at the University of Lwow
in theoretical physics and then in Krakow in experimental physics, he published in
French, German and Polish. In addition to his physics specialty, he was also
interested in various problems of mechanics, including temperature-dependent
elasticity moduli, and problems dealing with aerodynamics and viscous fluids.
Other known contributors to continuum mechanics in the first half of the 20th
century were, among others, Władysław Natanson (1864–1937), Stanisław Zar-
emba (1863–1942), Kaziemierz Zorawski (1866–1953), Maksymilian Huber
(1872–1950), and Stefan Banach (1895–1945). Natanson, much praised by C.A.
Truesdell, had a marked interest in problems of irreversible thermodynamics and
the hydrodynamics of viscous fluids, before he turned to less mundane physical
subjects. Zaramba who studied in St Petersburg, Paris and Berlin, taught in Kra-
kow. He is famous among our community for the introduction of the now called
Zaramba-Jaumann derivative or co-rotational derivative. This provides a so-called
objective time derivative (invariant by time-dependent rotation of a rigid frame).
This object allows one to formulate in the best manner a truly invariant theory of
elasto-plasticity in finite strains, as also complex theories of electro-magneto-
deformable media (cf. works by G.A. Maugin). He was also interested in the
theory of invariants and variational inequalities (he influenced Arthur Korn along
this line), both to become later of great importance in continuum mechanics.
Zorawski’s name is attached in fluid mechanics to theorems dealing with rotation
and flux conservation. By some coincidence, Maria Skłodowska—the future
Madame Curie—was employed as a home teacher in Zorawski’s home before her
departure to Paris.

M. T. Huber deserves a special notice because of the importance of his work for
plasticity. Especially gifted as a young student at the Imperial-Royal Polytechnic
in Lwow, he published his first paper when he was only 18 years old. His initial
works dealt with the contact problem, already approached but not entirely solved
by Hertz. His most well known paper, however, was a paper in Polish published in
four parts in 1903 and entitled (English translation) ‘‘Specific strain work as a
measure of material effort—A contribution to the foundations of the strength
theory’’. This paper was translated into English only in 2004 [Arch. Mech. (PL),
56/3, 173–190.] It in fact introduces the strain energy of distortion as a criterion for
measuring the yield of elasto-plastic materials as proved later on by Hencky
(1924). Richard von Mises obtained a similar criterion in 1913. Often this criterion
is unjustly referred to only as Mises’ criterion. This was a nice step forward in that
the new criterion replaced the Tresca-Saint–Venant criterion of 1871–1872 that
can only be represented by a set of inequalities. Indeed, in the appropriate stress
space, the section of an hexagonal prism is replaced by a circumscribed circle,
providing a mathematical facility of treatment of elasto-plastic problems. The two
Tresca-Saint–Venant and Huber-Mises criteria give equal resistance to simple
traction and to simple compression, but different resistances in pure shear. In the
case of metals, the experimental results are contained between these two criteria,
although they are generally closer to the Huber-Mises criterion as shown by
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well-known experiments conducted by G. I. Taylor and H. Quinney in 1931 (see
Chap. 1 in Maugin’s book on plasticity and fracture, 1992). M. Huber corre-
sponded with S. P. Timoshenko and B.G. Galerkin. Back in Poland after being a
prisoner in Russia during WWI he returned to his alma mater in Lwow where he
became the rector of the Polytechnic school. In 1928 he joined the Warsaw
Polytechnic. He devoted some of his work to the study of plates, in particular
anisotropic ones. He had also many other scientific interests as for instance
translating into Polish Einstein’s book on special and general relativity, and Marie
Curie’s book on radioactivity. But his name for ever remains attached to elasto-
plasticity where he had excellent disciples, including Wacław Olszak who was to
play a fundamental role in Polish mechanics after WWII.

In this group of strong personalities we must also include the famous mathe-
matician Stefan Banach who, in addition to devoting his research mostly to the
foundations of functional analysis and introducing the notion of spaces that bear
his name, taught theoretical mechanics, writing an influential and marvellous book
on mechanics that was translated both in English and in French in Warsaw in the
early 1950s.

Personal touch: The author took his foreign-language requirement—German and French—
for the Ph.D. at Princeton with Marian Smoluchowski’s son, Roman (born in Zakopane in
1910—died in Texas, 1996), then a professor of solid-state physics at Princeton.
R. Smoluchowski was known among students for his kindness and generosity in passing
them at the language tests—he himself wrote in at least five different languages.

8.3 Reconstruction of Polish Mechanics After WWII

It seems that three individuals have been most active in the revival of Polish
continuum mechanics after WWII. These are Wacław Olszak (1902–1980), Witold
Nowacki (1911–1986), and Sylwester Kaliski (1925–1978).

Wacław Olszak was born in Silesia then part of the Austro-Hungarian Empire.
He studied civil engineering at the Technische Hochschule in Vienna (1920–1925)
and then in Paris at the Faculty of Mathematics (1925–1927). He also attended
violin classes at the Vienna conservatory where he became a good performer. He
wrote one doctoral thesis in Civil Engineering in Vienna (1933) and another one
with M. Huber at the Polytechnic in Warsaw in 1934. He was at the time interested
in mathematical problems in elasticity. Engaged in forced labour by the German,
he spent WWII as a worker and driver. He returned to Poland in 1946 to join the
Krakow Polytechnic. He became interested in the mechanics of pre-stressed
concrete structures. He accepted the chair of the Strength of Materials at the
Warsaw Polytechnic in 1952. The following year he participated actively in the
creation of the celebrated Institute of Fundamental Technological Problems
(abridged to I.P.P.T in Polish) of the Polish Academy of Sciences, where he was in
charge of the Department of Continuum Mechanics. He became its general
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director in 1964 until 1969. He was really quite open-minded concerning the
various developing trends in continuum mechanics. But he himself concentrated
on the theory of plasticity (cf. Olszak and Sawczuk 1967). Under his leadership the
I.P.P.T became a world renowned centre for this speciality. Among his many
disciples were Antoni Sawczuk (1927–1984, cf. Sawczuk ed. 1973) , Zenon Mroz
(cf. Mroz 1963, 1967), Wojciech K. Nowacki (1938–2009), and Piotr Perzyna. The
first of these scientists established a strong co-operative link with French research
centres in plasticity (in particular Grenoble, see Sect. 7.4) while W.K. Nowacki
did the same with the Ecole Polytechnique in Paris, specializing in finite strains in
elasto-plasticity and wave-front propagation (cf. W.K. Nowacki 1978). P. Perzyna
developed an original theory of visco-plasticity (cf. Perzyna 1966), incorporating
the latest developments in thermo-mechanics by American scientists (Coleman,
Noll, Truesdell, Gurtin). This was a very original move at the time in countries east
of the Iron Curtain. These scientists themselves had students who continued along
the same line, constantly enriching the field at an international level. Professor
Olszak was also very active at the European and international scales, becoming the
resident Rector of the newly created International Centre for Mechanical Sciences
(C.I.S.M in its abridged original French form) in Udine, Italy in 1969. He was also
instrumental in creating the Polish journal Archives of Mechanics. A polyglot like
many of his Polish peers educated before WWII, Olszak published not only in
Polish but also in German, French, English and Hungarian. He also spoke other
Roman languages.

Personal touch: Basing on the author’s experience W. Olszak was a very kind and soft
speaking person.

Witold Nowacki was born in the north east of Poland (then under Prussian rule).
First trained as a civil engineer this led him to participate in the construction of both
secular and religious buildings. He was first Professor at the Gdansk University of
Technology. Captured by the Germans and kept as a prisoner of war in Woldenberg
in a camp for officers, he had plenty of forced free time to ponder the possible re-
organization of science in future Poland in post-WWII. On his appointment at the
Warsaw Polytechnic in 1952 after gaining his doctoral degree in 1945, he became
involved in the re-organization of the Polish Academy of Sciences (for short in
Polish: P.A.N) of which he finally became president in 1978. W. Nowacki was a shy
and somewhat reserved person. Nonetheless, he was a strong and powerful organizer.
Together with M. Huber, W. Olszak and W. Wierzbicki he created the ‘‘Archives de
Mécanique Appliquée’’ (Archiwum Mechaniki Stosowanej) in 1949. This was to
become Archives of Mechanics. He supervised the publication of the ‘‘Bulletin de
l’Académie Polonaise des Sciences’’ (Technical sciences). As already mentioned he
was also active in the development of the Polish Academy of Sciences and the growth
of the I.P.P.T. Among his scientific interests that spanned all fields of applied
mathematics and tremendous developments, we find the analytical study of gen-
eralized continuum mechanics (especially Cosserat continua; cf. Nowacki 1986b)
and of multi-field problems (thermo-elasticity and magneto-electro-elasticity;
cf. Nowacki 1986b), encouraging the study of dynamical problems. He was
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internationally applauded and received many honours all over the world, in particular
in France, the UK and the USSR. He was among the founders of the CISM in Udine.
His disciples and co-workers in Poland and outside are too numerous to be cited. As a
final note, we emphasize that he served as a protector of many Polish scientific
‘‘rebels’’ against the political system at work during his Warsaw years.

Personal touch: The author took a course (in German) on polar elasticity with W. Nowacki
in Udine, Italy, in the summer of 1970. That is when he established a close and enduring
contact with Polish mechanics, to the point of being elected to the Polish Academy of
Sciences in 1994. Witold Nowacki somewhat belonged to a vanishing class of scientists;
he told the author in 1975 that someone does not comprehend a field in its subtleties and
totality until he has written a book on it; I tried to follow his advice.

Sylwester Kaliski is a totally different kind of personality. Most of his scientific
career is connected with the Military Technical Academy in Warsaw (in Polish
WAT = Wojskowej Akademi Technicznej). Initially formed at the Gdansk Poly-
technic (1951), he obtained his doctoral degree at WAT, where he finally reached
the rank of general and which he directed from 1967 to 1974. He did many works
in coupled field theory (thermo-elasticity, magneto-elasticity), often trying to
combine theoretical physics and continuum mechanics. A smart and gifted sci-
entist he was not an easy person and was quite ambitious, to the point of dreaming
of becoming the Polish ‘‘Edward Teller’’, with projects on the ‘‘Polish bomb’’ and
thermo-nuclear fusion where he claimed to have reached tremendous temperature
levels with a laser apparatus. He died untimely in a car accident. The years at WAT
in the early fifties were spent under the supervision of Russian army people. This
may have been rather unpleasant to Polish scientists reputed for their nationalistic
feelings. Still many young people found a job there where they acquired their basic
formation simultaneously in mathematical physics and continuum mechanics. This
should have been a copy of the French Ecole Polytechnique (still under the
directorship of a general at the time of writing) with the aim of forming military
engineers of high level. C. Z. Rymarz—who became a colonel—was one of them.
Henryk Zorski (1927–2003) was also among these young people who later joined
the I.P.P.T and often built a bridge between mathematical physics, solid state
physics, and continuum mechanics. In turn he influenced younger people such as
Dominik Rogula (1965), Kazimierz Sobczyk, J. Kapelewski, J. Petykiewicz and
others. Newly expanded fields of mechanics were the interaction of crystal defects
(dislocations and disclinations), the truly nonlocal theory of continua, and many
problems of coupled fields and both surface and bulk waves. In 1991 WAT became
the Institute of Technical Physics situated on the well named ‘‘Kaliski’’ street.

Along a different line, Krzysztof Wilmanski (1940–2012) is more difficult to
categorize because of his great mobility. He was basically educated in his native
city of Łodź (M.Sc. 1962, Ph.D. 1965), but he obtained his habilitation at the IPPT
in Warsaw in 1970. He left Poland for Germany in the early 1980s although he was
officially affiliated with the IPPT between 1966 and 1986. He was a close friend of
Henryk Zorski (see Wilmanski 2004). He had also made a short stay at Johns
Hopkins and taught in Baghdad (Irak) on an educational co-operative programme.
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In Germany, he was successively in Berlin, Paderborn, Hamburg-Harburg, TU
Berlin, Univ. Essen and at the Weierstrass Institute for applied mathematics and
statistics (1996–2005) in Berlin before joining the University of Zielona-Gora—
close to the German border—back in Poland (2005–2010). A polyglot who pub-
lished very early (as soon as 1962), Wilmanski demonstrated a strong attraction
towards axiomatics and abstraction in his first works (e.g., his first lengthy work—
his habilitation—on phenomenological thermodynamics, 1974). He may be con-
sidered a disciple of the Truesdellian school, but also an advocate of Ingo Müller’s
views. He in fact co-operated with Müller in the mixed continuum–statistical-
mechanical approach to pseudo-elastic bodies (i.e., elastic bodies presenting small
hysteresis loops, very much like the electric response of ferroelectrics because of a
non-convex potential). His other multiple scientific interests include the theory of
mixtures, phase transformations, non-Newtonian fluids, acoustic waves, and
crystal plasticity. But above all he developed a keen interest for the thermome-
chanical description (finite strains, thermal effects, wave properties; cf. Wilmanski
1996) of porous media when he was in Reint de Boer’s group in Essen. This
interest has remained active and productive at the Weierstrass Institute and on,
with fruitful contacts established in the community of geophysical sciences,
especially in Italy. He also contributed general texts on continuum thermo-
mechanics (Wilmanski 1998, 2008). Probably because of his extreme mobility, he
supervised very few Ph.D. theses, among these few, those of Marek Elzanowski
(who became a professor in Portland, USA) at the IPPT and of Bettina Albers in
Berlin.

Also, we cannot forget Jozef Joachim Telega (1943–2005)—a dear friend of the
author—initially formed in Gliwice (Silesia) who was at the I.P.P.T from 1977 to
his death. There he developed single-handedly an activity in applied functional
analysis with a specific interest in variational methods and homogenisation tech-
niques very much along the French line (he had spent some time in Paris). In his
last years, strongly impeded by a degenerative illness of the bones, he developed a
personal interest in orthopaedic biomechanics exercising in parallel a very intense
editorial activity to the benefit of both Polish and international communities.

This vast landscape description would not be complete without mentioning
some of the Polish applied mathematicians and mechanicians who left early
enough and created research centres elsewhere. Here we must first name Olgierd
C. Zienkiewicz (1921–2009)—one of the creators of the finite-element method
(see the world renowned book by Zienkiewicz 1971)—who left Poland at the
beginning of WWII, and developed a whole school of computational mechanics in
the UK after completing his university education in England. Also, Richard B.
Hetnarski (born 1928), educated in Gdansk and Warsaw, carried to the USA the
spirit of Polish thermo-elasticity in 1969, first at Cornell, and next at the Institute
of Technology in Rochester, NY, that he joined in 1992. He founded (1978) in
the USA the Journal of Thermal Stresses, and later on a successful series of
international conferences known under the title ‘‘Thermal stresses’’. He is the
author of a well known monograph (Hetnarski 1986) and the general editor of the
formidable Encyclopedia of Thermal Stresses (Springer, 2013).
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In all, the strong impulse given by a series of remarkable individuals after
WWII led the Polish school of mechanics to the forefront of this field in the world,
it is true, somewhat out of proportion with the size and population of the country.
This is all the more an incredible achievement that we place at the same level as
the reconstruction of the old city in Warsaw after WWII.

8.4 Further Reading

On the history of mechanics in Poland in the period 1950-1990, see Germain
(1981); Nowacki (1985); Maugin (1988); Olesiak (2004); Biographical notices
(1981). Note that the feverish research activity in Warsaw in continuum mechanics
fostered the publication of many research monographs (originally in Polish but
often with a foreign publication agreement in Western Europe) by the Polish
Scientific Publisher PWN. This is illustrated by, among others, the monographs by
Kleiber (1989), König (1987), Nowacki (1975, 1983, 1986a), Nowacki WK
(1978), Sobczyk (1985), Wilmanski (1974), and Zorski (ed 1979, 1992).
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Chapter 9
German Revival in Continuum Mechanics
After WWII

Abstract Contrary to France, Germany is not a centralized country, having lastly
taken a federal form but having in the past been made of a variety of smaller states.
A consequence of this mosaiclike structure is the multiplicity of scientific and
engineering strongholds in friendly competition. This, together with the traditional
strength of the German mechanical industry and the success of German scientific
giants in the Nineteenth century, explains the status of continuum mechanics in
Germany in the second half of the Twentieth century when a revival was necessary
after World War II. Before WWII, the strength of the German mechanical com-
munity had materialized in a well-organized scientific society (GAMM) and journal
(ZAMM) and influential textbooks (Föppl, Hamel). After WWII, the network of
celebrated Technical universities was successfully revived and extended, while the
Journal known as Ingenieur Archiv won prominence. The chapter exposes the role
played by various centres (Munich, Bochum, Hannover, and also Berlin, Darmstadt,
Aachen, etc) with the corresponding strong personality of the local leaders. Rather
typical interests of German institutions are reported involving problems of plasticity,
generalized continuum mechanics, fracture mechanics, and more recently the
continuum thermodynamics of complex materials and computational mechanics.
A successful blend of modern continuum mechanics and numerical techniques
justified in a rigorous mathematical frame has thus emerged.

9.1 Pre-WWII Germany and Mechanics

Germany is the most populated country in Western Europe. Very well equipped
with a network of technical universities (e.g., in Aachen, Braunschweig, Darms-
tadt, Karlsruhe, Hannover, Berlin, Stuttgart, Munich) in the period following
WWI, the country was at the time the strongest industrial nation in Europe.
Mechanical sciences and more particularly continuum mechanics (then fluid and
solid mechanics, separately) strongly benefited from such a favourable

G. A. Maugin, Continuum Mechanics Through the Twentieth Century,
Solid Mechanics and Its Applications 196, DOI: 10.1007/978-94-007-6353-1_9,
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environment. Also, thanks to luminaries such as Richard von Mises and Ludwig
Prandtl, the country succeeded in organizing its scientific community in an effi-
cient framework. This is illustrated by the creation of the Gesellschaft für ange-
wandte Mathematik und Mechanik (GAMM) in 1921. The yearly meetings of this
society have been—and still are—instrumental in spreading a common spirit and
helping the share of new ideas. The good idea—unfortunately not followed in
France and the USA—was to combine both applied mathematics and mechanics in
the same society, to the benefit of both. In the same line of thought the same people
with a future-oriented vision had created a specialised scientific journal with title
‘‘Zeitschrift für angewandte Mathematik und Mechanik’’ (for short ZAMM).

Probably the most influential thinker on the foundations of mechanics in the
post WWI period was Georg Hamel (1887–1954) who proposed a rather sound
axiomatization of mechanics (cf. Hamel 1922) and formed generations of German
mechanicians through his textbooks (e.g., Hamel 1949). August Föppl’s (1897-
1900) books were also much influential. Like in other fields of knowledge, the
advent of the Third Reich was a catastrophe for continuum mechanics, as it led to
the emigration of many valuable scientists. However, some mixed theoretical and
applied sciences such as aerodynamics and combustion studies kept a strong
momentum due to military needs. They led to the successful design of both civilian
and military airplanes, including of the jet type (not to speak of rockets such as V1
and V2).

9.2 German Revival of Mechanics After WWII

A large number of official buildings, among them educational ones, were
destroyed in Germany at the end of WWII. But most technical schools were re-
opened. In the course of time some of them would change their name from
Technishe Hochshule to Technische Universität (e.g., Darmstadt) while others
would simply drop the ‘‘Technical’’ to become standard scientific universities
(e.g., Stuttgart). Others, still, kept the ‘‘technical’’ connotation in their name but
became multidisciplinary universities offering courses in both sciences and
humanities (e.g., TU Berlin). New universities with a technical vocation were also
created such as in Kaiserslautern and Bochum (Ruhr Universität). But the
strongholds in mechanics remained the older schools such as Aachen, Munich,
Hannover, Darmstadt, Berlin and Karlsruhe.

Of course the situation was different in the German Democratic Republic
(DDR; until the re-unification of the country in 1990) where technical schools
were in Rostock, Magdeburg, Karl-Marx-Stadt (now back to the old name
‘‘Chemnitz’’) where education was very much influenced by the Russian one and
several of their students had the opportunity to continue their graduate studies in
the Soviet Union. East Germany inherited the editorship of ZAMM, while in
Federal (West) Germany the Journal titled Ingenieur Archiv was the most popular
journal dealing with many applied engineering types of problems, e.g., dealing
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with the strength of materials and more generally the mechanics of structures. This
of course corresponded to the specific interest of German engineers for solutions of
these problems for which they had developed a remarkable professional knack.
This journal published essentially in German, but the journal became a more
international forum when it switched to English and changed its title to Archives of
Applied Mechanics (for short AAM) under the head-editorship of Prof. Horst
Lippmann in Munich (see below), and then Prof. Reinhold Kienzler in Bremen.

With time the emphasis of research in German continuum mechanics shifted,
like in other countries, towards more theoretical and formal subjects under the
influence of the American school (see Chap. 5), the introduction of thermo-
mechanics, the mechanics of materials, and numerical solutions and simulations,
all entangled with good applied mathematics. In particular, elasto-plasticity,
problems of symmetry, and generalized continuum mechanics (e.g., Cosserat
media; See Chap. 13) were given special attention. However, for some time, the
German tradition was kept of a compulsory previous industrial experience before
obtaining a chair of applied mechanics.

It is impossible here to screen all of the German achievements in continuum
mechanics during the second half of the 20th century. We shall be satisfied—and
we hope to satisfy the curiosity of readers—by perusing the career and works of a
few remarkable individuals who left a strong print by organizing local schools of
international level and forming a large number of disciples. They forcefully
contributed to a rebirth of German continuum mechanics.

9.3 Leaders and Organizers

9.3.1 Theodor Lehmann and Bochum

In 1962 faculties for Mechanical Engineering and Civil Engineering were estab-
lished at the new university known as the Ruhr-Universität Bochum. Professor
Theodor Johannes Lehmann (1920–1991) became the first holder of the chair for
Mechanics. The scientific formation and industrial experience of Th. Lehmann
were classical for the time period. He had been formed as an engineer in
Mechanical engineering just after WWII—where he practically spent 6 years in
the armed forces—at TH Hannover where he obtained his doctoral degree in 1949.
He had 4 years of industrial experience and returned to TH Hannover before
joining Bochum in 1969. There he exploited his talents—and his kindness—to
create a true centre of continuum mechanics dealing with all aspects of this sci-
ence, but more particularly elasto-plasticity, thermal effects, and fracture. He
formed and/or attracted such known scientists as Otto T. Bruhns—who succeeded
Lehmann at the Chair of Technical mechanics—, Prof. H. Stumpf, and Prof.
K. Chau Le (originally from Vietnam, but formed in Moscow in Leonid Sedov’s
group).
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9.3.2 Horst Lippmann, TU Munich and the AAM

Quite originally in the German engineering community of post WWII, Prof. Horst
Lippmann (1931–2008) received a university formation in abstract mathematics and
theoretical physics in East Germany with a doctoral degree in mathematics in 1955.
He joined the Institute of Mechanics in Hannover in 1957, having developed an
interest in mechanical engineering. Together with Oskar Mahrenholtz (see below)
he became much involved in so-called plasto-mechanics in which Germany had
been somewhat surpassed by other countries. The scope of his fruitful research then
became extremely large, covering engineering plasticity, the plasticity of granular
media, the plasto-mechanics of forming, and the study of rockbursts in particular in
underground mines. For these works he received many honours (prizes, medals,
honorary doctorates; memberships in scientific societies). His university career was
spent successively at TU Braunschweig, the University of Karlsruhe, and finally TU
Munich (1975–1996) where he also supervised the State Office of Material Testing
for Mechanical Engineering. He was very active in teaching. It is said that more than
10,000 students completed his basic courses in mechanics. He mentored about 50
doctoral students. He did not loose interest in mathematics as is witnessed by his
book on the application of tensors published in 1992.

Prof. Lippman, a good natured and ever active person, contributed to both
German and European organization in mechanics as he was very instrumental in
the programme of the International Centre of Mechanical Sciences (CISM) in
Udine, Italy, as well as being associated for almost 50 years with the Mathe-
matischen Forschungsintitut in Oberwolfach (Black Forest) where he co-organized
periodical sessions on the mechanics of materials. Finally, as a chief-editor of the
Archives in Applied Mechanics, he re-oriented that journal to the international
community and to more theoretical and mathematical subjects while keeping the
engineering spirit alive.

9.3.3 Erwin Stein and TU Hannover

The prevalent role played in mechanics by TU Hannover is already illustrated in
the two foregoing cases. This is even truer with the case of Prof. Erwin Stein (born
1931). E. Stein received a civil-engineering and mathematical education at TH
Darmstadt and then a doctoral degree dealing with the mechanics of structural
elements at the University of Stuttgart (1964) and Habilitation there in 1969. This
last diploma involved the recently (at the time) formulated Finite-Element Method
(for short FEM). Indeed, this was a rather recent discovery since the powerful
FEM formulation is attributed to a trio, Ray W. Clough (USA), Olgierd Zie-
nkiewicz (UK), and John Hadji Argyris (1913–2004) in the 1960s. The latter was
of Greek origin, studied first at the Technical University in Athens, and then TU
Munich, and concluded his formal engineering education at the Polytechnicum
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(ETH) of Zürich. He taught at the Imperial College in London before moving to
TU Stuttgart in 1959. We may assume that the virus of FEM was injected to Stein
by Argyris himself. Anyway, numerical computations became a favourite subject
for Stein for his whole professional career which he mostly spent at TU Hannover
(1971–1999) holding the Chair of Structural Mechanics and then of Computational
Mechanics.

A powerful thinker, hard worker, and a very well educated gentleman with
historical and philosophical interests (especially Leibniz, a ‘‘Hannover-ian’’),
Erwin Stein could develop in Hannover a true school of computational mechanics.
That school was to blossom all over Germany through his many doctoral students
(almost a hundred as first or second supervisor) and co-workers, to name a few: P.
Wriggers, C. Miehe, R. Mahnken, V. I. Levitas, P. Steinmann, F. J. Barthold, S.
Ohnimus, M. Rüter, E. Kuhl, and A. Mielke. With so many bright disciples the
spirit of Hannover computational mechanics was carried over to many of the
important German universities. The numerous works of Stein and co-workers
touch all aspects of the numerical approach to the mechanics of structures and
materials, including the influence of microstructure, the presence of cracks, phase
transformations, large plastic deformations, thermo-mechanics, shape-memory
effects, and all the technical aspects of the required variational formulations and
computations (adaptability, stability, etc.,). Rarely have we seen such an influence
in a whole country except perhaps with the more mathematically minded Jacques-
Louis Lions in France.

Among his students we must single out Paul Steinmann who became a pro-
fessor first in Kaiserslautern and then in Erlangen-Nürnberg, and who himself
formed many ‘‘grand-sons’’ of Stein, and Ellen Kuhl who successfully applied her
training to complex problems of biomechanics. She is now at the University of
Stanford, California. These two cases illustrate perfectly the reason for the success
of Stein’s school: an efficient combination of nonlinear continuum thermo-
mechanics and of an excellent knowledge of the most efficient computational
methods.

9.3.4 Oskar Mahrenholtz and Northern Germany

Oskar Mahrenholtz (born 1931) was first educated at the Ingenieurschule in
Hamburg. He then studied at the Max-Planck Institut in Göttingen and the TH
Hannover. This is where he co-operated with his fellow researcher Horst Lippman
on ‘‘plasto-mechanik’’ (cf. Lippmann and Mahrenholtz 1967). He also became
professor there and head of the Institute of Applied Mechanics before joining in
1982 the TU Hamburg-Harburg where he remained until he was named emeritus in
1996. Mahrenholtz, a highly educated gentleman, not only contributed to various
fields of applied and continuum mechanics, especially in connection with the
behaviour of large deformations of metals and polymers, and also with the natu-
rally associated field of ocean engineering (he was the director of the
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corresponding institute in Hamburg), but he proved to be a remarkable organizer
never loosing contact with industry. He brought his gained experience and
expertise to many scientific organizations whether in Germany (the powerful
German Research Foundation called DFG = Deutsche Forschungsgemeinschaft)
or at an international level—he was the representative for Germany in the NATO
Science Committee.

In concluding this section we note the remarkable fact that all four above
scientists spent some time of their studies or professional career in Hannover.
Furthermore, the last three were born the same year—1931—and with a com-
pulsory age of retirement at 65 or 68, they perfectly fit the second half of the 20th
century. We shall now consider younger contributors and smaller, but perhaps as
much important, research centres.

9.4 Other Schools and Centres of Research

9.4.1 Berlin

The non-German readers may wonder why Berlin was not cited before as an active
research centre. The reason may be found in the special political and geographical
location of this city during the period 1945–1990. First there was a hard work of
reconstruction of the city, and then the separation in two ‘‘Berlin’’ during the cold
war, resulting in a city locked within walls, and the split in universities between
West Berlin and East Berlin. The Humboldt University continued as the main
educational centre in East Berlin, while TU Berlin on the west side was com-
plemented by the newly created Free University. In so far as we know no sub-
stantial continuum mechanics was created or even studied either at the Humboldt
University or at the Free University. The burden fell on TU Berlin and the Federal
Institute for Testing Materials in Mechanics (so-call BAM).

At TU Berlin there was Istvan Szabò (1906–1980) who was an influential pro-
fessor of applied mechanics in the period 1948–1973. According to Walter Noll’s
recollection Szabò’s teaching was very classical in form and much focussed on the
strength of materials. However, Szabò had the immense merit to write in German a
celebrated History of the Principles of Mechanics (Szabò 1977). This became part of
the natural curriculum of all students in mechanics in Germany. This has no
equivalent for students in the English or the French languages, and this is much
wanted. However, TU Berlin became some kind of stronghold for the thermody-
namics of continua. This is due to the originality of the works by Ingo Müller (see
Chap. 5 for his creative works) in rational and extended thermodynamics (cf. Müller
1973; Müller and Ruggeri 1998), and the synthetic and critical work of Wolfgang
Muschik (a disciple of Walter Schottky—cf. Muschik 1990). But this was really
achieved outside any department of engineering sciences. Other teachers such as
Rudolph Trostel and Arnold Krawietz (1986), although not so much involved in
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theoretical research, were influential. In particular, they influenced Albrecht
Bertram—first at BAM in Berlin and then at Magdeburg after the re-unification of
Germany who presented an axiomatization of continuum mechanics with a strong
flavour of the Coleman-Noll vision—cf. Bertram (1989). Bertram also contributed
to the theory of finite deformations in plasticity. He was recently joined by Holm
Altenbach from Halle-Wittenberg, a specialist of shell theory who, originally from
East Germany, had obtained his PhD in Leningrad/St Petersburg.

9.4.2 Darmstadt

T.H Darmstadt, now called TU, has for a long time been one of the acknowledged
schools of mechanics. In recent times, two actors have played there an important role
for continuum mechanics. One is Dietmar Gross and the other is Kolumban Hutter.

Prof. Dietmar Gross is Austrian by birth but obtained his doctoral degree in
Rostock (then in the DDR) in 1968. He habilitated in Stuttgart. He joined TH
Darmstadt in 1976 to stay there until retirement. His main works concern the
theory of fracture (see his book on Bruchdynamik—revised edition by Gross and
Seelig 2001), configurational mechanics (see Chap. 14 below), and the mechanics
of materials at macro and micro scales. He is influential throughout Germany with
the collection of books he co-authored on Technische Mechanik. In research, he
formed a real school of successful students, among them Ralf Müller who suc-
ceeded Paul Steinmann on the chair at Kaiserslautern.

The other strong personality at TH/TU Darmstadt has been K. Hutter. Originally
from Switzerland, but with a PhD obtained at Cornell and a Habilitation presented in
Vienna, Hutter contributed to so many branches of continuum mechanics with a long
roster of remarkable research papers and also a large number of books (among these,
Hutter and Jöhn 2004). His large main field seems to be the thermo-mechanics of
continua in which we can feel a strong influence of Ingo Müller’s approach. They in
fact created together the journal entitled Continuum Mechanics and Thermody-
namics (for short CMT), now in the hands of other people. As a true Swiss, he
contributed much to the modern mechanics of ice and the flow of glaciers for which
he is the acknowledged best specialist, introducing there all good elements of non-
linear continuum mechanics and of thermodynamics.

9.4.3 Other Contributors and Places

To be complete, we should also cite other people who have been active on the
German stage of continuum mechanics. First we note Dieter Weichert—for
sometime at Karlsruhe and in France at Rouen—at TU Aachen with his main
scientific contributions in the field of the shakedown analysis of plastic structures.
Next, we have Reinhold Kienzler in Bremen who has been instrumental in
developing some aspects of fracture mechanics and configurational mechanics (see
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Chap. 14, also Kienzler 1993) in particular in co-operation with George Herrmann
in Stanford and in its applications to the strength of materials (cf. Kienzler and
Herrmann 2000). He plays an important role with the editorship of the Archives in
Applied Mechanics. We also have Wolfgang Bürger (born 1931) in Karlsruhe who
co-authored an influential book on continuum mechanics, and Peter Haupt (born
1938) who, in Kassel, creatively dealt with finite deformations, visco-elasticity and
visco-plasticity of elastomers. W. Bürger was popular in Germany because of his
appearance in a TV programme (Kopf um Kopf) popularizing science with illus-
tration by means of mechanical toys, and for its column in the Magazine Bild der
Wissenschaft. Finally, Prof Bob Svendsen, who presents the originality to be
American born, with an initial formation in geophysics (MS, PhD Caltech 1987), a
further training in glaciology at ETH Zürich, a stay at BAM in Berlin, and then a
University position in Dortmund, and finally went to RWTH Aachen on a new
chair of material mechanics. His contributions are essentially in the thermo-
mechanics of crystal plasticity, granular materials, and, like many others, the
transition between macro- and micro scales.

Somewhat on an apart status we cannot avoid mentioning the study of porous
continua. The main German contributor to this field in the spirit of continuum
mechanics was Reint de Boer (1935–2010). Also educated in engineering at TH
Hannover with H. Lippman, he obtained both his PhD and Habilitation there,
where he remained as a professor before joining the University of Essen in 1977.
He stayed in Essen until retirement, having in this period created a true school
involved in the thermo-mechanical modelling and the theory of porous media. He
was also much interested in the recent history of the subject matter (in particular as
concerns the contribution of Paul Fillunger as opposed to that of another pioneer,
Karl von Terzaghi, the Austrian civil engineer considered to be the father of the
modern theory of soil mechanics—see de Boer’s (2000) book on the subject). One
of his most successful students was Wolfgang Ehlers, also originally with a
diploma in civil engineering from TH Hannover in 1979, who became a Professor
of continuum mechanics at TU Darmstadt (1991–1995) before joining his actual
position at the University of Stuttgart. Ehlers has developed a general view of
continuum mechanics and the theory of porous media (cf. Ehlers 2010) with a
mixed interest in modelling, theory and numerical simulations, as also in other
fields such as biomechanics and the electro-chemical–mechanical couplings.

9.5 A Peculiarity: German Contributions to Generalized
Continuum Mechanics

It seems that Cosserat continua (see Chap. 13) attracted very early German sci-
entists in the 1950–1970s. First among them were W. Günther (1958), H. Neuber
(1964) and H. Schaeffer (1967). But this is also true of many of the already
mentioned scientists who all at a time—perhaps within a fashionable trend—
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contributed to this special case of generalized continuum mechanics. Simulta-
neously, but not always related to these developments, many advances were
reached in the field of structural defects, principally by Ekkehart Kröner (1958) in
Stuttgart with the introduction of deep geometrical concepts, his direct students or
co-workers, K.-H. Anthony and B.K. Datta, and recent followers such as Markus
Lazar now at TU Darmstadt. The nonlocal theory of continua was also introduced
by these authors (cf. Kröner and Datta 1966). This was more the work of theo-
retical physicists than that of mechanicians. Recent works on Cosserat media were
done in many places, including in Halle-Wittenberg, Saarbrücken, Bochum, Er-
langen, and Berlin as proved by the contributions to the celebration of the Cen-
tenary of the publication of the Cosserats’ book in 2009 (cf. Maugin and Metrikine
2010). The interaction with the theory of configurational forces was also cultivated
in many places including Darmstadt, Kaiserslautern and Erlangen.

9.6 Conclusion

According to the author’s somewhat external view, the German development of
continuum mechanics in the second half of the 20th century is marked by char-
acteristic traits: (1) a continuous interaction with industry, (2) the multiple influ-
ence of various technical universities (with a ‘‘plus’’ granted to Hannover in its
formative role), (3) the importance of plasticity studies but the fact that all sci-
entists finally joined the bandwagon of thermo-mechanics, (4) the fruitful role
played by the special programmes of the DFG, (5) the unity enforced by the
existence of the GAMM and its yearly meetings, the journals such as Ingenieur
Archiv (and then AAM), and the meetings in Olberwolfach, (6) a proliferation of
competitive books on basic continuum mechanics (cf. Altenbach and Altenbach
1994; Basar and Weichert 2000; Becker and Bürger 1975; Bertram 2005; Haupt
2002; Hutter and Jöhn 2004; Krawiertz 1986; Lehmann 1975-1994), and (7) the
perhaps immoderate attention paid to tensors written in components (see the books
by Betten (1987), de Boer (1982), and Lippmann 1993). This does not hinder the
obvious existence of networks of relations and lobbies, but maybe not at the scale
met in centralized countries like France. In a sense, the federal structure of the
country and the co-existence of many technical universities of equivalent level but
with a rewarding competition are assets from this standpoint.

Personal touch: The author has had many contacts with German continuum mechanics. He
visited most cited places, and delivered a large number of seminars, while having German
co-workers and associates, and contributing several times to the annual GAMM meeting. It
happens that he was selected as a member of the Wissenschaftskolleg (Institute for
Advanced Studies) in Berlin for the year 1991–1992, he holds an honorary Doctoral
degree in Natural Science from TU Darmstadt, and he was awarded a Max-Planck Prize
for research conferred jointly by the Max-Planck Society and the Humboldt Foundation in
2001.
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Chapter 10
European Miscellanei and Asia

Abstract This chapter mostly concerns European countries that do not receive a
separate focus in specific chapters. In spite of the tentative construction of a united
Europe, the offered presentation still reflects the print left by History in the
Nineteenth century and various zones of influence. Thus apart from the originality
of Switzerland, the following large regions are identified: the Benelux with a
prevailing role played by the Netherlands, Scandinavia considered as a historical
and cultural linguistic region with special strength in Sweden and Denmark, the
former Austro-Hungarian Empire, and southern European countries. A case at
point is that of the former Austro-Hungarian Empire because this well-organized
political structure - doomed to disappear with the two world conflicts - succeeded
in building a network of efficient polytechnic schools in its various ‘‘provinces’’.
Strong individual personalities could emerge including in former Yugoslavia and
Romania. The geometrical theory of dislocations in Serbia and a specific strength
in applied mathematics in Romania are witness of this trend. Italy, adorned by a
long section, continues to demonstrate its traditional strength in civil engineering
and the allied mathematical analysis. India and China receive but a cursory
treatment, while immense expectations are to materialize soon. In Japan, two
original characters are singled out, K. Kondo and T. Tokuoka. With time, most
countries perused have fit in an international view of continuum mechanics that
shares similar subjects of interests (e.g. complex mechanical behaviour, plasticity,
numerics, thermomechanics, and coupled fields).

10.1 A Word of Caution

As the United Kingdom, France, Poland, Germany and the former Soviet Union
receive a separate treatment, here we examine the rest of Europe and some isolated
cases from Asia. It must be understood that we are not expressing a judgment on
the technological level of the various countries. All countries involved have had
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and still have excellent technical universities and schools of engineering, preparing
well for industrial practice of mechanical and civil engineering. For instance,
many readers may be surprised to learn that both Czechoslovakia and Hungary had
excellent, productive and competitive mechanical and electro-mechanical indus-
tries both before and after WWII. Their engineers were formed in efficient tech-
nical universities, often inherited from the Austro-Hungarian Empire. Of course,
Greece did not benefit from such an heritage and its technical universities (Athens
and Thessaloniki) had to develop in a more difficult background. Norway and
Finland are in the same situation with a relatively recent political independence
(20th century) of these countries and a rather small industrial potential before
WWII. Many of the considered countries formed engineering scientists who, either
for economic or political reasons, had to emigrate to other places and could realize
a true professional career only outside their original country. This we mention
from time to time.

What we want to put in evidence here are the contributions to the evolution of
ideas in continuum mechanics. However, it will appear somewhat strange to the
reader that we selected groups of countries and a distribution that copies old
territorial divisions and political influences. We believe that these divisions have
left a definite print that the creation of new countries and the recent construct of a
united Europe have not fully erased.

10.2 Switzerland and its Originality

If we are not concerned with banking operations we may have a romantic view of
Switzerland with beautiful snowy mountains, Lake Leman, charming wooden cha-
lets, accurate clocks, and milk chocolate. It is hard to believe that once upon a time
life was not so easy in that country which provided many emigrants, in particular to
the USA. However, the development of railways, electricity production and distri-
bution, and the concomitant need for many works of civil engineering (dams,
bridges, viaducts, and tunnels) and electric traction caused a development of both
renowned civil engineering companies and electromotive industry. We are far from
the Bernoullis and Euler who had most of their Swiss career in Basel. We remember
that Lausanne, first, and then Zürich saw the creation of Federal Polytechnic
schools—respectively in French (1853, now called EPFL) and German (1855, now
called ETH) languages—by alumni from the Paris ‘‘Grande Ecoles’’, Ecole Poly-
technique and Ecole Centrale, in the nineteenth century.

The ETH has been instrumental in the expansion of good mechanical and civil
engineering although it also formed an elite of physicists, among them Albert
Einstein, and benefited from the teaching of high calibre scientists such as Her-
mann Minkowski and Wolfgang Pauli. The University of Geneva remained more
classical in its teaching and form with a long tradition in the humanities having
been founded by Jean Calvin in 1559. It is now particularly strong in medical
research.
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Hans Ziegler (1910–1985), educated at ETH and in Germany was a professor at
ETH from 1942 till his retirement in 1977. Originally producing works in structural
mechanics and dynamical stability (Ziegler 1968) (e.g., on gyroscopes), he acquired
a taste for plasticity studies after a visit to William Prager in Brown
(cf. Chap. 4). In that field he developed the relationship between plasticity and
irreversible thermo-dynamics, something that practically did not exist precisely
before him. In particular, he enunciated the principle of orthogonality—of gen-
eralized velocities with the bounding surface of the elasticity convex set—, and also
a nonlinear generalization of Onsager’s reciprocity relations. He published a
wonderful (our opinion) book on thermo-mechanics in 1977 (Ziegler 1977, 1986:
2nd edition published after his death). He was also the co-editor of an influential
journal: the ZAMP (Zeitschrift für angewandte Mathematik und Physik = Journal
of Applied Mathematics and Physics) founded in 1950. During his long stay at ETH
he formed many engineers. Kolumban Hutter (who left for a PhD at Cornell, USA)
and M. Sayir (who became a Professor at ETH) were among his students. William
Prager came several times to lecture at ETH (cf. Prager 1955, 1961). He advised
George Herrmann in his doctoral thesis, and his courses were published in German.

The Federal Polytechnic School (EPFL) in Lausanne may have been less
successful in mechanics than its German speaking counterpart but its has devel-
oped other aspects of the field including the basic formulation of continuum
mechanics and the related numerics (with Alain Curnier, a French engineer with an
American PhD), the micromechanics of concrete and cementitious composites,
and their homogenization (with Christian Huet, a French civil engineer who passed
away untimely in 2002), the biomechanics of tissues (with Lalaorina Rakatoma-
nana, now a Professor of Mathematics at the University of Rennes, France), and
various problems of applied mathematics related to mechanics (with Bernard
Dacorogna).

10.3 The Benelux: Belgium, the Netherlands, Luxemburg

‘‘Benelux’’ is an acronym formed by the first two or three letters of the three
countries: Belgium, Netherlands and Luxemburg. This was an economic com-
munity created in the 1950s. We have considered this entity as it seems to stand for
a transition between France on the one hand and Germany and the northern
Scandinavian countries of Europe (see below) on the other hand.

This transition is materialized by Belgium, officially a tri-lingual country (French,
Dutch and German are the official languages). Of course the three languages are not
talked everywhere, German being entertained in a very small part, French talked in
Wallonia (south and east) and the Capital Brussels, and Dutch (Flemish) being
practiced in the western and northern parts known as the Flanders, closest in spirit to
the Netherlands. Belgium was artificially created as a buffer state in the 19th century.
The economy of the southern part of the country was rich when coal mines and heavy
industry flourished in the 19th century and the first half the 20th century.
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Furthermore, Belgium benefited from his colonial occupation of (Belgian) Congo
until its independence, a country extremely rich in mineral resources. Now the
economic balance is more in favour of the Dutch-speaking part.

Luxemburg is squeezed between France, Belgium and Germany and is too
small a country to enjoy a developed university and engineering school system. In
so far as we know there exists only one research centre dealing with mechanics
and material sciences in Luxemburg, the recently opened Public Research Centre
Henri Tudor with a group devoted to the technology of materials and their
modelling and simulation in the spirit of the thermo-mechanics of materials.

The Netherlands—or Low Countries—, known for their religious tolerance,
benefit from an opening on the North Sea (Amsterdam, Rotterdam) and a huge
commercial traffic of imports to Europe via its harbours and the Rhine river. It also
benefited at some time from a rich colonial territory in Indonesia. It has a strong
tradition of philosophy (Erasmus, Spinoza) and learning, still materialized in its
many editorial and printing houses, among them the famous scientific Editor
Elsevier that goes back to the time of the Renaissance and the seventeenth century
(the Elzevires published Galileo Galilei).

Now concerning our interest in this book, noting that there exists a relationship
between the flourishing economy of a country and its developments in higher
education and research, we examine the cases of both Belgium and the
Netherlands.

10.3.1 Belgium

Because of the presence of industry and also some historical factors, the two main
centres in Belgium are (the French speaking) Liège and Louvain, the latter being
bi-lingual and also known as Leuven in Dutch.

The University of Liège (ULg) was created in 1817 under Dutch power. Its
school of Mines opened in 1838 in the recently created new state called the
Kingdom of Belgium. A peculiarity of the Science Faculty of this University is that
it delivers a diploma of ‘‘Engineer-Physicist’’ opening many possibilities of career
to its alumni. In recent years and with a continuum mechanics connotation, we
note the contributions of Baudoin Fraeijs de Veubeke (1917–1976), a pioneer in
numerical methods with applications to aeronautics, and Georgy Lebon (born
1937) who, in co-operation with Spanish physicists from Barcelona (cf. Casa-
Vasquez et al. 1984, 1996), expanded a neat and fruitful extended thermodynamics
of continua (with generalized laws of conduction, viscosity, etc.; see Chap. 5,
Lebon 1989). The book on the subject that he co-authored was a best seller. Lebon
had his whole student and academic career (until retirement in 2002) in Liège. He
had obtained his BSc in 1959 and his doctoral degree with a noted physicist, Léon
Rosenfeld, in 1966. He created at ULg a course on theoretical thermodynamics.

Louvain is something of an historical place with a catholic university created in
1425 (but closed by the French occupants in 1797). It is said that in the seventeenth
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century Louvain was one of the best places for making scientific instruments. The
catholic university was re-opened in the nineteenth century. But in 1968, a (stupid;
this is our opinion) split between the French-speaking and the Dutch-speaking
faculties took place. The French-speaking University was relocated in a newly
created city called ‘‘Louvain-la-Neuve’’. Fraeijs de Veubeke taught there. Fur-
thermore, the faculty of applied sciences became a highly estimated centre of
research in the flows of non-Newtonian fluids in the expert hands of Marcel
Crochet, a former PhD student of Paul Naghdi in Berkeley. A most successful
alumnus from Louvain was Maurice A. Biot (1905–1985) who obtained his
doctorate there in 1931. He is universally known for his dynamic theory of poro-
elasticity, and also for his breakthrough works in variational formulations and the
incremental approach to finite-strain theory. But he spent most of his professional
career in the USA, often in a non-academic context.

Note: Biot’s theory of poro-elasticity has been improved by many authors, more partic-
ularly Olivier Coussy in France (cf. Chap. 7)—also Sara Quiligotti and G.A. Maugin
(Paris)—, Reint de Boer and Wolfgang Ehlers in Germany (cf. Chap. 9), and Krzysztof
Wilmanski and Bettina Albers in Germany/Poland (cf. Chap. 8). Progress has been along
the consideration of finite strains and some anisotropy, thermal effects, introduction of the
notion of tortuosity, improvement of the equation of the porosity parameter, and
dynamical properties).

Brussels is also something special as a stronghold of French in the centre of a
Dutch-speaking region. A Free University (for short, ULB) was created there in
1834 by free-thinkers, having for object to carry the spirit of the enlightenment
independently of any religion. It was French speaking at the start. A polytechnic
faculty was opened in 1873 and became later on a Faculty of applied sciences.
Among its contributors to continua we mention Ilya Prigogine (1917–2003)—
world famous for his basic works in thermodynamics—who founded a real school
that attracted researchers from the world over. Also important was the contribution
of Baron André Jaumotte (1930–2009) to fluid/gas flows and computations in the
theory and applications to aeronautics and aerospace science. The Belgian title of
‘‘Baron’’ is equivalent to that of ‘‘Sir’’ in England and the ‘‘Legion of Honour’’ in
France. Midway between mechanics and applied mathematics, we also have works
dealing with the bases of the electrodynamics of continua by G. Mayné and
Philippe Boulanger (cf. Boulanger and Mayné 1974). The last author was also
active in nonlinear elasticity and wave propagation, mostly in co-operation with
the Irish mathematician Michael Hayes from Dublin (See Boulanger and Haynes
1993). Finally, we note that a separate Free University in the Dutch language was
opened in 1969–1970 under the name of Vrige Universitet Brussel, or VUB.

A‘‘Belgian’’ linguistic story: When you leave Berlin there are immediately signs indicating
the direction of Paris (Frankreich) although it is more than 600 miles away; it is true that
the Prussians are used to going to Paris from time to time in both 19th and 20th centuries.
But when you leave Brussels by the belt highway and look for an exit indicating Paris, this
you do in vain unless you know how Paris is written in Dutch; just the same if you look for
the directions of Lille (Riesel/Rijsel), Mons (Bergen) or Liège (Luik).
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10.3.2 The Netherlands

The Delft University of Technology was initially founded in 1842 as a Royal
Academy. With a rapid industrialization of the country it changed it name to a
‘‘Polytechnic school’’ in 1864, then to the ‘‘Institute of Technology’’ in 1905, and
acquired its present name in 1986. Early in the 20th century the most influential
teacher in mechanics there was C. B. Biezeno. He was teaching the theory of
elasticity and the strength of materials. He organized the first International Con-
gress of Mechanics in Delft in 1924 (cf. Biezeno and Burgers 1925). But from our
viewpoint his most successful actions were attracting J. M. Burgers to Delft and
mentoring W. T. Koiter.

Johannes M. Burgers (1895–1981) was educated as a theoretical physicist in
classical scientific universities (Amsterdam, Leyden) but joined TU Delft in 1918 to
stay there until 1955 when he accepted a position at the University of Maryland,
USA. In Delft Burgers developed a taste for mechanics, especially fluid mechanics.
His name remains attached to three fundamental results or concepts: the Burgers
equation in fluid mechanics, which provides the cornerstone for modern studies in
turbulence, the Burgers vector (Burgers 1939) as the fundamental entity in the
study of dislocations in crystalline solids, and the Burgers material in visco-elas-
ticity. We particularly appreciate the notion of Burgers vector—which he intro-
duced together with his brother W. Burgers, a crystallographer—without which no
further studies in the singularity and characterization of a dislocation line would
have existed in the present form.

Prof. Biezeno was also the supervisor of W. T. Koiter’s PhD thesis during
WWII. We all know the tremendous original and powerful vision brought by
Koiter in the theoretical study of the stability of structures (Koiter 1945, 1960). But
Koiter was also himself an efficient supervisor of students and with age became an
active member of international societies, in particular in the International Union of
Theoretical and Applied Mechanics (IUTAM). The Institute was recently renamed
after Koiter’s name.

Other influential researchers in continuum mechanics at TU Delft have been J.
F. Besseling and his younger co-worker Erik van der Giessen (cf. Besseling 1968;
Besseling and van der Giessen 1994). The former is known for his works on
various aspects of the micromechanics of inelastic/plastic materials including
thermodynamic considerations and accounting for the presence of dislocations.
Van der Giessen (born 1959) who obtained his PhD at Delft in 1987 was a
professor in Delft from 1992 to 2000. He moved to Groningen in 2001. He is much
interested in the so-called structure–property relationship for which he exploits
numerical means (see van der Giessen 1989). Finally, René de Borst (born 1955)
obtained his PhD at the Koiter Institute where he became a professor at the early
age of 31, having received a highly appreciated Spinoza prize. His works span the
nonlinear analysis of frictional materials, damage, fracture and micromechanics,
numerics, and gradient models of materials. He moved to TU Eindhoven in 2007
to become the dean at the school of Mechanical Engineering.
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The second technical university in the Netherlands is the one in Eindhoven. It is
rather young having been founded as a ‘‘Technische Hogeschool’’ in 1956. It
changed its name to the TU Eindhoven in 1980. This university benefits from a
favourable industrial and research and development environment (e.g., Philips and
DAF companies). In so far as we are concerned we note that J. B. Alblas joined the
Department of Mathematics and Computing in 1959 and worked in continuum
thermodynamics and the mechanics of electromagnetic continua with some suc-
cess. He mentored Alfons A. F. Van de Ven (cf. Hutter et al. 2006). The latter has
brought new results concerning the stability and bucking of magnetized and
superconducting structures, a matter of high interest in powerful electromagnets to
be used in controlled fusion reactors but also in magnetically levitated transpor-
tation. Finally, in the same department we note the important role played by G.
A. Kluitenberg—a disciple of de Groot and Mazur in the linear theory of irre-
versible processes—who did much for the promotion of the thermodynamics with
internal variables of state, in the formulation of anelastic behaviours and elec-
tromagnetic materials with hysteretic properties, often in co-operation with sci-
entists in Messina (V. Ciancio, L. Restuccia).

10.4 Scandinavia: Sweden, Denmark, Norway, Finland

Scandinavia here is considered as a historical and cultural linguistic region. It has
ethno-cultural heritage and related languages, not to speak of the famous Vikings.
Of course Suomi talked in Finland belongs to a different language group while
Danish, Norwegian and Swedish are all related to the Old Norse language
(together with Icelandic and the language of the Faroe Island). Furthermore,
Denmark and Sweden formed a united kingdom in the past, Norway got its
independence from Sweden early in the 20th century, and Finland was a part of
Sweden for about seven centuries; Swedish still is the second official language in
Finland. We can agree with Hult and Nystrom (1992) on the global view of a
Nordic heritage in so far as technology and industry are concerned: these countries
share close economic and cultural ties. Denmark, Norway and Finland have about
the same population (circa 5.5 millions of inhabitants) while Sweden has about
9.5 Millions. But Finland, Norway and Sweden have a low density of population
while Denmark has a density almost ten times higher than these three countries.

Consider first the case of Sweden. This was an emigration land (in particular to
the USA in Minnesota) before a true industrial development with iron ore and steel
industry. This is lavishly illustrated in the Swedish movie ‘‘The Emigrants’’
(1971). It might not be out of scope to remind the reader that the new king of
Sweden in 1810 was a French general, Jean-Baptiste Bernadotte (marshal in
Napoleon’s army). The same dynasty still is in power. The first technical insti-
tution/school in Sweden was created in Stockholm in 1827. It took its actual name,
the Kungliga Tekniska Högskole (for short KTH = Royal Institute of Technology),
in 1877, and grants PhDs since 1927. The second technical institution for higher
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education is the Chalmers University of Technology in Gothenburg (Göteborg). In
contrast to KTH it is a private institution managed by a Foundation. It was founded
through a donation by a rich Mr Chalmers in 1829. These two technical univer-
sities have formed a large majority of Swedish engineers and scientists, while the
University of Uppsala—founded 1477, the oldest university in the Nordic coun-
tries—remains the stronghold of studies in humanities, having been famous for
natural sciences in the past (remember Carl Linnaeus) and having now depart-
ments of mathematics, physics and engineering sciences.

At KTH in the period of interest we should note the role played by Folke
Odqvist (1899–1984) who taught there for 30 years (1936–1966). He remarkably
contributed to the special fields of plasticity and creep. In the first of these he
introduced what is known as the ‘‘Odqvist parameter’’, now related to what we
identify as the integrated past history of the plastic strain, as the most represen-
tative parameter of the hardening behaviour of metals. In the theory of creep
(phenomenon according to which plastic strain grows in time under the application
of a relatively small stress) he obtained definite results, in part with his doctoral
student Jan Hult (see Odqvist 1966; Odqvist and Hult 1962; Hult 1966). Indeed Jan
Hult (born 1927) obtained his PhD at KTH in 1958 under the supervision of
Odqvist, but he moved to Chalmers in 1962 to stay there until retirement in 1992.
At Chalmers Jan Hult was able to create a true group devoted to the mechanics of
materials, involving creep but also the transition between micro- and macro-
mechanics considering arguments of thermo-mechanics.

Another smart scientist who studied at KTH (PhD 1956) was Bertram Broberg
(1925–2005). First professor at KTH he moved to the Lund Institute of Technology
in 1961 and stayed there until retirement. He is probably one of the foremost
contributors to the theory of cracks with pioneering works. He gave his deep and
experienced general vision on dynamic fracture in a book published as Broberg
1999. He also nicely contributed to the theory of the cell structure of materials.
Late in his life he developed a strong interest in problems of biomechanics such as
that of the intervertebral discs (cf. Ståle et al. 2010).

Personal touch. When the writer co-organized a NATO advanced school on surface waves
in Moscow, Prof. Broberg, one of the main invited speakers but also a militant pacifist,
refused to have his expenses covered by NATO. Since the writer, responsible of NATO
funds, could not keep the money, he advised Broberg to receive the money and give it to a
charity, what Broberg, then retired and living in Ireland with his Irish wife, dutifully did.

In the late 1970s-early 1980s there was in the Department of Mechanics of
KTH a burst of active research in the field of micropolar continua (generalized
continua of some kind, see Chap. 13; cf. Brulin and Hsieh 1981) and magnetized
solids in a group gathering essentially Stig Hjalmars (1918–2007), Inga Fischer-
Hjalmars (1918–2008), Olof Brulin (died 2000), K. Berglund, and Richard
K. T. Hsieh (PhD KTH, 1978; associate professor at KTH). This activity disap-
peared after a re-organization of the department. Brulin and the two Hjamars had
been formed in theoretical physics, under the supervision of Oskar Klein (of the
Klein-Gordon equation). Lars Söderholm, a physicist, docent at KTH since 1980,
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contributed to the formal structure of relativistic continuum mechanics in the
Nollian manner.

A smooth transition from Sweden to Denmark is provided by the case of
Frithiof I. Niordson (1922–2009). Of mixed Russian-Swedish origin, Niordson
was basically educated as an engineer at KTH in Stockholm. But he obtained his
doctoral degree in Brown (USA) with William Prager. On his return to Europe he
became a professor at the Technical University of Denmark (DTH or DTU), in
Lyngby where he remained from 1958 till his retirement. There he was the driving
force behind the creation of the Danish Centre for Applied Mathematics and
Mechanics (for short, DCAMM) which became a world known meeting and
co-operative place for many scientists. His personal fields of expertise were
computational mechanics and the theory of plates and shells (Niordson 1985), and
also structural optimisation. Niordson was also much involved in the world
organization of mechanics through the International Union of Theoretical and
Applied Mechanics (IUTAM). He co-organized its 15th International congress
(ICTAM) in Lyngby in 1984. Among the very successful engineering students
from DTU we find Viggo Tvergaard (born 1943) who obtained at the DCAMM
both his doctoral degree (1971) and his habilitation (1978). Tvergaard is one of the
most cited mechanicians in the world, due mostly to his theoretical works on
stability, the formation of shear bands, and other critical problems in continuum
mechanics, many of which in fruitful collaboration with John W. Hutchinson and
Alan Needleman from Harvard [see his scientific résumé in J. Mech. Phys. Solids,
56, 3–4, 2008].

Norway has always been turned towards the sea (fisheries, maritime transport,
not to speak of the Vikings). The recent abundance of oil and natural gas in the
North Sea just amplified this orientation with the increased role of places such as
Stavanger. Second largest university in Norway after Oslo, the NTNU (for Norge
tecknisk-naturvitenskapalige universitet) in Trondheim was founded in 1910 as the
Norvegian Institute of Technology, and took its actual name in 1996. Probably its
most famous alumnus is Lars Onsager, graduate of 1925, who received a Nobel
Prize in physics (remember the celebrated Onsager’s symmetry relations in irre-
versible thermodynamics). Because of the strong maritime connection, no wonder
that the school of mechanical engineering includes naval architecture and ship
engine construction. Technical matters related to the sea now are also taught at a
recent university in Stavanger.

Finland was not a very industrial country until recently (think that NOKIA
started as a factory producing gum boots for peasants in a country made practically
of woods and lakes). Nonetheless, a first technical teaching was initiated in 1849 in
Helsinki. This transformed in a Polytechnic school in 1876 until 1908 when
courses at the university level were opened. The first doctoral degree was granted
there in 1912. The new name was Tekkarikylä (for short TKK) and still another
new name was adopted in 2010 as Aallo University. The mechanics of fracture and
biomechanics are the most advanced fields of research now cultivated at this
university. Among the notable universities in Finland we must also count those in
Tampere (with technical teaching) and Jyväskylä.
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10.5 Former Austro-Hungarian Empire

10.5.1 Austria

Of course we must start by perusing Austria itself. The main university places
there are Vienna, Graz, Linz and Leoben. The Technical University of Vienna (TU
Wien) was the first technical institution of high level created within the present-
day German speaking Europe, in 1815 as the Imperial-Royal Polytechnic Institute
(for short in German KKPI). It was renamed TH Wien in 1872. It granted its first
doctoral degrees in 1902. It formed most of the Austrian mechanical, civil and
electrical engineers in the 19th century and still now. Some of its most famous
alumni are Christian Doppler (the celebrated Doppler effect in acoustics), and both
Joseph and Johann Strauss who, as we know, became famous in another branch of
Art. Note that the famous Austrian writer Robert Musil—a man with many
qualities (in spite of the title of his celebrated lengthy book)—, was also educated
as a civil engineer but at Brno (Moravia), then in the Austro-Hungarian Empire.
Note: Aeronautical engineering also provided renowned gens de lettres, but in the
USA, e.g., Norman Mailer and Thomas Pynchon, both of the Nobel prize calibre.

Back to truly materialized careers in engineering, the teacher at TH Wien with
the strongest influence in the first part of the 20th century was Ernst Melan
(1890–1963)—himself the son of a famous civil engineer, Joseph Melan
(1853–1941)—, who was a professor of steel design and construction. This sounds
rather mundane. But Melan proved in 1938 a famous theorem concerning the
‘‘shakedown’’ of plastic structures (Melan 1938). We remind the reader than
‘‘shakedown’’ is the asymptotic property that the plastic strain can stabilize in time
(sometimes the response may even become elastic). We can say that the structure
‘‘adapts’’ itself to the load; see the mathematical proof in Maugin 1992,
pp. 81–84). Melan’s result was later on improved by Symonds (1951) at Brown
and Koiter (1960) in Delft. But Melan was a man of many interests. In particular
he became interested in thermal stresses and wrote a pioneering small book in that
field together with his disciple Parkus (Melan and Parkus 1953).

Heinz Parkus (1909–1982) succeeded Melan on the chair at TU Wien. He was
also a man of many technical and scientific interests (including the first helicopters
when he was in the USA just after WWII). Apart from thermo-elasticity (Parkus
1968), he also contributed to another theory of coupled fields, the mechanics of
electromagnetic continua, with personal contributions and the organization of the
first course on the subject at the CISM in Udine in 1977 [with a chapter by the
present author; see Parkus (1979)], and the influence on younger people such as
Adalbert Prechtl (who became a professor in electrical engineering at TU Wien).

Another disciple of Parkus was Franz Ziegler (born 1937). The latter was
educated at TH Wien (Engineering Diploma 1961, PhD 1964, Habilitation, 1974)
and benefited from a 2 years stay at Northwestern University in Evanston (USA).
He succeeded Parkus on his chair until his own retirement in 2002. Also a man of
broad vision (this seems to be a mark of the institution), Ziegler contributed to
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many fields such as stochastic processes in mechanics, wave propagation, com-
putational mechanics, etc. He was very active in the International organization of
theoretical and applied mechanics as well as in the GAMM in Germany. He
brought the basically Austrian journal ‘‘Acta Mechanica’’ to the highest interna-
tional level in continuum mechanics. Among others, he mentored Professor Hans
Irschik (born 1951, PhD 1981, Habilitation, 1986) who is now at the Johannes
Kepler Universität Linz, a specialist of the mechanics of smart materials, con-
figurational mechanics (cf. Irschik 2007), advanced dynamics and control, and
mechatronics.

As to the other two Austrian places of interest, in the present context we note
that the University of Graz has become a stronghold of modern biomechanics
under the leadership of Gerhard A. Holzapfel, while the Bergakademie in Leoben
developed intensive research in the field of the thermo-mechanics of phase
transformations in deformable solids under the leadership of Franz D. Fischer.

10.5.2 Hungary

The kingdom of Hungary was between 1867 and 1918 fully integrated to the
Austro-Hungarian Empire with—in theory—an equal status with Austria, hence the
often met qualification of ‘‘imperial-royal’’ giving rise to the ‘‘KK’’ abbreviation in
German. The previous Austrian Empire had been founded in 1804 in response to the
‘‘invention’’ of a French Empire by Napoleon. Both Austro-Hungarian Empire and
Ottoman Empire were dissolved by the victors of WWI, giving rise to the birth of
modern—sometimes artificial—states such as Czechoslovakia, Yugoslavia, Bul-
garia, Romania, Greece and a revived Poland. The case of Hungary is somewhat
special in that this country provided many emigrant scientists of very high calibre.
First, Hungarians consider that they created the oldest institution of technology in
the World in 1782. This, in fact, is not entirely true since the Royal School of Ponts
& Chaussées (1747) in France was created before and had, together with the Ecole
Polytechnique (1794), a much more important influence in our field, and science in
general, than any Hungarian school. The Hungarian school of technology was re-
organized in 1871 to become the Technical University of Budapest when a Faculty
of Mechanical Engineering was founded.

Of course the Magyars do not lack some panache and they readily count as
Hungarian Nobel prizes those people who in fact did their graduate and doctoral
studies outside Hungary and achieved a successful professional career also abroad.
For instance, among famous alumni of the Technical University of Budapest, they
count Denes Gabor (of holography fame), Eugene Wigner, Leo Szillard, and
Edmond Teller in physics and Paul Erdös in mathematics. Only Erdös obtained his
doctoral degree in Budapest. To these we would generously add John von Neu-
mann (who went to a German-speaking high school with Wigner and Teller) and,
closer to our present interest, Theodore von Kármán (1881–1963) who indeed
obtained an engineering degree at TU Budapest in 1902.
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In more recent times, Hungary has suffered in post-WWII communist era from
its isolation behind the Iron curtain. It is only recently (late 1980s) that it came
back in the normal network of international relations, and this, obviously, had
consequences in the domain of science and technology. At the now called TUBE
(the E standing for ‘‘Economics’’), an original school of thermo-mechanics was
founded in the 1960s–1970s, led by I. Gyarmati and J. Verhás. The first of these
scientists developed a variational field theory of irreversible thermodynamics (see
Gyarmati 1970). The second author expanded the thermo-mechanics of continua
with internal degrees of freedom (Verhás 1977). Another mechanician, J. Béda,
contributed to nonlinear continuum thermo-mechanics (Béda et al. 1995).

10.5.3 Czecholovakia

This was one of the ‘‘artificial’’ countries created in 1918 at the fall of the Austro-
Hungarian Empire as a result of WWI. It was made of the Czech part (with Prague)
and a Slovak part (with Bratislava). The two (friendly) split in 1993 after the end of
the communist era giving birth to the Czech Republic on the one hand and Slovakia
on the other hand. There was a rather old tradition of technical teaching in Prague
(some say going back to 1707). But the Czech Technical University (for short CTU,
now CVUT in Czech) in Prague was essentially formed after WWI. Similarly, the
Comnenius University in Bratislava was founded in 1919. The first of these pro-
vided the country with knowledgeable engineers. The contribution of the Czech
school to continuum mechanics was relatively modest in communist times. But we
remember the contribution to rheology (European meeting in Prague in 1986), of
Jan Kratochvil to the inelasticity of crystals in the 1970s–1980s, and the remarkable
contributions in a rather Truesdell-Coleman-Noll mathematical style of Miroslav
Šilhavỳ (see his book, Šilhavỳ 1997). In Bratislava mathematically oriented studies
were achieved in particular by the analyst Josef Brilla. There was a rather strong
emigration of scientists from Czechoslovakia following dramatic political events in
1968. Thus the University of Montreal in Canada welcomed at its Centre of Applied
mathematics Miroslav Kranys and Miroslav Grmela. The first of these two scien-
tists dreamed of a hyperbolic world (all phenomena with a finite speed of propa-
gation), rendering equations of physics and continuum mechanics hyperbolic in all
cases, e.g., with a Cattaneo-Vernotte kind of heat conduction law. Grmela, on his
side, was very much successful in his approach to problems of rheology put in a
proper geometric and symplectic framework. Among the very successful immigrant
scientists to the USA was Zdenĕk P. Bažant, a native from Czechoslovakia and civil
engineer formed in Prague who joined North-western University in Evanston in
1969. He is most well known as a prolific author in various fields of continuum
mechanics including the creep of concrete, the stability of structures, size effects in
solid mechanics (Bažant 2004), and a theory of nonlocal damage co-authored by the
French scientist G. Pijaudier-Cabot. He also rapidly provided a spot-on engineering
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analysis of the collapse of the New York City twin towers on the eleventh of
September 2001.

10.5.4 Yugoslavia

This was another one of the artificial countries created at the end of WWI with the
most important contributions from Serbia, Croatia and Slovenia. Serbia suffered
from Ottoman occupation in the period 1459–1878, but it had a de facto inde-
pendence as an autonomous principality in the period 1817–1878. A Kingdom of
Yugoslavia was established from 1918 to 1941. After WWII, Tito’s original
communist rule from 1945 to 1980 was based on ‘‘brotherhood and unity’’. But the
latter may have been vain words, as shown by the split of Yugoslavia in different
smaller states in dramatic circumstances in the 1990s.

We focus attention on Serbia with its capital Belgrade (Beograd). The Uni-
versity in Belgrade was founded in 1808 with an engineering department from the
start. It became officially a University in 1905 with faculties of civil and
mechanical engineering. It formed most of the Serbian (and other ‘‘Yugoslav’’)
engineers when the latter were not educated in neighbouring Austria; this was the
case of probably the most well known Serbian scientist-engineer, Nikola Tesla
(1856–1943) who was in part educated at TH Graz. In the USA, he was successful
in promoting the use of alternating current in opposition to Thomas Edison, who
was in favour of direct current. He also designed many original electric machines
and his name is forever attached to a magnetic unit. A statue of this great man
stands on a pedestal in front of Belgrade’s University although he did not study
there.

In the period 1965–1990, several lines of research were developed in Serbia.
First, applied mathematicians such as Z. Jancović and T .P. Andjelić promoted
continuum mechanics in a modern format. Much more original was the line pursued
by Rastko Stojanović (1926–1972) who produced seminal works on the differential
geometry of polar continua (generalized continua—see Chap. 13 and his lecture
notes at the CISM in Udine, 1969–1972). This was achieved in the path paved by K.
Kondo in Japan and E. Kröner in Germany (see Stojanović 1969, 1970, 1972). Jovo
P. Jarić with a PhD in Belgrade (1973) under the supervision of Nathlija Naerlović-
Veljković (herself the author of works in thermo-elasticity) produced interesting
works on invariant integrals and configurational mechanics (Jarić 1978, 2004). As
to Milan V. Mićunović (born 1944), with a Doctoral degree obtained in Warsaw
under the supervision of Henryk Zorski, he exploited the multiplicative decom-
position of the deformation gradient in the context of thermo-elasticity in finite
strains, and then specialized in the theoretical and experimental characterization of
visco-plastic materials in co-operation with the ISPRA research centre of EUR-
ATOM in Italy (see Mićunović 2009) while teaching in Kragujevac. Jaric super-
vised the works of Predrag Cvetković and Mirko Vukobrat. The latter contributed to
the mechanics of materials with nonlocal response (another generalized type of

10.5 Former Austro-Hungarian Empire 149

http://dx.doi.org/10.1007/978-94-007-6353-1_13


continuum). Finally, we note the success met in the USA by two mechanical
engineers initially formed in Yugoslavia: Dusan Krajcinović (1935–2008) with BSc
and MSc from Belgrade and a PhD from Northwestern who became a world
renowned specialist of damage mechanics, while Vlado A. Lubarda became a
scientifically productive Professor in general thermo-mechanics in San Diego.

Just for memory we record that part of Poland (Krakow) and Ukraine (Lwov) in
so-called Galicia also belonged to the Austro-Hungarian Empire (see Chap. 8
devoted to Poland).

10.5.5 Romania

This country is indeed placed at the crossroad of Central Europe (Mittel Europa).
Transylvania (Brasov, Timisoara) was in the Austro-Hungarian Empire. The
Kingdom of Romania was created in 1859, and became independent of the
Ottoman Empire in 1877. Present day Romania is a sovereign country of nearly
20 millions of inhabitants. Somewhat as a gross simplification, we could say that it
is a ‘‘Danubian’’ country with a Latin language, which is surrounded by countries
with different languages such as Bulgarian (close to Russian), basically Slavic
Serbo-croatian, and Hungarian. Probably because of its Latin background
Romania entertained strong intellectual links with France and Italy. In the post
WWII period Romania developed a special interest and true talent for the math-
ematics of continuum mechanics in both solid and fluid mechanics with remark-
able contributions by L. Solomon in elasticity (cf. Solomon 1968), Caius Jacob
(PhD in Paris, 1935) in theoretical fluid mechanics (see also his magesterial book,
Jacob 1959), Elie Carafoli (1901–1983, PhD in Paris 1928) in aerodynamics (cf.
Carafoli 1956), L. Dragos� (PhD 1964 with C. Jacob) in magnetohydrodynamics
(Dragos 1975), and Grigoriu Moisil (1906–1973) considered to be the father of
computer science in Romania. Octav Onicescu (1892–1983) was instrumental in
developing various aspects of mechanical sciences including probabilistic aspects
and as an ambassador of Romanian mechanics in both West and East. He was
among those who conceived and effectively founded the International Centre of
Mechanical Sciences (CISM) in Udine.

In more recent times the centres of Bucarest, Iasi, and Cluj have been active in
modern continuum mechanics with studies in the theory and experiments in crystal
elasticity and defects (Teodosiu 1982), visco-plasticity (Critescu and Suliçiu
1982), the general thermo-mechanical approach to inelasticity (Cleja-T�igoiu and
Soós 1990), polar media and thermoelasticity (e.g., Ies�an and Scalia 1996), and
non-Newtonian fluids (Victor T�igoiu). All these studies are marked by a special
taste for good applied mathematics as entertained by the University of Bucarest
and the Romanian Academy of Sciences. This is well illustrated by the many
works of P. P. Teodorescu (with various interests, among others, in the dynamics
of elasticity and the application of distribution theory and group theory to
mechanics (cf. Teodorescu 1972, Teodorescu and Kecs 1974)) and Eugen Soós
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(1937–2001). The latter, with a PhD (1972) with C. Jacob, was an applied
mathematician who mentored many (some already cited) young researchers in the
Department of Mathematics at the University of Bucarest and at the Institute of
Mathematics of the Romanian Academy of Sciences. He successfully contributed
to a large spectrum of research in both specialized fields (mechanics of compos-
ites, anelasticity in finite strains, electromagnetic continua,) and mathematical
tools (tensor and spinor algebra), sometimes in co-operation with N. Cristescu and
P. P. Teodorescu (see Beju et al. 1983; Critescu et al. 2003). Finally, we note the
role played by Horia Ene (born 1941, PhD 1970 in Bucarest) who expanded the
theory of porous media with techniques of asymptotic periodic homogenisation
(cf. Ene and Polisevshi 1987)and who contributed to the re-organization of science
in Romania at the Ministry level after the fall of Nicolae Ceaus�escu’s dictatorship.

10.5.6 Bulgaria

This offers a smooth transition with some more southern countries like Greece and
Turkey. Bulgaria was occupied by the Ottomans from 1396 until practically the end
of the 19th century although it belongs to the Slavic-speaking orthodox group with
a close cultural connection with Russia. It became a new state in 1878 with sov-
ereignty obtained in 1908. The Technical University in Sofia was founded in 1945
as a ‘‘State Polytechnic Institute’’ and gained a full University status in 1995. Like
in other communist ruled countries beyond the Iron curtain, an essential role was
also played by the Bulgarian Academy of Sciences, modelled after the Soviet one.
Many of its productive mechanicians benefited from a doctoral formation in the
Soviet Union. This was the case of Konstantin Z. Markov (1945–2003) in the theory
of composites with random properties (formed in Leningrad by A. A. Vakulenko)
and Christo I. Christov (1951–2012) for numerical methods (formed in Novosibirsk
by N. N. Yanenko). On the other hand, A. Baltov worked in the plasticity of
anisotropic bodies together with Polish scientists (in particular A. Sawszuk), while
Alexander Rachev successfully developed some aspects of biomechanics (nonlin-
ear elasticity of soft tissues) before moving to the USA.

10.6 Southern European Countries

10.6.1 Italy

A country like modern Italy seen as a single unified political entity is of rather recent
history. It is no more than a 150 years old. Still most of us have a feeling that
something underlies the common background of this part of Europe and perhaps
most of southern Europe up to the wall of Hadrian in the UK. This ‘‘something’’ is
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nothing but the famous Romans. If we accept the idea that the ancient Greeks
invented philosophy and geometry, we must also admit that the Romans invented the
Law and civil engineering. This last invention still is a characteristic property of
Italian engineering. Concerning educational institutions Italy saw the creation of the
oldest universities in the World with Bologna and Ferrara. These universities offered
the typical scholastic (Aristotelian) curriculum, where law, music, theology,
astronomy and medicine were often studied by the same students from all European
countries. Nicolaus Copernicus was such a student. Other universities such as Pisa
offered courses in what we may call Natural Philosophy (physics). Galileo Galilei in
the early 17th century is the most representative teacher at this university, and
obviously the creator of modern mechanics before Descartes, Huygens and Newton.
Some times before, Leonardo da Vinci, after Archimedes in Syracuse, is the pro-
totype of engineer-scientist although with apparently no formal scientific education
and the fact that we miss material realizations of his designs. Perhaps closer to our
modern spirit—but further back in the past—is Filippo Brunelleschi (1377–1446)
with the invention of perspective and his formidable construction of the dome of the
Cathedral in Florence. The civil engineering spirit was re-actualized in the 19th
century with engineers formed at schools such as the Politecnico in Turin or military
schools, certainly influenced by the recently created French schools of engineering.
Carlo Castigliano (1847–1864) and Luigi Menabrea (1809–1896) are examples of
such engineers-scientists who greatly improved the theory of the strength of mate-
rials with the expansion of reciprocity and energy theorems. Menabrea was a disciple
of Lagrange in making use of variational formulations. So was also the case of
Gabrio Piola (1794–1850)—of Piola–Kirchhoff fame in finite strains—but Piola was
more of a theoretical mechanician or an applied mathematician formed in a uni-
versity. This tradition was carried in the 20th century with the brilliant contributions
of the Italian school of elasticity to nonlinear elasticity (Signorini, Cattaneo, Grioli,
etc.) that we examined in a previous chapter (see Chap. 3). In a general way we must
note the enduring influence that mathematicians Ricci and Levi–Civita had on the
teaching of rational mechanics in Italy for almost one century.

We shall now focus our attention on the second half of the 20th century.
Whether our Italian colleagues like it or not, we are led to viewing Italian con-
tinuum mechanics as three regional strongholds, the South with Naples, Sicily,
etc., the North with Torino, Milano, Bologna, Padova, etc., and finally the central
part with Rome. This also follows the scheme of political influences and traditions,
Rome being seen as the imposed administrative centre albeit rich by itself with
three state universities. Other specific traits are (1) the existence of two poly-
technic schools in Torino and Milano—remnants of the French influence of
Napoleonic times (as also the existence of the Scuola Normale Superiore in Pisa,
copied on the Paris ENS; see Chapter on the French masters)-, and (2) the fact that
continuum mechanics, even in its most mathematical form, is often cultivated in
departments of civil engineering or Scienza delle Costruzioni (e.g., in Pisa, Rome I
and Roma II, Udine, Palermo).

Perhaps because there were no formal PhD programs in Italy before the 1980s,
Italian mechanics, more than in other countries in Europe, was very much
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influenced by foreign teams, essentially from the USA. A partial reason for this
may also be the (somewhat unreasonable; our opinion) attraction exerted on
Clifford A. Truesdell by everything Italian (Arts, language, classical science, pre-
WWII mechanics) and that exerted by Truesdell on some Italian scientists in
search for some kind of father figure. As a consequence, it is in Italy that we find
the last fully fledged ‘‘Truesdellians’’.

We start with the northern part of Italy, but this does not indicate any hierarchy.
Angelo Morro, educated in Genova and with a long teaching and research career at
the local university, is a versatile applied mathematician with interests ranging
from the mathematical formulation of hereditary processes and electromagnetism
in continua, to inhomogeneous waves and continuum thermo-mechanics. He
produced many works in co-operation with G. Caviglia from Genova (cf. Caviglia
and Morro 1992) and Mauro Fabrizio from Bologna (Fabrizio and Morro 1992,
2003). This provides an easy transition as Fabrizio in Bologna was certainly
influenced by Dario Graffi (1905–1990), himself a mathematician specialist of the
materials with memory in the Boltzmann-Volterra-Pérès tradition (Graffi 1928,
1977). A practically legendary figure of mechanics at Bologna is Professor Grioli
(a 100 years old in the spring of 2012—born 1912!) with his mathematical studies
on elasticity and polar media, also a powerful personality in the Italian National
Research Council and at the Academia dei Lincei. Tommaso Ruggeri, nephew of
Grioli (no nepotism here, we hope), also at Bologna was instrumental in expanding
so-called ‘‘rational extended thermodynamics’’ in co-operation with Ingo Müller
from Berlin. In the Department of Physics, Francesco Mainardi (born 1942),
interested in phenomena such as visco-elasticity and diffusion, is one of the
foremost propagandist of the notion of fractional calculus in continuum mechanics
(cf. Mainardi 2010). In Padova, Mario Pitteri (born 1948) and Giovanni Zanzotto
worked on the symmetry and transformation properties of elastic crystals as fol-
lowers of Jerald Ericksen (cf. Pitteri and Zanzotto 1998), while Cesare Davini in
Udine dealt with the geometry of defective elastic crystals. Aldo Bressan, also in
Padova, contributed much to the foundations of continuum mechanics in both its
classical and relativistic settings (see Chap. 15).

In Pisa, we have the combined influence of both the Scuola Normale Superiore
and the Department of Scienza delle Costruzioni at the University. At the latter
founded in 1913 as the Regio Istituto Superiore di Ingegneria and included as a
faculty in the university in 1936 the most famous alumnus probably is Gustavo
Colonneti (1886–1968), a follower of Castigliano. Presently, Piero Villagio (born
1932), a most curious and deep thinker—but also a renowned mountain climber—
has dealt with original mathematical problems of the mechanics of continua and
the strength of materials sometimes with a surprising sense of humour in the
selection of its subjects. In applied mathematics, Tristano Manacorda (1920–2008)
contributed to the solution of problems of elasticity and thermo-elasticity, while
Carmine Trimarco has developed essential aspects of configurational mechanics—
especially in electromagnetic continua and its variational formulation (pioneering
works published in 1992; see Chap. 14 for these works)—often in collaboration
with the author.
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In mathematics at Pisa, Gianfranco Capriz has been the most forceful agent of
the Truesdellian vision of continuum mechanics. He contributed with some talent
to the mechanics of media with internal degrees of freedom (media with a latent
microstructure; see Capriz 1989). He also mentored such reputed mechanicians as
Epifanio G. Virga and Paolo Podio-Guidugli (now at Roma II). The former col-
laborated with Walter Noll on the basis foundation of continuum mechanics with
fundamental work on the case of bodies with edges (cf. Noll and Virga 1990), and
also proved to be a creative contributor to the continuum theory of liquid crystals
(Virga 1994). As to Podio-Guidugli, he appears to be an applied mathematician of
wide scientific interests (e.g., Podio-Guidugli 2000) with many fruitful works in
the mechanics of bodies with internal constraints, the mechanics of magnetized
materials, and configurational mechanics, often in collaboration with Morton E.
Gurtin from Pittsburgh. It seems that Antonio di Carlo (now at Roma III), Paolo
Mariano (now in Florence) Maurizio Brocatto (now in Paris in a school of
architecture), and P. Giovine (now in Calabria; works on granular materials) were
also mentored by Capriz along different research lines.

This takes us to Rome where, in addition to the University of Roma II (called
‘‘Tor-Vergata’’, with P. Paolo Podio-Guidugli) and the University of Roma III
(with A. di Carlo), we have the large university of Roma I (called ‘‘La Sapienza’’).
Presently, the most active and creative contributor to our field seems to be
Francesco dell’Isola (born 1962). Formed in Naples with A. Romano and a true
mathematician in his style of approach, his interests span many particular fields
including phase-transition fronts, variational formulations, porous media, control
of piezoelectric vibrations, and the foundations of continuum mechanics (together
with Pierre Seppecher from France). A. Romano in Naples has developed exten-
sive studies on the problem of the propagation of phase-transition fronts in
deformable solids (cf. Romano 1993, Romano and Marasco 2010).

In Sicily we have the three universities of Palermo, Catania, and Messina. The
first two have played a historical role in mathematics and physics. In civil engi-
neering in Palermo, Castrenze Polizzotto has dealt first with problems of plasticity
and shakedown and more recently with generalized continuum mechanics
involving nonlocality and gradient elasticity in both variational and thermo-
mechanical settings. As to Messina, the Department of mathematics, with
V. Ciancio and L. Restuccia, has developed an original formulation of the thermo-
mechanics of continua with internal variables of state in collaboration mostly with
G. A. Kluitenberg (from Eindhoven), Wolfgang Muschik (from Berlin), Bogdan
Maruszewcki (from Poznan) and a group from Hungary.

We continue our excursion in the Italian landscape with some comments on
individuals who do not precisely fit in the above framework. First we note
Giuseppe Saccomandi, an applied mathematician of many interests with a long
time spent at Lecce, and now in Perugia. His varied interests range from the
symmetries of differential equations (with Edvige Pucci), the nonlinear elasticity
of rubber-like materials and soft tissues (with Ray W. Ogden, Michael Hayes, C.
O. Horgan, and Michel Destrade), nonlinear waves, and various problems in fluid
mechanics and applied mathematics. As just documented, his works are marked by

154 10 European Miscellanei and Asia



a fruitful co-operation with foreign scientists, often in the British-Irish tradition of
applied mathematics. Then we return to the North with the University of Torino.
Franco Pastrone, in mathematics, completed there research in the mechanics of
media of the Mindlin type (generalized continua, see Chap. 13) and the associated
wave phenomena in co-operation with local people and J. Engelbrecht from
Tallinn, and Alexey V. Porubov from St Petersburg. At the University of Trento,
Augusto Visintin (born 1952) provided interesting developments in the mathe-
matics of hysteretic phenomena, free-boundary problems, phase-transition pro-
cesses and multiscale approaches. He was formed at the CNR Computer Centre of
Pavia under E. Magenes—the Italian correspondent of J.-L. Lions in France—in
what we may call applied functional analysis. Giuseppe Geymonat [first in Torino
and then in France (Cachan, Montpellier)] had the same typical formation.

We conclude with a look at the two ‘‘Politecnico’’ in Milano and Torino. As
already mentioned, these two institutions—originally copies of the French Ecole
Polytechnique—probably remain the best engineering schools of very high
scientific quality in Italy. Because of their sufficient internal strength and potential
they were not so much touched by the ‘‘Truesdellian’’ fashion but they radiate a
remarkable activity and an obvious aura. In recent times, Giulio Maier (born 1930)
in the Department of Structural Engineering in Milano (from 1956 till retirement)
was responsible for fruitful developments in elasto-plasticity, limit analysis,
shakedown theory, and computational mechanics. He is one of the most renowned
contemporary Italian mechanicians with many honours conferred on him in Italy
and abroad. His younger colleague at Torino, Alberto Carpinteri (born 1952,
educated in Bologna) is a prolific contributor—claiming already about 650 papers
and many books (most of them edited only, e.g., Carpinteri 1997; Carpinteri and
Mainardi 1997) as on 2011—in the fields of crack propagation and catastrophe
theory, applications of fractional calculus (with F. Mainardi, see above), stability
of cracks, and size effects. He holds the chair of Structural Mechanics.

In a totally different line, Luigi Preziosi (born 1961, PhD in Minnesota with
D. D. Joseph) has created an active group working on bio-rheology and more
generally in biomechanics. Until recently, he was at the Politecnico in Torino
where Davide Ambrosi pursues his own nice works on the dynamics of cell
migration and his studies on tumors seen in the context of the elasto-visco-plas-
ticity of growing bodies. Finally, we must mention Carlo Cercignani (1939–2010),
a brilliant mathematician at the Politecnico in Milano, who devoted most of his
scientific works to the kinetic theory of gases (Cercignani 1990), but had none-
theless a decisive influence on the teaching of rational and continuum mechanics
all over Italy. An obvious admirer of Boltzmann, in addition to his scientific books
and papers, he wrote a splendid and definitive biography of this Austrian physicist
(Cercignani 1998).
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10.6.2 Spain and Portugal

Like other European countries, Spain and Portugal have witnessed in due time
(eighteen and nineteenth centuries) the creation of technical schools principally
devoted to civil and military engineering. Some of the still existing schools and
technical universities are the descendents of these institutions. But these schools,
until very recently, served only to provide the necessary technicians for the normal
functioning of a state. It is practically in vain that one searches for any marked
contribution to the foundations and critical evolutionary aspects of our field until
the last quarter of the twentieth century. Furthermore, these countries, once rela-
tively rich in reason of their colonial possessions, remained essentially agricultural
and finally became lands of emigration. Accordingly, we briefly focus attention on
the last 30 years to pinpoint several tendencies. In Spain, the main educational
institutions in sciences and technology are to be found in the largest cities such as
Madrid, Barcelona, Sevilla, Valencia, and Saragossa (Zagaroza). In Madrid the
Civil Engineering school was founded as soon as 1802. The qualification of
aeronautical engineer was granted in 1926. A true polytechnic school with a large
selection of departments was finally formed in 1971 by merging different schools.
In continuum mechanics the creative level is kept by young people such as Jose
Merodio with works in nonlinear elasticity and biomechanics in co-operation with
foreign scientists (e.g., Ray W. Ogden). The same holds good for research at
Saragossa where Manuel Doblaré also developed a successful school of biome-
chanics. In Barcelona, an original school of continuum thermo-dynamics was born
in the expert hands of David Jou and Casas-Vasquez, while other researchers (e.g.,
R. Quintanilla) expanded some facets of applied mathematics by studying the
mathematical properties of continuum models in thermo-elasticity and polar media
in the line of Robin Knops (see Chap. 6) and some Romanian co-workers.

What still heavily characterizes mechanics in Spain and Portugal is the need to
go abroad in order to obtain a doctoral degree. Furthermore, these two countries
remained countries of emigration for brilliant elements. In this line we think of
Michael Ortiz (born 1955) and Juan Carlos Simo (1952–1994) who have or had
remarkable careers in the USA in the multiscale modeling of continua and com-
putational mechanics. The same is true of Enrique Sanchez-Palencia (born 1941)
who went to Paris after obtaining his degree in aeronautical engineering in Madrid
and remained in France to gain an internationally acknowledged scientific success
with his creative work on homogenization techniques and other asymptotic
problems of continuum mechanics. A similar picture applies to Irene Fonseca from
Portugal, with a PhD with David S. Kinderlehrer, who found her way in the
medium of applied mathematics in the USA after studying in Minnesota.
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10.6.3 Greece

The oldest and most prestigious educational institution in Greece in the field of
technology is the National Technical University of Athens (NTUA). It was created
in 1836, a few years after the independence of the southern part of Greece from the
Ottoman Empire. It was re-organized in its present form in 1917. Other engi-
neering schools were opened in Thessasloniki, Patras, Thraki (Democritus Uni-
versity of Thrace) and Chania (Crete) much more recently. In particular, the
Aristotle University of Thessaloniki, now the largest university in Greece and in
the Balkans (with about 95,000 students), was founded in 1925, after the inde-
pendence of the Northern part of Greece from the Ottoman Empire in the 1910s.

At the NTUA, also know as the ‘‘Polytechnion’’, a somewhat legendary figure in
mechanics in Greece was Pericles S. Theocaris (1921–1999). He studied at NTUA
in the dramatic period of 1942–1948 (WWII followed by a civil war in Greece)
and obtained doctoral degrees in Brussels (1952) and Paris (1953). A prolific
author and an experimentalist (optical methods), he worked mainly in the strength
of materials and the field of dynamic fracture. He formed a large number of
mechanicians in Greece. Many engineers formed at NTUA went to the USA for
further studies and some remained there for a brilliant research and academic
career (e.g., in the 1970s, Maria Comninou, Xanthippi Markenscoff, and Yannis F.
Dafalias, all in continuum mechanics). Theocaris played an important role in the
National Academy in Athens and more generally in the politics of Greek science.

At the Aristotle University of Thessaloniki, we must single out Panagiotis
(Panos) D. Panagiotopoulos (1950–2002), with a civil engineering diploma and a
PhD from this university and a Habilitation obtained at the RWTH Aachen in
Germany. He was one of the best specialists in the treatment of unilateral problems
in continuum mechanics. He was responsible for a substantial progress in the
exploitation of variational inequalities and the solution of non-convex problems
(non-smooth mechanics; Panagiotopoulos 1985, 1993). Another successful con-
tributor to continuum mechanics is Elias C. Aifantis (born in 1950; also simul-
taneously at the University of Michigan in East Lansing) basically educated in
Thessaloniki and with a PhD from Minnesota, he has been instrumental in
developing efficient models of gradient elasticity and gradient plasticity (gen-
eralized continua, See Chap. 13) after his many contributions to diffusion pro-
cesses and the evolution of the density of dislocations in defective bodies.
Georgios M. Lianis, after a brilliant career at Purdue (USA) in the Department of
Aeronautics, came back to Greece and became the Greek Minister for Science and
Technology (1982–1985), and then Ambassador of Greece to Japan, and back to
Thessaloniki with a professorship in Mechanics. He had established definite results
in several advanced domains of continuum mechanics including visco-elasticity
and relativistic continuum mechanics when he was in Purdue.
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10.6.4 Turkey

Modern Turkey provides a bridge in both rhetorical and physical senses between
Europe and the Middle East. The Ottoman Empire considered itself the successor of
Constantinople and Byzance, themselves the direct inheritors of the Roman Empire.
But while Romans ‘‘invented’’ civil engineering (see above), the Ottoman Empire
was not in this line of thought and globally did not do much for education, scientific
one in particular. It is said that a technical institution for the training of ship builders
and cartographers was created in Istanbul in 1773. But the formal recognition as a
technical university in Istanbul goes back only to 1926 with a true autonomous
university status in 1946. As to the Middle East Technical University (METU) in
Ankara, it was founded in 1956 with an engineering faculty opened in 1959.
Istanbul is also the place of the English speaking University of the Bosphorus
(Bogazici universitesi) founded in 1843 as the first American higher education
institution outside the USA under the name of Robert College. It has formed an elite
of the country and its curriculum, including scientific, is much looked after.

We remind the reader that Richard von Mises found refuge in Turkey and
taught in Ankara. Still, for many years all those looking for a graduate education in
applied mathematics and mechanics had to pursue doctoral studies outside the
country, often in Germany and France before WWII, and mostly in the USA after
WWII. Thus Ratip Berker, a mathematician specialist of fluid dynamics and non-
Newtonian fluids—and the author of a comprehensive lengthy contribution to the
Handbuch der Physik edited by S. Flügge (cf. Berker 1965)—obtained his doctoral
degree in mathematics in France in 1936, and taught in Paris from time to time.

The author had the privilege to take Berker’s course on non-Newtonian fluids in Paris in
1967; Berker’s lectures were among the most well delivered and refined—up to the point
of some mannerism—lectures ever received by the author.

Soon after WWII, some famous American scientists in fact had immigrated
from Turkey, among them A. Cemal Eringen (1921–2009; a foremost figure in
generalized continuum mechanics, see Chap. 13), Fazil Erdogan (born 1926; a
specialist of fracture in homogeneous and inhomogeneous materials and a long
time professor at Lehigh in Pennsylvania), and E. Turan Onat (1925–2000; a
specialist of anelastic behaviours first at Brown and then for a long time at the
University of Yale). In more recent times—e.g., in the 1960s-1970s—Turkey
provided brilliant post-doctoral students and graduate students in the USA, to
name a few: Erdogan S. S�uhubi (with his original contributions to the mechanics of
media endowed with a microstructure, and to wave propagation), Attila Askar
(with his work on deformable piezoelectrics—Askar 1986—nonlinear waves, and
the application of numerics to quantum problems), and Hilmi Demiray (theory of
mixtures, plasmas, biomechanics, nonlinear waves) all at Princeton. They all
returned to Turkey where they succeeded to emulate research in their various
specialties either at universities or at the Marmara Research Centre.
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10.7 Some Countries in Asia

10.7.1 Note on India

India, this immense country with a rich cultural and intellectual past is well
equipped with a network of ‘‘Indian Institutes of technology’’ (IIT). This network
provides a large number of qualified engineers. Many of them immigrate to richer
countries with a large potential of jobs in research and development, but also in
universities. English-speaking countries, but above all the USA, are the main
beneficiaries of this flux. In the field of interest in this book we obviously note the
success in research of many Indian-born scientists in particular in the USA,
Canada, and Australia (see below). This leaves little room for a development of
original research ideas in continuum mechanics on the ‘‘subcontinent’’ as the BBC
always calls it. Nonetheless, many lines of research work are attempted. But they
are marked by the British tradition of applied mathematics of the 19th century—
special solutions of accepted set of equations, lengthy analytical solutions some-
times improved by small numerical simulations exploiting available commercial
software. Quite often the considered problems deal with linear or linearized the-
ories such as in thermo-elasticity, magnetized or piezoelectric bodies, polar media
and magneto-hydrodynamics, and also linear wave problems in the bulk or at a
surface. It is difficult in these conditions to point out a specific advance. However,
in the period of interest, we observe the singularity presented by Bhoj Raj Seth
(1907–1979), with a PhD obtained in London before WWII and who taught at the
IIT of Kharagpur when the latter was opened in 1951. Seth was one of the very few
Indian scientists who dealt with fundamental questions of continuum mechanics,
e.g., the definition of finite-strain measures, creep, plasticity, and second-order
effects in elasticity (e.g. Seth 1935).

Among the very successful Indian applied mathematicians in the USA we
should mention first Romesh C. Batra, initially formed at the Punjabi University
in India, but with a PhD obtained at Johns Hopkins University with J. L. Ericksen
(1972). He is now a professor at the Virginia Polytechnic Institute and State
University in Blacksburg with a large variety of scientific interests and works,
including in a practically 40 year long career: nonlinear elasticity, the strength of
materials, impact problems, material instabilities, shear banding, dynamic fracture,
nano-mechanics, MEMS, and functionally graded materials.

The next scientist in this formidable selective group is Kombakonam R.
Rajagopal (born 1950), initially formed at the Indian Institute of Technology in
Madras/Chennai but with a PhD obtained in Minneapolis (1978) with Roger L.
Fosdick (born 1936, himself a PhD from Brown in 1963, Editor of the Journal of
Elasticity). ‘‘Raj’’, as known by his friends, is a never tired prolific author who has
already left a definite print on so many fields of continuum mechanics, including
non-Newtonian fluids, the theory of mixtures (see Rajagopal and Tao 1995), the
mechanics of polymers (see the book by Wineman and Rajagopal 2000), thermo-
mechanics in general, phase transitions, granular materials, biomechanics, and
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electro-rheological materials, all this with an obvious strong influence of Truesdell
(with whom he co-authored a book on fluid mechanics, Truesdell and Rajagopal
1999). In addition, ‘‘Raj’’ is a highly cultivated humanist with a continued interest
in traditional Indian texts but also in English literature and poetry. He is a
professor at the Texas A&M University in College Station, Texas, and became
co-editor of the International Journal of Engineering Science.

Finally, among the younger generation, we note Kaushik Bhattacharya, also
initially formed at the Indian Institute of Technology in Madras/Chennai and a
PhD from Minneapolis (1991) with R. James. His works of international quality
span the interactions between continuum mechanics, materials science, and
applied mathematics with a marked interest in the subtle mechanisms of phase
transformations (see Bhattacharya 2003). He is a professor at Caltech and Editor-
in-Chief of the famous Journal of the Mechanics and Physics of Solids.

10.7.2 Note in China

The case of China resembles that of India. The number of engineering and sci-
entific schools has grown considerably in the last 30 years. Emigration was not as
important as in the Indian case because of difficulties to leave the country and also
the problem of language. We rather witness an organized system of studies and
formation abroad with a possibility—or an obligation—to return to the country.
Many centres have developed modern programs after the return to China of sci-
entists who had made a career outside. But we will not go further in our analysis as
it is difficult for an outside observer to grasp the details of the organization and of
the schools of thought in this out-of-normal-scale country. Like in India, many
researchers are satisfied—at the time of writing—with linear problems in com-
bined fields, and the generalization to these fields of the solution techniques—
involved as they can be—of problems known in elasticity. This is particularly true
of problems dealing with cracks and piezoelectricity, and the mechanics of
composite materials.

However, we note in Hong Kong a fruitful activity of international level in
modern continuum mechanics in two institutions. One of these is the City Uni-
versity of Hong Kong at the Liu Bie Ju Centre for Mathematical Sciences. Prof.
Hui–Hui Dai, with a PhD obtained in Newcastle-upon-Tyne (UK) with Alan
Jeffrey, here is a specialist of nonlinear wave propagation (in particular solitons) in
elastic structures, while Prof. Ph. G. Ciarlet (born 1938), originally from Paris,
pursues his research in mathematical elasticity and differential geometry. The
other institution is the recent Hong Kong University of Science and Technology at
Clear Water Bay, where Prof. Qinping Sun, with a PhD (1989) from Tsinghua
University, has founded an active research team dealing with the mechanics of
phase transformations and the micromechanics of materials.

On the island of Formosa (Taiwan), C.-S. Yeh, a former PhD (1971) student of
Y.-H. Pao in Cornell, has expanded research in coupled fields, especially in the
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mechanics of soft ferromagnetic bodies. Other research conducted in Taipei
concerns fracture mechanics. This is also the case in South Korea. Both of these
countries are very much influenced by American education.

10.7.3 The Case of Japan

This case is different from those of India and China. First the size and quantity of
information are quite different. Second, after its opening to the western influence in
the 19th century Japan decided to cultivate all aspects of modern science and
technology with an unlimited enthusiasm. A network of ‘‘Imperial universities’’
was created. These universities became ‘‘National universities’’ after WWII. These
are much looked after by Japanese students as they are supposed to form the
Japanese elite. This holds true for all fields of knowledge including the various
guises of engineering. Such institutions exist in the most well known cities (Tokyo,
Kyoto, Nagoya,…). They are complemented by a long roster of establishments
with varying status, e.g., universities related to the division of the country into
‘‘prefectures’’, universities associated with municipalities, and then now many
private universities.

From the viewpoint of continuum mechanics we note a characteristic trait that
is shared with other fields of science, that is, a tendency to pragmatism and very
few attempts at discussing the bases of our science and implying the creation of
new concepts. In the very large production of high scientific level—but of more
standard contents—that we shall briefly survey later on, we nonetheless distinguish
two original characters.

One of these is Kazuo Kondo (1911–2001). Formed as an engineer at Tokyo
Imperial University in the 1930s, Kondo first worked as an aeronautical engineer
examining classical problems in structural mechanics or fluid mechanics. But in
1952, probably influenced by his many readings in mathematical physics, he
proposed the first interpretation of the theory of structural defects (e.g., disloca-
tions), in geometrical terms borrowed from Einstein’s theory of gravitation. With
this revolutionary work, the sophistication of Riemannian geometry entered the
field of continuum mechanics. The next steps had to be taken by European groups
such as those of Bruce A. Bilby in Sheffield and Ekkehart Kröner in Stuttgart. All
subsequent works along this geometric line bear the print of Kondo’s innovative
work. In time Kondo developed almost single-handedly a series of publications
known as the R.A.A.G (for Research Association of Applied Geometry; see Kondo
1951–1962) memoirs. These involve a mixture of advanced geometrical notions of
non-Riemannian spaces, attempts at geometrizing everything, and unfortunately a
philosophical vision where poetry, philology, semiotics, and an abuse of neolo-
gisms make the whole thing quite fuzzy and most of the time un-understandable by
common mortals (cf. Croll 2006).

Another original character was Tatsuo Tokuoka (1929–1985) in Kyoto. He was
original in the sense that he was one of the rare Japanese ‘‘Truesdellians’’. In this line
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of research he worked mostly on so-called hypo-elasticity (that was thought in
Truesdell’s view as a possible approach to plasticity; but this line is now abandoned)
and also on induced effects in nonlinear theories such as in acousto-elasticity and
birefringence with applications to optical measurements for transparent polymers.
He also encouraged studies of coupled fields in electro-magneto-elasticity. Shinya
Motogi (in Osaka) was one of his students who worked with the present author on
deformable magnetized bodies.

Along more traditional lines, we find a wealth of works in various branches of
continuum mechanics. First, we note a special taste for the theory, numerics, and
applications of plasticity. This includes rather old works by K. Washizu (1982) on
variational methods in elasto-plasticity (the multi-field Hu-Washizu principle), but
also more recent works by T. Miyoshi (1985), T. Inoue (in Kyoto, with a strong
interest in phase transformations), and S. Murakami (Nagoya; numerics of elasto-
plasticity, creep cracks), and others. The study of fracture is also a favourite
subject matter with works by Toshihisa Nishioka (Kobe), Y. Murakami (Kyushu
University), S. Murakami (Nagoya), and applications in electromagnetic bodies by
Y. Shindo (Sendai). Configurational mechanics and the allied theory of material
growth were recently approached by Shoji Imatani (Kyoto) in collaboration with
the author. Thermo-elasticity and thermo-piezo-electricity, sometimes in gradient
materials, have been dealt with in detail by Naotake Noda (born 1944) and his co-
workers at the University of Shizuoka (Hammatsu). Finally, the mechanics of
conducting and superconducting structures was contributed by Kenzo Miya in
Tokyo after visiting Frank Moon in Cornell. Works along the same line were
pursued for some time at the Tohoku University in Sendai under the leadership of
Professors Junji Tani (born 1940) and Toshiyugi Takagi. Both Miya and Takagi
have been active in the edition of a spot-on journal, the International Journal of
Applied Electromagnetics and Mechanics. We also note the fruitful co-operation
of Muneo Hori (Tokyo) with Sia Nemat-Nasser (San Diego) in problems of mi-
cromechanics (cf. Hori 1993). As an example of great success of a Japanese
mechanician in the USA we have Toshio Mura (1925–2009) who made a career in
micromechanics at Northwestern in Evanston after his formative years in Tokyo.

10.8 Concluding Remarks

In the foregoing sections we have examined a variety of countries and areas with
different historical traditions in so far as high-level education and research
achievements are concerned. Some of them participated directly in the 19th cen-
tury European development of industry and allied education. These were those
closer to the trio formed by England, France, and Germany and thus easily per-
meable to the spirit of the enlightenment and the upcoming industrialisation. Some
others had to catch up with these developments and their contribution level to our
science is still marked by this delayed evolution. Still others were at first com-
pletely outside this development and, in effect, their involvement in research is

162 10 European Miscellanei and Asia



necessarily rather new. Some of the countries were weakened by a rather important
emigration of people, and more particularly of scientists and certified engineers.
Other countries were helped by the remnants of the influence of a well-organized
state such as the Austro-Hungarian Empire. Anyway, what we must emphasize is
the role played in some cases by networks of institutions and alumni, e.g., for-
mation obtained in certain elitist engineering schools. This may help in finding
teaching and/or research positions. In countries like modern Japan, professional
societies such as the Japanese Society of Mechanical Engineers (founded as a copy
of the A.S.M.E) are instrumental in maintaining an esprit de corps. In previously
communist countries we must acknowledge the seminal role played by the local
National Academy of Sciences (more on this in the chapter on the former Soviet
Union and Russia). Often devoid of any mercantile and application-oriented
vision, they favoured the treatment of theoretical problems and the implementation
of serious applied mathematics. Finally, in Europe, but with a much broader region
of influence, an institution such as the International Centre of Mechanical Sci-
ences (C.I.S.M, in Udine, Italy) favoured the dissemination of new development
trends. Not only this provided occasions to create new international relations, but
this often suggested new ideas for research lines to the young participants (at least
this is the feeling of the author who taught there eight times in a period of
35 years).

As a summary of this rapid and necessarily partial and biased survey, we record
the obvious importance taken by the following fields of study: plasticity and
fracture, the mechanics of phase transformations, coupled fields, and generalized
continua.
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Chapter 11
The Soviet and Russian Schools

Abstract It is remarked that essentially for ideological reasons and the use of an
original language and alphabet, contributions from this immense and powerful
country have often been belittled or altogether neglected. This chapter tries to
correct this misconception and biased treatment. In particular, one cannot discard
some original facts, among them the general high quality of teaching at high-school
and university levels, the essential role played by the Academy of Sciences and its
various branches, and the friendly rivalry between Moscow and Leningrad/St
Petersburg. That is why, after briefly recalling the role of some precursors, attention
is focused on these two main centres that host a multiplicity of competing institu-
tions. The former Soviet Union had the chance to foster strong personalities in
continuum mechanics, e.g., L.I. Sedov, A.A. Ilyushin, A.Y. Ishlinsky, G.I.
Barenblatt, V.V. Novozhilov, Y.N. Rabotnov, L.M. Kachanov, A.I. Lurie, I.A.
Kunin, N.I. Mushkeshisvili, S.A. Amsbartsumian and many others. Their contri-
butions in all fields of continuum mechanics and those of their disciples are surveyed
albeit much too briefly. Their books, in contrast to their unevenly translated papers,
had a world wide influence in the field. Some of the now much cultivated research
fields find their origin in this country that experienced different political schemes
(Russian Empire, Soviet Union, Russia, and the New Independent States) and went
through difficult times.

11.1 Introduction: Slavic and Russian Background

Preliminary note: In what follows the English transliteration (in Latin alphabet) of
Russian (in Cyrillic alphabet) is used but the reader must realize that this is a mere
convention, transliteration between different alphabets having for purpose to render
at the best the original sound of the foreign word but in your own way of pronouncing
what you read. Here examples are: :yrodcrbq = Zhukovsky (English) = Jou-
kovski (French); BKM>IBH = Ilyushin (English) = Iliouchine (French).

G. A. Maugin, Continuum Mechanics Through the Twentieth Century,
Solid Mechanics and Its Applications 196, DOI: 10.1007/978-94-007-6353-1_11,
� Springer Science+Business Media Dordrecht 2013
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Transliterations in German, Italian, etc., are different. Also, wherever possible, the
patronymic name of persons is given in the Russian way.

Imagine your are sitting in the front row of an assembly of perhaps one
thousand people, squeezed between your two ‘‘godfathers’’, and waiting to be
called on the stage by the University Rector, Academician and Professor of
Mathematics Victor Antonovich Sadovsnichy, to receive a beautiful medal and a
diploma of Honorary Professor of Mechanics. The room is a large hall in the
Lomonosov Moscow State University. The day is 25 January, Year 2001, and a
massive statue of Igor Pavlov stands behind the authorities wearing academic
gowns. The lady acting as the mistress of ceremony has put her academic hat in the
way of Gavroche’s cap on the barricades in the Liberty guiding the People as
painted by Eugène Delacroix. Your thoughts are irresistibly drawn to Pavlov’s
dogs salivating on demand. And then you realize that you know much less about
Lomonosov, just that he is someone who, like Humboldt and the French Ency-
clopedists—in particular d’Alembert and Diderot—of the Enlightenment, has
something to do with universal knowledge and humanism. As a matter of fact, 25
January is the anniversary day of the creation of the University of Moscow in 1755
by Empress Elizaveta Petrovna (Elizabeth I of Russia) following the suggestion of
the polymath Academician Mikhail Vasilyevich Lomonosov (1711–1765). The
latter is considered a physicist, an astronomer, a chemist, a geographer, a mosa-
icist, and a poet (cf. Pavlova and Fedorov 1980).

Personal touch. In addition to the above personal description of a real happening, the
reader will have noticed the particular attachment of the author to Jean Le Rond
d’Alembert—whose name he gave to the Institute of Mechanics, Acoustics and Energetics
at the Pierre and Marie Curie University in Paris. D’Alembert is not in the same class of
mathematicians as Euler or Lagrange, but someone who invented the wave equation
cannot be that bad (this is an answer to Truesdell’s appraisal). In the Russian context,
brilliant offers from Catherine the Great to d’Alembert to join the Academy in St
Petersburg met no success; the same happened with Frederick the Great’s offers as
d’Alembert was an immovable Parisian.

This naturally takes us to a short historical review of the development of higher
education in Russia—in its various avatars (Russian Empire, Soviet Union, etc.).

Caveat. Here we do not make any difference between what is now understood
as Russia, Ukraine, Belarus (‘‘White’’ Russia), and ‘‘new independent states’’, east
and northwest of Russia. For instance, the oldest university in what was the USSR
was in Tartu (founded 1632, in Estonia, then under Swedish rule and the second
university in the Swedish Empire after Uppsala). Also, we do not make much
difference between the various Slavic languages of the area. We just recall that
Saints Cyril and Methodius, who were Byzantine Greek brothers and monks, and
apparently true philologists (but they probably had a mother of Slavic origin—this
may have helped), devised the so-called Glagolitic alphabet suited to match the
specific features of the old Slavic language (especially old church Slavonic) in
order to provide a good translation of the Bible. This is the origin of the Cyrillic
alphabet, clearly derived from the Greek one but enriched to accommodate new
sounds such as the hushing-hissing sounds (ts, ch, sh, shch) and used in Russia,
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Ukraine, Belarus, Bulgaria and Serbia. But the Baltic countries (Estonia, Latvia,
and Lithuania, from north to south) belong to different language groups, while
Poland, Czech Republic and Slovakia, although Slavic countries, use the—perhaps
badly adapted—Latin alphabet. Countries like Georgia and Armenia still have
different languages and alphabets.

We assume that the Moscow State University is the oldest standard university
within Russia per se although it is discussed whether the University of ‘‘Sankt
Petersburg’’ theoretically founded in 1725 under the Academy of Sciences may be
considered older. The Saint-Petersburg State Polytechnical University was estab-
lished in 1899. The latter was modelled after the Paris Ecole Polytechnique
although, in contrast with its Parisian original, it was not a military establishment.
But an Institute of Transportation and Communications modelled after the French
Ecole des Ponts et Chaussées (See Chap. 8) was also founded in 1809. Another
school for civil engineers was opened in 1832. Other higher-educational institu-
tions were created for special purposes in different places. For instance, the
University of Kazan goes back to 1804. But the competition was always princi-
pally between St Petersburg (the capital since Peter the Great and until the October
revolution) and Moscow (an older and more central place that again became the
capital within the Soviet Union). This competition is still very much alive. In
addition the Soviet regime instituted a series of research centres within the
Academy of Sciences which, therefore, became an institution with dual purposes,
honorary on the one side with its Academicians elected by their peers, and a
network of research laboratories with permanent researchers on the other side. The
French CNRS (Chap. 8) in 1939 was more or less modelled after this second
purpose of the Russian institution. Again the research centres of the Academy in St
Petersburg (Leningrad in Soviet times after a short period with the—quite cor-
rect—name of Petrograd) and Moscow have been in competition since their cre-
ation. But such research centres were also created in many other places (Nizhny
Novgorod, etc.) including in republics such as Ukraine (Kiev, Kharkov), Armenia
(Yerevan), Georgia (Tbilisi), Estonia (Tallinn), etc.

In the sequel we use the abbreviations MSU (for Moscow State University and
its forerunners), StPbU (for the University of St Petersburg) and SPbPU (for the St
Petersburg Polytechnic) since they are the most frequently cited institutions.
Research centres of the Academy are simply indicated by the abbreviation RAS
(for ‘‘Russian Academy of Sciences’’) independently of whether it is in imperial,
soviet or actual times.

Before turning to a perusal of research themes and achievements, the following
general four remarks may be in order. A general one is that in the Russian Empire
and also in the Soviet Union, a difference was made between nationality and
citizenship. Here we call all people ‘‘Russian’’ for the sake of simplicity. Second,
when we examine the career of Russian scientists we usually witness very little
mobility. We do not analyze the cause of this phenomenon, but a sure result of this
was that the notion of curriculum vitae was practically unknown in Russia before
scientists tried to emigrate (before, people did not have to apply anywhere; they
were locally known!). Third, in many of the institutions where continuum
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mechanics was cultivated departments or faculties were often of mixed denomi-
nation, ‘‘mathematics and mechanics’’. This obviously means a certain theoretical
bias in the field. However, a remarkable feature is that many ‘‘mechanicians’’ had
also acquired an excellent knowledge of mathematical physics (often through the
series of books written by L. D. Landau and E. M. Lifshitz). This last remark is
corroborated by a certain trend felt in many works by Russian mechanicians.

11.2 Some ‘‘Classic’’ Precursors and Pioneers

Without going back to Lomonosov, we should mention a few Russian scientists,
not necessarily mechanicians, who have influenced some active trends in Russian
mechanics and engineering in the twentieth century.

Of course the name of Nikolai Ivanovich Lobachevsky (1792–1856), one of
the inventors of non-Euclidean geometries and rector (1827–1846) of the
University in Kazan remains for ever attached to that university. His works
strongly influenced many parts of mathematics and physics, including in general
relativity. He spent all his life in Kazan.

The second emblematic figure is Konstantin Eduardovich Tsiolkovsky
(1857–1935)—a teacher and not a professional scientist—who laid the bases of
space travel and space propulsion. As we know, this was to bring Soviet
aeronautics and astronautics to the forefront of the corresponding engineering
developments and research. Himself influenced by the French novelist Jules
Verne, he was a source of inspiration for many Russian engineers, not the least, the
Soviet rocket engineer Sergey Korolev (1907–1966). The latter was educated at
the Kiev Polytechnic Institute and the Bauman Moscow State Technical University
(school originally founded by Empress Catherine II in 1763 and therefore con-
sidered as the second oldest higher-educational institution in Moscow) which
formed many future engineers in aeronautics in the twentieth century. Andrei
Tupolev, Nikolay Zhukovsky and Pavel Sukhoi were also alumni of the Bauman
University. This university also swarmed in institutions such as the Moscow
Aviation Institute, the Central Aerohydrodynamics Institute (with Russian abbre-
viation TsAGI, see below), and the Zhukovsky Military Academy of Aviation
Engineering (now called Zhukovsky-Gagarin Air Force Academy).

Among the people just mentioned, special attention is to be paid to Nikolay
Yegorovich Zhukovsky (1847–1921). Famous for his ‘‘Zhukovsky transform’’ in
the complex plane, and the Kutta-Zhukovsky circulation theorem that explains the
lift of an airfoil, this scientist established the first Aerodynamic Institute in
Kachino (near Moscow) and was head of the TsAGI starting in 1918.

Sergey Alekseevich Chaplygin (1869–1942) was originally educated in
physics and mathematics at MSU. But he achieved his first research work under
the guidance of Zhukovsky. This was in the line of analytic works by Clebsch and
Kirchhoff (see Sect. 1.6). He wrote famous papers in different areas of mechanics
(analytical mechanics, gas streams). It is in one of these works that he proposed an
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efficient method to study jet flows of a gas at any subsonic speed. This opened the
way for the study of high-velocity aerodynamics, providing the basis for the
solution of problems of subsonic flows that became of actuality with the crossing
of the Mach sound barrier with a jet plane in the late 1940s. The most well known
student of Chaplygin was Leonid I. Sedov (see below in Sect. 11.3).

Personal touch. The author had the chance to take with Professor Paul Germain (see Sect. 7.2)
one of the few specialized graduate courses offered in the world on the ‘‘Hodograph method
and Chaplygin transform’’ in 1967. This is one of the most wonderful teaching experiences I
went through since Germain had done much research work on this timely (1950–1955)
subject and Tricomi’s equation—that describes the change of mathematical type of partial
differential equations between elliptic and hyperbolic regimes. This proves that one never
teaches and explains so well as when one gives orally the detail (without notes) of one’s
successful research, even though a span of ten to twenty years may have elapsed.

The next three scientists, although not specifically mechanicians, but rather all
round physicists, were instrumental in creating institutions and publishing books
that fostered many domains of continuum mechanics and the allied applied
mathematics, and contributed to the formation of an elite in the field. First of these
is Abram Fedorovich Ioffe (pronounced Ioffé, sometimes written Joffe;
1880–1960). He was educated at SpbPU and worked at the Leningrad Physico-
Technical Institute in St Petersburg (now named after him). A scientist with a very
large spectrum of interests, he formed several world renowned scientists in various
branches of physics, to name a few: Pyotr Kapitsa (low temperature physics), Igor
Kurchatov (atomic research), Lev Artsimovich (plasma physics), and Yakov
Frenkel. The Ioffe Institute (RAS) in St Petersburg remains one of the best research
centres in Russia.

Note. An unexpected connexion with continuum mechanics is as follows. Physics pro-
fessor Orest Danilovich Chwolson (1852–1924)—also written Khvol’son—in St Peters-
burg was one of the examiners of Ioffe’s thesis in 1913. He was the author of a five-
volume treatise on physics that was translated into French in the period 1906–1928. It is in
this translation (mostly done by their brother in law) that the Cosserat brothers first
published as a complement their long 1909 paper on what has become known as ‘‘Cosserat
continua’’ (see Chap. 13). The world is so small that the following should not come as a
surprise. As a young graduate from St Petersburg, Abram Ioffe spent two years in Wilhelm
Roentgen’s laboratory in Munich, where he obtained his PhD in 1905. He was asked to
assess the possible publication in the Annalen der Physik of a revolutionary paper by an
unknown German working in Switzerland (this was Albert Einstein). Ioffe recommended
the publication of what was to become the foundational paper in special relativity; See
Ioffe AF (1955). ‘‘In remembrance of A. Einstein’’, Uspekhi Fizicheskikh Nauk, 57(2):187
(in Russian)].

Yakov Il’ich Frenkel (1894–1952), a young prodigy in mathematics, was
educated at StPbU and did his first research work under Ioffe’s guidance. He later
taught at both StPbU and SPbPU. During WWII he taught for some time at Kazan.
He published many works and books, including on Vector and Tensor analysis
(1925), Electrodynamics (1926), Analytical mechanics (1935) and Theoretical
mechanics based on vector and tensor analysis (1940). It is said that his incredible
productivity was a drawback. Like for Ioffe, his Jewish background made him the
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target of an anti-Semitic campaign in the late 1940s–early 1950s. He is most well
know in mechanics for the dynamic model of dislocations that he proposed (1938)
together with his younger co-worker Tatyana Abramovna Kontorova
(1911–1976)—the Frenkel-Kontorova model. In some sense this was the first ever
formulated equation of soliton theory in solid-state physics and mechanics (apart
from the Korteweg-de Vries equation in fluid mechanics), now called the sine–
Gordon equation. That is, in non-dimensional units, the nonlinear partial differ-
ential equation

o2u

ot2
� o2u

ox2
� sin u ¼ 0 ð11:1Þ

Here the sine function provides a balance between nonlinearity and dispersion
effects, hence the phenomenon of solitary waves (here topological solitons called
kinks).

Note. During the anti-Semitic campaign that attacked physical views—supposedly held
mainly by Jews (as ‘‘cosmopolitans’’) in favour of quantum indeterminism—in error
compared to the official credo, his former co-worker Kontorova published, willingly or
not, a paper negating Frenkel’s contributions to physics; no comments!.

The third physicist of interest in the present context is the world renowned Lev
Davidovich Landau (1908–1968; Nobel Prize in 1962). He was formed at StPbU,
in Göttingen and in Copenhagen. He worked further in Kharkov and at the Institute
of Physical Problems in Moscow, which now bears his name. He left his name in
many fields of physics, but probably most famously for his contributions in con-
densed matter physics and more particularly to the theory of phase transitions.
More appropriately for this book, together with his friend and frequent co-worker
Evgeni Mikhailovich Lifshitz (1915–1985) he conceived and partly wrote a
monumental treatise of theoretical physics in ten volumes—the celebrated ‘‘Lan-
dau curriculum’’. Of particular interest for mechanicians of the continuum are
Volume 1 (Mechanics), Volume 2 (Theory of fields), Volume 6 (Fluid mechanics),
Volume 7 (Theory of elasticity) and Volume 8 (Electrodynamics of continuous
media). In contrast to Truesdell (see Chap. 5), Landau and Lifshitz favour an
approach exploiting the Hamiltonian-Lagrangian variational approach. The above
mentioned five volumes have often been inscribed in the curriculum of many
Russian specialists of continuum mechanics and physics. This treatise played in
the Soviet Union and still today a role equivalent to the Feynman lectures or the
Berkeley course of physics in the USA, albeit in a more ambitious and complete,
detailed, and advanced form.

Personal touch. As a young student the author benefited in 1965 from the French trans-
lation of the first two volumes of the Landau-Lifshitz course. With a typical enthusiasm of
the youth I wrote to the MIR Publishers in Moscow to congratulate them and ask when the
other volumes would be available in translation. Surprisingly enough (letters form Russia
were rare at the time), I received an answer. But the other translations were not ready yet. I
had to turn to the English translation of the volume on electrodynamics published in a
rather luxurious edition by Pergamon Press to know the rest of the story. This cost half one
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month of my student fellowship. It was less expensive to self teach Russian. I wanted to
study other volumes directly in Russian. I ordered the volume on elasticity and other
volumes through the Russian bookstore in Paris, a very unreliable shop. I then discovered
to my surprise and in truth with some deception that some chapters were not written by
Landau and Lifshitz. Thus the chapter on dislocations was written in 1962 by Arnold
Markovich Kosevich (1928–2006), then in Kharkov, Ukraine. I could not imagine that
one day we would co-author papers on solitons in crystal physics (cf. Kosevich et al.
2001). Furthermore, having acquired a kind of reputation as an expert on science in the
Eastern European countries, in the 1990s I was often called by the SOROS foundation in
Washington to write expert reports on many Russian applications for financial support in
physics and mechanics; just the same with the INTAS Foundation of the European Union
in Brussels.

In what follows we had the choice between exposing research fields by separate
themes or by selecting the institutions. Because of the restricted mobility of people
and the consequent formation of durable schools, the second solution has been
chosen, even though the same theme can be cultivated in various places but with
difference styles.

11.3 Continuum Mechanics at Moscow

The richness of research results in our field in the various institutions of Moscow
in the twentieth century is remarkable. As a matter of fact, several institutions
seem to be in harsh competition, including between departments of the same
university (MSU) or between MSU and local laboratories of the RAS.

11.3.1 MSU and Leonid I. Sedov

Leonid Ivanovich Sedov (1907–1999) is considered an emblematic figure in the
landscape of mechanics in Russia. He was educated in mathematics and mechanics
at MSU and his early research was achieved under the guidance of Chaplygin at
TsAGY. His first remarkable result (1934) was in establishing an integral formula
while studying by means of complex variables two-dimensional problems of
hydrodynamics (see Sedov’s book of 1937). It happens that the same expression is
also found in studies of cracks in elastic solids [see Maugin 1992, Eq. (A4.24)]. He
made numerous contributions to hydro- and aero-dynamics, noticeably, those
concerning the impact of bodies on water, hydroplaning, and aerodynamic forces
on deformable wings. One of his favourite tools was the exploitation of dimen-
sional analysis and so-called similarity, a subject on which he wrote a very popular
monograph (1944). He became extremely famous in 1946 when he presented at the
Landau seminar his ‘‘blast-wave’’ solution, obviously of actuality then with the
first nuclear explosions. In more recent times, Sedov focused on the teaching and
general formulation of continuum mechanics. His books (1962, 1973) on the
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subject have met an incredible success in Russian and in their many foreign-
language translations. One of his favourite general formulations is now known as
‘‘Sedov’s variational principle’’. This formulation (Sedov 1968) is close to one
using a general view of the principle of virtual power (cf. Maugin 1980, with
comparison to Sedov’s formulation in Sect. 8.3). This principle is formulated in
space–time in the following form:

d
Z

V
K1dsþ dW þ dW� ¼ 0 ð11:2Þ

Here V is a region of space–time, K1 is a generalized Lagrangian function
including space–time metric and curvature, deformation, scalar or tensor com-
plexes (e.g., spin effects), various parameters and their gradients. Eventually shock
conditions across a discontinuity surface sweeping out V can also be deduced from
such a general formulation. The term dW�stands for an already-varied—not
necessarily holonomic (e.g., corresponding to dissipation and defects)—form and
contains all constraints applied to the various fields in the bulk and at surfaces.
This includes generalized external forces. The term dW is the looked for
expression that provides the field equations for any admissible variation of the
basic fields. Note that thermal and dislocation density considerations can be
included so that (11.2) is much more general than any traditional formulation of
the principle of virtual work. Examples of applications of (11.2) have been worked
out by Sedov and some of his collaborators, including Berdichevsky (1966a, b),
V.V. Lokhin, G.A. Lyubinov, V.A. Zhelnorovich and A.N. Golyubiutnikov. The
first of these scientists produced one of the best ever written books on variational
principles in continuum mechanics, first in Russian (1983) and then in a much
revised and enlarged English version (2009). He also worked out (1979) a
homogenization technique based on a variational formulation that elegantly pro-
vides the governing equations for slender structures such as shells, plates and rods.

Personal touch. One of the first considerations of Sedov’s variational principle in the West
was by the present author in his Princeton Doctoral thesis, 1971, Chapter One. The author
was in touch with Sedov’s group for a long period, starting in 1974 (cf. Maugin 1978). For
some time the rumour even spread that he was going to translate Berdichevsky’s book.

Among other disciples of Sedov who were or are very productive we note Lev.
M. Truskinovsky and K. Chau Le (both in fact mentored by Berdichevsky), and V.
Z. Parton. Truskinovsky published early pioneering works on the propagation of
phase-transition fronts seen as discontinuity waves (Truskinovsky 1982, 1983,
1985, 1987). Le has applied Berdichevsky’s technique to piezoelectric structures
and their vibrations (See Le’s book Le 1999). As to Vladimir Zalmanovich
Parton (1940–2000) he became a noted specialist of mathematical methods in
elasticity and plasticity. His most well known books are, among several more, on
integral equations in elasticity (1982) and the elastic–plastic theory of fracture
(1978). He published in 1976 an interesting pioneering paper on fracture in pi-
ezoelectrics. Together with Kudryavtsev, he published in 1988 a nice book on
electro-magneto-elasticity with an emphasis on piezoelectrics and electricity
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conductors (Parton and Kudryavtsev 1988). This book was more or less in com-
petition with the author’s own book of 1988 that was also translated into Russian
(Maugin 1991). Note that Berdichevsky, Truskinovsky, Le and Parton all left the
USSR for the USA or Germany. Another disciple of Sedov at MSU and friend of
the author was Naïl Sigbatulin—a Tatar who passed away untimely—who was a
specialist of non-linear waves (book in 1994). In the same line, A. G. Kulikovsky,
a noted specialist of hyperbolic systems, magneto-hydrodynamics and shock
waves with works extending from the 1960s is also to be considered in the
environment of Sedov (see Kulikovsky et al. 2001).

11.3.2 MSU and A. A. Ilyushin

With Ilyushin’s group in Moscow we have a different trend and scientific envi-
ronment. Alexey Antonovich Ilyushin (1911–1998) had a long career in solid
mechanics mixed with politically marked organizational roles. One has to consult
the biography given in Russian and English in the book (Kiyko et al. 2001) for a
complete overview. Here we focus on some aspects that are closer to our own
scientific experience (plasticity, general formulation of the thermo-mechanics of
continua, electromechanical interactions). The strength of materials and the
engineering aspects of elastoplasticity seem to have been a constant preoccupation
of Ilyushin, starting with his early works in the mid 1930s. What is quite
remarkable is that these most innovative and rewarding developments were made
in an obviously difficult period, the 1940s, corresponding also to the strength of
maturity reached by this scientist.

In Ilyushin’s contributions to elasto-plasticity we like first to emphasize the
iterative solution method (Ilyushin 1943). Elasto-plasticity is a nonlinear theory in
which the stress-displacement solution appears in an incremental scenario that
reflects the evolutionary nature of the related problems with possible loading and
unloading phases. In a typical implicit scheme one has to determine the increments
in displacement Du; strain DE and stress DR such that the increment in dis-
placement equals the increment in the kinematic condition at the boundary at the
target time tnþ1 and the new stress Rn þ DR is in the target static condition Snþ1 at
target time tnþ1: In Ilyushin’s method the solution in displacement is approximated
by a sequence of elastic solutions taking, at each time, as initial condition, the
result at the previous step. The basic idea goes back to Picard’s method of suc-
cessive approximations to nonlinear equations. In a more recent computer era,
Ilyushin’s method provided the basis for many numerical works (see Chap. 11 in
Maugin 1992). In 1948, Ilyushin published one of the best books on plasticity,
somewhat in competition with Hill’s celebrated book (cf. Chap. 5).

Ilyushin’s postulate (1961, 1963) in elasto-plasticity belongs in the flourishing
period when minimum (or maximum) principles started to play a fundamental role,
directly reflecting the thermodynamic irreversibility of the evolution of the plas-
ticity phenomenon. Ilyushin’s postulate can be stated thus: for any strain cycle
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e tð Þ ; t 2 0; 1½ � with e 0ð Þ ¼ e 1ð Þ in small strains and stress r, the strain power is
positive or zero (semi-colon here means contracted product of two Cartesian
tensors)

Z 1

0
r : _e tð Þdt� 0: ð11:3Þ

This applies to materials with hardening. Equation (11.3) can be viewed as a
global stability criterion which says that any closed response loop in a strain
(abscissa)-stress (ordinate) diagram is always followed clockwise. It can be
compared to Drucker’s inequality (here ep is the plastic strain; see Chap. 4)

_r : _ep� 0; ð11:4Þ

that implies that in such a diagram increments in stress and strain must always
have the same sign in both loading and unloading, hence angular points at the
highest and lowest points of a strain–stress hysteresis curve (hysteresis curves
cannot be rounded at their upper and lower extremities). This positive hardening
condition provides a local stability criterion for the material and, as just explained,
gives further information on the shape of the loop considered by Ilyushin. The
relationship between Ilyushin’s, Drucker’s and Hill’s principle was discussed by
several authors (see Maugin 1992, 2011, 2013; and Marigo in Kiyko et al. 2001).

In his lectures at MSU published in book form (1971) Ilyushin makes a special
effort at a general rational presentation of continuum mechanics but not at the level
of C.A. Truesdell in the west, and with less international success than Sedov’s
courses. This matter is emphasized in Brovko (2013) who examines the formal
structure of Ilyushin’s general approach. One notion that was not acknowledged so
much is that of Ilyushin-Lensky five-dimensional space. This may seem a trivial
idea when we remember the six-dimensional notation for stresses of Voigt used in
modern piezoelectricity. But this is not the case. Indeed, we all agree now that the
actual state of stresses in a material body depends on the whole past history of the
body. This was clearly stated by Ilyushin in his book of 1948, but also continu-
ously emphasized by him in his publications and his textbook for the Lomonosov
University (Ilyushin 1971–1990). First implemented in small-strain plasticity,
Ilyushin introduced the notion of six-dimensional spaces of strains and stresses
(1954 on)—reduced to five-dimensional spaces of deviatoric quantities in the case
of plasticity. This allows a classification of deformation processes with deforma-
tion trajectories with the required degree of complexity. This is particularly well
adapted to the description of hardening in elasto-plastic materials, in particular in
accounting for the deformation acquired by the yield surface during the evolu-
tionary history of the material. Remarkably enough, testing machines devised in
Ilyushin’s group reproduce the trajectories in such spaces for complex loading.
This led to the introduction of a ‘‘principle of isotropy’’ and the subsequent pro-
posal of a ‘‘postulate of macroscopic determinability’’. This was often developed
in co-operation with V. S. Lensky, a long-time associate of Ilyushin (see Ilyushin
and Lensky 1959; Lensky 1960). V. S. Lensky and his son E.V. Lensky (1994)—
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the E stands for ‘‘Era-Lenina’’ (no need for a translation!)—have shown the better
agreement obtained with experiments by such a description than by accepted
standard theories of elasto-plasticity. A modern reference to these works with
some extensions is Zyczkowski and Kurtyka (1984).

The complete works of Ilyushin (2003–2009) deal with many more subjects
including thermoelasticity, viscoelasticity, thermo-viscoelasticity, penetration
problems, stability of structures, and the nonlinear dynamics of continua and
structures, all fields in which he formed a number of scientists and mechanical
engineers. This was achieved in a difficult period during which Ilyushin was also
much involved in academic duties—both lecturing and administration—and also
with a serious involvement in national scientific and engineering matters. His-
torical circumstances (the cold war, the discussed role of Ilyushin as rector of the
University of Leningrad in 1950–1952, the secrecy of some of his applied research
works, and his friendship with Lavrentiy Pavlovich Beria of NKVD fame) did not
favour a full international recognition at these times.

11.3.3 MSU and Y. N. Rabotnov

Yuri Nikolaevich Rabotnov (1914–1985) was educated in the Department of
Mathematics and Mechanics at MSU. He became the dean of this department in
1938 and organized a chair of plasticity. But he was also closely associated with
Akademgorod (‘‘Science town’’) of the Siberian branch of the USSR Academy of
Sciences. Among the scientists he mentored we know B. D. Annin, A. V. Berezin,
A. A. Movchan, V. P. Tamuzh, E. V. Lomakin, and many others. He was back at
his chair at MSU in 1965. He shared an equal interest in theoretical and experi-
mental studies, in particular in fracture mechanics and composite materials.
Among his original works we note the discovery of edge effects and local buckling
in elastic shells. But he is mostly known all over the world for his creation of the
modern theory of creep in which he duly exploited integral equations with
hereditary type kernels in the style of Boltzmann and Volterra. He wrote definite
books on this matter (see his books of 1969 and 1980). In particular, he proposed
there original mathematical techniques to solve the problem of the inversion of
action of these kernels that are of the fractional-exponential type. Such kernels
sharing the properties of singularity and exponential nature were introduced by
Rabotnov in 1948. Their application was recently discussed by Suvorova (2004).
We remind the reader that the phenomenon of creep is of great importance as it is
what determines the resistance and life duration of mechanical elements submitted
to high temperature. It corresponds to an observed growth with time of plastic
strain under the effect of a relatively small stress. Creep may be related to damage,
a subject matter that interested Rabotnov all along his life and in which he pro-
posed seminal ideas (cf. Rabotnov 1963) almost at the same time as Kachanov (see
below).
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Other departments at MSU have educated and still welcome scientists who
contribute remarkably to continuum mechanics and its applications. This is the
case of the Department of Physics, for instance with V. G. Mozhaev and his
original mathematical results on elastic surface waves.

11.3.4 Moscow Institutes of the Russian Academy
of Sciences

Institute of Mechanics
The Institute for Problems of Mechanics of the RAS in Moscow has always

been in friendly competition with various departments of the Lomonosov
University. But this is more a matter of personalities and sensibilities than of
research fields. For a long time its head was Alexander Yulyevich Ishlinsky
(1913–2003). The latter was also a scientist of many interests including gyroscopic
and inertial-guidance systems as well as elasto-plasticity. The Institute took his
name after his death. It is no question to review the works done and the results
obtained at this Institute during some 50 years. We prefer to mention more par-
ticularly two individuals who have been closer to the author’s own interests. One is
Robert V. Goldstein whose fruitful scientific activity embraces fracture
mechanics, wave propagation, the mechanics of large scale structures as also the
mechanics of materials in arctic conditions (ice and ice cover). His most cited
work (1974) deals with the brittle fracture of solids with arbitrary cracks. But he
has also been involved in such problems as multi-fractal fracture geometry and
scaling effects, and a clever application of invariant integrals to the problem of
defect identification. Like many Russian mechanicians of his generation he
demonstrates a high dexterity in applied mathematics. The other scientist is
Vladimir N. Kukudzhanov (born 1931) who is the acknowledged Russian spe-
cialist of numerical computations in elasto-plastic and visco-plastic materials and
non-linear wave propagation (see his book of 2008). Note that he was originally
formed at the Moscow Institute of Physics and Technology and spent almost
20 years (1964–1983) at the Computer Centre of the RAS as a research senior
before joining the Institute for Problems in Mechanics as Head of the Department
of Mathematical modelling in solid mechanics and retiring in 2004.

Institute of Crystal physics
The Theoretical department of this institute was created in 1966 as an initiative

of the famous crystallographer Alexey Vasilyevich Shubnikov (1887–1970),
whose name was later on given to the Institute. Among many works dealing with
all aspects of crystal physics, we are more specifically concerned by those that deal
with the mechanics of defects and wave propagation in crystalline structures, i.e.,
anisotropic elastic solids. V. L. Indenbom (1915–2007) was the first head of this
department and has been the driving force behind its successful researches. One of
his interests was the relationship between plasticity and dislocations. His direct
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disciple Vladimir I. Alshits (born 1942) dealt essentially with dislocation prob-
lems and surface wave propagation. Together with J. Lothe (from Norway) and D.
M. Barnett (from Stanford) and also sometimes with H. O. K. Kirchner (from
Austria and Paris-Orsay), Polish scientists, and the present author, he has been one
of the most active propagandists of Stroh’s formulation (see Chap. 6), especially in
stratified elastic, electro-elastic and magneto-elastic structures. His own students
A. V. Shuvalov and A. Darinskii have continued along the same line. He also
developed a theory—supported by experimental evidence—of magnetic effects in
plastic crystals. In one of his old papers he had introduced the notion of Radon
transform to represent a given intrinsic distortion in an infinite anisotropic crystal.
Examples of works are: Indenbom (1979), Indenbom and Alshits (1974), Inden-
bom and Orlov (1962), Alshits and Maugin (2005).

Institute of Oceanology
The relevant well known scientist is none other than Grigory Isaakovich

Barenblatt (born 1927). He is referred to here because he was the Head of the
Theoretical Department of this Institute in the period 1975–1992. Although he
may be introduced as a specialist of fluid mechanics dealing with such various
problems as turbulence, porous flows, and non-Newtonian fluids, he is mostly
celebrated for his fundamental works in asymptotic techniques (‘‘intermediate
asymptotics’’) and the theory of similarity in mechanics (cf. Barenblatt 1996). His
achievements in the last subject obviously created some competition with Leonid
Sedov (see above). Barenblatt graduated from the Department of Mathematics and
Mechanics of MSU. He obtained his PhD (1953) there under the supervision of the
famous mathematician A. N. Kolmogorov. He worked first at the Petrol Institute of
the RAS and then as Head of the Department of Plasticity at the Institute of
Mechanics at MSU (1961–1975) before joining the Institute of Oceanology.
Starting from 1992 he has been sharing his time between various institutions in the
west, essentially the University of Cambridge, UK, and the University of Cali-
fornia at Berkeley. Among his many works which brought him international
recognition and many scientific honours, we like to single out his work on non-
linear waves in polymers and his elastic theory of cohesive forces (Barenblatt
1962). In this theory of cracks it is admitted that ahead of the crack front there
exists a zone in which the ‘‘atoms’’ can be pushed aside at a variable distance d and
that this separation leads to cohesion stresses which are opposed to a clear sepa-
ration. These cohesion stresses vary from zero at d = 0 as a function r dð Þ
according to a law characteristic of the material. J. R. Rice has shown the
equivalence of Barenblatt’s theory with Griffith’s results.

Some of Barenblatt’s successful disciples were R. L. Salganik (works on
cracks) and Genady P. Cherepanov (born 1937). The latter, a very gifted student
and researcher, was instrumental in introducing elements of configurational
mechanics (see Chap. 14) at an early stage (Cherepanov 1967, 1968) in fracture
theory with the notion of invariant C-integrals (Cherepanov 1977), of which the J-
integral of fracture of Rice is but a special case. He showed how this notion can be
used in industrial situations (e.g., machine-tooling and cutting). His book
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(Cherepanov 1979, original Russian in 1974) is an unsurpassed marvel (in the
same line see also Cherepanov 1985, 1987, 1989, 1998).

Institute of Earth Physics
For a long time at this institute, Michael A. Grinfeld is an original thinker who

has contributed to various facets of continuum thermo-mechanics in the late 1980s
until now. He is most well known for his works on the propagation of thermo-
mechanical fronts (e.g., Grinfeld 1980) synthesized in his comprehensive book
(Grinfeld 1991), and for his discovery of an elastic instability (so called Grinfeld
instability) that may occur during molecular beam epitaxy (Grinfeld 1986). This is
manifested when there exists a mismatch between the lattice sizes of the growing
film and the supporting crystal, as elastic energy will be accumulated in the
growing film. At some critical height, the free energy of the film can be lowered if
the film breaks into isolated islands, where the tension can be relaxed laterally. The
critical height depends on Young’s moduli, mismatch size, and surface tensions.
This instability is also known as the Asaro-Tiller-Grinfeld instability, but Grinfeld
undoubtedly deserves to have his name alone attached to this effect. This creative
scientist also worked on the effects of initial stresses on elastic waves, stress-driven
morphological instabilities in rocks, glass and ceramics, the morphology of frac-
tured domains in brittle fracture, the plasticity in monocrystals with limited active
slip systems, and the kinetics of dielectric and piezoelectric crystals with lattice
defects. He moved to the USA in 1992 but unfortunately he did not find there a
well deserved stable university position. He works now on shocks in condensed
matter.

Institute of Electronics
This is not a priori related to mechanics. But we include it here because it was

the place where a new type of surface acoustic waves—now called Bleustein-
Gulyaev waves—after J. L. Bleustein, a co-worker of H. F. Tiersten in the USA
(see Sect. 4.5) and Yu. V. Gulyaev in this institute—was invented in 1968–1969.
This may sound a small thing if we judge from the short length of the paper. But in
fact it is one example of exact—and quite simple—solution that adds up to the
short gallery already started with the Rayleigh, Love and Stoneley waves men-
tioned in Chap. 6. It is a pure shear-horizontally (SH) polarized surface elastic
wave of which the existence is allowed by the perturbation of the surface boundary
conditions by an electro-elastic coupling at the upper surface of an otherwise free
(of mechanical load) linear piezoelectric half-space (Gulyaev 1969). In effect, this
coupling plays the same role as the ‘‘slow’’ superimposed layer considered for
Love waves. Since this discovery this institute has produced a huge quantity of
works that find applications in signal processing.

Personal note. Several of the author’s co-workers obtained their doctoral degrees in
Moscow: Sanda Cleja-Tigoiu (from Romania) with Ilyushin, Rainaldo Rodriguez-Ramos
(from Cuba) with Pobedrya in Ilyushin’s environment, Ahmed F. Ghaleb (from Egypt) in
Sedov’s group, A. Darinskii with Alshits in crystal physics, and Boris A. Malomed (now
in Israel) in Barenblatt’s institute.
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11.4 Continuum Mechanics at Leningrad/St Petersburg

11.4.1 The University of Leningrad/St Petersburg

The university in Leningrad/St Petersburg is usually considered as a successful
research centre in mathematical studies related to elasticity and plasticity. Among
the great mathematicians who contributed to the study of the partial differential
equations of physics and mechanics, Vladimir Ivanovich Smirnov (1887–1974),
Solomon Grigor’evich Mikhlin (1908–1990), and Vladimir Gilelevich Maz’ya
(born 1937) must be singled out. In particular, Smirnov is the author of a much
praised multi-volume course on ‘‘Higher mathematics’’, while Mikhlin wrote
essential works on elasticity theory and boundary value problems early in his
career, including plane problems (period 1932–1935), shell theory, and the so-
called ‘‘Cosserat spectrum’’ (see his book of 1957). Among Smirnov’s students, in
addition to Mikhlin, we also find such well known mathematicians as Victor
Kupradze (1903–1985) from Georgia and Sergei Lvovich Sobolev (1908–1989).
The latter, while instrumental in the creation of the Akademgorodok Siberian
scientific city together with physicist-mathematician Mikhail Alexeyevich Law-
rentyev in the 1950s, is responsible for the introduction in functional analysis of
generalized functions (later called ‘‘distributions’’ by the French mathematician
Laurent Schwartz). ‘‘Sobolev spaces’’ are named after him. The tradition of
studying mathematical problems in elasticity has been pursued until now in
Leningrad/St Petersburg. Nowadays this is done around Academician Nikolai F.
Morozov (born 1932) in the Department of Elasticity, with main interest focused
on mathematical problems arising in fracture mechanics (cf. Morozov 1984,
Bratov et al. 2009).

The university in Leningrad/St Petersburg is also considered a source of high
level works in non-linear elasticity. Examining this point on an international level
in the 1940s it is of interest to browse the lectures delivered by Valentine Val-
entinovich Novozhilov (1910–1993) at the University in 1947 (and reproduced in
Novozhilov’s book of 1948). Remarkably enough, the expression ‘‘rubber elas-
ticity’’—in contrast with work in the West by people like Rivlin; see Chap. 3—
does not appear in this book. Practically the only western reference given is that to
the 1937 paper by Murnaghan apart from a few papers by Italian scientists.
Novozhilov rightfully explains that his non-linear elasticity is essentially useful for
studying problems of stability in elasticity, correctly accounting for initial stresses,
and reproducing the elastic–plastic non-linear response in monotonously increas-
ing loading only. Of course he is interested in metals and physical nonlinearity
only. The book received a positive appraisal from Truesdell in the review that the
latter published in 1953 in the Bulletin of the American Mathematical Society,
Vol. 59, pp. 457–473; Truesdell qualifies Novozhilov’s treatment as ‘‘simple but
profound’’. But Novozhilov is the author of many other papers, including in the
theory of thin shells (see his book of 1951). Furthermore, the flag of non-linear
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elasticity was taken over by A. I. Lurie and then P. A. Zhilin at the Polytechnic
University of Leningrad.

Lazar Markovich Kachanov (1914–1993) educated and with a full career in
Leningrad is a mechanician who did much work in elasto-plasticity and the theory
of creep. He contributed (Kachanov 1942) to variational formulations in both non-
linear elasticity and elasto-plasticity. His book (Kachanov 1974) on plasticity may
be considered a classic. It was translated into different languages. His greater
success from our viewpoint is the introduction of a simple but efficient model for
the phenomenon of damage (Kachanov 1958, 1960). The latter corresponds to a
decrease in elastic properties of a material upon a growth of microcracks and
microvoids during successive loading and unloading sequences. Indeed such a
growth results locally in a decrease of the areas that can transmit internal forces
(stresses; remember Cauchy’s introduction of the stress concept). In one-space
dimension a scalar D with value between zero and one is sufficient to describe the
phenomenon in a sketchy manner. This is well explained by Kachanov in his last
book (Kachanov 1986) published a few years before his death. He gave a law of
damage accumulation in fatigue process in the form

dD

dN
¼ g rm; rM; Dð Þ ð11:5Þ

where N is the number of cycles, rm is the mean stress and rM is the maximum
stress. This was developed in parallel with studies by Rabotnov. A thermody-
namically admissible formulation of damage was formulated by French mecha-
nicians (in particular, Jean Lemaitre and Jean-Louis Chaboche) for damage
starting in the mid 1970s from ideas of Kachanov and Rabotnov.

11.4.2 St Petersburg Polytechnical Institute

Anatolii Isakovich Lurie or Luri’e (pronounced Lurié; 1901–1980) was educated
at the SpbPU where he became the Head of the Department of Theoretical
Mechanics before WWII and the Head of the Department of Dynamics and
Strength of Machines or Department of Mechanics and Control Processes in the
period 1944–1977. He was scientifically active for almost half a century. The
numerous works of this scientist-encyclopedist span the hydrodynamics of viscous
liquids as well as solid mechanics and control theory. He also formed many
scientists through his efficient lectures, published books, and supervision. In his
first works he was one of the first contributors to fully exploit the operational
calculus of Oliver Heaviside in solutions of problems of fluid mechanics and of
linear elasticity. Some of his nice works dealt with analytical mechanics on which
he wrote a noted monograph. This seems to have naturally led him to deal with
non-linear problems in the theory of automatic control with the notion of absolute
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stability and the due exploitation of the Lyapunov-function method (applications
to spacecraft control).

In analytical mechanics Lurie dealt with great care with the representation of
finite rotations (relation of angular-velocity vector with the Rodrigues-Hamilton
and Cayley-Klein parameters)—this is useful in describing rotational internal
degrees of freedom in generalized continuum mechanics. He also generalized to
various friction laws the notion of dissipation potential introduced by Rayleigh for
linear viscosity. This was before the exploitation of general dissipation potentials
in continuum mechanics by French mechanicians (see Sect. 7.3) or H. Ziegler in
Switzerland and D. G. B. Edelen in the USA. Like many Russian authors, e.g.,
Goldenweizer or Novozhilov—and also Ambarstumian; see below- he was also
concerned by the theory of thin elastic shells, using asymptotics and rigorous
mathematical analysis.

Compared to many Russian authors who kept alive components or the indicial
notation for tensors, Lurie was a propagandist of the direct intrinsic notations for
vectors and then for tensors. This brought him more closely to his American
competitors, in particular in the Truesdellian School. He in fact translated into
Russian Truesdell’s ‘‘First course in rational mechanics’’ of 1975. This style is best
reflected in what the author considers his most achieved book (Lurie 1980) pub-
lished in 1980, the year of his death. This book is rather exceptional in the Russian
landscape of continuum mechanics at the period, but it is little known, even in
translation, in the west, being handicapped by its somewhat unusual notation that
makes it difficult reading. This included the consideration of rubber as a good
example of incompressible material, variational formulations with restrictions of
the elasticity potential, and the problem of superimposition of small motions on a
finite strain state.

For completeness we recall that in linear elasticity Lurie introduced an original
symbolic formalism for describing the inverse of spatial differential operators. This
is sometimes used in applications to the theory of elastic layers and thick plates,
but it requires some practice and its formal nature is somewhat puzzling. On
Lurie’s works see Zhilin (2001).

Anyway, as a consequence of his never tired activity and his ingenuity Lurie
created a true Leningrad school of mechanics. Among his direct disciples we find
L. M. Zubov (who developed a geometrical theory of defects in finite strains;
1997) and above all Pavel Andreevich Zhilin (1942–2005). Also a never tired
author like his mentor, Zhilin worked in different branches of continuum
mechanics while teaching at the SpbPU. In 1994 he became the head of the
Department of the Dynamics of Mechanical Systems at the Institute of Problems in
Mechanics of the RAS in St Petersburg. He has left a definite print with his
investigations on spinor motions in mechanics and physics, phase transitions in
inelasticity, electrodynamics within rational mechanics, and the logical founda-
tions of the field. The first of these is related to a rebirth of the notion of Kelvin
continuum as a model of generalized continuum mechanics (cf. Chap. 13). Among
his students we note Elena Grekova and Holm Achenbach (from East Germany).
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He was instrumental in organizing the yearly Summer school on ‘‘Advanced
Problems in Mechanics’’ held in St Petersburg/Repino.

Another researcher of this Department produced a pioneering work in the field
of generalized continuum mechanics (See Chap. 13). It is Vladimir A. Palmov who
proposed in 1964 one of the first modern models of a Cosserat continuum (Palmov
1964). He complemented this with a general model of complex continua in 1969.
In more recent times, Palmov has been concerned with vibrations in complex
mechanical structures (e.g., elastic media containing oscillators) and elasto-plastic
bodies.

11.4.3 Institute for Problems of Mechanics RAS

This Institute has a long tradition and co-operation with Leningrad Polytechnical
University, especially with P. A. Zhilin. Many results were obtained in common.
But we like to focus on two characters. One is Eron L. Aero (born 1934) who,
before even Palmov and long before anybody in the USA, produced (1960) a nice
original paper on a model of Cosserat continuum. Remarkably enough Aero is still
active at the moment of writing this book and he considers nonlinear effects in
media that are also generalized continua.

Personal touch. The author of this book had the privilege to co-author a paper in Physical
Review with Eron Aero and a younger colleague, Alexey V. Porubov.

The other researcher of this Institute who contributed much to the advance of
continuum mechanics in Russia is A. A. Vakulenko. His main interest is the
transition from the micro-level to the macro-level in the mechanics of materials.
This is basically the fundamental problem of homogenization. Konstantin Z.
Markov (1945–2007) from Sofia made under his supervision a Ph.D dissertation
on anisotropy in creeping materials, and became himself a recognized specialist in
micromechanics and random media. As a matter of fact, materials with memory,
brittle fracture in creep, irreversible thermodynamics, the mechanics of polymeric
materials, and the dynamics of liquid crystals all are in the range of interests and
contributions of Vakulenko. Many of his papers are co-authored with A.
V. Zakharov.

11.4.4 Ioffe Institute

This Institute is not specifically concerned with continuum mechanics. But some
of its researchers have contributed to some interesting aspects of our field. This is
the case of Alexander M. Samsonov who, with his co-workers, proved first
mathematically, and then experimentally, the existence of solitary wave solutions
in a transparent elastic rod. The theoretical proof is first based on an approximation
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of a rod of non-linear elastic material and of finite cross section by a quasi one-
dimensional body (this is in the tradition of Kirchhoff, Love, and Mindlin), and
then showing that the resulting equation that contains two different wave opera-
tors—hence a so-called doubly-dispersive nonlinear wave guide—admits solitary
wave solutions. They are then observed by interferogrametry (see Samsonov’s
book 2001). One of Samsonov’s original co-workers, Alexey V. Porubov, has
since developed many works on solitary waves in one- and two-dimensional
elastic structures after joining Eron Aero at the Institute for Problems in Mechanics
in St Petersburg. Some of his works are written in close co-operation with the
present writer. This includes new phenomena of amplification and localization of
nonlinear waves (see Porubov 2003, 2009). He also developed a strong interest in
so-called ‘‘rogue’’ waves, those localized waves of incredibly large amplitude that
sometimes appear at sea in front of ships.

11.4.5 USSR Naval Academy in Leningrad

In this military school Leonid I. Slepyan (born 1930) first worked on problems
related to the interests of the Academy. But he rapidly became a world renowned
specialist in the theory of fracture where he examined in detail the propagation of
cracks in lattices (discrete viewpoint), visco-elastic fracture, the dynamics of
chains with non-monotonous stress–strain relations and phase transitions (cf.
Slepyan 2002). In the 1990s he moved to Israel (Tel-Aviv) which he had previ-
ously seen from a distance only from aboard a ship of the Russian Navy.

11.5 Continuum Mechanics Elsewhere in Russia
and Ukraine

11.5.1 Nizhny-Novgorod/Gorki

Nizhny Novgorod (Gorki in Soviet times) saw the burgeoning of a school of
applied mathematics devoted to non-linear effects in physics and mechanics. This
is mostly due to Aleksandr Aleksandrovich Andronov (1901–1952), who was
himself a student of a famous mathematician, L. I. Mandelstam, and who founded
in Gorki a scientific school on radio physics at the Gorki State University with a
close connection with the Institute of Applied Physics of the RAS. But eminent
members of the school became interested in non-linear effects in many fields
including fluid mechanics and physical acoustics. Andronov was succeeded by
Andrei Viktorovich Gaponov-Grekhov (born 1926) as leader of this school.
Mikhail I. Rabinovich (born 1941) did his first steps in research under his
supervision. Both have become world renowned in non-linear science. Note that
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Rabinovich co-authored chapters on the evolution of turbulence in the volume on
fluid mechanics of the Landau-Lifshitz course in theoretical physics. But more
interestingly, he discovered stable stationary waves in dissipative nonlinear media,
developed asymptotic methods for the analysis of nonlinear processes in distrib-
uted systems, discovered a synchronization phenomenon in various chaotic
systems, and then turned to neuro-dynamics and dynamical principles of brain
activity. In recent times disciples of this school (Lev A. Ostrovsky, A. V.
Metrikine, A. I. Potapov, and V. I. Erofeyev) have fruitfully expanded research in
non-linear waves in elastic crystals with or without microstructure in the frame-
work of the Mechanical Engineering Institute of the RAS in Nizhny Novgorod,
sometimes in co-operation with the author of this book (study of radiation stresses
in the line of Leon Brillouin, and multi-wave resonance following phase
synchronization evidenced by Rabinovich and Trubetskov 1989 see e.g., Ostrovsky
and Potapov 1999; Potapov and Maugin 2001a, b; Potapov et al. 2005, Erofeyev
2003).

11.5.2 Novosibirsk

In Novisibirsk and the Siberian Branch of the RAS, there was of course active
research in continuum mechanics and the accompanying computational aspects.
Concerning this last point, emphasis must be placed on the roles played by Nikolaï
Nikolaevich Yanenko with his introduction of the fractional-step scheme in num-
erics and by Sergei Konstantinovich Godunov (born 1929). The latter was formed in
mathematics-mechanics at MSU, was first a researcher in Moscow (1952–1969),
and then moved to Novosibirsk to become a professor at the local State University
and to hold the chair of Differential Equations (1969–1997). He is an internationally
acknowledged authority on hyperbolic systems and conservation laws of continuum
physics in conjunction with their numerics (see his book of 1998).

As to continuum mechanics per se, we cannot ignore the beautiful results
obtained by Isaak A. Kunin (born 1928) before he emigrated to the USA in 1979.
He was originally educated at the StPbPU (Ph.D 1958). He moved to Novosibirsk
in 1956 to become a professor and the Chairman of a Department of Theoretical
Physics at the Institute of Thermophysics of the RAS (1963–1974) and then as a
professor and Chairman of the Department of Mathematics at the Electrotechnical
Institute. Kunin may be considered an all round mathematical physicist with a
deep knowledge of geometric methods, an analytical dexterity, and a shared
interest between discrete (crystal) and continuum approaches. It is in this rather
general frame of mind that we can have a fair appraisal of his definite contributions
to crystal lattice dynamics, the theory of point defects, dislocations and disclina-
tions, cracks and the application of group theory and geometric concepts to these
specific points. Perhaps that he is mostly known for his pioneering works (1966,
1970) on the nonlocal theory of elasticity, at the same time as D. Rogula in Poland
and E. Kröner in Germany—one of the possible avenues to generalized continuum
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mechanics; cf. Chap. 13—and his general approach to the theory of elastic media
with microstructure, studies that culminated in the publication of an incredibly
detailed and powerful book Kunin (1982/1983). In the USA (Texas) he turned to
the gauge theory of dislocations, the thermodynamics of vortices, and nonlinear
dynamics and the theory of chaos. This versatility is very uncommon.

Two of co-authors or friends of Kunin in the USA have also come from the
former USSR. One is Serge Preston (with original name Sergei Prishepionok) who
was one of the last (1978) PhD students of Sergei Sobolev at the Steklov Institute
of Mathematics in Moscow. He spent some time in Novosibirsk (1975–1976,
1980–1987) before immigrating to the USA in 1988, first for a short time at
Berkeley, and then in Portland, Oregon. He is a specialist of contact geometry and
the geometrical modelling of inelastic evolution of materials. He also contributed
to the theory of material uniformity and attempts at describing the phenomenon of
ageing of materials, using a formalism close to a four-dimensional relativistic one.
This was done in co-operation with the second person, Alexander Chudnovsky—
more a mechanician of materials—responsible for the introduction of a small
damaged (processing) zone in front of crack tips in fracture and for a statistical
theory of fracture—who became a professor in the Department of Civil and
Materials Engineering at the University of Illinois in Chicago.

11.5.3 Ukraine

Now we look at Ukraine although now an independent country, but certainly with
so much in common with Russia (religion, close language, and a long shared
history). The two main cities are Kiev and Kharkov. We cannot ignore that
Timoshenko, although with a long successful scientific career in the USA where he
really created American mechanical engineering (see Chap. 4), had first been in his
native Ukraine. The Institute of Mechanics in Kiev now proudly bears his name.
Its present Head at the time of writing is Academician Aleksandr Nikolaevich
Guz’ (born 1939), himself a prolific and never tired author, who has been and
remains the driving force behind the high production of scientific results in this
institute. The subjects contributed include the mechanics of brittle fracture, the
diffraction of elastic waves, the three-dimensional theory of the stability of
deformable bodies, the effects of initial stresses on wave propagation and their
application to non-destructive testing techniques, weakened shells, the mechanics
of rigid bodies, electro-magneto-elasticity and, above all, the mechanics of com-
posites. The Institute regularly publishes the ‘‘International Journal of Applied
Mechanics’’ (in Russian) and has published influential series (in Russian) of
monographs on composites (twelve volumes), elasticity and plasticity (six vol-
umes), the mechanics of coupled fields (five volumes), etc., all between 1980 and
2000. Most of the books by A. N. Guz’ have been originally published in Russian
by the publishing firm Naukova Dumka in Kiev, but they also received translations
into English.
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The second institution of interest for us in Ukraine is the former Landau
Institute (now called B. Verkin Institute of Low Temperature physics; Ukrainian
Academy of Sciences) in Kharkov. This is indeed where Lev Landau started his
remarkable career before joining Moscow. He left a definite print in a place where
all physicists claim their (at least intellectual) descent from Landau. This was the
case of our friend Arnold Markovich Kosevich (1928–2006) who, as one
remembers, contributed the chapter on dislocations in the Landau-Lifshitz treatise
when he was in his early 30s. Indeed, Kosevich proved to be one of the most
important contributors to the theory of structural defects in the former Soviet
Union and in independent Ukraine. He first masterly established the dynamical
form of the Peach-Koehler force acting on a dislocation line by using an elec-
trodynamic analogy (1962, 1964). Then his contributions to the field multiplied
resulting in being invited to write much acclaimed syntheses on this matter (1979,
1988, 1999). He paid a special attention to the dynamics of magnetic spin with his
co-worker Alexander S. Kovalev. He was naturally laid to becoming a specialist of
solitons in solid-state physics (remember the Frenkel-Kontorova model and the
sine–Gordon equation). More recently, together with his student M. M. Bogdan
and the author (2001), he considered more general cases (complexes of solitons)
with simultaneous addition of dispersive and nonlinear terms which still conserve
the solitary-wave behaviour, but not the exact integrability typical of true solitonic
systems. He also developed an original theory of crystal plasticity (1991) with his
colleagues Boïko and Graber from the Physico-Technical Institute of the Ukrai-
nian Academy of Sciences.

Unfortunately we have to leave aside many other places in Russia, e.g., Kra-
snodar (capital of the Kuban region), Voronezh (where the ‘‘Concordski’’ Tupolev
Tu-144, was built) and Samara (called Kuybyshev during the Soviet regime, and
formerly a closed—i.e., forbidden to foreigners—city like Gorki because of its
defence and space industry). Yet, interesting research is conducted in these large
cities. In particular, scientists at Samara (N. Kh. Arutyunyan, V. E. Naumov, and
Yu. N. Radayev) have proposed an interesting theory of the growth of deformable
solids by accretion in the period 1989–1995, unfortunately published only in
Russian journals.

11.6 Continuum Mechanics in Peripheral Republics
and Countries

Now we consider what we call peripheral republics that became independent in the
early 1990s and share the property of having national languages that are not Slavic.
This is the case of Georgia, Armenia and the Baltic countries.
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11.6.1 Georgia

First, Georgia. The two leading figures active in the birth of a school of applied
mathematics and mechanics were Nikolai Ivanovich Muskhelishvili (1891–1976)
and Victor Kupradze (1903–1985). Both were born in Georgia then in the
Russian Empire, the first one in the Capital Tbilisi and the second one in a small
village. Muskhelishvili was educated at the University of St Petersburg. He did his
first research work with Gury V. Kolosov (1867–1936) who had published a
breakthrough original work on ‘‘An application of the theory of functions of a
complex variable to the plane mathematical problems of the theory of elasticity’’
in 1909. This work may have been inspired by works on the bi-harmonic equation
by the French mathematician Edouard Goursat (1858–1936). This was published at
the Yuriev (now Tartu in Estonia) Russian University. Kolosov taught in St.
Petersburg/Leningrad from 1914 to his death in 1936. Muskhelishvili and Kolosov
published a joint paper in 1915. This proposed the first explicit solution of the
fundamental boundary-value problem in the planar theory of elasticity for a cir-
cular region. Muskhelishvili became a specialist of this kind of problems. He
returned to Tbilisi in 1930 facing the duty to teach and participate in the creation a
true school of applied mathematics and theoretical mechanics in Georgia, after the
first lectures in analysis given there in 1918 by Andrea Razmadze. As we know
now, the most successful works of Muskhelishvili dealt with the theory of func-
tions of a complex variable and the theory of singular integral equations (Mus-
khelishvili 1934-translation in (1953)-and Muskhelishvili 1946). The first paper
published by Muskhelishvili in Tbilisi was in French (Muskhelishvili 1922).
Courses had to be delivered in Georgian. Muskhelisvili and his colleagues had to
establish and refine a scientific mathematical terminology in Georgian, even for
such frequent terms as ‘‘equations’’ and ‘‘inequalities’’. Thus Muskhelishvili had to
use his gifts as an amateur philologist. To make connection with a preceding
chapter (Chap. 6), we remind the reader that Westergaard’s famous solution (1939)
of the crack singularity problem was obtained by use of the Kolosov-Muskhe-
lishvili approach.

Victor Kupradze graduated from Tbilisi University having taking courses with
Rakmadze and Muskhelishvili. He then went to Leningrad to work with the
mathematicians Krylov and Smirnov. He returned to Tbilisi in 1935 to become the
Head of the Institute of Mathematics. Starting in 1943 he held administrative and
political positions. Still his mathematical inheritance includes many contributions
to mathematics and mechanics, especially in problems of diffraction and scatter-
ing, potential theory, elasticity and thermoelasticity, and boundary-value problems
(cf. Kupradze et al. 1976).

A famous alumnus from the Tbilisi State University was Ilia N. Vekua
(1907–1977) who worked in the same fields as Muskhelishvili and Kupradze, to
which we must add celebrated works on the theory of elastic shells (Vekua 1982),
what became also a cultivated specialty of Georgian applied mathematicians.
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11.6.2 Armenia

Armenia is theoretically more known throughout the world because of the
numerous Armenian natives who fled from Turkey and settled essentially in
Lebanon, France and the USA. But here we speak of the former republic of the
Soviet Union with capital Yerevan or Erevan. Here also we witness the important
role played by some gifted individuals. Our hero in this context is Sergei A.
Ambartsumian (born 1922—not to be mistaken for his namesake in astrophysics).
He was educated at the Polytechnic State University in Yerevan, graduating in
1942. He became a Doctor of Science (Russian system; roughly equivalent to a
German Habilitation) in 1952 and Professor in 1953. Ambartsumian was active in
different lines of research. Perhaps that he is most well known for this asymptotic
approach of slender elastic bodies (plates, shells) and his numerous contributions
to the mechanics of anisotropic plates (see Ambartsumian 1970, 1987, 1991). Two
other trends that he largely contributed to develop in Armenia and outside are the
elasticity of bodies with differing elasticities in tension and compression, as also
electro-magneto-elasticity, in particular with its application to plates and shells.
This has become the speciality of many Armenian mechanicians. Furthermore,
Ambartsumian was responsible for the rational organization of continuum
mechanics both at the University of Yerevan and at the Institute of Mechanics of
the Armenian Academy. Finally, already much involved in the local academic
affairs, he was one of those who played a political role during the final years of the
Soviet Union with his intervention in favour of Armenia’s independence at the
Supreme Soviet assembly in Moscow.

11.6.3 Estonia

Estonia is a rather small country with no more than one and a half million of
inhabitants of which only two thirds are native Estonians. The capital is Tallinn
(old Reval). The spoken language belongs to the Finno-Ugric group (that includes
only Estonian, Finnish, Hungarian and the languages spoken in some small
territories in Russia). Furthermore, the history of Estonia has been a rather com-
plicated one with occupations by many different people such as Swedes, Germans,
and Russians. This gave a deep national feeling and a special resilience to its
nationals confronted to adversity. By chance, if we may say so, it was sometimes
decided in centralized Soviet Union that Tallinn would become a city specialized
in the emerging robotics, informatics and the design of computers in Soviet times.
That explains why an Institute of Cybernetics was founded in Tallinn. This became
an active, although necessarily modest in size, centre of theoretical mechanics and
applied mathematics under the cover of cybernetics. Thanks to Academician
Nikolai Alumäe (1915–1992) this transformed into a source of original works
in continuum mechanics and non-linear science. Uno Nigul first, and then
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Jüri Engelbrecht (born 1939) greatly contributed to this orientation, including
studies on wave propagation in visco-elastic materials, and non-linear waves in
various classes of elastic materials (e.g., Engelbrecht 1997). Great progress was
achieved in the understanding of the solutions of the Korteweg-de Vries (KdV)
equation. This equation may be viewed as a one-directional evolution equation
associated with a Boussinesq-like equation in elastic crystals by the application of
the so-called reductive perturbation method by introducing appropriate scaling and
moving coordinate. Generalizations of the KdV equation have been obtained for
more complex models and the main properties of the solutions of these equations
duly studied. Prof. Andrus Salupere has been very active in this line of research.
Another co-worker, Prof. Arkadi Berezovski, formed at the use of advanced
computational schemes in Novosibirsk (see Yanenko and Godunov above) has
with success devoted much work to the simulation of the propagation of phase-
transformation fronts. This is dealt with by constructing a thermodynamically
admissible evolutionary scheme (finite volumes) that accounts for the material
transformations in an original manner (see the book by Berezovski et al. 2008).

Here again we apologize to the mechanicians/scientists of Latvia (in Riga with
works on fracture, composites, micromechanics of polymeric materials, in par-
ticular by V. P. Tamuzh), Lithuania (in Vilnius), Belarus (in Minsk with works on
polar materials and the electrodynamics of heterogeneous materials, in particular
by N. P. Migoun and A. V. Luikov), and other republics in the Caucasus and east
of this region (Kazakhstan, Uzbekistan, etc.) for not perusing their interesting
contributions.

11.7 Conclusions

From the above given description several general comments can be given and
some general conclusions drawn. First, one must emphasize the generally high
mathematical quality mixed to a good overall education in physics that transpires
from many works. This is a direct consequence of the high quality of secondary
and college education in the former USSR and a special kind of curriculum for
many engineers. Russians are often seen as dreamers and poets who like to
remember and recite thousands of verses from Pushkin or more recent poets. But
we note very little speculation in most of the works that are rather distinguished by
a formidable dexterity in analytic developments. The socialist system helping, it
was possible for many authors to publish books that a capitalistic system of
publishing would not have permitted. This remarkably high production of pro-
fessional books is illustrated by the impressive list that follows in the reference list.
For publications in scientific journals, the language used was an obstacle for a
direct reading by many foreigners. The most important journals were translated
into English, but this process suffered from two difficulties: the often unfaithful
translation, and more than often a specific type of redaction—an imposed brev-
ity—that hindered a clear understanding of the original matter. Some fields,
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principally mathematical problems in elasticity (Goldenblatt 1969), anelasticity
(see Golovin 2008) and the theory of fracture (see Kostrov and Nikitin 1970), have
received a greater attention than others—but this is not proper to this part of the
world; cf. Chaps. 4 and 6—as it is more a question of timeliness.

One must also realize that this evolution of Russian continuum mechanics took
place in a more dramatic period ever than everywhere else, including the October
revolution, the ensuing civil war, the more or less rational re-organization of all
Russian science, the great purges before the second World War, this war itself with
its twenty millions of victims, the Gulag, the anti-Semitic campaigns, the Cold war
that distracted money from pure science, and the disaggregating of the Soviet
Union. Russian quality in teaching survived most of these events. The largest blow
on Russian science occurred with the last event because it simultaneously brought
a tightening in funds and a required change in the mentality of many scientists. For
instance, they discovered the notions of research contract and of justification of
expenses. The SOROS foundation—in which the present author was a frequently
called expert—helped bringing small amounts of money for immediate survival
during the transition. A direct reaction to this, mixed with the attraction of a long
desired freedom, led to a true haemorrhage among scientists in general, but par-
ticularly among engineers, mechanicians and applied mathematicians who readily
found opportunities in research or teaching positions abroad. Suffice it to record
the following list among people cited in the foregoing sections: Berdichesvky,
Truskinovsky, Le, Parton, Movchan, Shuvalov, Darinskii, Barenblatt, Cherepanov,
Grinfeld, Malomed, K. Lurie, L. M. Kachanov, Slepyan, Rabinovich, Ostrovsky,
Metrikine, Kunin, Preston, Chudnovsky, all emigrated principally to the USA.
This phenomenon was not observed in peripheral countries and new independent
states where scientists had the feeling to participate in a new adventure to the
benefit of their native country, and this in spite of the evident reduction in
available funds.

In both cases—successful immigration to the USA, Western Europe or Israel, or
active contribution to the development of science in their own country with new
perspectives—these by themselves are a patent recognition of the quality of the
involved individuals and of the previously received formation. Now progress in
Russia is in the hands of younger generations which are not so enthusiastic for
scientific studies and careers.

Personal touch. Personal scientific contact and correspondence with foreigners in the
former Soviet Union were something difficult. Original non printed scientific matter could
not be sent outside the country (Some foreign students left the USSR without a copy of
their own PhD Thesis. This was the case of my friend Ahmed F. Ghaleb from Egypt).
Photo-copying was practically impossible. Contacts were usually established during
meetings in other communist countries (e.g., Poland, where I met Ilyushin in 1975). Still
the USSR organized the International Congress of Theoretical and Applied Mechanics in
Moscow in 1972. The present author had the chance to visit several universities and
(‘‘non-sensible’’) research laboratories in 1978. But he returned there only in 1991. The
SOROS programmes favoured some contacts in the 1990s. The author co-organized
together with R. V. Goldstein a NATO Advanced Workshop in Moscow in 2002 (cf.
Goldstein and Maugin 2004). Finally, in 2010, a trilateral seminar (between France, Russia
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and Germany) on continuum mechanics was organized by Holm Altenbach (an East
German with a PhD from Leningrad), V. I. Erofeyev from Nizhny-Novgorod and the
author in Lutherstadt-Wittenberg (Germany)—cf. Altenbach et al. (2011). This experience
was fruitfully renewed in 2012.
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Chapter 12
Continuum Mechanics
and Electromagnetism

Abstract The combination of pure continuum mechanics and electromagnetism
cannot be a simple linear superimposition. That explains why it took some time to
arrive at a rational formulation of this exemplary coupled-field theory. In spite of the
experimental discovery of simple coupled effects in the Nineteenth century (e.g.,
magnetostriction, piezoelectricity), one practically had to await the second half of
the Twentieth century to find a rational theory of deformable magnetized, electri-
cally polarisable and electricity conducting continua. This is due to a small group of
mechanicians who possessed a good apprehending of electromagnetic theory. The
role of scientists such as R.A. Toupin, R.D. Mindlin, A.C. Eringen, W.F. Brown,
H.F. Tiersten, M. Lax, D.F. Nelson, K. Hutter and the author of this book was
instrumental in this intellectual construct. This is reported in a vivid manner, without
neglecting the constructive works of electrical engineers and some mathematical
physicists. After a brief survey of Nineteenth-century developments in electro-
magnetism the emphasis is placed on the seminal role played by Toupin in the 1950s
and 1960s and on the author’s own contributions in the period 1970–1990 con-
cerning the fundamentals and the formulation of nonlinear electro- and magneto-
elasticity often in the footsteps of H.F. Tiersten. A particular attention is paid to the
evolution of the notions of electromagnetic force, momentum and stress tensor, and
electro-magneto-mechanical couplings at the energy level.

12.1 Introduction

For electromagnetism, the first half of the 19th century is the time of the land-
clearers such as Ampère, Faraday, Gauss, Poisson, and Oersted. The second half
of the 19th is the time of unification in a grand scheme involving electricity and
magnetism on equal footing, and culminating in the works of Kelvin, Weber,
Helmholtz, and above all, Maxwell (1873) and Heaviside (1892) (to whom we
owe the presently used form of Maxwell’s equations). In parallel, coupled effects

G. A. Maugin, Continuum Mechanics Through the Twentieth Century,
Solid Mechanics and Its Applications 196, DOI: 10.1007/978-94-007-6353-1_12,
� Springer Science+Business Media Dordrecht 2013
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of the electro-mechanical, magneto-mechanical and galvano-magnetic types were
discovered. Among them electric conduction, piezoelectricity (Curie brothers)
and magnetostriction (Joule) are still those that steer attention because of the
many received applications. Then there followed a long period, early and first
part of the 20th century, during which many relevant discussions were devoted
to the relativistic framework, while electrical engineering took the front with
applications to energy productive or transforming machines and to macroscopic
electromechanical devices. It is only in the second part of the 20th century that
we witness an in-depth thinking about the continuum representation of multi-
physical couplings with works of R.A. Toupin, R.D. Mindlin, A.C. Eringen,
W.F. Brown, H.F. Tiersten, M. Lax, and D.F. Nelson, to whom we associate
ourselves as we clearly agree with many of these developments, in particular
with due consideration of interaction forces, and this in a pre fast-computer age.
In parallel one must account for the constructive works of electrical engineers
such as Penfield, Haus and Livens, and physicists such as Lorentz and de Groot
and Suttorp.

12.2 Prerequisite: 19th Century: Physics Versus Electrical
Engineering

The thermomechanics of solely deformable material continua and the electro-
magnetism of vacuum are two well established bodies of knowledge. The main
question arises when material continua and electromagnetic fields co-exist spa-
tially. It is then agreed upon that the relevant Maxwellian fields in matter, mag-
netic field H and electric displacement D, differ from the characteristic
electromagnetic fields of vacuum, the magnetic induction B and the electric field
E, in such a way that with appropriate electromagnetic units (so-called Lorentz-
Heaviside units; neither factor 4p nor coefficients e0 and l0) we have the equations

H ¼ B�M; D ¼ Eþ P; ð12:1Þ

where M and P are the magnetization and electric polarization per unit volume,
fields that differ from zero only in magnetized and electrically polarized matter,
respectively, i.e., when the celebrated set of Maxwell’s equations in a fixed lab-
oratory frame reads in full generality as

r� Eþ 1
c

oB

ot
¼ 0; r:B ¼ 0; ð12:2Þ

and

r�H� 1
c

oD

ot
¼ 1

c
J; r:D ¼ qf ; ð12:3Þ
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where c is the velocity of light in vacuum, J is the electric current vector, and qf is
the density of free electric charges. The first set (12.2) is valid everywhere and
yields the notion of electromagnetic potentials. In general, to close the system of
field Eqs. (12.2) and (12.3), we are to be given electromagnetic constitutive
equations, e.g., to give an idea to the reader, functional relations of the type

M ¼M H; :ð Þ; P ¼ P E; :ð Þ; J ¼ J E; :ð Þ; ð12:4Þ

where the dots stand for some other variables such as temperature or a strain in a
deformable solid.

Remark 12.1 The formulation (12.2)–(12.3) indeed is the one given by Oliver
Heaviside who is supposed to have said that ‘‘Maxwell’s theory is none other than
Maxwell’s equations’’ (accordingly, no need for explanation!). Maxwell himself
proposed a formulation in terms of the potentials (twenty equations for twenty
variables), and sometimes even used the formalism of quaternions, fashionable at
the time. The first of (12.2) is none other than Faraday’s equation; the first of
(12.3) is Ampère’s equation amended to account for Maxwell’s displacement
current without which Maxwell could not have forecasted the existence of elec-
tromagnetic waves—experimentally checked by Heinrich Rudolph Hertz
(1857–1894) in 1888. The second of (12.3) is the Gauss-Poisson’s equation. As to
the second of (12.2) it means that there are no sources of magnetic induction B or,
in other words, magnetic monopoles do not exist, an assumption valid unless
contradicted by some new experimental evidence. In all we may consider that Eqs.
(12.2) and (12.3) are the results of collective—but not necessarily coordinated—
efforts by scientists, some experimentalists, others more theoreticians or mathe-
maticians, such as Oersted, Ampère, Faraday, Gauss, Poisson, Kelvin, Weber,
Helmholtz, and above all, James Clerk Maxwell (1831–1879) and Oliver
Heaviside (1850–1925) over a long stretch of time. Among the crucial steps in that
lengthy story we like to single out (1) the discovery by the Danish physicist Hans
Christian Oersted (1777–1851) of a link between electricity and magnetism
(flowing electricity in a wire could cause the needle of a nearby magnetic compass
to be deflected), (2) its mathematical formulation by André-Marie Ampère
(1775–1836), (3) the discovery of the solenoid by Arago, (4) that of electromag-
nets by Sturgeon, and (5) the discovery of electromagnetic induction by Michael
Faraday (1791–1867). Without these it would not have been possible to conceive
electromagnetic machines to generate electricity (the electric dynamo; alternating
current) and vice versa, those to produce motion (the electric motor). The
invention of the battery (pile) by Volta was also crucial to have handy a source of
electricity (direct current).

While other possibilities exist, the selection (12.4) of dependent variables is not
gratuitous. It pertains to the characteristic electromagnetic fields of matter. Sev-
eral remarks are in order. First, by taking the divergence of (12.3)1 and accounting
for (12.3)2, we obtain the law of conservation of electric charge:
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oqf

ot
þr:J ¼ 0; ð12:5Þ

a strict conservation law. Second, by a usual manipulation, one also deduces from
(12.2)–(12.3) an energy identity called the ‘‘Poynting-Umov theorem’’, such that

H:
oB

ot
þ E:

oD

ot
¼ �J:E�r:S; S � cE�H; ð12:6Þ

without any hypothesis concerning the electromagnetic constitutive equations.

Remark 12.2 Note that (12.6) is not the first law of thermodynamics (conservation
of energy); it is just an identity relating to electromagnetic fields only, but these
may be interacting with other fields as we shall see further down. In the West
(12.6) is referred to as Poynting theorem after John Henry Poynting (1852–1914).
But the Russian physicist at Moscow University, Nikolay A. Umov (1846–1915),
was responsible for introducing the notion of energy flux (in liquid and elastic
media) in 1874. Early disciples of Maxwell such as Poynting, Heaviside, and
Larmor in the UK are called the ‘‘Maxwellians’’ (see Hunt 1991).

If we are in a vacuum (for which the three quantities in (12.4) vanish identically),
long before the proof of her ‘‘invariance’’ theorem by Emmy Noether in 1918,
Maxwell proved the existence of the following vectorial strict conservation law:

opem:f

ot
� div tem:f ¼ 0; ð12:7Þ

wherein the electromagnetic momentum (in vacuum) and the so-called (symmetric)
Maxwell stress tensor (stress tensor of free electromagnetic fields) are defined by

pem:f ¼ 1
c

E� B; tem:f ¼ E� Eþ B� B� uem:f 1; uem:f ¼ 1
2
ðE2 þ B2Þ; ð12:8Þ

where the last quantity uem:f is the electromagnetic energy of free fields per unit
volume. As a matter of fact, in the same condition this verifies the conservation
law (electromagnetic energy in vacuum)

o

ot
uem:f þr:S ¼ 0: ð12:9Þ

Equations (12.7) and (12.9) are peculiar expressions that hold here because of
the inherent linearity of the electromagnetic constitutive equations ðH ¼ B; D ¼
E; J ¼ 0Þ in vacuum. The latter serves as a (nonpolarized) medium of comparison
for other electromagnetic media (an idea that will be successfully translated into
mechanical behaviour by John R. Willis for studying effective properties of
composites and deviations from a standard homogeneous elastic model in the
1970s; See Chap. 6).

Dealing with energy in a magnetized, electrically polarized, and conducting
material in electromagnetism is a much more subtle matter as shown by the Eq. (12.6).
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The latter can be integrated in a usual conservation form for a global volume only
if the electromagnetic constitutive equations are linear and the body is rigid.
Indeed, with simple constitutive equations B ¼ lH; D ¼ eE; for a rigid body
occupying volume V bounded by regular boundary oV , of unit outward pointing
normal n, from (12.6) we would have the global balance of electromagnetic energy

d

dt

Z

V
uem:mdV ¼ �

Z

V
J:EdV �

Z

oV
n:SdA; ð12:10Þ

with

uem:m ¼ 1
2
ðeE2 þ B2=lÞ ¼ 1

2
ðE:Dþ B:HÞ: ð12:11Þ

But this is generally not true as an expression for electromagnetic energy in an
arbitrary deformable solid where (1) the electromagnetic constitutive equations
may be strongly nonlinear and may even be dissipative (e.g., with relaxation,
hysteresis), and (2) electromagnetic fields do not constitute an isolated thermo-
dynamic system and they are in strong interaction with the deformation field.
A consequence of this fact is that, if (12.6) is always true, it does not constitute a
local statement of energy conservation for the whole mechanical-plus-electro-
magnetic system (sorry, the ‘‘plus’’ may be misleading with a connotation of
simple ‘‘addition’’). Similarly, Eq. (12.7) does not constitute an equation for
conservation of so-called canonical momentum for the whole system. Much more
work is required to reach this general result. What is remarkable is that, in spite of
these words of caution, many authors have a natural tendency to think of an
expression such as (12.11)2 as a starting point in any electromagnetic continuum.
This is particularly true in relativistically invariant theories where the a priori
viewpoint of Minkowski (1908) concerning electromagnetic momentum and
electromagnetic stress tensor (there the energy-momentum tensor) has been
damaging. But Minkowski’s reasoning is not based on a sophisticated physical
model of field-matter interactions (Minkowski was a pure mathematician). The
same remark also applies concerning another energetic quantity such as a
Lagrangian density per unit volume. The density

lem:f ¼ 1
2
ðE2 � B2Þ ð12:12Þ

strictly applies only to electromagnetic fields in a vacuum although it was pro-
posed by authors such as Voigt, following Thomson (Kelvin) and Maxwell, in
analogy with a ‘‘mechanical’’ Lagrangian L ¼ K �W with kinetic and potential
contributions. All this clearly means that part of the electromagnetic energy and of
Lagrangian densities is stored also in the internal/free energy or ‘‘matter’’
Lagrangian for the combined mechanical-plus-electromagnetic medium that
includes the missing interaction terms that should be expressed in terms of the
essentially material fields (12.4).

12.2 Prerequisite: 19th Century: Physics Versus Electrical Engineering 203



One remark about the electric current: for all practical purposes, we note that
the Joule term J:E can be interpreted as a power expended by an electric force.
Indeed, we can write as an example

J:E ¼ ðqvÞ:E ¼ ðqEÞ:v ¼ f:v; ð12:13Þ

where f ¼ qE is seen in statics, according to Lorentz, as the elementary
mechanical force acting on a point particle of electric charge q in an electric field
E. For a particle moving at velocity v, we have the Lorentz force

f ¼ qEþ q

c
v� B ¼ q~E; ~E ¼ Eþ 1

c
v� B; ð12:14Þ

where the electric field ~E is called the electromotive intensity.
To close this section of prerequisite we briefly recall the relationship of Max-

well’s theory with electrical engineering.
First, Faraday’s equation (12.2)1 relates the circuitage voltage that appears

when the flux linkage varies in time, as in electrical generators. Indeed, by use of
Stokes’ theorem applied to a surface element S leaning on a circuit C, one shows
that the difference of potential is given by

e:m:f ¼ � d

dt

Z

S
B:dS; ð12:15Þ

or

e ¼ dk
dt

ð12:16Þ

in terms of the flux linkage k.
Second, Ampère’s law (12.3)1 relates the magnetic field that curls around a

current flux, corrected for unsteady values of electric fields (this last correction is
due to Maxwell; cf. the notion of displacement current). By applying Stokes’
theorem to a surface element S leaning on a circuit C, one finds, for a coil of
n turns of length l, the relation

Z

C
H:dl ¼ nI or H ¼ nI=l; ð12:17Þ

where I is the current.
Third, Gauss-Poisson’s equation (12.3)2 tallies the field lines emanating (hence

the divergence) from a distribution of charges.
Finally, the last of Maxwell’s equation (12.2)2 reflects the circumstance that

isolated magnetic poles do not exist. As a consequence a line of magnetic
induction closes on itself. It does not ‘‘emanate’’ from a magnetic charge distri-
bution as the latter does not exist.
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Ampère’s and Gauss-Poisson’s equations are not used as such in circuitry, but
the law of conservation of charges (12.5) yields, by integration, the circuitry
equation

I ¼ dq

dt
; ð12:18Þ

where q is the electric charge. Then the system (12.15)–(12.18) is closed by the
well known constitutive equations of passive circuit elements:

k ¼ L I ðinductorÞ;
q ¼ C e ðcapacitorÞ;
e ¼ R I ðresistorÞ;

ð12:19Þ

where L, C and R are an inductance, a capacitance, and a resistance, respectively.
The last of these represents the celebrated Ohm law. There exist nonlinear gen-
eralizations of the constitutive Eq. (12.19). Added to Kirchhoff’s laws of currents
at nodes, the above set Eqs. (12.15) through (12.19) are all what one needs at the
macro-scale of electrical engineering.

12.3 Passing to a Charged, Magnetized, Electrically
Polarized, Deformable Continuum

12.3.1 A True 20th Century Adventure

For a true physicist the generalization of above given equations such as (12.7) and
(12.9) is a difficult task that is identified with the evaluation of the forces, couples
and energy sources arising from the interaction between a large number of electric
charges in moving matter at a microscopic scale. This is in order to avoid any
arbitrary or a priori macroscopic expressions that are hard to posit save by divi-
nation. Such an approach that we favour over any other methods accounts for the
rich information about the interactions between the mechanical system and elec-
tromagnetic fields in matter that are gained from a particle model due initially to
Hendrik Anton Lorentz (1853–1928). It was taken over by Dixon and Eringen
(1964), Nelson (1979), and Maugin and Eringen (1977) to whom we owe the
present formulation. This analysis belongs in the most rewarding improvements
brought to the electrodynamics of moving media in the 20th century. It consists in
evaluating the total force, couple and power acting on, or developed by, electro-
magnetic fields on the elementary electric charges contained in a stable cloud or
representative volume element of volume DV , and introducing the approximations
of multipoles, a truncation of these at a certain order, and a volume or phase-space
average. Lorentz’s vision is essentially that of a free space containing point
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charged particles. The starting point is the celebrated Lorentz force (Lorentz 1909)
that is written as [cf. (12.14)]

dfa ¼ dqa e ðraÞ þ
1
c

_x� baðraÞ
� �

; ð12:20Þ

where e and b are the electric field and magnetic induction at the current place-
ment ra of the elementary electric charge dqa contained in DV . The computation
then consists in evaluating the quantities (force, couple, power of forces)

X

a2DV

dfa;
X

a2DV

ra � dfað Þ;
X

a2DV

dfa: _xa; ð12:21Þ

and then dividing by DV . This may be considered a naive volume average tech-
nique. A more advanced one would envisage a statistical average in phase space,
and perhaps a formulation in a relativistic framework. Anyway this is the tech-
nique followed first by Lorentz and then by Dixon and Eringen (1964), Nelson
(1979), and Maugin and Eringen (1977) in a Galilean approximation and by de
Groot and Suttorp (1972) in a relativistic framework.

Remark 12.3: On the notation of fields. By way of example, let M denote the
magnetization per unit volume in a fixed laboratory frame. Then derived fields are
noted with a superimposed ornament. Thus ~M designates the volume magnetiza-
tion in a frame co-moving with the element of matter; �M is the same but reported
(i.e., convected back) to the material framework and l ¼ ~M=q is the magneti-
zation per unit mass. Similarly for the electric polarization P, with ~P, �P and
p ¼ ~P=q. Note that both magnetization and electric polarization relate to matter
and are extensive quantities, i.e., proportional to the volume of matter. This is most
relevant in continuum thermo-mechanics.

12.3.2 Results from the Microscopic Model

From (12.20) and (12.21), expanding the expressions in terms of the internal
coordinates na ¼ xaðtÞ � x; neglecting quadrupole contributions and higher-order
multipoles, lengthy calculations lead to the following electromagnetic source
terms of force, couple and energy per unit continuous volume:

fem ¼ qf
~Eþ 1

c
ð~Jþ P�Þ � Bþ ðP:rÞEþ ðrBÞ: ~M; ð12:22Þ

cem ¼ r� fem þ ~cem; ð12:23Þ

wem ¼ fem:vþ ~cem:Xþ qhem; ð12:24Þ
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where r refers to the centre of charges of the volume element, q is the matter
density, and v is the physical velocity, X is the vorticity X ¼ ðr � vÞ=2, and we
have set

qf ðx; tÞ ¼ ðDVÞ�1
X

a2DV

dqa; ð12:25Þ

Pðx; tÞ ¼ ðDVÞ�1
X

a2DV

dqanaðx; tÞ; ð12:26Þ

Mðx; tÞ ¼ ðDVÞ�1
X

a2DV

1
2c

dqana � _na; ð12:27Þ

Note the lack of symmetry between polarization and magnetization effects. We
have also defined the intrinsic electromagnetic sources of couple, energy and stress
by (here tr = trace; subscript s stands for the operation of symmetrisation)

~cem ¼ P� ~Eþ ~M� B; ð12:28Þ

qhem ¼ eJeE þ eEP� �fM:B� þ tr et emðrvÞs
� �

; ð12:29Þ

and

et em ¼ P� eE � B�fM þ ðfMBÞ1; ð12:30Þ

where the following fields are those in a co-moving frame (Galilean approximation;
first of these is the conduction current per se):

~J ¼ J� qf v; ~E ¼ Eþ 1
c

v� B; ~M ¼Mþ 1
c

v� P ð12:31Þ

and E and B are simple volume averages of e and b. The first contribution in the
r-h-s of (12.22) is none other than a ‘‘Lorentz force’’ [cf. (12.14)] since

fL ¼ qf Eþ
1
c
ðqf vÞ � B ¼ qf

~E: ð12:32Þ

Finally, a left asterisk denotes a so-called convected (Oldroyd) time derivative
such that (see Sect. 3.4)

P� ¼ oP

ot
þr� ðP� vÞ þ vðr:PÞ ¼ dP

dt
� ðP:rÞvþ Pðr:vÞ: ð12:33Þ

The above given expressions where fields in the laboratory frame and those in a
co-moving frame co-exist is only Galilean invariant, but this is sufficient for
engineering purposes. Note that no ~P intervenes here for the good reason that
~P ¼ P in this approximation (Galilean approximation materialized by a lack of
symmetry between electric polarization and magnetization).
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12.3.3 Contributions in the Macroscopic Balance Laws

In principle, the above obtained source terms, once their origin forgotten, have to
be carried into the classical balance laws of a continuum (with a possible non
symmetric Cauchy stress), leaving however the internal/free energy of the medium
to depend on the electromagnetic fields. A remarkable fact is that in spite of their
farfetched outlook, some may be given a form that reminds us of some standard
expression [such as in (12.6)]. For instance, Maugin and Eringen (1977) have
shown that (12.24) can also be written as

wem ¼ J:E þ E:
oP

ot
�M:

oB

ot
þr vðE:PÞð Þ ¼ � ouem:f

ot
�r: S� vðE:PÞð Þ;

ð12:34Þ

in which we identify the terms already present in (12.9).
The electromagnetic volume force defined in (12.22) is sometimes called the

electromagnetic ponderomotive force, ec em being then the ponderomotive couple.
In 1974, Collet and Maugin proved the following remarkable identity at any
regular material point:

opem

ot
� div tem ¼ �fem; ð12:35Þ

where

pem ¼ pem:f ¼ 1
c

E� B; ð12:36Þ

tem ¼ tem:f þet em: ð12:37Þ

Since we are dealing with nonsymmetric second-order tensors, we must specify
that their divergence is taken on the first index. Simultaneously, the ponderomotive
couple is the axial vector associated with the skew part of et em. The latter vanishes
together with the source terms in (12.28) outside matter, and (12.35) reverts to
(12.7) in a vacuum. Because of the source term in its r-h-s equation (12.35) is not a
conservation law for the whole physical system. But it allows one to rewrite the
balance law of linear momentum for the whole continuum in a specific form (see
Maugin 1988, for these developments). We can also rewrite (12.22) emphasizing
the occurrence of an effective Lorentz force f eff

L in the form

fem ¼ feff
L þ divet em; ð12:38Þ

with [compare to (12.20)]

feff
L ¼ qeff ~E þ 1

c
~J

eff � B; ð12:39Þ
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where

qeff ¼ qf �r:P; ~J
eff ¼ ~Jþ P� þ cr� ~M: ð12:40Þ

We easily check that there holds the identity

opem

ot
� div tem:f ¼ �feff

L : ð12:41Þ

Equations (12.35) and (12.41) are compatible, but they may suggest different
ways to combine mechanics and electromagnetism in the balance of linear
momentum as it may be tempting to many researchers to consider f eff

L as the
primitive interaction force because effective charge and electric current appear
also in Maxwell’s equations (cf. Eringen and Maugin 1990, p. 54) as natural
perturbations of the vacuum equations, e.g., (12.3) also read

r:E ¼ qf �r:P; r� B� 1
c

oE

ot
¼ 1

c
Jþ oP

ot
þ cr�M

� �
: ð12:42Þ

These can be recast using convected fields and time derivatives yielding source
expressions such as in (12.33). Finally, we remark that Eqs. (12.34) and (12.35)
reduce to (12.9) and (12.7) in a vacuum, respectively.

Note While the above-given results are obtained, a similar treatment of Max-
well’s equations in vacuum with source terms due to the individual electric
charges, yields, after space average, the macroscopic equations (12.2) and (12.3)—
this was the basic idea of Lorentz [on Maxwell’s equations proper, see de Groot
(1969) and Tiertsen (1990)].

12.3.4 Postulate of Equations Accounting for Informations
from a Microscopic Model

This is the manner à la Newton-Cauchy dear to the Truesdellians. Global balance
laws are written for linear and angular momenta along with the first and second
laws of thermodynamics, in which electromagnetic source terms as recalled above
are introduced. This is the viewpoint expanded in Eringen and Maugin (1990) and
Maugin (1988), and other authors, in great detail. Of course the result depends on
the microscopic model used to obtain the sources or else, on an a priori and
somewhat arbitrary choice for these sources (not our viewpoint). The full appli-
cation of the method shows its pertinence, albeit in spite of a complexity arising in
the description of stresses. The latter are not symmetric a priori since there exists
an applied couple (12.28), something that cannot be denied as otherwise there
would not exist such an evident effect as the compass alignment with a magnetic
field. But in the end the obtained thermo-mechanics proves to be satisfactory with
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an energy (internal or free-Helmholtz) containing part of the interactions, a part of
constitutive origin. Among the results obtained we note the formula for the stresses
t appearing in the local balance of linear momentum of a continuum (divergence of
tensors taken on the first index; f = body force such as gravity, q = actual matter
density; _v ¼ acceleration)

q _v ¼ f þ fem þ div t; ð12:43Þ

with a nonsymmetric Cauchy stress

t ¼ tE þ ðtem:f � temÞ ¼ tE � et em; ð12:44Þ

or a total symmetric (Cauchy) stress s such that

s ¼ tþ tem ¼ tE þ tem:f ; ð12:45Þ

where tE is a symmetric ‘‘elastic’’ stress such that, in components (here symmetric
and skewsymmetric parts)

tE
ðijÞ ¼ tðjiÞ þ~tem

ðjiÞ; tE
½ji� � 0: ð12:46Þ

To the same degree of generality as (12.43), the local forms of the energy
equation and inequality of entropy read (Eringen and Maugin 1990)

q _e ¼ tr tðrvÞT
� �

� fem:vþ wem �r:qþ qh; ð12:47Þ

and

q _g� qhh�1 �r:ðqh�1Þ; ð12:48Þ

where e, g, h, q and h are the internal energy per unit actual mass, the entropy per
unit actual mass, the thermodynamic temperature, the heat flux vector, and the
external heat supply per unit actual mass, respectively. The electromagnetic
energy ‘‘source’’ wem is given by (12.24) with expressions (12.28) through (12.30)
valid. Equivalent forms were given in (12.34). Another equivalent expression is
given by

wem ¼ fem:v þ q~E: _p � ~M: _B þ ~J:~E; ð12:49Þ

where p ¼ P=q is the electric polarization per unit mass. On introducing the
Helmholtz free energy function per unit mass

w ¼ e � g h; ð12:50Þ

and substituting from (12.47), (12.22) and (12.49) in (12.48), one arrives at the so-
called Clausius-Duhem inequality

210 12 Continuum Mechanics and Electromagnetism



�qð _wþ g _hÞ þ tr tðrvÞT
� �

þ ~J: ~Eþ q~E: _p� ~M: _B� ðq=hÞ:rh� 0: ð12:51Þ

In a now well established tradition, this is conceived as a constraint on the
formulation of constitutive equations for the fields ðw; g; t; ~J; ~E; ~M; qÞ. The for-
mulation (12.51) clearly emphasizes for electromagnetic processes the role of
independent variables (causes) played by the pair ð~E; r hÞ, electric polarization
and magnetic induction for galvanomagnetic effects.

What is important here is that, in deformable solids, one often prefers to
reformulate the theory in terms of so-called material fields. To that effect we set
the Piola transform or pull-back of electromagnetic fields (cf. Chap. 3)

�B ¼ JFF�1:B; �D ¼ JFF�1:D; �P ¼ P ¼ JFF�1:P ¼ q0F�1:p; ð12:52Þ

and

�E ¼ E:F; ~MK ¼ JFF�1
kp

~Mp; �MK ¼ ~MiFiK ; ð12:53Þ

with

JF ¼ det F; q0 ¼ qJF ; F ¼ FiK ¼ xi;K

� �
: ð12:54Þ

We then check that the relations (12.1) translate in material components to

�DK ¼ JFC�1
KL

�EL þPK ; �HK ¼ J�1
F CKL

�BL � �ML; ð12:55Þ

with

C ¼ FT F ¼ CKL ¼ xi;L xi;L

� �
; C�1 ¼ ðCÞ�1: ð12:56Þ

First and second Piola-Kirchhoff stresses are defined by

T ¼ JFF�1:t ; S ¼ T:F�T : ð12:57Þ

Similar definitions hold for Piola-Kirchhoff stresses associated with the stresses
tE and tem:f : Thus we write

TE ¼ JFF�1:tE; SE ¼ TE:F�T ; TF ¼ JFF�1:tem:f : ð12:58Þ

Then it is proved that Eqs. (12.43) and (12.51) can be rewritten as (here no body
force)

o

ot
pt

R

����
X

�divRðTE þ TFÞ ¼ 0; pt
R � q0 v þ 1

qc
E� B

� �
; ð12:59Þ

and

�ð _W þ N _hÞ þ 1
2

SE
KL

_CKL þ �EK
_PK � �MK

_�BK þ JFð~J:~E� ðq=hÞ:rhÞ� 0; ð12:60Þ
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where we have set

W ¼ q0w; N ¼ q0 g: ð12:61Þ

Once we have established constitutive equations for S E
KL, �EK and �MK , we can

return to the original Eulerian fields, including the Cauchy stress t which is the
stress present in the mechanical boundary condition. In order to complement Eq.
(12.59) we also need Maxwell’s equations expressed in the material framework. A
first hint of this form of Maxwell equations was given by Walker et al. (1965), and
McCarthy (1968). But the final form was definitely set by Lax and Nelson (1976).

Equation (12.60) is perfectly equipped to treat both reversible and irreversible
coupled electro-magneto-deformable properties. Irreversible properties have been
dealt with in particular by Maugin and co-workers (electric relaxation, hysteresis).
However, both Eqs. (12.59) and (12.60), although fully dynamical in the Galilean
approximation, are not equipped to treat the case of electromagnetic materials
endowed with electromagnetic internal degrees of freedom (see Sects. 12.4 and
12.5 for these).

In this section we have presented the continuum dynamic theory—with the
restrictions just mentioned—in its achieved form. Of course the path to this final
form (reported in the author’s formalism and its obvious shortcomings) was long
and paved by many researchers, using various methods of approach. In particular,
we must single out the enlightening book of Livens (1962)—George Henry Livens
(1886–1950) was a Cambridgian whose main work was in effect electrical theory,
the work of Tiersten and Tsai (1972) at the Rensselaer Polytechnic, the theory
developed by Kolumban Hutter and Y.-H. Pao at Cornell in the early 1970s—see
the book by Hutter and Van de Ven (1978), the variational approach by electrical
engineers (Penfield and Haus 1967) at M.I.T, the treatise of Truesdell and Toupin
(1960) with its appropriate sections, the papers by Alblas (1974) in the Nether-
lands, the remarkable works of physicists Lax and Nelson synthetized in Nelson’s
(1979) book, and the often unjustly ignored works by L.I. Sedov and his co-
workers at Moscow State University in the 1960s–1970s (see Sedov’s books on
continuum mechanics; Chap. 11). We shall shortly deal with the fundamental role
played by the pioneers such as Toupin, Brown, Eringen, Mindlin and Tiersten. In
more recent works overlapping the early 21st century we find the variational
formulations of Trimarco and Maugin (2001)—also in Maugin (1993a), Chap. 8,
and Dorfmann and Ogden (see all these in the Udine course of 2009 published by
Ogden and Steigmann 2011). These formulations require the addition of an
interaction term between matter and fields to the Lagrangian density (12.12).
These continuum-mechanics approaches supersede all presentations by well-
known physicists, even the classic books on electrodynamics by Jackson and
Landau and Lifshitz.
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12.4 Theory of Elastic Dielectrics and Generalizations

12.4.1 Toupin’s Theory

In the above reported developments a fundamental role was played by a beautiful
work published by Toupin in 1956. A few words of gossip may be exceptionally
introduced at this point. In his autobiographic notes (reprinted in his collected
works edited by Barenblatt and Joseph (1997), Rivlin tells that he met Toupin at
the National Research Laboratory in Maryland where both were visiting in 1953.
Toupin was then working on a PhD with Melvin Lax at the University of Syracuse
(Lax left Syracuse to join Bell Telephone Laboratories and ended his brilliant
career of solid-state physicist at the City College of New York where we visited
him). Rivlin advised Toupin to change his research subject to the theory of
deformable dielectrics where he foresaw some promising developments in the
finite-strain framework of continuum mechanics, what Toupin did with the success
we know. Indeed, Toupin’s publication of his ‘‘Elastic dielectric’’ paper in the
J.R.M.A. in 1956 proved to be a true milestone. This was followed by another
paper about dynamics in 1963. Of course, this is now contained in the general
presentation given in the foregoing section.

It must be realized that before Toupin’s landmark work, the only well formu-
lated and very much applied theory of electro-mechanical interactions in con-
tinuum mechanics was the standard theory of linear piezoelectricity. This went
back to the original discovery of the effect by the Pierre and Jacques Curie in Paris
in 1881. It was recognized that this required the consideration of crystals having no
centre of symmetry [in order to allow a linear relation between a second-order
tensor (e.g., strain) and a vector (electric field or polarization)]. The relevant
Cartesian tensor formulation was established and the effect became popular
through its exploitation in ‘‘sonars’’ (cf. the pioneering work by Paul Langevin
during WWI). In the 1940s and 1950s, the importance of piezoelectric couplings
was duly recognized in devices of signal processing exploiting the short wave-
length of piezoelectric waves compared to electromagnetic ones, and using the
properties of piezoelectric vibrations of structures (e.g., plates). The collaboration
between the US Army Signal Corps Laboratory in Fort-Monmouth, New Jersey,
and Raymond Mindlin culminated in a beautiful lengthy technical Army report by
Mindlin that was only recently published in book form (Mindlin 2006). Harry
Tiersten, a former student of Mindlin, put some of these in Lagrangian-Hamilto-
nian variational form in a small monograph (Tiersten 1969). Now back to Toupin.

Toupin’s theory can be extracted from the contents of Sect. 12.3 by discarding
magnetic effects and all forms of dissipation. Thus we obtain the following
reduction of (12.60) to an equality for hyperelastic dielectric solids

ðqf ¼ 0; ~M ¼ 0; ~J ¼ 0Þ:

�ð _W þ N _hÞ þ 1
2

SE
KL

_CKL þ �EK
_PK ¼ 0; ð12:62Þ
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from which there follows the constitutive equations

SE
KL ¼ 2

oŴ

oCKL

; �EK ¼
oŴ

oPK
; N ¼ � oŴ

oh
; ð12:63Þ

wherein the free energy per unit undeformed volume is given by

W ¼ ŴðCKL;PK ; hÞ: ð12:64Þ

Accordingly, the following constitutive equations are obtained for the ‘‘elastic’’
stress and the material electric field

tE
ji ¼ 2J�1

F FjKFiL
oŴ

oCKL

; �EK ¼
oŴ

oPK
; ð12:65Þ

Then, after (12.14),

t ¼ tE � P� ~E ¼ tE � J�1
F F:P� ~E; ð12:66Þ

hence in components for the Cauchy stress

tji ¼ J�1
F FjK 2

oŴ

oCKL

�PK
oŴ

oPL

� �
FiL: ð12:67Þ

Toupin’s theory is not exactly this because temperature effects are not included
and, astutely, Toupin makes a difference between the Maxwellian field E and a
local electric field, noted EL provided by a constitutive equation, so that we in fact
have a kind of local balance law for electric fields:

Eþ EL ¼ 0; �EL
K ¼ EL

i FiK ¼ �
oŴ

oPK
: ð12:68Þ

Contrary to the theory of linear piezoelectricity where all nonlinear terms in the
fields are discarded, Toupin’s theory still includes nonzero ponderomotive force
and couple (hence a non symmetric Cauchy stress) given by (compare to the
general expression in (12.22) and (12.28)

fem ¼ ðP:rÞE ¼ ðrEÞ:P; ~cem ¼ P� E; ð12:69Þ

where the transformation of the first of these follows from the quasi-static electric
equation r� E ¼ 0.

Toupin’s theory is potentially rich of many effects and generalizations. First, it
can include electro-elastic interactions at any order (piezoelectricity, electro-
striction, and higher order effects in the electric field). Second, it is not limited to
small deformations, and can therefore be applied in modern technology to finitely
deformable polymeric dielectrics. Finally, the writing of the first of (12.68) that
looks somewhat artificial and unnecessary, is gross of further generalizations that
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we are going to examine. Toupin’s theory was presented in a variational form by
Eringen (1963). For sure, it influenced all works after 1956.

12.4.2 Generalizations

It was discovered by Mindlin (1968; see also Herrmann 1974) and others that in
the presence of a centre of symmetry—that forbids the existence of linear pie-
zoelectricity, there still exist a possibility of a linear coupling between deformation
and a gradient of electric polarization, for nonuniformly polarized materials. This
is rare but possible for ionic crystals such as alkali halides (e.g., NaCl, KCl). In this
theory the generalization of (12.68) reads

Eþ EL þ q�1div Ê
L ¼ 0; ð12:70Þ

where the new tensor Ê
L

is principally determined by the gradient rP, while the
vector EL remains determined by the electric polarization itself. In a nonlinear
theory, both of these quantities will contribute to the skew symmetric part of the
Cauchy stress (Collet and Maugin 1974). In this theory called ‘‘the theory of
polarization gradients’’, Eq. (12.70) has the true status of a field equation on the
same footing as the standard equation of equilibrium. This theory is entirely
corroborated by the appropriate approach from lattice dynamics, as shown by
Askar et al. (1970) [P.C.Y. Lee also was a PhD student of Mindlin]. The full
formulation of this theory with applications to nontrivial physical effects is to be
found in Mindlin’s synthesis of 1972, but above all in Chap. 7 of our book
(Maugin 1988) with a generous relevant bibliography.

In his original work of 1963, Toupin alludes to the possibility of having an
inertial (polarization) term in the right-hand side of the above given Eq. (12.68)1.
In a successful attempt at a dynamical theory of ferroelectric crystals, Maugin and
Pouget (1980) formulated a complete theory in the finite-strain framework of
continuum thermo-mechanics in which a field equation governing the electric
polarization is obtained in a form that looks like (12.70) but with a polarization
inertia in its right-hand side, i.e.,

E þ E L þ q� 1div Ê
L ¼ dE

€P ð12:71Þ

where the tensor field Ê
L

is related to the interaction between neighbouring per-
manent electric dipoles. This theory is also justified by a lattice-dynamics approach
as shown by Pouget et al. in 1986 for ferroelectrics of the molecular-group type (e.g.,
NaNO2). More on this model and wave propagation (including the structure and
motion—as solutions—of ferroelectric domain walls is to be found in the book of
Maugin et al. (1992)—also Bassiouny et al. 1988. The theory was extended to the
case of elastic antiferroelectrics by Soumahoro and Pouget (1994).
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12.5 Theory of Magneto-Elastic Continua

The magneto-elastic coupling called magnetostriction was discovered by Joule in
the 19th century. It results in a very small strain upon the application of a lon-
gitudinal magnetic field to a bar, and this independently of the direction of the
field; Hence it intensity varies like the square of that field and it is, basically, a
nonlinear effect. In spite of its smallness this effect is important because a cor-
responding linear effect—linear piezomagnetism—is much more rare than pie-
zoelectricity in natural conditions. However it can appear as linearized
magnetostriction about an intense magnetic field. Note also that with the discovery
of ‘‘giant’’ magnetostriction in some compounds the effect is improved by two
orders of magnitude so that magnetostriction may be envisaged in competition
with some piezoelectric devices (for the physical viewpoint on magnetostriction
see the book by du Trémolet 1993).

After many works in the field, William F. Brown Jr proposed a serious con-
tinuum theory of magneto-elastic interactions in his book of 1966, in a collection
edited by Truesdell. Simultaneously, Tiersten (1964, 1965)—he had been a PhD
student of Mindlin and worked at Bell Labotatories for sometimes before joining
the Rensselaer Polytechnic—following works by the solid-state physicist Kittel
(1958) dealing with the interaction between elastic and magnetic-spin waves,
proposed in 1964 a theory of elastic hard ferromagnets in the finite-strain
framework that accounts for the presence of a density of magnetic spin and the
interaction between neighbouring spins (or magnetic dipoles). This he comple-
mented with an astute variational formulation in Tiersten (1965). This modelling
was taken over by Maugin (1971) in his Princeton PhD thesis and in papers by
Maugin and Eringen (1972). It was also exposed by Akhiezer et al. (1968) in a
famous book on spin waves. What is remarkable is that in this theory the equation
governing the magnetic spin density has the following form:

c�1 _l ¼ l� ðB þ BL þ q�1 div B̂
LÞ; ð12:72Þ

which guarantees that the magnetization per unit mass has a prescribed modulus
(condition of saturation). Here c is the so-called gyromagnetic ratio of the material,

and the ‘‘local’’ fields BL and B̂
L

are primarily determined by the magnetization
and its gradient, respectively, reflecting in the continuum framework the effects of
magnetic anisotropy (preferential directions of magnetization) and Heisenberg
exchange forces between neighbouring spins. In principle, both may have dissi-
pative contributions associated with them. It was shown by Maugin (1972, 1975)
that the first yields a correct formulation of the effect of spin-lattice relaxation in
deformable ferromagnets (using the notion of Jaumann co-rotational time deriv-
ative). Later on the theory was extended to the case of deformable ferrimagnets
and antiferromagnets (Maugin 1976; Maugin and Sioké-Rainaldy 1983) by
adopting the idea of the French physicist Louis Néel of the co-existence of mul-
tiple magnetic sub-lattices. For all these and a rather complete presentation of
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dynamical processes (coupled waves), we refer the reader to Chap. 7 in Maugin
(1988) and Chap. 9 in Eringen and Maugin (1990). At the same time, Sabir and
Maugin (1990) provided a phenomenological theory of irreversible magnetic
hysteresis coupled to stresses by applying the thermomechanical framework using
internal variables of state (compare Sect 5.6 and Maugin 1993b) by analogy with
plasticity and visco-plasticity. This concurs with Néel’s theory of the 1940s.

We note the resemblance of the expression within parentheses in the right-hand
side of (12.72) with the left-hand side of (12.70) and (12.71). As a matter of fact,
whenever exchange interactions and gyromagnetic effects are discarded, Eq.
(12.72) reduces to a balance equation for the Maxwellian and local magnetic
inductions in the form

Bþ BL ¼ 0; ð12:73Þ

a form entirely analogous to that of Toupin’s equation (12.68). The resulting
theory for soft ferromagnets and paramagnets could be derived from the theory
exposed in Sect. 12.3. But the more general theory contained in both Eqs. (12.71)
and (12.72) was shown to be derivable from a modern formulation of the principle
of virtual power (d’Alembert’s principle) by Collet and Maugin (1974) by con-
sidering that electric polarization and magnetization provide additional internal
degrees of freedom, on equal footing with the classical deformation motion
[general theory in Maugin (1980)]. The coupling between these internal degrees of
freedom and stresses then appear naturally in writing the power expended by
internal forces upon the constraint of being objective. This safe and powerful
method was further used in all models of electro-magneto-mechanical interactions,
including in complex modellings such as that of deformable semi-conductors
(Daher and Maugin 1986; Maugin and Daher 1986), after initial studies on pie-
zoelectric semiconductors by Ancona and Tiersten (1983).

12.6 Concluding Remarks

In the above given survey we emphasized the evolution in the very bases of the
theory of electro-magneto-elastic interactions, noting the seminal role played by
Richard A. Toupin and Raymond D. Mindlin. This should be complemented by a
description of the many applications treated during the period 1960–2010 and
witnessed by the present writer in a very active position. This would prove to be a
formidable task, perhaps not as instructive as imagined. What we can notice is that,
apart from the general principles already scrutinized, many of the applicative
developments have more or less followed the trends of the corresponding pure
mechanical developments in the same period.

Concerning wave propagation, the very new ingredient in the linear theory of
piezoelectricity was the discovery in 1968 of the so-called Bleustein-Gulyaev
piezoelectric surface wave simultaneously by J.L. Bleustein (a co-worker of Tiersten)
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in the USA and Yu. V. Gulyaev in the USSR (cf. Chap. 11). This is a shear horizontal
surface wave (like the celebrated Love surface mode) of which the propagation
is allowed by the perturbation created at the surface by a piezoelectric coupling.
Many other wave problems including bulk waves, surface waves, shock waves,
and solitary waves have been treated in particular—for complex models of interac-
tions—by the writer in Paris in collaboration with many researchers among whom we
must single out Bernard Collet, Joel Pouget, Anaclet Fomethe, and Naoum Daher
(see Maugin et al. 1992; Maugin 1988). Other centres of study of some of these
waves were in Besançon (France) with J.-J. Gagnepain and M. Planat, but
also in Tiersten’s environment at the Rensselaer Polytechnic in Troy (USA), with
David F. Parker in Nottingham (UK), and in the active team of A.N. Guz in
Kiev (Ukraine). Special attention was paid to superconducting deformable solids by
S.A. Zhou (1999).

The stability of magnetoelastic structures received much attention in relation to
the fantastic strength of electromagnets used in magnetically-levitating trains and
in some thermo-nuclear technologies. This culminated in the splendid book of
Moon (1984). Other studies along the same line were conducted in Japan (with K.
Miya in Tokyo and J. Tani in Sendai), and in Europe (G.A. Maugin and C. Goudjo
in Paris, A.A.F Van de Ven in Eindhoven).

The mechanics of slender structures (plates, shells) coupled to electromagnetic
properties was perfected to a high degree of analysis by Academician S.A. Am-
bartsumian and co-workers in Yerevan (Armenia) applying the asymptotic inte-
gration method introduced in pure mechanics by Golden’veizer and Ambartsumian
himself—see Ambartsumian et al. (1977), while the zoom technique of P.G.
Ciarlet and P. Destuynder was exploited by Attou and Maugin (1990) for piezo-
electric plates.

Homogenization techniques first applied in pure continuum mechanics in the
1980s were rapidly applied to electro- and magneto-elasticity. Here we must cite
the much original work in dynamics of Turbé and Maugin (1991) using a Bloch
expansion of waves, and the application to nonlinear electroelasticity by Rodri-
guez-Ramos et al. (2004). Homogenization schemes have also been introduced in
ferromagnetic bodies in order to account for the influence of their microstructure
in industrial applications, for instance, by the group of René Billardon in Cachan
(France) including Laurent Hirsinger, Nicolas Buiron, Olivier Hubert, and Laurent
Daniel, and also in Metz and Besançon (France).

The theory of structural defects (e.g., dislocations) in elastic dielectrics has
been carefully approached especially by V.I. Alshits (Moscow), A. Radowicz
(Kielce, Poland) and J.P. Nowacki (Warsaw)—see Nowacki’s book (2006). The
corresponding theory of configurational forces—acting on defects, shock waves,
phase-transition fronts—has also been extensively expanded in electro- ad mag-
neto-elasticity (see Chap. 14 below). The works of R.M. McMeecking et al. should
also be noted in conjunction with crack studies.

The relationship between complex models of electromagnetic deformable
materials (e.g., ferroelectrics, ferromagnets) and generalized continuum mechanics
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will be briefly discussed in Chap. 13 [see also Chap. 1 in the book edited by
Altenbach and Eremeyev (2012)].

Numerically convenient variational formulations and applications of the non-
linear electroelasticity and magnetoelasticity have recently been given by several
groups of authors, e.g., R.W. Ogden, A. Dorfmann and R. Bustamante on the one
hand, D.J. Steigmann et al. on the other, and also Paul Steinmann and co-workers,
and N. Triantafyllidis et al.

Finally, we mention that a specific scientific journal entitled the International
Journal of Applied Electromagnetics and Mechanics was founded in 1991 by Kenzo
Miya (Tokyo), Richard Hsieh (Stockholm) and G.A. Maugin (Paris), simultaneously
with a successful series of technical volumes called ‘‘Applied Electromagnetics and
Mechanics’’ published by I.O.S, in The Netherlands and Japan.

Personal touch: In addition to his doctoral students, co-workers in Paris, and visiting research
associates, the author has had, or still entertain, friendly relations with many of the strongly
involved actors: A.C. Eringen, R.D. Mindlin, H.F. Tiersten, M. Lax, D.F. Nelson, F.C. Moon,
W. Nowacki, J.P. Nowacki, A. Askar, L.I. Sedov, S.A. Ambartsumian, S.R. de Groot, K.
Hutter, D.F. Parker, R.W. Ogden, V.I. Alshits, A. Dorfmann, E. du Trémolet, R. Billardon, K.
Miya and R.K.T. Hsieh. Unfortunately, he never met Richard Toupin.
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Chapter 13
Generalized Continuum Mechanics:
Various Paths

Abstract This chapter focuses on a field of continuum mechanics that belongs
almost entirely to the twentieth century, so called generalized continuum mechanics.
First, a special effort is produced to define this term which essentially means going
beyond the traditional view of Cauchy—with the notion of stress introduced by this
early nineteenth-century scientist. Three possible paths to such a generalization are
discussed with the related mention of main scientific contributors: involving an
additional microstructure at each material point in addition to the traditional
translational degree of freedom (e.g., micromorphic media, Cosserat continua, in
modern times works by Eringen and others), or a better analytic description of the
displacement field at each material point by introducing higher order gradients of
this displacement in the energy density (e.g., in a theory mostly expanded by
Mindlin), or else calling for a truly nonlocal theory that leads to considering spatial
functionals for the constitutive equations—this follows contributors such as Kröner,
Rogula, Kunin, and Eringen. A more drastic ‘‘generalization’’ started in the mid
1950s involves a loss of the Euclidean nature of the material manifold, as may apply
in a densely defective crystal. In each case, the pioneers are mentioned and the most
recent formulations are briefly sketched out.

13.1 Introduction

A natural question is posed at the outset: what do we understand by the expression
‘‘Generalized Continuum Mechanics’’ (for short, GCM)? The simple under-
standing we give is that a generalized continuum mechanics is one that goes
beyond the standard Euler-Cauchy definition that involves only a symmetric
‘‘Cauchy’’ stress, the later being defined by the celebrated Cauchy tetrahedron
argument (see Chap. 1). This definition, contrary to what is commonly thought by
many, includes, mutatis mutandis, a ‘‘constitutive’’ argument based on geometry:
only the first order description of the geometry of a facet cut in a body, the local

G. A. Maugin, Continuum Mechanics Through the Twentieth Century,
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unit normal, is involved in the argument. A consequence of this is that only so-
called ‘‘simple’’ materials (in the vocabulary of Walter Noll—cf. Truesdell and
Noll 1965), may rely on such a description via the emerging notion of stress tensor
and the energetically dual notion of deformation gradient. Furthermore, the notion
of displacement so useful in elasticity requires a certain (Euclidean) structure of
the material manifold that makes up the considered material. Thus the main points
in our conspectus are the appearance of non-symmetric stresses, the notion of
couple stresses, internal degrees of freedom and microstructure, the introduction of
strain gradient theories, and material inhomogeneities with a length scale, non
locality of the weak and strong types, the loss of Euclidean geometry to describe
the material manifold, and finally the loss of classical differentiability of basic
operations as can occur in a deformable fractal material object.

We claim that in a structured overview generalization can obviously be pre-
sented through the successive abandonment of the basic working hypotheses of
standard continuum mechanics of Cauchy (cf. Maugin 2010): that is, introduction
of a rigidly rotating microstructure and couple stresses (Cosserat continua or
micropolar bodies, nonsymmetric stresses), introduction of a truly deformable
microstructure (micromorphic bodies), ‘‘weak’’ non localization with gradient
theories and the notion of hyperstresses, and the introduction of characteristic
lengths, ‘‘strong non localization’’ with space functional constitutive equations and
the loss of the Cauchy notion of stress, and finally giving up the Euclidean and
even Riemannian material background. In recent times this evolution was paved
by landmark papers and timely scientific gatherings (e.g., Freudenstadt in 1967;
Udine in 1970, Warsaw in 1977) to which the Paris colloquium of 2009 cele-
brating the centennial of the publication (cf. Maugin and Metrikine 2010) of the
Cosserats’ book (see Chap. 2; Cosserat and Cosserat 1909) must now be added.
This is examined in some detail in the following sections. Here we simply recall
that the publication of the book of the Cosserat brothers in 1909 was a true initial
landmark, although at the time noticed by very few people—among them Elie
Cartan and Ernst Hellinger. Thus a true ‘‘generalized continuum mechanics’’
developed first slowly and rather episodically and then with a real acceleration in
the 1960s. Accordingly, a new era was born in the field of continuum mechanics.

As a preliminary we recall that Cauchy’s expression (1.1) that introduces the
standard Cauchy stress tensor was applied in the 19th century and by most engi-
neers in the 20th century to a symmetric tensor r. That is, in the two classical
intrinsic and Cartesian tensor notations (an upper T denotes the operation of
transposition),

r ¼ rT i:e:; rji ¼ rij: ð13:1Þ

This results from the application of the balance of angular momentum. Isotropy,
homogeneity, and small strains are further hypotheses but they are not so central to
our argument. For the validity of (13.1) two working hypotheses are essential: (1)
there are no applied couples in both volume and surface, and (2) there exists no
‘‘microstructure’’ described by additional internal degrees of freedom at each
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material point. We admit that imagining an applied couple per unit volume or mass
is not obvious while the notion of a force per unit volume or mass comes naturally
to mind with the at-a-distance effects of gravitation and electromagnetic fields.

Then generalizations of various degrees consist in relaxing more or less these
different points above, hence the notion of generalized continuum. But this notion of
‘‘generalization’’ depends also on the culture and physical insight of the concerned
scientist. For instance, generalizations such as: (1) considering the so-called
‘‘generalized’’ Hooke law (linear, homogeneous, but anisotropic medium), (2)
envisaging the linear Hooke-Duhamel law in thermo-elasticity in a simple coupled-
field theory, or (3) applying the scheme of linear homogeneous piezoelectricity in
obviously anisotropic media (no centre of symmetry—see Chap. 12), are ‘‘weak’’
generalizations because they do not alter the main mathematical properties of the
system. Of course, thermo-elasticity and linear piezoelectricity require adding new
independent variables (e.g., temperature h or scalar electric potential /). In some
sense, the problem becomes four-dimensional for the basic field (elastic displace-
ment and temperature in one case, elastic displacement and electric potential in the
other). The latter holds in this mere simplicity under the hypothesis of weak electric
fields, from which there follows the neglect of the so-called ponder motive forces
and couples, e.g., the couple (Cf. Chap. 12; Maugin 1988)

P� Eð Þi¼ eijkPjEk; ð13:2Þ

and this will yield (square brackets denote anti-symmetrization; eijk is the per-
mutation symbol in Cartesian tensor index notation)

r ji½ � ¼ Cji; e:g:; Cji ¼ P½jEi�; ð13:3Þ

when electric field E and electric polarization P are not necessarily aligned. Such
theories, just like standard elasticity, do not involve a length scale. But classical
linear inhomogeneous elasticity presents a higher degree of generalization because
a characteristic length intervenes necessarily. Now we can deal with what we refer
to as true generalizations.

13.2 First True Generalization: Cosserat Continua et al.

The Cauchy stress tensor may become asymmetric for various reasons. This may
be due to

(1) the existence of body couples (e.g., just as above in electromagnetism: P � E
or=and M � H if M and H denote volume magnetization and magnetic field;
case of intense electromagnetic fields or linearization about intense bias fields;
cf. Eringen and Maugin 1990);

(2) the existence of surface couples (by Cauchy’s argument, introduction of
‘‘internal forces’’ of a new type: so-called couple stresses); the medium possesses
internal degrees of freedom that modify the balance of angular momentum;
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(3) the existence of internal degrees of freedom (of a nonmechanical nature in
origin, e.g., polarization inertia in ferroelectrics, intrinsic spin in ferromag-
netics; see Maugin 1988);

(4) the existence of internal degrees of freedom of ‘‘mechanical’’ nature.

This is where the Cosserats’ model comes into the picture. The first example in
this class pertains to a rigid microstructure (three additional degrees of freedom
corresponding to an additional rotation at each material point, independently of the
vorticity). Examples of media of this type go back to the early search for a
continuum having the capability to transmit transverse waves (as compared to
acoustics in a pure fluid), i.e., in relation to optics. The works of James McCullagh
(1839) and Lord Kelvin (already cited in Chap. 1) must be singled out (cf. an
historical view in the celebrated—but controversial—book of Whittaker 1951). As
we remember from Chap. 2, Pierre Duhem (1893) proposed to introduce a triad of
three rigidly connected directors (unit vectors) to represent the required rotation.
In modern physics there are other tools for this including Euler’s angles (not very
convenient), quaternion’s (after Hamilton) and spinors (after E. Cartan) and,
obviously orthogonal transformations. It is indeed the Cosserats who, among other
studies in elasticity, really introduced internal degrees of freedom of the rotational
type—these are micropolar continua in the sense of Eringen—and the dual con-
cept of couple stress. Hellinger (1914), in his brilliant essay, recognized at once
the new potentialities offered by this generalization but did not elaborate on these.
It seems that this kind of approach laid dormant for a few decades. The resulting
theory of continua is christened under different names: Cosserat theory, polar
media, oriented media, micro polar media, asymmetric elasticity.

A modern rebirth of the field had to await works in France by crystallographers
(e.g., J. Laval 1957a, b, c and Y. Le Corre (1956) at the University of Paris—future
UPMC). Mechanicians took over in the early 1960s with works in Russia [Aero
and Kuvshinskii (1960) and Palmov (1964)], in Germany [Schaeffer (1967),
Günther (1958), and Neuber (1964)], and in Italy [Grioli (1960, 1962), and Capriz
(1989)]. But the best formulations are those obtained by considering a field of
orthogonal transformations (rotations) and not the directors themselves: Eringen
(1968), Kafadar and Eringen (1971), Nowacki (1986), although we note some
obvious success of the ‘‘director’’ representation, e.g., in liquid crystals by
Ericksen (Ericksen 1959/60) and Leslie (1968) and in the kinematics of the
deformation of slender bodies (works by Ericksen, Truesdell, Naghdi).

But in the mid 1960s a complete revival of continuum mechanics took place
which, by paying more attention to the basics, favoured the simultaneous for-
mulation of many more or less equivalent theories of generalized continua in the
line of thought of the Cosserats (works by Mindlin, Tiersten, Eshel, Green and
Rivlin (1964), Green and Naghdi (1967), Toupin (1962, 1964), Truesdell and
Toupin (1960), and Eringen and Suhubi (1964), etc.). All these works are listed in
the bibliography of the present chapter. Among them the fundamental paper of
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Toupin (1964) must be singled out as one of the most influential ones. The con-
tribution of Eringen (1968) stands out for its clear simple presentation while the
papers of Eringen and Suhubi (1964)—and Suhubi and Eringen (1964)—and that
of Mindlin also in 1964 are truly creative landmarks, and Grioli’s book of (1960) is
important from the mathematical viewpoint. Also, we must mention the formi-
dable work done by the Polish school around Witold Nowacki (See Chap. 8) in the
field with many worked out static and dynamic solutions (see the synthesis in
Nowacki’s book of 1986). Romanian mathematicians were also very active along
this line.

More precisely, in the case of a deformable microstructure at each material
point, the vector triad of directors of Duhem-Cosserats becomes deformable and
the additional degree of freedom at each point, or micro-deformation, is akin to a
general linear transformation (nine degrees of freedom). These are micromorphic
continua in Eringen’s classification. Mindlin’s 1964 is somewhat equivalent
although in a different wording. A particular case is that of continua with
microstretch (Eringen 1969). A truly new notion for Cosserat media here is that of
the existence of a conservation law of micro-inertia (Eringen 1966). We illustrate
these various generalizations by giving the relevant form of the local equation of
moment of momentum in quasi-statics:

Micromorphic bodies (Eringen, Mindlin; Years 1962–1966) [Notation: lkji is
the hyperstress tensor, sji is the so-called symmetric micro-stress, and lij is the
body-moment tensor of which the skew part represents a body couple Cji ¼ �Cij]:

lkij;k þ rji � sji þ lij ¼ 0; rji ¼ r jið Þ þ r ji½ �; s ji½ � ¼ 0; lji ¼ Cji þ l jið Þ:

ð13:4Þ

Micropolar bodies (Cosserat brothers, etc.) [Notation: lk ji½ � is the couple-stress
tensor; Ci is the axial vector uniquely associated with Cji while mji is associated in
the same way with lk ji½ �]:

lk ji½ �;k þ r ji½ � þ Cij ¼ 0 or mji;j þ eikjrkj þ Ci ¼ 0: ð13:5Þ

Bodies with microstretch (Eringen 1969) [Notation: mk denotes the intrinsic
dilatational stress or microstretch vector; l is the body microstretch force such that
l ijð Þ ¼ l=3ð Þdij, and r and s are intrinsic and micro scalar forces]:

lklm ¼
1
3

mkdlm �
1
2

elmrmkr ð13:6Þ

so that

mkl;k þ elmnrmn þ Cl ¼ 0; mk;k þ r� sþ l ¼ 0: ð13:7Þ

Note that an additional natural boundary condition involving the new higher-
order stresses lkij and mji must complement the standard Cauchy condition (1.1) of
Chap. 1, e.g.,
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nklkij ¼ Md
ij or njmji ¼ Md

i ; ð13:8Þ

where Md
i is akin to a surface couple.

Dilatational elasticity (Cowin and Nunziato 1983) [only the second of (13.7) is
relevant]:

mk;k þ r� sþ l ¼ 0: ð13:9Þ

Here the additional natural boundary condition will be of the form

nkmk ¼ Md; ð13:10Þ

where Md is akin to a tension.
In these equations given in Cartesian components in order to avoid any mis-

understanding (note that following a convention in mathematical physics, the
divergence is always taken on the first index of the tensorial object to which it
applies), lkij is a new internal force having the nature of a third–order tensor. It has
no specific symmetry in Eq. (13.4) and it may be referred to as a hyperstress. In the
case of Eq. (13.5) this quantity is skew symmetric in its last two indices and a
second order tensor—called a couple stress—of components mji can be introduced
having axial nature with respect to its second index. The fields sji and lij are,
respectively, a symmetric second-order tensor and a general second-order tensor.
The former is an intrinsic interaction stress, while the latter refers to an external
source of both stress and couple according to the last of Eq. (13.4). Only the skew
part of the later remains in the special case of micro polar materials [Eq. (13.5) in
which Ci represents the components of an applied couple, an axial vector asso-
ciated with the skew symmetric Cji]. The latter can be of electromagnetic origin,
and more rarely of pure mechanical origin. Equations (13.6) and (13.7) represent a
kind of intermediate case between micromorphic and micro polar materials. The
case of dilatational elasticity in Eq. (13.8) appears as a further reduction of that in
Eq. (13.7). This will be useful in describing the mechanical behaviour of media
exhibiting a distribution of holes or cavities in evolution.

Concerning the micromorphic case, a striking example is due to Drouot and
Maugin (1983) while dealing with fluid solutions of macromolecules, while Pouget
and Maugin (1983) have provided a fine example of truly micromorphic solids
with the case of piezoelectric powders treated as continua.

Remark 13.1 Historical moments in the development of this avenue of general-
ization have been the IUTAM symposium organized by E. Kröner in Freudenstadt
in 1967 (see Kröner 1968) and the CISM Udine summer course of 1970. Were
present: Mindlin, Eringen, Nowacki, Stojanovic, Sokolowski, Maugin, Jaric,
Micunovic, etc.

Remark 13.2 Strong scientific initial motivations for the studies of generalized
media at the time (1960s–1970s) were (1) the expected elimination of field sin-
gularities in many problems with standard continuum mechanics, (2) the contin-
uum description of real existing materials such as granular materials, suspensions,
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blood flow, etc. But further progress was hindered by a notorious lack of
knowledge of new (and too numerous) material coefficients despite trials at esti-
mates of such coefficients e.g., by Gauthier and Jashman (1975) at the Colorado
School of Mines by building artificially micro structured solids.

Remark 13.3 The intervening of a rotating microstructure allows for the intro-
duction of wave modes of rotation of the ‘‘optical’’ type with an obvious appli-
cation to many solid crystals (e.g., crystals equipped with a polar group such as
NaNO2; cf. Pouget and Maugin 1989).

Remark 13.4 In some physical theories (Micromagnetism, cf. Maugin 1971–also
Chap. 12 above), an equation such as the first of (13.5) can be obtained in full
dynamics:

mkij;k þ r ji½ � þ Cij ¼ _Sij; ð13:11Þ

where mkij (Heisenberg exchange-force tensor that is skewsymmetric in its last two
indices), Cij (interaction couple between material and electronic-spin continua)
and Sij(magnetic spin) all have a magnetic origin.

The full thermo-mechanical theories corresponding to these various cases can
be developed along the now admitted general lines (first and second laws com-
plementing the field equations, thermodynamical admissibility, Clausius–Duhem
inequality) for both fluid and solid types of behaviour. The fluid type was applied
in a multitude of papers dealing with a variety of materials—suspensions, liquid
crystals, blood flow, etc. [on this subject matter the books of Stokes (1984) and
Eringen (2001) may be consulted and the (James D.) Lee-Eringen theory of liquid
crystals (cf. Lee and Eringen 1971, 1973) is of high interest]. In the case of solids,
special attention was paid to the study of field singularities (at corners, at a crack
tip, along a dislocation line), a pregnant idea being that accounting for couple
stresses would reduce the singularity order.

Of course the theory would not be complete without expending the relevant
kinematics and theory of deformation. In the sufficiently illustrative case of polar
media, the usual motion mapping (1.3) must be complemented by the time evo-
lution of v that accounts for the micro-motion:

v ¼ �v X; tð Þ; vT ¼ v�1; det v ¼ þ1: ð13:12Þ

This can be represented with the help of a formula established by Gibbs (1901):

v ¼ cos /ð Þ1þ 1� cos /ð Þd� dþ sin /ð Þd� 1; ð13:13Þ

where / is the angle of rotation about the axis of eigenvector d corresponding to
the real eigenvalue +1of v (i.e., v.d = +d). Expression (13.13) can also be written
in terms of a vectorial angle of components /k, which often is a preferred rep-
resentation, in particular in the small strain and small micro-rotation case. Then
from (13.13) we have in this approximation
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vji ¼ dji þ Xji ¼ dji � ejik/k; Xji ¼ �Xij: ð13:14Þ

The resulting infinitesimal measures of generalized deformation are then given
by

�eji ¼ ui;j � ejik/k ¼ eij þ xij � Xij

� �
; cji ¼ /i;j; ð13:15Þ

where eji is the usual (symmetric) infinitesimal strain, xji is the accompanying
macro-rotation tensor, and Xji is the micro-rotation tensor. The set of deformations
(13.15) is the one used in ‘‘asymmetric’’ elasticity (cf. Eringen 1968, 1999;
Nowacki 1986). Stress and couple stress for elasticity then are derived from an
energy density W ¼ Ŵ eji; cji

� �
by the constitutive equations

rji ¼
oŴ

o�eji
; mji ¼

oŴ

ocji
: ð13:16Þ

The first of Eq. (13.15) exhibits the special case when micro-rotation is slaved
to the macro-rotation. With the definition of cji this boils down to an energy

W ¼ ~W eij; ui;jk

� �
; ð13:17Þ

which enters the framework of the next section. This is referred to as the theory of
constrained Cosserat continua. This may be unsound in dynamics as the rotational
kinetic energy would provide terms including the time derivative of the gradient of
the displacement.

13.2.1 Finite-Strain Formulation

We understand by this both finite deformation and finite micro-rotation. Hence the
Gibbs representation (13.13) plays its full role. This is a very technical subject
which was beautifully addressed by Kafadar and Eringen (1971), and more thor-
oughly by Eremeyev and Pietraszkiewicz (2012) [where they solve the problem of
the exact representation of the energy density in terms of invariants, from the
original form W F; v; rRvð Þ]. We refer to these authors for these developments.

13.3 Second True Generalization: Gradient Theories

This occurs with the loss of validity of the traditional Cauchy postulate. Then the
geometry of a cut in a body intervenes at a higher order than one (variation of the
unit normal, role of the curvature, edges, apices and thus capillarity effects).
We may consider two different cases referred to as the weakly nonlocal theory and
the strongly nonlocal theory (distinction introduced by the author at the Warsaw
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meeting of 1977; cf. Maugin 1979; also in Kunin’s book of 1982). Only the first
type does correspond to the exact definition concerning a cut and the geometry of
the cut surface. This is better referred to as gradient theories of the n-th order, it
being understood that the standard Cauchy theory in fact is a theory of the first
gradient (meaning by this the first gradient of the displacement or a theory
involving just the strain and no gradient of it in the constitutive equations).

Now, as a matter of fact, gradient theories abound in physics, starting practi-
cally with all continuum theories in the 19th century. Thus, Maxwell’s electro-
magnetism is a first-gradient theory (of the electromagnetic potentials); the
Korteweg (1901) theory of fluids is a theory of the first gradient of density
(equivalent to a second-gradient theory of displacement in elasticity); Einstein’s
(1916) theory of gravitation (general relativity; cf. Einstein 1956) is none other
than a second-gradient theory of the metric of curved space–time, and Le Roux
(see Chap. 2) seems to be the first public exhibition of a second-gradient theory of
(displacement) elasticity in small strains (using a variational formulation). There
was a renewal of such theories in the 1960s with the works of Casal (1963) on
capillarity, and of Toupin (1962), Mindlin (1964), Mindlin and Eshel (1968),
Mindlin and Tiersten (1962), and Grioli (1960, 1962) in elasticity.

However, it is with a neat formulation basing on the principle of virtual power
that some order was imposed in these formulations with an unambiguous deduc-
tion of the—sometimes tedious—boundary conditions and a clear introduction of
the notion of internal forces of higher order, i.e., hyperstresses of various orders
(see, Germain 1973a, b; Maugin 1980)—as a result of the duality between gen-
eralized internal forces and generalized measures of deformation and deformation
rates. Phenomenological theories involving gradients of other physical fields than
displacement or density, coupled to deformation, were envisaged consistently by
the author in his Princeton doctoral thesis (1971) dealing with typical ferroïc
electromagnetic materials. This is justified by a microscopic approach, i.e., the
continuum approximation of a crystal lattice with medium-range interactions, with
distributed magnetic spins or permanent electric dipoles. This also applies to the
pure mechanical case (see, for instance, the Boussinesq paradigm in Christov et al.
2007). The following are examples of such theories illustrated by the dependence
of the potential energy W per unit volume for small strains:

Le Roux (1911, 1913; see Chap. 2):

W ¼ W ui;j; ui;jk; . . .
� �

; ð13:19Þ

where ui;j denotes the displacement gradient, and ui;jk is the second gradient of the
displacement.

Modern form (Mindlin, Toupin, Sedov, Germain, etc.; in the period
1962–1973):

W ¼ W eij; eij;k

� �
: ð13:20Þ

In the last case, the symmetric first-order stress �rji and the second-order stress
or hyperstress (symmetric in its last two indices) are given by
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�rji ¼
oW

oeij
¼ �rij;mkji ¼

oW

oeij;k
¼ mkij; ð13:21Þ

where eij is the symmetric small strain, and eij;k denotes its first gradient. Then the
symmetric Cauchy stress reads

rji ¼ �rji � mkji;k ¼
dW

deij
¼ rij: ð13:22Þ

That is, it is none other than the functional derivative of the energy W.
Very interesting features of these models are:

F1. The inevitable introduction of characteristic lengths;
F2. The appearance of so-called capillarity effects (surface tension) due to the
explicit intervening of curvature of surfaces;
F3. Correlative boundary layers effects;
F4. Dispersion of waves with a possible competition and balance between non-
linearity and dispersion, and the existence of solitonic structures (see Maugin
1999, Maugin and Christov 2002);
F5. Intimate relationship with the Ginzburg–Landau theory of phase transitions
and, for fluids, van der Waals’ theory.

A rather unpleasant feature of this modelling is that the mathematical problems
become more stiff than before with its higher-order space derivatives, creating
potential difficulties in dynamical computations unless one constructs appropriate
finite-difference schemes (as done by Christov and Maugin 1995).

Indeed, regarding F1, a typical characteristic length l is introduced by the ratio

l ¼
mkji

�� ��

�rji

�� �� ; ð13:23Þ

and this is obviously supposed to be much smaller than a typical macroscopic
length L, i.e., l\\L.

Features F2 and F3 above are typically illustrated by the following set of
boundary conditions (Tiersten, Germain; X ¼ � 1

2 Djnj is the mean curvature)

njrji þ njDpnp � Dj

� �
nkmkji

� �
¼ Td

i at oB� C "; ð13:24Þ

nkmkjinj ¼ Ri at oB� C "; ð13:25Þ

eipqsp nkmkjqnj

� �
¼ Eialong C "; ð13:26Þ

where C " is an oriented edge, sp denotes unit tangent, Dj indicates a tangential
gradient, and the symbolism […] stands for the jump of its enclosure. Here Td

i , Ri

and Ei are, respectively, an applied surface traction, a prescribed double-normal
force, and a lineal force density.
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Remark 13.5 The principle of virtual power here is an interesting tool to obtain
the set (13.24)–(13.26) unambiguously. But it also shows in agreement with Eq.
(13.13) that the power of internal forces can be written either as

p intð Þ rð Þ ¼ �r : r _u; ð13:27Þ

or as

p intð Þ �r; mð Þ ¼ � �r : r _uþm : rr _uð Þ; ð13:28Þ

so that

p intð Þ rð Þ ¼ p intð Þ �r;mð Þ þ r: m : r _uð Þ: ð13:29Þ

Repeated use of the divergence theorem will then directly leads to the set
(13.24)–(13.26).

Truly sophisticated examples of the application of these gradient theories are
found in

(1) the coupling of a gradient theory (of the carrier fluid) and consideration of a
microstructure in the study of the inhomogeneous diffusion of microstructures
in polymeric solutions (Drouot and Maugin 1983).

(2) the elimination of singularities in the study of structural defects (dislocations,
disclinations) in elasticity combining higher-order gradients and polar
microstructure (cf. Lazar and Maugin 2007).

Remark 13.6 Insofar as general mathematical principles at the basis of the notion
of gradient theory are concerned, we note the fundamental works of Noll and
Virga (1990) and dell’Isola and Seppecher (1995), the latter with a remarkable
economy of thought (and space!).

Remark 13.7 The reader may wonder about the large number of material coeffi-
cients needed to write down explicit expressions of the stress and hyperstress
tensors, even in the isotropic case. This problem was emphasized by the original
contributors to this type of modelling, e.g., Mindlin, Tiersten and Eshel in the
1960s. This is a recurring problem with GCM modelling. Faced with this difficulty
but having in mind practical considerations, Aifantis (1992) astutely suggested
considering a simplified expression of the energy of isotropic elastic materials of
the form

W ¼ 1
2

keiiejj þ 2leijeij

� �
þ c2 1

2
keii;kejj;k þ leij;keij;k

� �
ð13:30Þ

where only one extra coefficient, a characteristic length c, is involved in addition to
the usual Lamé moduli of linear isotropic elasticity. An expression such as (13.30),
rustic as it is, allows one to provide exemplary solutions to many problems such as

13.3 Second True Generalization: Gradient Theories 233



those involving dislocations (cf. Lazar and Maugin, 2007). Note that the Cauchy
stress r now reads

r ¼ 1� c2r2
� �

rc; ð13:31Þ

where rc is the usual stress tensor. We can say that this expression contains a
Helmholtz operator in factor of rc.

Second-gradient models in finite strain have been devised by authors like
Gurtin (for dislocation theory), Cleja-Tigoiu (for plasticity), and Ciarletta and
Maugin (for the bio-mechanics of soft tissues). In this case, on must replace
(13.19) by a more general expression

W ¼ �W F;rRFð Þ; ð13:32Þ

per unit reference volume.

Remark 13.8 Most recent works consider the application of the notion of gradient
theory in elastoplasticity for nonuniform plastic strain fields (works by Aifantis,
Fleck, Hutchinson, and many others)—but see the thermodynamically admissible
formulation in Maugin (1990).

Remark 13.9 Relation with discrete models and crystal-lattice dynamics.

The idea of further gradients—of order higher than one—in the approximation
of the displacement field rings a bell and reminds us of the discrete definition of
the second-order, fourth-order, and so on, space derivatives of successive order, in
particular in one dimension. This is practically isomorphic to the theory of crystal
lattices as beautifully inaugurated by Born and von Kármán in the early 20th
century, where interactions with next neighbours and next–next neighbours would
be taken into account in the potential of interactions. The Boussinesq model of
elasticity that includes a fourth-order space derivative in the field equation in the
continuum framework [cf. the ‘‘Boussinesq’’ paradigm in Christov et al. (2007)], is
an example of this outcome. The sign of the higher-order interactions and those of
the fourth-order derivatives play an important role in the discussion of stability of
the resulting continuum model in the sense of Hadamard. In particular, some
models may yield an anomalous dispersion of elastic waves in the crystal,
although it is not reasonable to stretch the model to too small wavelengths. This is
thoroughly debated in papers by Mülhaus and Oka (1996) and Askes et al. (2008),
to which we refer the curious reader.

13.4 Strongly Nonlocal Theory (Spatial Functionals)

Initial concepts in this framework were etablished by Kröner and Datta (1966),
Kunin (1966), Rogula (1965), and Eringen and Edelen (1972). Synthesis works on
the subject are by Kunin (1982) and Eringen (2002). Concerning these concepts
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but stretching a little the historical perspective, the basic idea permeating this
notion of non locality—that the mechanical response at a material point may
depend on a larger spatial domain than the immediate neighbourhood of the
considered point—may also be traced back to Duhem (1893). Technically, the
Cauchy construct does not apply anymore. In principle, only the case of infinite
bodies should be considered as any cut would destroy the prevailing long-range
ordering. Constitutive equations become integral expressions over space, perhaps
with a more or less rapid attenuation with distance of the spatial kernel. This, of
course, inherits from the action-at-a-distance dear to the Newtonians, while
adapting the disguise of a continuous framework. This view is justified by the
approximation of an infinite crystal lattice: the relevant kernels can be justified
through this discrete approach. But this approach raises the matter of solving
integro-differential equations instead of partial-differential equations. What about
boundary conditions that are in essence foreign to this representation of matter–
matter interaction? There remains a possibility of the existence of a ‘‘weak-non-
local’’ limit by the approximation by gradient models. Typically one would con-
sider in the linear elastic case a stress constitutive equation in the form

rji xð Þ ¼
Z

all space
Cjikl x� x0j jð Þekl x0ð Þd3x0; ð13:33Þ

where the constitutive functions Cjikl decreases markedly with the distance
between material points x’ and x. In space of one dimension, an inverse to (13.33)
may be of the form

r� Kr2r � 1� Kr2
� �

r ¼ Ee ð13:34Þ

with coefficients K and E, a model that we call ‘‘Helmholtz’’ one because of the
presence of the operator 1� Kr2ð Þ—cf. (13.31). It is this kind of relation that
allows one to compare the effects of ‘‘weakly’’ and ‘‘strongly’’ nonlocal theories in
so far as the degree of singularity of some quantities is concerned (cf. Lazar and
Maugin 2007).

Note that standard local linear elasticity follows from (13.33) by considering
the special case

Cjikl x� x0j jð Þ ¼ C0
jikld x� x0j jð Þ;

where d is Dirac’s delta generalized function, and the tensorial coefficient C0
jikl

depends at most on the point x alone (for inhomogeneous materials).
The historical moment in the recognition of the usefulness of strongly nonlocal

theories was the EUROMECH colloquium on nonlocality organized by Dominik
Rogula in Warsaw in 1977 (cf. Maugin 1979). A now standard reference is Er-
ingen’s book (2002). A recent much publicized application of the concept of non
locality is that to damage by Pijaudier-Cabot and Bazant (1987).

Note in conclusion to this point that any field theory can be generalized to a
nonlocal one while saving the notions of linearity and anisotropy; but loosing the
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usual notion of flux. Also, it is of interest to pay attention to the works of Lazar and
Maugin (2004a, b, 2007) for a comparison of field singularities in the neigh-
bourhood of structural defects in different ‘‘generalized’’ theories of elasticity
(micro polar, gradient-like, strongly non local or combining these).

13.5 Loss of the Euclidean Nature of the Material Manifold

Indeed the basic relevant problem emerges as follows. How can we represent
geometrically the fields of structural defects (such as dislocations associated with a
loss of continuity of the elastic displacement, or disclinations associated with such
a loss for rotations)? A similar question is raised for vacancies and point defects.
One possible answer stems from the consideration of a non-Euclidean material
manifold, e.g., a manifold without curvature but with affine connection, or an
Einstein-Cartan space with both torsion and curvature, etc. With this one enters a
true ‘‘geometrization’’ of continuum mechanics of which conceptual difficulties
compare favourably with those met in modern theories of gravitation. Pioneers in
the field in the years 1950–1970 were Kondo (1955) in Japan, Kröner (1958) in
Germany, Bilby in the UK, Stojanovic (1969) in what was then Yugoslavia, Noll
(1967) and Wang (1967) in the USA. Modern developments are due to, among
others, M. Epstein and Maugin (1990, 1997), M. Elzanowski and S. Preston (see
the theory of material inhomogeneities by Maugin 1993). Main properties of this
type of approach are (1) the relationship to the multiple decomposition of finite
strains (Bilby, Kroener, E. H. Lee) and (2) the generalization of theories such as
the theory of volumetric growth (Epstein and Maugin 2000) or the theory of phase
transitions within the general theory of local structural rearrangements (local
evolution of reference; see Maugin 2003b, examining Kröner’s inheritance and
also the fact that true material inhomogeneities (dependence of material properties
on the material point) are then seen as pseudo-plastic effects—Maugin 2003a. All
local structural rearrangements and other physical effects (e.g., related to the
diffusion of a dissipative process)) are reciprocally seen as pseudo material
inhomogeneities (Maugin 2003b). Many of these advances are first-hand critically
expanded in a recent book (Maugin 2011). We shall deal in greater detail with this
type of generalization in the next chapter. An antiquated forerunner work of all this
may be guessed in Burton (1891), but only with obvious good will by a perspi-
cacious reader.

We end our panoramic tour of GCM by mentioning an original geometric
solution as presented in the book of Rakotomanana (2003), which offers a rep-
resentation of a material manifold—that is everywhere dislocated–with the
appropriate generalized gradient operator.

Introduction of the notion of fractal sets—as many real materials may be com-
pared to—opens new horizons [cf. Li and Ostoja-Starzewski 2010; and recent works
by Michelitsch et al. (2009, 2012), by a careful limit definition of the needed dif-
ferential operators (gradient, Laplacian, D’alembertian)]. It is shown that fractional
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derivatives are necessarily involved in the continuum limit and this gives rise to a
new kind of non-locality in elasticity as shown by Atanakovic and Stankovic (2009)
and Carpinteri et al. (2011).

13.6 Conclusion

Since the seminal work of the Cosserats, three more or mess successful paths
haven been taken towards the generalization of continuum mechanics. These were
recalled above. An essential difference between the bygone times of the pioneers
and the present time is that artificial materials can now be man-made that are
indeed generalized continua. In addition, mathematical methods have been
developed (homogenization techniques) that allow one to show that generalized
continua are deduced as macroscopic continuum limits of some structured mate-
rials. This is illustrated by the book of Forest (2006).

In conclusion, we can answer three basic questions that are clearly posed: (1)
Do we need GCM at all? (2) Do we find the necessary tools in what exists
nowadays? (3) What is the relationship between discrete and continuous
descriptions if there must exist a consistent relationship between the two? The first
two questions are positively answered in view of the above described develop-
ments. The third question is of a different nature because, in principle, continuum
theories can be developed independently of any precise microscopic vision, being
judged essentially on their inherent logical structure, the possibility to have access
to the material constants they introduce through appropriate experiments, and
finally their efficiency in solving problems. However, in contrast to some hard-line
continuum theoreticians, the author personally believes that any relationship that
can be established with a sub-level degree of physical description is an asset that
no true physicist can discard.
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Chapter 14
Configurational Mechanics

Abstract Starting with pioneering works by Peach, Koehler and Eshelby, an
original branch of continuum physics has developed in the period 1950—2010 that
consists in providing means of evaluating the evolution of particular material
zones of bodies under the action of external loadings. These zones are essentially
more or less localized regions of the bodies in which irreversible changes of
properties occur through a reorganization of material components of which frac-
ture is the most drastic form. This is interpreted as changes of local configuration
in the accepted view of the continuum mechanics of deformable solids. The
present conspectus reviews the formidable progress achieved in this ‘‘configura-
tional mechanics’’ from an historical and somewhat personal perspective. In this
general view phenomena such as fracture, phase transformations, the presence of
material heterogeneities, and more generally the expansion of structural defects of
different types find a natural unified frame work. Here the emphasis is placed on
the original works, the various breakthroughs and their contributors, the connec-
tion with the notion of ‘‘material’’ force, the modern —but often unfamiliar —
concept of mechanics on the material manifold, a strategy of post-processing to
evaluate driving forces or to improve numerical schemes, and a methodology
imported from mathematical physics. Unavoidable ingredients are those of
Eshelby stress tensor, material momentum in dynamics, and material forces of
inhomogeneity.

14.1 A Long but Useful Historical Introit

As indicated by the title of this chapter, here we are concerned with relationships
between configurations. The nineteenth century has seen the appearance of the
material configuration along with the more traditional actual configuration (See
Chap. 1). More precisely, we are interested in the transition, back and forth,
between these two configurations as also with possible changes in the reference
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configuration. This is the most typical development of continuum mechanics in the
second half of the twentieth century. Configurational mechanics is the most recent
and fruitful avatar of this development to which the author had the chance to
contribute forcefully. This, as a consequence, means that this historical introit is
not to be entirely objective so that we beg the reader to forgive us for this priv-
ileged but certainly first-hand vision.

Amateur historians of science such as the author of this book have a tendency to
search in the remote past the origin—or at least traces pointing to a future full
emergence—of presently acknowledged concepts. In our case, nothing sounds
better than a reference to Nicole (Nicholas) Oresme (French philosopher, mathe-
matician, theologian, economist; ca 1320–1382, Doctorate at Paris University
1356) who could be our oldest precursor with his well named ‘‘Tractatus de
configuratione qualitatum et motuum’’. In this opus he introduced a graphic rep-
resentation of material inhomogeneity by plotting the variation of a characteristic
material property along a direction, and then generalizing this to three dimensions,
inventing by the same token rectangular coordinate geometry long before
Descartes. Indeed, he developed a universal theory explaining physical phenomena
via the notion of geometrical configuration (cf. Duhem 1909; Taschow 2003). It is
indeed true that the modern notion of material inhomogeneity is related to con-
figurational mechanics (see the author’s book of 1993 with its spot on title).
A second possible allusion is to a work by Burton (1891) who spoke in evasive
terms about the representation of continuous matter which may be related to the
actual notion of material manifold. Burton also contributed, albeit belatedly, to the
theory of the ill-fated ‘‘aether’’ (or ether), the supposed substratum of light/elec-
tromagnetic waves.

More seriously, we must invoke the ‘‘avant-garde’’ vision of Piola (cf. Chap. 1).
However, if both Piola and Kirchhoff did introduce a reference configuration and
helped put the basic local equations of balance in a useful format closer to the
notion of strict conservation laws (in a mathematical sense), they did not go as far
as fully projecting the field and balance equations onto the material. This would
make these equations no longer contingent on the actual configuration. But this is
the object of most of this chapter. Nonetheless, the introduction of the finite
deformation gradient F—Eq. (1.5)—is tantamount to viewing the action of a
regular local change of reference configuration KR ! K 0R by the differential rule

F0 ¼ oex
oX

:
oX

oX0
¼ F:

oX

oX0
: ð14:1Þ

Such a transformation (multiplicative decomposition) based on standard anal-
ysis was known to rheologists in the 1950s (e.g., M. S. Green and A. V. Tobolsky).
Simultaneously, engineers working in small-strain elasto-plasticity were com-
monly using the additive decomposition

e ¼ ee þ ep ¼ ruð ÞS; ð14:2Þ
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where eeand ep refer to elastic and plastic infinitesimal strains, both not integrable
in a true gradient since only the total strain possesses this property as symbolized
in the last expression in (14.2) via the symmetrised displacement gradient. The so-
called incompatibility of each constituent in (14.2) led Ekkehart Kröner (1958) to
the formulation of a beautiful geometric theory of incompatibility. Pondering the
matter of generalizing (14.2) to the case of finite strains, the idea arose in
mechanical circles that a formula almost like (14.1) would be the looked for
answer, i.e., formally

F ¼ Fe:Fp ¼ o~x

oX
; ð14:3Þ

where none of the two contributors in the product, although commonly called
‘‘elastic’’ and ‘‘plastic’’ gradients, actually are gradients separately integrable in a
motion mapping. Mathematically, they are Pfaffian forms. The first manifestation
of a multiplicative decomposition of this type seems to be in the proceedings of the
Brussels ICTAM congress of 1956, by a group led by Bruce A. Bilby (Bilby et al.
1957). Such a decomposition was also advocated by Kröner at the same period.
Strangely enough most works nowadays refer to (14.3) as due to Lee (1969). This
is not fair. But it is true that (14.3) became popular only after Lee’s work because
its need had become more timely. Furthermore, it can also be remarked that the
decomposition (14.3) that clearly involves not only the actual and reference
configurations, but also an intermediate configuration—also called the elastically-
relaxed configuration—is not unique as, introducing an orthogonal transformation
Q such that QQ�1 ¼ 1;Q�1 ¼ QT ; we can also write

F ¼ F̂
e
:F̂

p
; F̂

e ¼ Fe:Q; F̂
p ¼ QT :Fp: ð14:4Þ

There is need to be more specific by fixing some privileged directions in the
intermediate configuration. This was done by Mandel (1971, 1973) who introduced
at this point so-called isoclinic directions and a director triad. This applies to the
case of crystals in particular.

The idea contained in (14.3) was a fruitful one as it applies in many types of
anelastic behaviours. It is possible to introduce a succession of—or multiple—
intermediate configurations. This allows one to represent complex rheological
behaviours in finite strains (e.g., work by Sidoroff 1975) in visco-elasticity. More
generallly, all thermo-mechanical behaviours exhibiting so-called internal stres-
ses—and thus called quasi-plastic processes—can also make good use of a mul-
tiplicative decomposition. This was done in thermo-elasticity by Milan V.
Mićunović—from Serbia—in his Polish doctoral thesis published in 1974.

A second way in which expressions of the type of a multiplicative decompo-
sition of the deformation gradient can appear belongs in the theory of material
inhomogeneities and the accompanying notion of local structural rearrangements.
It was introduced by Epstein and Maugin (1990a, b) in a kind of thought exper-
iment. This configurational definition directly yields a relationship to the so-called
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Eshelby material stress tensor. This, in turn, leads us to examining briefly the short
‘‘history’’ of that tensor.

The short story starts in the early 1950s with works devoted to the driving force
acting on a dislocation line and a somewhat similar force acting on a general
material inhomogeneity. This notion of driving force is not obvious as a dislo-
cation line is not a material object. Still, we can observe its ‘‘motion’’ through the
crystal and, by the inherent duality of mechanics, there should be a (driving)
‘‘force’’ causing this ‘‘motion’’, so that the product of this force and the velocity of
the observed motion should be a dissipated power. The first quantity in this line is
the force on a dislocation computed by physicists Peach and Koehler in 1950. It is
important for the sequel to understand the modus operandi. The evaluation of the
said force follows from a knowledge of the elastic solution in the neighbourhood
of the dislocation. We can say in modern terms that this is a kind of post-pro-
cessing computation. This methodology permeates the whole of this chapter.

The second force in the same class was the force acting on a material inho-
mogeneity (small region of the body occupied by a foreign material and fitting
exactly in the elastic body) was computed by Eshelby (1951) in a pioneering work.
It did not take long to Eshelby, also a specialist of dislocations, to realize the
relationship of his force with the divergence of a second-order tensor which he
called the ‘‘Maxwell elastic stress’’ or—but this was not happy as a coinage—the
‘‘energy–momentum tensor’’ of elasticity because of its resemblance to the
Maxwell electromagnetic stress (See Chap. 12 for this concept). Accordingly, it is
quite natural to consider Eshelby as the � founding father � of our field and,
more appropriately than the name given by Eshelby, to call the relevant stress
tensor the Eshelby material stress tensor (Maugin and Trimarco 1992).

The remarkable feature of these developments in a half century, but accelerated
in the years 1980s–2000s, has been the new interrelation of continuum mechanics
with recent fields of mathematical physics, in particular in so far as invariance
properties are concerned, and with some fields of solid-state physics and materials
science where the relationship between the two antagonistic views of the contin-
uum and the discrete are concerned. It was soon uncovered for non-dissipative
materials of which the mechanics follows from a variational principle in the
manner of Lagrange and Hamilton, that the appearance of the Eshelby stress was a
direct consequence of the application of a famed theorem of mathematical physics,
a subtle theorem proved by Emmy Noether in 1918. In essence this theorem says
that with each parameter of a group under which a physical theory (here the
considered action) is invariant, there is associated a conservation law. Such laws
apply to the whole physical system under consideration and, therefore, should not
be mistaken for the standard field equations (balance in continuum mechanics),
one for each degree of freedom. The energy equation is such a canonical equation
of conservation (invariance under time translation for non-dissipative processes).

This difference between the standard balance equations (e.g., for linear—
physical—momentum and the moment of momentum) and canonical conservation
laws is made transparent in solid mechanics in finite deformations in which we are
able to clearly distinguish between the dependent variables (e.g., the actual
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placement and the displacement) and the space–time parametrization (e.g., New-
tonian time and material coordinates). This brings us back to the relationship
between actual and reference configurations. For the classical balance equations in
pure mechanics we thus need both the equations in the actual configuration (as
they are usually presented in courses and used in the solution of boundary-value
problems) and the equivalent equations but entirely projected onto the material
manifold. Thus, the format of Piola–Kirchhoff is not sufficient for this purpose.
One must go one step further, a step strangely not taken by the most prominent
actor of modern continuum mechanics (Walter Noll) in his theory of material
inhomogeneities. We remind the reader that the material manifold M3 is the set of
material points constituting the body in a more or less smooth manner.

This is directly related to the notion of material heterogeneity since that feature
describes the dependency of the material properties on the material point (not the
point occupied in physical space), hence on the local reference configuration. With
this we are practically done. In particular Dominik Rogula in Warsaw considered
the balance laws of continuum mechanics in both physical and material frame-
works as soon as 1977. His co-worker Alicia Gołebiewska-Lasota, later Gołeb-
iewska-Herrmann (1981, 1982), having moved from Poland to the USA, strongly
influenced engineering scientists at Stanford University, the late George Herrmann
and his co-workers (e.g., Pak and Herrmann 1986a, b; Eischen and Herrmann
1987). This was taken over very successfully by Reinhold Kienzler from Bremen,
in collaboration with G. Herrmann, in their brilliant application of the concept of
configurational forces to engineering mechanics (Kienzler and Herrmann 1986)
and the strength of materials culminating in a book (Herrmann and Kienzler 1999).

In parallel, a more traditional school of mechanical engineering, following
along the path opened by German scientists such as Günther (1962), studied in
depth various path-independent integrals (Knowles and Sternberg 1972; Fletcher
1976; Bui 1978) with a repeated interest in fracture and other problems of which
the solution exploits these integrals (see, Buggisch et al. 1981). Pioneers such as
Cherepanov (1967, see also the collection of papers in the book edited by
Cherepanov 1998), and Rice (1968) must be cited as having been instrumental in
the application of some path-independent integrals (e.g., the celebrated J-integral
of fracture). We may say that the works of Abeyaratne and Knowles (1990) on
interfaces follow also this line keeping simultaneously close contact with physical
features (see their book, 2001). Along another line, it was natural for M. E. Gurtin,
a pioneer in good mathematical approaches to fracture (Gurtin 1979a, b) and
moving interfaces (Gurtin 1993), to enter the domain of configurational forces
with an original view (1995, his book of 1999) which we cannot share for reasons
repeatedly explained in our book of (2011): Gurtin claimed to have introduced a
new law of physics, but here there is no new law of physics.

Indeed, the present author entered the field in a pedestrian way by establishing
first the relationship between the general geometric considerations of K. Kondo, E.
Kröner, W. Noll and C.C. Wang (e.g., Noll 1967; Wang 1967) and their theory of
material uniformity with the notion of Eshelby stress tensor (his ‘‘energy–
momentum’’ tensor). This was achieved in collaboration with Marcelo Epstein
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(Epstein and Maugin 1990a, b), while, in co-operation with Carmine Trimarco
(Maugin and Trimarco 1992), we revisited the relationship of the notion of
Eshelby stress with that of variational principle (obviously in the absence of
dissipation in matter per se). Generalizations to electromagnetic materials of dif-
ferent types were to follow rapidly by the same group of three authors, while a
small book (Maugin 1993) written while the author was a member of the Wis-
senschaftskolleg in Berlin (1991–1992) set forth in a few pages general ideas on
the subject with special emphasis on the differences between Newtonian
mechanics and Eshelbian mechanics. This was complemented by a long review
(Maugin 1995). Both book and review were instrumental in attracting the attention
of several researchers to the field. Particularly noteworthy was the important
remark made by Braun (1997) from Duisburg on the possibility to exploit the
material momentum equation or its equilibrium version to the benefit of finite-
element computations. This was to generate a series of works by Ralf Mueller and
co-workers (in Darmstadt), including the present author (e.g., Mueller and Maugin
2002; Maugin 2002) and the very active group of Paul Steinmann then in Kais-
erslautern (e.g., Steinmann 2000, 2002a, b; Steinmann et al. 2001). Steinmann and
co-workers cleverly introduced in a systematic way the so-called Cauchy and
Eshelby formats of a stress tensor, and treated a number of numerical applications
in particular in the field of large-strain biomechanics. In the meantime we estab-
lished a kind of universality of the canonical thermomechanics of continua,
including in most intrinsically dissipative cases (Maugin 1998b, 2006). This was
an answer to those critics who said that we were relying too much on variational
formulations. But the case of dissipative materials could be treated, as we have
shown (Maugin 2006), by mimicking Noether’s identity.

Before that, Epstein and the author had introduced the notion of thermal
material force in heat conductors (Epstein and Maugin 1995a) of which a simple
form had been formulated by Bui (1978). We also examined the geometrical
definition of the Eshelby stress in the case of finite-strain plasticity (Epstein and
Maugin 1995b) as well as in the theory of material growth (Epstein and Maugin
2000). In this line the author identified effects of pseudo-inhomogeneity and
pseudo-plasticity by their resemblance to the Eshelbian type of inhomogeneity
effects (Maugin 2003). Many generalizations to the cases of electromagnetic
materials of different classes and to generalized continuum mechanics were given
by the author and co-workers between 1991 and 2005. An original approach to
dissipative interfaces such as phase-transition fronts and shocks was given in
1997–1998 (e.g., Maugin 1997, 1998a). Applications to the conservation laws and
perturbation of soliton-like solution were performed in co-operation with Christo I.
Christov (e.g., Maugin 1999b; Maugin and Christov 2002)—after a work of
1992 published in the Journal of the Mechanics and Physics of Solids (Maugin
1992a, b)—while an original thermodynamically admissible numerical scheme of
the finite-volume type was conceived together with Arkadi Berezovski with a
special interest in moving interfaces (see the book by Berezovski et al. 2008)
leaning heavily on the notion of material framework and configurational force.
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In all, the author and co-workers succeeded in unifying three lines of research in
continuum mechanics:

1. The finite deformation line that considers the multiplicative decomposition of
the deformation gradient as fundamental (it was proved that Mandel’s stress
that appears in this line is none other than one part of the Eshelby stress tensor
expressed in the intermediate configuration);

2. The geometric line created by scientists such as Kondo, Bilby, Kröner and
others (the canonical equation of momentum of the third line indeed is the basic
equation in that approach);

3. The configurational-force line—or theory of material forces—following Es-
helby (see the chart flow in p. 164 in Maugin’s book of 2011, originally given
in 2003 to commemorate Kröner’s legacy) in which it is shown that the ‘‘force’’
on singularities (e.g., dislocation line, crack tip, singular surface) is intimately
related to the limit behaviour of the divergence of the Eshelby stress in the
appropriate setting.

In the remainder of this chapter we shall critically examine the most important
points and results of this approach. But we like to mention a fact that is connected
both with the theory of configurational forces and with human behaviour. It shows
that even excellent scientists can be prejudiced and wear blinkers. Here we refer to
the complete ignorance shown by some pundits (Truesdell et al.) of continuum
mechanics for the pioneering work of Eshelby, perhaps because the latter often
referred to variational formulations! In thermodynamics we find the misunder-
standing demonstrated by Ingo Müller. As to certain fluid dynamicists, it seems
that they cannot—or do not make the required effort to—understand the bases of
solid mechanics (various configurations and the reference configuration in
particular).

14.2 Simple Formulas to Help the Reader in his Appraisal
of the Sequel

In order to facilitate the reading of the next section we give here without expla-
nation illustrative equations in finite- and small-strain elasticities.

14.2.1 Finite-Strain Inhomogeneous Elasticity

With the field equations of motion (Piola–Kirchhoff format)

o

ot
q0vð Þ � divRT ¼ 0; T ¼ o

oF
W F; Xð Þ;T:F ¼ FT :TT ; ð14:5Þ
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there are associated the following conservation laws of energy and material
momentum:

o

ot
K þWð Þ � rR: T:vð Þ ¼ 0; ð14:6Þ

o

ot
Pþ divRb ¼ f inh; ð14:7Þ

where in

K ¼ 1
2

q0v2;P: ¼ �q0v:F; ð14:8Þ

b ¼ � L1þ T:Fð Þ; L ¼ K �W ; f inh: ¼ o

oX
L v;F; Xð Þ

����
v;F fixed

ð14:9Þ

with the identity

o

ot
q0vð Þ � divRT

� �
:Fþ o

ot
P� divRbþ f inh

� �� �
� 0: ð14:10Þ

The latter is none other than Noether’s identity for the variational problem
associated with the Lagrangian density L, (14.5) provides the corresponding
Euler–Lagrange equations, and (14.7) and (14.6) are the conservation laws that
follow from the application of Noether’s theorem for invariance under translations
of the space–time parametrization X; tð Þ: P is called the material (or canonical)
momentum. Tensor b is the so-called Eshelby material stress tensor; f inh is called
the material force of inhomogeneity (Maugin and Trimarco 1992).

14.2.2 Small-Strain Inhomogeneous Elasticity

Then in place of Eqs. (14.5) through (14.10), we have the following equations in
Cartesian tensor notation:

o

ot
q0 _uið Þ � o

oxj
rji ¼ 0; rji ¼

o

oeij
W epq; xk

� �
¼ rij; ð14:11Þ

o

ot
K þWð Þ � o

oxj
rji _ui

� �
¼ 0; ð14:12Þ

o

ot
Pi �

o

oxj
bji ¼ f inh

i ; ð14:13Þ
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K ¼ 1
2
q0 _ui _ui; Pi ¼ �q0 _ujuj;i; ð14:14Þ

bji ¼ � Ldji þ rjkuk;i

� �
; L ¼ K �W ; f inh

i ¼ oL

oxi

����
_u;e fixed

; ð14:15Þ

o

ot
q0 _uið Þ � o

oxj
rji

� �
ui;k þ

o

ot
Pk �

o

oxj
bjk � f inh

k

� �
¼ 0: ð14:16Þ

14.3 Landmark Results in Configurational Mechanics

Here we follow a practically chronological order.

14.3.1 Driving Force on a Material Inhomogenity
(Eshelby 1951)

Finh
n ¼

Z

B
Wð Þ;n� rmkuk;n

� �
;mþrmk;mukn

� �
dv ¼

Z

oB
n:bð Þnda; ð14:17Þ

with a quasi-static Eshelby elastic stress given by the first of (14.15) with K set
equal to zero.

14.3.2 Driving Force on the Tip of a Crack
(Cherepanov 1967, Rice 1968)

Jk ¼ lim
C!0

Z

C
n:bð ÞkdC; ð14:18Þ

In particular the contour-independent, so-called, J-integral (as named by Rice;
projection of (14.18) in the direction of extension of the crack, here axis x1) of
linear fracture theory:

J ¼ J1 ¼
Z

C
Wn1 � nkrkiui;1
� �

dC: ð14:19Þ

Here C is a contour in the anti-clockwise direction around the crack tip, with
end points on the two load-free faces of the crack. Other contour-independent
integrals, so-called L and M integrals were introduced by Günther (1962), Knowles
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and Sternberg (1972), Fletcher (1976), Budiansky and Rice (1973) and are asso-
ciated with rotational and dilatational defects.

14.3.3 Dual I-Integral of the Linear Theory of Fracture
(Bui 1973)

I ¼ lim
C!0

Z

C
�Wc rð Þ n1 þ nk

orki

ox1
ui

� �
dC; ð14:20Þ

where Wc is the complementary elastic energy.

14.3.4 The Analytical Theory of Brittle Fracture
(Dascalu and Maugin 1993)

This holds in finite strains and full dynamics and treats simultaneously the driving
force and its associated dissipated power. With the notation of the previous Sect.
14.3.1 we have the following two compatible expressions for the force on the crack
(generalization of the J-integral) and the associated energy-release rate:

Fcrack
1 ¼

Z

C
N:bð Þ1þP1 V:Nð Þ

� �
dA� o

ot

Z

G
P1dV ð14:21Þ

and

Gcrack ¼
Z

C
H V:Nð Þ þ N:T:vð ÞdA� o

ot

Z

G
HdV ; ð14:22Þ

where �V is the velocity of progress of the crack tip in the material, G is the
volume enclosed in the contour C, and H ¼ K þW ¼ P:V� L is the Hamilto-
nian density. It is the simultaneous presence of the Lagrangian (in the force) and
Hamiltonian (in the energy) densities and the fact that the two are related by the
Legendre transformation H ¼ P:V� L which made us call this the analytical
theory of fracture. We should also mention here the approach of the J, L and
M integrals and their associated dissipated energy by means of the theory of
generalized functions (distributions) by the same authors (Dascalu and Maugin
1994a, b). That approach leads to considering a total conserved energy as the
sum of the elastic energy and the energy of the studied defect (moving dislo-
cation, growing hole). Previously, dynamical fracture was more conventionally
studied in depth by Freund (1972).
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14.3.5 Contour Integrals in Electroelasticity
and Electromagnetic Materials

It was not long before some of the above results were generalized to the case of
piezo-electricity, yielding, for instance, the following ‘‘piezo-electric’’ J-integral
(Suo et al. 1992)

J ¼
Z

C

WN1 � n:r:u;1 � n:Du;1

� �
dC; ð14:23Þ

where D is the electric displacement vector and u is the electrostatic potential.
Here W is jointly quadratic in the deformation and the electric field such that
E ¼ �ru: However, more exact results in the nonlinear linear framework had
been given before by Pak and Herrmann (1986a, b), with an expression in the
reference configuration such as

J Cð Þ ¼
Z

C

~WN1 � N: TE þ TF
� �

:
ou

oX1
� D̂:N
� � oû

oX1

	 

dS; ð14:24Þ

where TE and TF are ‘‘elastic’’ and ‘‘electric-field ‘‘contributions to the Piola–
Kirchhoff stress and D̂ is the material electric displacement. Another approach was
proposed by Maugin and Epstein (1991) on the basis of their theory of material
forces. The case of soft magnetic and paramagnetic bodies was similarly formu-
lated by Sabir and Maugin (1996) and the much more complicated case of elastic
ferromagnets (exhibiting a magnetic-spin internal degree of freedom) was settled
by Fomethe and Maugin (1998).

14.3.6 Material Inhomogeneity and Local Structural
Rearrangements

Here we take one step back in the past to report briefly on the works of Epstein,
Trimarco and Maugin. In the winter of 1989, Epstein and Maugin (reported in
1990a, b) conceived of a thought experiment that provided for the first time a
relation between the notion of local material rearrangement and the Eshelby
material stress. In effect, considering the case of finite-strain inhomogeneous
elasticity with energy density �W F; Xð Þ; they considered a local change K (at each
material point X) of reference contribution such that the material looks like a
purely elastic one, but in a kind of prototypical local configuration (what they call
the reference crystal). This yields a new energy density accounting for the related
change in volume:

W ¼ W F;Xð Þ ¼ J�1
K W FK Xð Þð Þ ¼ ~W F;Kð Þ: ð14:25Þ
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We check that

T ¼ o �W F;Xð Þ
oF

; b ¼ � o ~W F;Kð Þ
oK

KT ¼ W1R � TF: ð14:26Þ

Thus there definitely exits a relationship between the notion of material inho-
mogeneity and that of configurational (or Eshelby) stress. Furthermore, computing
the material divergence of b, we find that

divRb ¼ �f inh; ð14:27Þ

with cf. the last of (14.9)

f inh ¼ �oW

oX

����
F fixed

¼ b:C Kð Þ;C Kð Þ: ¼ rRK�1
� �

:K: ð14:28Þ

The geometric quantity C is a connection based on the local structural rear-
rangement K. Equation (14.27) with C Kð Þ is the equation missed by Noll and
Wang in their (nonetheless) beautiful works. We finally note that the symmetry of
the Cauchy stress results in the symmetry of b with respect to the finite Cauchy
strain C, i.e., (Epstein and Maugin 1990a, b)

C:b ¼ bT :C: ð14:29Þ

Also, we note that

M: ¼ T:F ¼ S:C ¼ W1R � b: ð14:30Þ

This establishes the relation between the Mandel stress M and the Eshelby
material stress. This is corroborated by the study of the role played by the Eshelby
stress—in the intermediate configuration—in elasto-plasticity in finite strains
(Maugin 1994; also Epstein and Maugin 1995b). Le ( 1999) has provided an
interpretation of the Eshelby stress as the resolved shear stress in the activation of
slip systems in crystal plasticity.

The fully dynamical equation of material momentum (14.7) was deduced from
a variational formulation by Maugin and Trimarco (1992). The same authors have
constructed the whole dynamical theory for magnetized and electrically polarized
materials in the exact material frame work.

14.3.7 Application to Materials Endowed
with a Microstructure

Here we think in terms of the contents of the foregoing Chap. 13. The first case
consists in envisaging the action of a higher-order gradient of the deformation. The
basic equations were deduced by Maugin and Trimarco (1992) for a second-gradient
theory involving the gradient of the deformation gradient. Such a formulation,
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in spite of its complexity and its subtle geometrical background (studied by authors
such as Marcelo Epstein and Marek Elzanowski), proves to be useful in the
biomechanics of soft tissues and morphogenetics (see recent works by Ciarletta and
Maugin 2011). In this applicative framework we also find the fundamental work of
Epstein and Maugin (2000) on the thermo-mechanical theory of material growth.

In the case of a microstructure of the Cosserat type (micropolar materials) it
seems that the first proposal of a J-type of integral was by Atkinson and Lepp-
ington (1974) with an expression of the type

J ¼
Z

C
WN1 � t:

ou

oX1
�m:

o/
oX1

� �
dL; ð14:31Þ

where t ¼ N:T and m ¼ N:M along the contour C; while the Eshelby stress has
the following quasi-static canonical definition:

bji ¼ Wdji � rjkuk;i � mjk/k;i; ð14:32Þ

where mji are the components of the reduction of M to this linearized case (see the
notation in Chap. 13). The J-integral (14.31) as also the corresponding L and
M integrals were discussed by Jaric (1978) while Lubarda and Markenscoff (2000)
rediscovered some of these results. But the general theory of configurational forces
in polar materials together with its application in fracture and the progress of
phase-transition fronts was given by Maugin (1998c) in a lengthy memoir of the
Philosophical Transactions of the Royal Society.

The case of complex media involving dissipative internal variables of state is
considered together with thermal effects in the next item.

14.3.8 Thermal Effects

In this case—e.g., in thermo-elasticity—the energy density, whence the free
energy, W must depend on the thermodynamical temperature h[ 0; inf h ¼ 0:
That is, in a materially inhomogeneous thermoelastic material,

W ¼ W F; h; Xð Þ: ð14:33Þ

Epstein and Maugin (1995a) have shown that Eq. (18.8) is now replaced by

o

ot
P� divRb ¼ f inh þ f th; f th :¼ SrRh; S ¼ � oW

oh
: ð14:34Þ

The newly introduced material force f th we called the thermal material force
while S is none other than the entropy density. The thermal material force—not a
usual physical force—vanishes only once the body has reached a state of spatially
uniform temperature. Until that moment it plays the same role as the material force
of inhomogeneity f inh on the material manifold. Accordingly, it may also be
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referred to as a material force of pseudo-inhomogeneity. There are other cases like
this one. Indeed, each time we will add an extra variable in the functional
dependence of W, we will create a new such pseudo-inhomogeneity force. This is
what happens in materials where dissipative processes (e.g., plasticity, visco-
elasticity, damage) are described by means of a set of internal variables of state,
here collectively denoted by a and that will eventually be governed by an evo-
lution equation subject to the second law of thermodynamics. Thus, keeping the
thermal effects but discarding the true material inhomogeneity (dependence on X),
we have to replace (14.33) by

W ¼ W F; h; að Þ: ð14:35Þ

We no longer have at hand a variational formulation, but we can proceed by
mimicking the Noether identity (14.10) by applying F to the right to all contri-
butions in the first of Eq. (14.5). We obtain thus a ‘‘non-conservation’’ of material
momentum in the form

o

ot
P� divRb ¼ f th þ f intr;f intr: ¼ A: rRað ÞT ;A: ¼ � o �W

oa
; ð14:36Þ

where A is the thermodynamic force associated with a, all other quantities being
formally defined just as before. The dot in the definition of the material force
f intrdue to the presence of internal variables of state—the intrinsic material force—
stands for the appropriate inner product in the space of the a’s. What is most
remarkable is that, simultaneously, we can associate with the first of Eq. (14.36) a
canonical equation of energy in the form (cf. Maugin 2006, but announced at
symposia and seminars since 2000)

o

ot
Shð Þ þ rR:Q ¼ hth þ hintr; ð14:37Þ

where Q is the material heat flux, and we have set

hth: ¼ S _h; hintr: ¼ A: _a: ð14:38Þ

It is easily realized that the first of (14.36) and (14.38) are but the spatial and
temporal components of a unique four-dimensional ‘‘non-conservation’’ law of
energy and momentum.

14.3.9 General Theory of Shocks, Transition Fronts,
Inelastic Discontinuities

In his early works of the 1950s Eshelby realized that at a fixed boundary R between
two different elastic bodies there could exist a surface ‘‘inhomogeneity force’’
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related to the normal jump of his ‘‘Eshelby’’ stress, i.e., in the quasi-statics where
the first of (14.15) holds with K ¼ 0, a force

f inh Rð Þ ¼ �n: b½ �; ð14:39Þ

where the square brackets capture the jump of their enclosure. Again, this is not a
force (here traction) of the Newtonian type. Rather, it serves as a directional
indicator of the change in the elastic properties as we traverse R. With appropriate
sign convention, it is oriented from the ‘‘harder’’ side to the ‘‘softer’’ side. In
1997–1998, Maugin and his Japanese co-workers, Tatsuo Inoue and Shoji Imatani
have dealt with this matter when temperature is also involved (results included in the
author’s book of 2011). However, the most interesting matter here is provided by the
theory of moving discontinuity surfaces R tð Þin a full thermo-dynamical framework
where discontinuity equations associated with the regular canonical conservation
laws complement the usual discontinuity relations. These new jump relations in fact
govern the irreversible progress of R tð Þ: Classical works on the subject are the
historical contributions of Rankine, Maxwell, Gibbs, Duhem, Hugoniot, Hadamard
and Kotchine. In recent times and in relation with Eshelbian concepts the most active
contributors have been Morton E. Gurtin and co-workers, Rohan Abeyaratne and
James K. Knowles, Claude Stolz, and Maugin and co-workers. In the formalism of
the author, the standard jump relations (in Piola–Kirchhoff format) relating to mass,
physical (linear) momentum, energy and entropy are given by

�VN q0½ � ¼ 0; ð14:40Þ

�VN pR½ � þ N: T½ � ¼ 0; ð14:41Þ

�VN HR½ � þ N: T:v�Q½ � ¼ 0; ð14:42Þ

�VN SR½ � � N: S½ � ¼ rR� 0; ð14:43Þ

where �VN is the normal velocity of R tð Þ, pR ¼ q0v; S is the material entropy flux,
and HR and SR are the total energy (Hamiltonian) density and entropy density per
unit reference volume. In the presence of thermal and intrinsic dissipative pro-
cesses (e.g., described by internal variables of state), the jump relations associated
with the regular equations (14.36) and (14.37) are given by

�VN P½ � þ N: b½ � ¼ �fR; ð14:44Þ

and

�VN Sh½ � � N: Q½ � ¼ hR; ð14:45Þ

where the three unknown quantities fR; hR and rR have to be estimated consistently.
Of course, in physical reality these correspond to integrated source terms throughout
the thickness of a transition zone that is not mathematically of zero thickness
(i.e., the discontinuity possesses a structure; such is the case of shock waves
that exist only because of dissipation occurring through such a transition region).
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The looked for consistency is obtained by evaluating the power dissipated by fR

and comparing (14.45) and (14.43) while taking account of (14.40) through (14.42)
and of the formal expressions of P and b. The case of phase-transition fronts is
beautifully treated by Abeyaratne and Knowles, especially in their synthetic book of
2001. Suffice it to notice that the driving force on such (homothermal) fronts is given
by the scalar quantity (formalism of the author)

HugoPT :¼ W � N:Th i:F:N½ �; ð14:46Þ

the symbolism \ .. [ indicating the mean value at R: When inertia is fully
disregarded from the start, then N: T½ � ¼ 0 across R: Using the Maxwell-Hadamard
condition for F, it is then shown that (14.46) can also be written as

HugoPTðquasi�staticsÞ ¼ W � tr Th i:Fð Þ½ �: ð14:47Þ

This contributes to the following balance of � material � forces at R tð Þ

fR þ HugoPT ¼ 0; ð14:48Þ

This surface � balance � equation is written down just to emphasize the
different roles of HugoPT—a field quantity that is known once we know the field
solution by any means on both sides of R—and the driving force fR that is the
thermodynamic conjugate of the normal speed �VNsince it is shown that the second
law at R requires that

pR ¼ fR �VN ¼ hRrR� 0: ð14:49Þ

The expression of �VN in terms of fR ¼ N:fR is the kinetic law for normal
progress of which examples basing on a more microscopic approach can be found
in Truskinovsky (1994).

In comparison with (14.46), the driving force on shock waves is given by the
scalar quantity

HugoSW :¼ E F;S;að Þ � N:Th i:F:N½ � � 0 at R; ð14:50Þ

where it is the internal energy E per unit reference volume that is involved. The
classical theory of shock waves imposes that HugoSW ¼ 0 (the well known Ran-
kine-Hugoniot condition) although �VN 6¼ 0 in general! Accordingly, the entropy
growth condition across such shockwaves—that is supposed to give the direction
of propagation—comes out of the blue as

mR S=q0½ � � 0; mR: ¼ q0
�VN : ð14:51Þ

In order to correct this inconsistency, the author (1997, 1998a), following an
earlier work of Stolz (1994), has shown that for both truly dissipative shock-wave
and phase-transition fronts, the quantities rR and pRcould be derived from a
common entity, a so-called (Massieu) generating function MR by the relations

rR ¼ MR½ � � 0 ð14:52Þ
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and

pR: ¼ V:fR ¼ hMR½ �: ð14:53Þ

The notion of generating function was already used in hydrodynamics and
magnetohydrodynamics by Paul Germain in shock wave studies. It is a linear
weighted combination of the invariants (continuous fields) across R (see Chap. 7 in
Maugin 2011).

For completeness we mention the works of Cherkahoui and Berveiller (2000) in
inelastic discontinuities and martensitic phase transitions, and of Schmidt and
Gross (1997) on the equilibrium shapes of precipitates.

14.3.10 Involvement in Numerical Schemes

Finite-volume scheme
Berezosvki and Maugin have elaborated a special thermodynamically admis-

sible finite-volume scheme to treat the dynamics of phase-transition fronts in the
Eshelbian formalism (see the synthesis in the book of Berezovski et al. 2008).

Finite-difference scheme
In order to treat the dynamics of media with microstructure able to transmit

strongly localized nonlinear waves and the associated quasi-particles (by means of
the exploitation of canonical conservation laws), Christov and Maugin (1995) had
to developed specially designed finite-difference schemes dealing with steep
systems of partial differential equations.

Finite-element scheme
This is where the very structure of the Eshelbian mechanics influenced most the

conception of numerical schemes. The reason for this is due to the co-existence of
two equations for momentum, in the actual and material framework, respectively.
Indeed, while the first of these is necessarily used to solve numerically the con-
sidered problem by means of an FEM scheme, the second can be exploited in a
post-processing procedure to improve the said scheme. This technique aims at
minimizing the energy in both actual and reference frameworks simultaneously.
For the sake of example, consider a homogeneous nonlinear elastic problem
governed in the bulk by the static equation [cf. Eq. (14.5)]:

divRT ¼ 0: ð14:54Þ

Imagine that this is solved by means of an FEM with a certain discretization
grid. Thus, we can know a solution from which we can evaluate the quantity divRb
which should vanish in the absence of material inhomogeneities. But we cannot
check that exactly because b is of a higher degree in the fields than T. Thus, we
generally obtain the inhomogeneous equation

divRb ¼ fcomp 6¼ 0: ð14:55Þ
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The minimization of the field of spurious material forces fcompwill cause a
coordinated displacement of the initial computational points. This can be achieved
in several iterative steps. This constitutes the essence of the creative remark made
by Braun (1997) in a short but spot on paper. This was followed by many papers
by Ralf Müller and Maugin in Paris, Dietmar Gross and his co-workers in
Darmstadt and Paul Steinmann and his co-workers in Kaiserslautern, and other
people in different countries. This has become a very technical matter so that we
do not elaborate further on this line of development.

14.4 Note on Wave Studies

Before concluding we want to mention briefly two unexpected applications of
configuration mechanics in wave processes. The first one is related to the so-called
kinematic-wave theory of Lighthill and Witham (cf. Whitham 1974). This is based
on the remark that, as clearly shown by the usual notion of phase u ¼ K:X� xt in
terms of the wave vector K (here material) and the frequency x, the couple of
variables K;xð Þ is dual to the space-time parametrization X; tð Þ via the four-
dimensional phase ‘‘scalar’’ product defining u. This duality can be exploited to
formulate canonical conservation equations associated—in the sense of Noether’s
theorem—with a Lagrangian density ~Lfor waves, re-expressed in terms of K;xð Þ:
Thus, a conservation of ‘‘wave momentum’’ with a corresponding flux as a material
‘‘wave Eshelby stress’’ can be formulated. In parallel, for the timelike component, an
equation of energy conservation holds expressed in terms of ~Land a ‘‘wave action’’.
This elegant formalism can be used in the study of nonlinear dispersive waves in
elastic crystals as shown by the author (Maugin 2007, 2011; Appendix to Chap. 12).

The second application is close to the notion of phonons in quantum solid-state
physics. It concerns the possibility to associate the notion of ‘‘quasi-particle’’ with
continuous wave processes such as in elasticity theory. This was already men-
tioned in Sect. 14.1 for the remarkable but rare dynamic phenomenon of solitons.
But here we like to point out the possibility to associate quasi-particles in more or
less stationary motion with surface acoustic waves (SAWs) as proposed by the
author and Martine Rousseau in order to tackle the problem of non-destructive
testing techniques by SAWs with an original viewpoint (cf. Rousseau and Maugin
2011; Maugin and Rousseau 2012). The general idea consists in the following.
Consider the ‘‘field’’ or ‘‘wave’’ momentum defined in the second of Eq. (14.14) in
agreement with Brenig (1955). Integrate the associated conservation law over a
representative volume element (RVE) for the considered wave process while
substituting in it the known wave solution (e.g., the Rayleigh SAW solution
mentioned in Chap. 6) obtained on the basis of the standard equation of motion in
the bulk, the boundary condition at the surface, and the asymptotic vanishing
condition far from the surface, in the substrate. The RVE typically is one wave-
length in the propagation direction, from the surface to infinity away from it in the
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depth direction, and one length unit in the remaining transverse direction. The
result of this calculation is a Newtonian-like equation for a ‘‘quasi-particle’’
generally propagating along the limiting surface, and of which the ‘‘mass’’ is a
measure of the wave energy that simultaneously accounts for all parameters of the
continuous solution. In parallel, applying the same procedure to the energy
equation of the continuum framework, a conservation of energy (in the form of
kinetic energy with the just introduced virtual ‘‘mass’’) is obtained for the said
quasi-particle completing the point-like picture. This is ready for the study of
interactions with an obstacle on the path of the wave (e.g., a layered structure with
various elastic components). Various types of SAWs were studied in this frame-
work including in the presence of dispersion, nonlinearity, viscosity (then with a
virtual dragging force and non-conservation of energy), surface energy, surface
inertia, and coupling with electromagnetic fields.

14.5 Conclusion

There is no doubt that the inception of Eshelbian continuum mechanics and its
many applications of both theoretical and practical interest constitute one of the
last great and original advances in continuum thermo-mechanics at the time of
writing of this book. This is shared by the development of various techniques of
homogenisation. It happens that both relates to the notion of homogeneity, or its
negation, inhomogeneity. This is not mere coincidence. It is just because homo-
geneity was the last of the three basic tenets of 19th century physics -linearity,
isotropy, and homogeneity—that were finally successively rejected due to physical
necessity and timely applications. However, whereas homogenisation techniques
are more akin to methods of applied mathematics (without altering basic principles
and equations), the subject matter of this chapter is more related to the foundations
of physics and touches more closely its basic principles. This is reflected in the
close relationship of the canonical conservation laws with Lie group theory via
Noether’s theorem or its generalizations to dissipative processes. Nonetheless, the
practical side should not be overlooked, not only in the already mentioned
applications but also in problems such as taking off material (in machining or
wear) or adding material at a surface (e.g., by accretion). The first of these
(machining) was first envisaged by Cherepanov (1987). Wear was studied by
Dragon-Luiset (2001), and accretion received the attention of Gurtin (1999) and
also of Russian scientists (see Chap. 11).
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Chapter 15
Relativistic Continuum Mechanics: A 20th
Century Adventure

Abstract Relativity theory as understood by Einstein is a true Twentieth century
development. After the introduction of the four-dimensional version of special
relativity by Minkowski and that ofenergy-moment tensor, to which must be added
the fact that general relativity is per se a continuum theory, there was need for a
true relativistic theory of the continuum. The present chapter reports in a critical
manner the progress made in this theory in two distinct periods, one extending
before World War II, and the second in the rough time interval 1950-1980, when
solutions were finally proposed in an inclusive way. The first period dealt with
attempts at discussing the ad hoc introduction of classical concepts in this new
landscape. Thisincluded the notion of perfect fluids and a debated discussion of the
possible generalization of the notion of rigid-body motion—without which the
notion of elasticity could not be introduced. A breakthrough is represented by
Eckart’s introduction of a systematic covariantspace-and-time resolution of four-
dimensional objects and of early elements of continuum thermodynamics. This,
combined with the natural influence of the then new trends in classicalcontinuum
mechanics (rationalization à la Truesdell), then led to a modern, more axiomatic,
formulation that allowed a rational construct of relativistic elasticity, and its
generalization to more complex thermomechanical schemes (including generalized
continua) andelectromagnetic deformable bodies, a development in which the
author has been more than a passive witness.

15.1 Historical Introit and the Need for a Relativistic
Continuum Mechanics

The theory of relativity was practically born with the 20th century. Prepared by the
discovery of characteristic space–time transformations by Fitzerald, Voigt and
Lorentz and with a group structure uncovered later on by Henri Poincaré, the
special theory of relativity was formulated in his annus mirabilis (1905) by

G. A. Maugin, Continuum Mechanics Through the Twentieth Century,
Solid Mechanics and Its Applications 196, DOI: 10.1007/978-94-007-6353-1_15,
� Springer Science+Business Media Dordrecht 2013
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Einstein. It was essentially a theory of fast motion of point particles with a velocity
bounded by the velocity c of light in vacuum. Not only it views mass as varying
with velocity, but it shows the equivalence of mass and energy, and its realm is the
electrodynamics of moving bodies. Replacing for large velocities Newton’s theory
and the allied Galilean invariance, it puts the mechanical motion and Maxwell’s
equations under an unique invariance umbrella governed by the Lorentz-Poincaré
transformations of space–time. The lack of symmetry noticed in Chap. 12 between
electric and magnetic phenomena is then resolved. Minkowski (1908) introduced
the powerful notion of four-dimensional space–time manifold M4 providing thus
an unsurpassed elegance to this theory. But this formulation, elegant as it was, was
also pregnant of further developments. The idea emerged that the generalization to
intense gravitational fields of Newton’s potential of gravitation / governed by the
Laplace-Poisson equation (k = Newton gravitational constant; q= mass density).

r2/ ¼ 4pkq; ð15:1Þ

was to be found in the space–time varying metric gab (a, b = 1,2,3,4; index 4
timelike) of a four-dimensional space–time manifold V4. The generalization of the
second-order space operator r2 had to be related to the curvature of space–time
(that involves second-order space–time gradients of the metric). As to the mass
density present in the right-hand side of (14.1), it had to be generalized in the
notion of energy–momentum (space–time) tensor Tab accounting for sources of
mass and energy other than gravitational—e.g., electromagnetic, deformational,
chemical. The genius of Einstein, helped by some friendly geometers such as
Grossman, and perhaps almost simultaneously with David Hilbert and Emmy
Noether, was to arrive in November 1916 at the space–time generalization of
(15.1) in the celebrated form

Aab :¼ Rab �
1
2

Rgab ¼ �
8pk

c4
Tab; ð15:2Þ

where Rab is the Ricci curvature and R is the scalar curvature deduced from the
Riemannian curvature Ra

:bcd. Tensor Aabis now called the Einstein tensor. Fortu-
nately, the geometrical path had been paved by Bernhard Riemann and the Italian
mathematicians Gregorio Ricci-Cubrastro (1853–1925; for short, Ricci) and Tullio
Levi–Civita (1873–1941), both also very active in the Italian community of
mechanics, see Sect. 10.6. Solving (15.2) for gabin terms of the sources of mass
and energy contained in the space–time energy–momentum tensor Tab obviously is
a formidable task.

Remark 15.1 Several remarks are in order concerning the beautiful Eq. (15.2).
First, from the formal point of view, we may consider Einstein’s theory of general
relativity as a generalized continuum theory of the second gradient of the space–
time metric (cf. Chap. 13). Second, the Maxwell stress and other such electro-
magnetic stress tensors introduced in Chap. 12 are none other than purely spatial
parts of the space–time energy–momentum tensor. So is the case of the Eshelby
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stress tensor introduced in Chap 14. Finally, while we could have some doubt with
special relativity, it is clear that general relativity is a continuum theory from the
start. This is more than enough to ponder the formulation of continuum thermo-
mechanics in its framework. The ultimately good invariance of electromagnetic
entities is another incentive for this endeavour. At least these are the reasons why
the present author became much involved in these developments in the 1960s at
the contact of the traditional Princetonian relativistic scientific community.

In the next section we will survey the pioneering period of time before WWII.
In Sect. 15.3 we examine the inevitable influence of the new general vision of
classical continuum mechanics created by some authors such as Truesdell and
others on the essential formulation of the basic principles of relativistic continuum
mechanics. Relativistic elasticity is paid special attention in Sect. 15.4 because of
its intimate relationship with the definition of rigid-body motion and the need for a
good invariant kinematic description of the continuum. Other advances are noted
in Sect. 15.5. Finally, the possibility to formulate various theories of generalized
continua in the relativistic framework is the object of the short Sect. 15.6. The
given bibliography is generous.

15.2 The Early Years: 1908–1940

This period extends between Minkowski’s proposal (1908) of a space–time four-
dimensional representation of relativistic effects and WWII. It is marked by three
essential developments. To describe these some inevitable reminder of notation is
necessary (this is a more or less standard notation as used, for instance, in Misner
et al. 1970, and Chap. 15 in the book of Eringen and Maugin 1990).

In special relativity the space–time metric is reduced to

gab ¼ gab ¼ diag þ1;þ1;þ1;�1ð Þ; a; b ¼ 1; 2; 3; 4 ð15:3Þ

with

xa a ¼ 1; 2; 3; 4ð Þ ¼ xi i ¼ 1; 2; 3ð Þ; x4timelike
� �

: ð15:4Þ

In general relativity, the space–time metric gabof signature þ;þ;þ;�ð Þ is
reducible to Minkowski’s metric at any space–time point (as if we got rid of
gravitation). In some kind of Eulerian view motion is represented by the world
velocity of space–time component ua normalized in such a way that

gabuaub þ c2 ¼ 0 ð15:5Þ

where c is the velocity of light in vacuum. The four vector ua=c is the unit tangent
to a ‘‘particle’’ space–time trajectory CX . This ‘‘particle’’ (noted X for reasons to
become clear later on) is equipped with its proper time s.
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A. Perfect fluids

The first development of relativistic continuum mechanics could consider only
the simplest of material behaviours, that of a perfect fluid. That is why the fourth
velocity is the only required kinematical ingredient. Such a perfect fluid here is
completely characterized by its rest-frame energy density, that we note - and its
(thermodynamic) pressure p. The conservation of energy and momentum is written
in special relativity as

obTba ¼ 0; ob ¼ o=oxb: ð15:6Þ

The energy–momentum tensor of this perfect fluid is accordingly written as

Tab ¼ -þ pð Þuaub þ pgab: ð15:7Þ

The relationship f -; pð Þ ¼ 0 is the law of state of this fluid. In spite of its
multiple uses, this case is too simple to help us make some progress in the bases of
relativistic continuum mechanics.

B. The energy–momentum tensor of electromagnetic fields

Because of its intimate relationship with the formulation of Maxwell’s equa-
tions, the form of the energy–momentum tensor for electromagnetic fields in
moving magnetized and electrically polarized matter received due attention in the
years following Minkowski’s proposal. In the absence of consideration of a true
model of interactions between electromagnetic fields and matter (although the
basic model of Lorentz—see Chap. 12—was available), proposals for such a
tensor were done on the basis of specious arguments: a priori expression for the
field energy, and the associated momentum and energy flux, imposed symmetry.
To illustrate this point we recall the expression of the purely spatial part of this
energy–momentum tensor according to the main actors of the play in the period
1908–1910 (with the notation of Chap. 12; remember that the divergence of ten-
sors has to be taken on the first index):

Minkowski (1908):

tem
M ¼ D� Eþ B�H� 1

2
E:DþH:Bð Þ1; ð15:8Þ

Einstein and Laub (1908):

tem
EL ¼ D� Eþ B�H� 1

2
E2 þ B2
� �

1; ð15:9Þ

Abraham (1909–1910) (T stands for transposition):

tA ¼
1
2

tem
EL þ tem

EL

� �T
� �

: ð15:10Þ

The electromagnetic energy present in the isotropic part of (15.8) smells good
the undue influence from a purely linear theory of constitutive equations (It is as if
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in general continuum mechanics we always wrote the deformation energy as half
the inner product of stress and deformation, what is true only in linear elasticity!).
The symmetrization effected in the definition is not necessary in general. Equation
(15.9) could be a good candidate but in fact too much symmetric in electric and
magnetic effects. This is to be compared to the expression deduced from a
microscopic modelling as the following expression (see Chap. 12 above):

Eringen-Grot-Maugin-Collet-Tiersten (1966–1973):

tem ¼ D� Eþ B�H� 1
2

E2 þ B2 � 2M:B
� �

1: ð15:11Þ

It is only in the late 1960s that the corresponding four-dimensional relativistic
energy–momentum tensor was deduced by de Groot and Suttorp (see these authors
1972) and exploited by Grot and Eringen (1966a, b); Maugin (1971, 1978) and
Eringen and Maugin (1990, Chap. 15).

C. The problem of the definition of rigid-body motions

In order to progress further one had to envisage a mechanical behaviour more
complex than pure fluidity, for instance, elasticity. Elasticity is meaningful only if
defined with respect to a standard (a comparison medium) that is normally rigid-
body motion. But here there is a caveat. The inherent limitation to physical speeds
imposed by relativity makes it inadmissible to have a physical object of arbitrary
large dimension in rigid-body rotation. Still this was the object of intense dis-
cussions in the early 1910s and it was shown by several authors (Born 1911;
Herglotz 1911; Noether 1911; Ignatoswky 1911) that the condition of rigid-body
motion could be defined locally by (this is Killing’s theorem in geometry)

oaub þ obua ¼ 0; ð15:12Þ

in a local spatial section of space–time. Attempts at a relativistic theory of elas-
ticity were then given by various authors (e.g., de Donder and Dupont 1932–1933).
Then, probably because of the absence of applications of interest, the subject laid
dormant for some time, waiting for a simultaneous revival of the basic studies of
nonrelativistic continuum mechanics. Most relativists were not equipped for such
an approach.

D. Space and time resolution of four-dimensional objects

However, a remarkable work was produced in Eckart 1940 by Carl H. Eckart.
Although a quantum physicist by formation and a future successful contributor to
problems of geophysics, he gave this opus as some kind of interlude, but a decisive
one in the evolution of both classical and relativistic continuum thermo-mechanics.
This he achieved in a real pearl in a completely covariant format by using system-
atically the resolution of any space–time object into ‘‘proper’’ components, in
particular for the energy–momentum tensor. For this one has to introduce the spatial
projector Pab such that
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Pab :¼ gab þ c�2uaub ¼ Pba; uaPa
:b ¼ 0;Pa

:bPb
:c ¼ Pa

::c: ð15:13Þ

These are, respectively, a definition, an orthogonality property, and the con-
dition of idempotence.

A general energy–momentum tensor then decomposes canonically as (in our
notation)

Tab ¼ c�2xuaub þ c�2uaqb þ paub � tab ð15:14Þ

where

x � c�2uaTabub; q
b � �uaTacPb

:c; p
a � �c�2Pa

:cT
cbub; t

ba � �Pb
:cP

a
:dTdc:

ð15:15Þ

These four elements are but ‘‘spatial’’ covariant forms of the energy density,
energy (heat) flux, momentum density, and (Cauchy) stress. Clearly, (15.7) is but a
special form of (15.14) withtba ¼ �pPab. Eckart implemented decompositions such
as (15.14) for all tensorial and vectorial four-dimensional objects in presenting rel-
ativistic generalizations of the notion of viscous fluid, Fourier’s heat conduction law,
and Ohm’s law. For heat conduction, he proposes the isotropic law

qa ¼ �jPab oh
oxb
þ h

c2
Dub

� 	
;D :¼ uaoa; ð15:16Þ

where the acceleration contribution is a purely relativistic effect due to the inertia
of energy. Eckart seems to have been the first author to have written the two laws
of thermodynamics in local covariant form.

15.3 The Influence of New Trends in Classical Continuum
Mechanics

Of course most knowledgeable authors adopted Eckart’s viewpoint and a sys-
tematic exploitation of the space and time resolution of space–time objects.
Among these authors we count Ehlers (1961); Cattaneo (1962), Grot and Eringen
(1966a); and Maugin (1975). But more than that, it was natural in the 1960s to try
to frame relativistic continuum mechanics in the new framework provided by the
revival and axiomatization of classical continuum thermo-mechanics due to
Truesdell, Toupin, Noll, Rivlin, Eringen, etc. This was achieved mainly by
Bressan (see his synthesis Bressan 1978); Schöpf (1964); Grot and Eringen
(1966a); Lianis (1973a, b) and Maugin (1975), with extensions to the relativistic
electrodynamics of deformable continua by the same authors (e.g., Bressan 1963;
Grot and Eringen 1966b; Maugin 1971, 1972a, 1978b). The particular points that
received special attention were: (1) the relativistic version of the principle of
material-frame indifference (or objectivity); (2) the formulation of the second law
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of thermodynamics (generalization of the classical Clausius–Duhem inequality,
and (3) the relativistic theory of elasticity, the first and third of these in view of the
difficulty brought in by the relativistic notion of rigid-body motion.

The direction of the solution of the second point that was just emphasized was
shown by Eckart. The first point was more difficult to deal with and several solutions
were offered. J.G. Oldroyd, himself a brilliant contributor to the modern theory of the
rheology of non-Newtonian fluids (see Chap. 3) proposed (Oldroyd 1970) to write
relativistic constitutive equations in the convected frame (this is equivalent to writing
them in the (space–time) invariant material framework). In a sense this was a rela-
tivistic replica of his 1950 landmark paper in classical rheology. Objectivity then is
automatically satisfied (that is why we formulated all kinematic and physical vari-
ables of interest in this framework in our Doctoral dissertation—Habilitation—of
1975). Lianis (1973a, b) and also Maugin (1975) proposed to project the relevant
variables and constitutive equations on a moving Fermi-Walker four-dimensional
frame. This is an interesting proposal because such a frame is dragged along the
material particle trajectory in space–time while rotating about it in a local spatial
section (and thus practically reproducing the invariance under time-dependent
rotation of an actual observer in classical objectivity). The third point (Elasticity) was
the object of vivid discussions and thus deserves a section just by itself.

15.3.1 Relativistic Elasticity

The fever with which this matter was discussed in the 1960–1970s is somewhat
surprising. It may be due to a new interest related to the ‘‘discovery’’ of solid-like
stars and the (now ill-fated) search for the evidence of gravitational waves by
means of an elastic detector (see, e.g., Maugin 1973, and the bibliography therein).
Here we must unfortunately distinguish between physicists with no previous
knowledge of modern continuum mechanics and who did their best, and mecha-
nicians appropriately trained in both this new framework and mathematical
physics. Most relevant papers are, in alphabetic order, by Bennoun (1964);
Cattaneo and Gerardi (1975); Carter and Quintana (1972); Glass and Winicour
(1972, 1973); Hernandez (1970); Maugin (1971, 1978a, d); Papapetrou (1972);
Rayner (1963); Souriau (1958, also 1964), and Synge (1959).

The problem and solution reside in the choice of the proper geometrical object
to describe the deformation in four-dimensional relativity (on this matter see
Appendix I in Maugin 1978d). First we note that it would be difficult in the general
relativistic framework (curved space–time) to introduce a priori the idea of dis-
placement like in classical linear elasticity in Euclidean space. Next, in order to
avoid a discussion about the notion of reference configuration, its could be a good
idea to avoid this altogether by formulating a kind of hypo-elasticity, i.e., a linear
relationship between the appropriately defined relativistic covariant time-rate (e.g.,
Lie derivative in following the relativistic motion) of the spatial covariant stress
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(tba) and the covariant strain rate (half the quantity appearing in the left-hand side
of Eq (15.12)—itself a Lie derivative. This was discussed by Maugin (1977) in his
study of wave propagation. Some (physicists) were tempted to directly select the
projector Pab as the relevant ‘‘spatial metric’’ to represent the strain, making the
internal energy density to depend on it. Unfortunately, if this ‘‘metric’’ obviously
accounts for the effect of the space–time metric gab in general relativity, it does not
account for the deformation itself, so that this reduces to nothing in special rela-
tivity. This is the case of Bennoun (1964). More properly, an excellent idea is to
envisage the canonical differentiable projection of the relativistic motion xa of a
‘‘particle’’ X onto a three-dimensional material manifold M3 of coordinates
XK ;K ¼ 1; 2; 3 in a space–time parametrization XK ; sð Þ where s is the proper time
of X in its motion along its space–time trajectory CX. Thus we write

XK ¼ �XK xað Þ; s ¼ �s xað Þ: ð15:17Þ

This defines the whole relevant kinematics in a vision that we called the
‘‘inverse motion’’ view. In classical mechanics (15.17) reduces to the only equa-
tion XK ¼ �XK xi; tð Þ where t is the absolute Newtonian time. Since uara � D ¼
o=os; we have

DXK ¼ uaXK
:;a ¼ 0 and XK

a ¼ XK
:;a ¼

o�XK

oxa
: ð15:18Þ

The last quantity may be called the relativistic inverse motion gradient.
[Remark The condition DXK ¼ 0—independence of XKand s in the space–time

parametrization—reads as

XK
:;4 ¼ � vi=c

� �
XK
:;i ð15:19Þ

in an inertial frame. But this is none other than the relation Vþ F�1:v ¼ 0
between ‘‘material’’ velocity V and ‘‘physical’’ velocity v of the ‘‘inverse’’ and
‘‘direct’’ descriptions of classical motion considered in configurational mechanics
(cf Chap. 14) after Maugin and Trimarco (1992); V relates to the ‘‘Eshelby’’
(intrinsically material) format of the balance of momentum].

A natural relativistic measure of deformation is built from the inverse motion
gradient as

C�1
� �KL

:¼ gabXK
a XL

b ¼ PabXK
a XL

b : ð15:20Þ

This is the relativistic version of the Piola finite strain of classical elasticity: It
is the canonical projection of Pab onto M3 by the motion. General relativistic
constitutive equations for elasticity based on this measure were considered by the
author in 1969 (in his Pre-general seminar for the PhD at Princeton in the spring of
1969; published later on only in 1971). As a matter of fact it was recognised later
that such a proposal went back to a paper—unknown to Maugin at the
time—published by Souriau in his own formalism and in a journal of limited
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distribution (Souriau 1958, incorporated in Souriau 1964). [Jean-Marie Souriau
(1922–2012) was an original character, a mathematician having taught first in
North Africa and then in Marseille. His most fruitful works are in symplectic
geometry]. Furthermore, this relativistic formulation of elasticity appears to be a
relativistic generalization of a formulation given by Murnaghan in 1937 in a paper
published in the American Journal of Mathematics.

The Born-Herglotz condition of rigid body motion then takes on the form (C is
the inverse of C-1on M3)

DCKL ¼ 0: ð15:21Þ

For further use it is possible to define a kind of relativistic ‘‘Eulerian’’ tensor of
deformation by

Eab ¼
1
2

Pab � GKLXK
a XL

b

� �
; ð15:22Þ

where GKLis the background metric of M3. This shows that Pab itself is not suf-
ficient to define the whole deformation in general relativity. Equivalently to
(15.21) local rigid-body motion can be covariantly defined by the condition

LuEab ¼ 0; ð15:23Þ

where Lu indicates the Lie derivative in following the four-velocity field.
Other formulations of relativistic elasticity are as follows. First, Hernandez

(1970) took an original viewpoint in making use of the (3 ? 1)—dimensional
formalism of Arnowitt, Deser and Misner for gravitation studies instead of the
above introduced space–time covariant decomposition (see Misner et al. 1970).
This had no followers. Rayner (1963) essentially considers a kind of Hooke
constitutive equation by taking the stress tba linear in Eab. With more precautions
Carter and Quintana (1972)—and subsequent works—consider a general ther-
modynamically admissible elastic constitutive equation in terms of the strain
tensor Eab with a view to applications of high-pressure elasticity theory as may
prevail in dense astrophysical objects. Such a theory is also proposed by Maugin
(1978b) with extension to magnetoelasticity. Achilles Papapetrou (1907–1997)—a
specialist of gravitation theory who had a rather mobile career in Greece, the UK,
East Germany, and finally in Paris for a long period—has shown in 1972 that a
good measure of small deformations could be given by a spatial tensor of the form

Eij ¼
1
2

hij þ ni;j þ nj;i

� �
; ð15:24Þ

where ni are the components of a displacement and hijis the perturbation in the
spatial part of the space–time metric due to some gravitational perturbation (e.g.,
incident wave on a gravitational wave detector). This can be deduced from (15.22)
by performing an infinitesimal variation of all implied fields. To end with we note
the remarkable work of Cattaneo and Gerardi (Cattaneo and Gerardi 1975) offering
a solution by iterations of an elastic equilibrium of a body in general relativity.
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15.4 Other Developments in the Period 1950–1980

Apart from elasticity most developments in relativistic continuum mechanics in
the period 1950–1980 concerned fluid mechanics and magneto-hydrodynamics,
with a specific interest in the propagation of discontinuity waves and applications
to astrophysics and cosmology. Without entering any detailed description, we
simply note the following works for the sake of completeness:

• waves in relativistic elasticity: Bressan (1963); Carter (1973); Maugin (1977,
1978e, 1979);

• singular hypersurfaces in relativistic continuum mechanics (some of these
studies with the use of generalized functions): Bressan (1963); Taub (1957);
Lichnerowicz (1955); O’Brien and Synge (1953); Maugin (1976a);

• Shock waves and other discontinuity waves: Taub (1948); Lichnerowicz (1967,
1971, 1976); Grot (1968); Maugin (1971, 1977, 1979, 1981);

• Variational principles in general relativistic continuum mechanics: Maugin
(1971, 1972b).

15.5 Relativistic Generalized Continuum Mechanics

While dealing with symmetries for generalized continua (e.g., the Cosserat model)
we have noticed that some invariances and group-theoretic arguments are in fact
related to special types of space–time transformations. Therefore, a natural question
is whether a four-dimensional formulation would not be advisable. However, to
many engineers the introduction of the notion of generalized continua in the classical
Newtonian framework is already a farfetched matter. But there is much more for the
true aficionados: the 4D framework of relativistic continuum mechanics. This was
expanded of necessity to incorporate the notion of spin in a generalized version of
Einstein’s theory of gravitation. This practically goes back to early developments in
the 1930s. As an initial remark, we note that general relativity was from the start a
continuum theory in Einstein’s own view. Then original contributions dealing with a
spin density in 1939 are due to Polish scientists. But for obvious reasons these works
were published only after WWII (Weissenhoff and Raabe 1947). This was taken
over by a group of active researchers around Louis de Broglie, in particular in the
nice thesis of Halbwach (1960).

Kafadar and Eringen (1972) formulated a covariant theory of polar materials
while A. Bressan (1978) in Italy considered strain-gradient effects. Maugin and
Eringen (1972), gave a different approach proposing to generalize the notion of
triad of rigid directors dear to Pierre Duhem, to that of tetrad in which the three
mutually orthogonal spatial directors are complemented in a 4-tuple by the non-
dimensionalized world velocity (which is orthogonal to the local spatial section).
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They hinted at the relationship of the nonsymmetric energy–momentum with the
notion of Einstein-Cartan space–time with torsion. F.W. Hehl, one of the rare
students of Ekkehart Kroener when the latter was at Clausthal, also proposed—in
analogy with the theory of dislocations—a variational formulation based on the
notion of Einstein-Cartan space–time in his habilitation (Hehl 1969). This author
became the internationally acknowledged specialist of this approach to gravitation
theory (cf. Hehl et al. 1976). In the mean time, Maugin developed a consistent
relativistic theory of spinning fluids (Maugin 1974, Maugin 1976a, b) along with a
general approach in relativistic electrodynamics in Maugin (1978c). Here we must
also mention the works of Herrmann et al. (2004) on an admissible thermodynamic
framework. From then on, the field escaped mechanicians and became a fully
fledged field of research in generalized gravitation studies.

Personal touch: In Paris in the period 1950–1980 the spirit of relativistic studies was kept
alive mainly by André Lichnerowicz (1915–1998) at Collège de France (together with
Yvonne Choquet-Bruhat at the University of Paris 6), and Olivier Costa de Beauregard
(1911–2007) and Marie-Antoinette Tonnelat (1912–1980) at the Institut Henri Poincaré,
then the Temple of French mathematical physics in the line of Louis de Broglie
(1892–1987). Lichnerowicz was an internationally reputed geometer and inveterate pipe
smoker, while Choquet-Bruhat was an analyst, the first woman to be elected to the French
Academy of Sciences in Paris, something that Madame Curie could not obtain in spite of
her two Nobel prizes! Tonnelat worked in the tradition of the (rather vain) unitary
gravitational theory of Einstein, but she was also an excellent historian of science. Costa
de Beauregard, from an old noble French family, was a deep thinker about the principles
of both quantum and relativity theories. American readers will be surprised or happy to
learn that a certain General de Beauregard from New Orleans was involved in the
American Civil War on the confederate side. The present author had the chance to have
André Lichnerowicz, Abraham H. Taub (1911–1999) from Berkeley, and Sybren R. de
Groot from Amsterdam in his State Doctor of Science (1975)—equivalent to an Habili-
tation—committee in Mathematics in addition to Paul Germain and Maurice Roseau (see
Chap. 7) for the aspects related to continuum mechanics. For his Ph.D at Princeton (1971)
both John A. Wheeler and Martin Kruskal were on the Defence committee.

References

Abraham M (1909) Zur elektrodynamik bewegter Körper. Rend Circ Mat Palermo 28:1–28
Abraham M (1910) Sull’eletrodinamica di Minkowski. Rend Circ Mat Palermo 30:33–46
Bennoun JF (1964) Sur les représentations hydrodynamique et thermodynamique des milieux

élastiques en relativité générale. C R Acad Sci Paris 259A:3705–3708
Born M (1911) Elastizitätstheorie und relativitätstheorie. Phys Zeot 12:569–575
Bressan A (1963) Onde ordinarie di discontinuità nei mezzi elastici con deformazioni finite in

relatività generale. Riv Mat Univ Parma(2), 4:23–40
Bressan A (1978) Relativistic theories of materials, of springer tracts in natural philosophy,

vol 29. Springer, New York-Berlin
Carter B (1973) Speed of sound in a high-pressure general relativistic solid. Phys Rev

D7:1590–1593
Carter B, Quintana H (1972) Foundations of general relativistic high- pressure elasticity theory.

Proc Roy Soc Lond A331:57–83

15.5 Relativistic Generalized Continuum Mechanics 277

http://dx.doi.org/10.1007/978-94-007-6353-1_7


Cattaneo C (1962) Formulation relative des lois physiques en relativité générale, Multigraphed
Notes of Lectures at Collège de France, Paris, Year 1961–1962

Cattaneo C (1980) Teori macroscopia dei continui relativistici. Pittagora Editrice, Rome
Cattaneo C, Gerardi A (1975) Un problema di equilibrio elastico in relatività generale.

Rendiconti Mat (6), 8:187–200
De Donder T Dupont Y (1932–1933), Théorie relativiste de l’élasticité et de l’électromagnéto-

striction. Bull Sci, Acad Belg (5), 18, 680–691, 762–790, 899–010; 19, 370–378
De Groot SR, Support LG (1972) Foundations of electrodynamics. North- Holland, Amsterdam
Eckart CH (1940) The thermodynamics of irreversible processes III: Relativistic theory of the

simple fluid. Phys Rev 58:919–924
Ehlers J (1961) Contributions to the relativistic mechanics of continuous media. Abh Math Akad

W Mainz 11:793–837
Einstein A (1905) Zür elektrodynamik bewegter Körper. Ann der Phys. 17:891–921 [English

translation in: Lorentz H.A., Einstein A., Minkowski H. and Weyl H. (1923). The principle of
relativity: A collection of original memoirs, Methuen, London; reprinted by Dover, New
York, 1952]

Einstein A (1916) Die Grundlage der allgemeine Relativitätstheorie. Ann der Phys 49:769–822
[English translation in: Lorentz H.A., Einstein A., Minkowski H. and Weyl H. (1923). The
principle of relativity: A collection of original memoirs, Methuen, London; reprinted by
Dover, New York, 1952]

Einstein A, Laub J (1908) Ueber die elektromagnetischen Felde auf ruhende Körper ausgeübten
ponderomotorischen Kräfte. Ann der Phys 26(541–550):3

Eringen AC, Maugin GA (1990) Electrodynamics of continua, vol 2. Springer, New York
Glass EN, Winicour J (1972) Elastic general relativistic systems. J Math Phys 13:1934–1940
Glass EN, Winicour J (1973) A geometrical generalization of Hooke’s law. J Math Phys

14:1285–1290
Grot RA (1968) Relativistic theory of the propagation of wave fronts in nonlinear elastic

materials. Int. J. Engng. Sci 6:295–307
Grot RA, Eringen AC (1966a) Relativistic continuum mechanics -I- mechanics and thermody-

namics. Int J Eng Sci 4:611–638
Grot RA, Eringen AC (1966b) Relativistic continuum mechanics -II- Electromagnetic

interactions with matter. Int J Eng Sci 4:639–670
Halbwachs F (1960) Théorie relativiste des fluides à spin. Gauthier-Villars, Paris
Hehl FW (1969) Spin und Torsion. Universität Clausthal, Germany, Habilitationschrift
Hehl FW, Von der Heyde P, Kerlick GD, Nester JL (1976) General relativity with spin and

torsion: Foundations and prospects. Rev Mod Phys 48(3):393–416
Herglotz G (1911) Ueber die mechanik des deformerbaren Korpers vom Standpunkte der

relativitätstheorie. Ann. der Phys 36:493–533
Hernandez WC (1970) Elasticity in general relativity. Phys Rev D1:1013–1018
Herrmann H, Muschik W, Ruckner G, von Borzeszkowski HH (2004) Spin axioms in different

geometries of relativistic continuum mechanics. Found Phys 34(6):1005–1021
Ignatowsky WV (1911) Sur Elastizitätstheorie vom Standpunke der relativitätstheorie. Phys Zeit

12:1013–1018
Kafadar CB, Eringen AC (1972) Polar media – The relativistic theory. Int J Eng Sci 27:307–329
Lamla E (1912) Ueber die Hydrodynamik des Relativitätsprinzip. Ann der Phys 37:772–796
Lianis G (1973a) General form of constitutive equations in relativistic physics. Nuovo Cimento

14B(1):57–103
Lianis G (1973b) Formulation and application of relativistic constitutive equations for

deformable electromagnetic materials. Nuovo Cimento 16B(1):1–43
Lianis G (2000) Relativistic approach to continuum physics. J Mech Behav Materials

11(1–3):105–119
Lichnerowicz A (1955) Théories relativistes de la gravitation et de l’électromagnétisme. Masson,

Paris

278 15 Relativistic Continuum Mechanics



Lichnerowicz A (1967) Relativistic hydrodynamics and magneto- hydrodynamics. Benjamin,
New York

Lichnerowicz A (1971) Onde de choc, ondes infinitésimales et rayons en hydrodynamique et
magnétohydrodynamique, in: Relativistic fluid dynamics, Ed. C. Cattaneo, pp 87–203,
Cremonese, Rome

Lichnerowicz A (1976) Shock waves in relativistic magnetohydrodynamics under general
assumptions. J Math Phys 17:2135–2142

Maugin GA (1971) Magnetized deformable media in general relativity. Ann Inst Henri Poincaré
A15:275–302

Maugin GA (1972a) Relativistic theory of magnetoelastic interactions. J Phys A: Gen Phys
A5:786–802

Maugin GA (1972b) An action principle in general relativistic magneto- hydrodynamics. Ann
Inst Henri Poincaré A16:133–169

Maugin GA (1973) Harmonic oscillations of elastic continua and detection of gravitational
waves. Gen Relativ Gravit Jl 4:241–272

Maugin GA (1974) Sur les fluides relativistes à spin. Ann Inst Henri Poincaré A20:41–68
Maugin GA (1975) Sur la formulation des lois de comportement en mécanique relativiste des

milieux continus, Multigraphed main document of Doct. d’Etat ès Sciences Mathématiques,
Université de Paris-6, Paris

Maugin GA (1976a) Conditions de compatibilité pour une hypersurface singulière en mécanique
relativiste des milieux continus. Ann Int Henri Poincaré A24:213–241

Maugin GA (1976b) Un principe variationnel pour le schéma fluide relativiste à spin, Ann. di
Mat. Pura ed Applicata (Italia) (4)110:247–277

Maugin GA (1977) Infinitesimal discontinuities in initially stressed relativistic elastic solids.
Commun Math Phys 53:233–256

Maugin GA (1978a) On the Covariant Equations of the Relativistic Electrodynamics of Continua-
I- General equations. J Math Phys 19:1198–1205

Maugin GA (1978b) On the covariant equations of the relativistic electrodynamics of continua-
III- elastic solids. J Math Phys 19:1212–1219

Maugin GA (1978c) On the covariant equations of the relativistic electrodynamics of continua-
IV-media with spin. J Math Phys (USA) 19:1220–1226

Maugin GA (1978d) Exact relativistic theory of wave propagation in prestressed nonlinear elastic
solids. Ann. Inst. Henri Poincaré A28:155–185

Maugin GA (1978e) Relation between wave speeds in the crust of dense magnetic stars. Proc.
Roy. Soc. Lond. A354:537–552

Maugin GA (1979) Nonlinear waves in relativistic continuum mechanics [on the occasion of
Einstein’s Centenary]. Helv Phys Acta 52:149–170

Maugin GA (1981) Ray theory and shock formation in relativistic elastic solids. Phil. Trans. Roy.
Soc. Lond 302:189–215

Maugin GA, Eringen AC (1972) Relativistic Continua with Directors. J Math Phys.
13:1788–1798

Maugin GA, Trimarco C (1992) Pseudo-momentum and Material Forces in Nonlinear Elasticity:
Variational Formulations and Application to Brittle Fracture. Acta Mech 94:1–28

Minkowski H (1908) Die grundgleichungen für die elektromagnetischen vorgänge inbevegten
körpern. Gottinger Nachrichen 53–111 [Also: ‘‘Raum und Zeit’’. Address deliveredat the 80th
Assembly of German Natural scientists and Physicians, Köln, September 21,1908]

Misner CW, Thorne KS, Wheeler JA (1970) Gravitation. Freeman, San Francisco
Murnaghan FD (1937) Finite deformation of an elastic solid. Amer J Math 59:235–260
Noether F (1911) Zur Kinematik des Starren Körpers in der Relativitätstheorie. Ann der Phys.

31:919–944
O’Brien S , Synge J.L. (1953) Jump conditions at discontinuities in general relativity. Commun

Dublin Inst Adv Studies, Series A, No.9
Oldroyd JG (1970) Equations of state of continuous matter in general relativity. Proc Roy Soc

London A316:1–28

References 279



Papapetrou A (1972) Vibrations élastiques excitées par une onde gravitationnelle. Ann H
Poincaré A16:63–78

Rayner CB (1963) Elasticity and general relativity. Proc Roy Soc. London A272:44–53
Schöpf HG (1964) Allgemeinrelativistische prinzipien der kontinuumsmechanik. Ann Phys(Leip-

zig) 12:377–395
Souriau J.-M. (1958), in: Alger Mathématiques, no.2, 1958 [and in: Géométrie et relativité,

Hermann, Paris 1964, Section 36]
Synge JL (1959) A theory of elasticity in general relativity. Math Zeit 72:82–87
Taub AH (1948) Relativistic Rankine-Hugoniot equations. Phys Rev 74:328–334
Taub AH (1957) Singular hypersurfaces in general relativity, Illinois J. Math 1:370–388
Weyssenhhoff J, Raabe A (1947) Relativistic theory of spin-fluids and spin-particles. Acta Phys

Pol 9:7–53

280 15 Relativistic Continuum Mechanics



Chapter 16
Epilogue

Abstract This concluding chapter first summarizes the historical developments
exposed in a critical manner in all preceding chapters. It emphasizes the various
nonlinear generalizations proposed in the Twentieth century as also the role played
by remarkable schools and individuals in the fantastic progress reached in this
period. This concerns more realistic material behaviors (accounting for micro-
structures, involving coupled fields), a moreaxiomatic and thermodynamically
justified approach, and a clear internationalization of engineering science.
Simultaneously, progress in other collateral branches of sciences, both theoretical
and experimental, has fostered a rapid, sometimes unexpected, progress in the-
science of continuum mechanics. The latter has become more a mechanics of
materials while developing tremendously its applicable side with performing
numerical schemes andrequiring new developments in applied analysis and the
interpretation in terms of advanced geometrical concepts. Final remarks points at
the new marked interest of continuummechanics for living matter and the
unavoidable relationship, both intellectually and numerically, between different
scales of description, a trademark at the dawn of the Twenty first century.

16.1 What was Achieved

If we compare the main ideas and queries formulated at the dawn of the twentieth
century—as recalled in Chap. 2—with the developments exposed in Chaps. 3–15,
we witness a rather good fulfilment of the proposed programme.

First of all, the existing linear theories of elasticity and viscous fluids have been
extended to a true and applicable theory of nonlinear elasticity—essentially for
incompressible materials of the rubber-like type and more recently for bio-materials
such as soft tissues—and non-Newtonian fluids (Chap. 3). The last case, because of
its involvement of time, has necessitated a reflection that led to seriously accounting
for the notion of objectivity in order to define properly invariant time derivatives.
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The perspicacious views and works of luminaries such as Rivlin, Oldroyd and others
have been instrumental in this intellectual construct corroborated by appropriate
experiments and fostered by socio-economical needs (industry of rubber and artifi-
cial textiles, paints, food industry, and all strongly viscous products).

In the linear theory of elasticity, two main ingredients have been introduced
(Chap. 6). First anisotropy has established a better contact between classical con-
tinuum mechanics and the physics of materials, which is the realm of anisotropic
crystals. But new materials are also anisotropic (e.g., fibre-reinforced materials). The
second ingredient is the necessary consideration of the possible singularities of the
elastic field. The way was paved by scientists such as A.E.H. Love. But there was a
long way between the theoretical—kind of thought-experimental—notion of dislo-
cation introduced by Vito Volterra and the real physical considerations on disloca-
tions by G.I. Taylor and others. Similarly, the now obvious need to envisage the
occurrence of cracks and their catastrophic expansion (in particular in aeronautics
and nuclear-power industry) was dutifully answered by the formidable work
achieved by the British school (Sneddon, Eshelby, Stroh, etc.) and then by teams both
in the west (e.g., USA, France) and the east (Russia). The importance of some
mathematical methods such as the application of the technique of complex variables
by Kolosov and Muskhelishvili cannot be ignored in this context. This trend of
research culminated in the theory of configurational forces (Chap. 14) with the
seminal contributions of Eshelby, Cherepanov, Rice and others. Works of a more
experimental nature and engineering-type such as those of Griffith and Irwin were of
utmost importance in these developments.

Simultaneously, a necessary examination of the mathematical properties of the
systems principally deduced from elasticity has led to a definite progress in the
proof of theorems of uniqueness and existence. This is not gratuitous as there is no
need to look for a classical solution (analytical or numerical) if we know in
advance that the considered problem is ill-posed and a standard solution cannot
exist. This progress was mostly based on the creation of a true applied functional
analysis in the expert hands of mathematicians such as Sobolev, Leray, Schwartz,
Lions, Magenes, etc., and more recently on its application in the UK, by Knops,
and then John Ball in nonlinear elasticity (Chap. 6).

Of the three ‘‘real’’ mechanical behaviours mentioned in Sect. 2.2, friction and
plasticity are certainly those which have commanded the largest number of works
in the twentieth century. Plasticity and its application to the mechanics of struc-
tures made immense progress among those cultivating the ASME spirit, especially
in Stanford and Brown (Chap. 4), but also in the UK with Rodney Hill and his
disciples (Chap. 6), Poland (Chap. 8), and Russia with Ilyushin, Rabotnov and
others (Chap. 11). We can say that, to the posthumous satisfaction of Pierre
Duhem, elastoplasticity, but also allied theories of creep and damage (Odqvist,
Hull, Kachanov, Rabotnov, Lemaitre) were given a good thermodynamic foun-
dation thanks to the works of Hill, Mandel, Ziegler and the French school of
continuum thermomechanics (Chap. 7). This definitely included one of Duhem’s
‘‘nonsensical’’ branches of mechanics into a rational framework.
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The attempts of Duhem to organize the ‘‘energetics’’ of many processes in a
common frame were completed by the school of linear irreversible thermody-
namics in Belgium and the Netherlands. But it is with Truesdell and his partners,
Noll, Coleman, Toupin, that the whole field was re-organized in a more mathe-
matical and axiomatized manner (Chap. 5). This fulfils one point in the prospective
programme proposed by Hilbert. The offered thermodynamic formulation was
audacious but with a certain efficacy. Amendments or generalizations (extended
thermodynamics, introduction of internal variables of state, satisfaction of the
causality of solutions) were advanced that much improved on the too much
corseting original proposal. By the same token stringent conditions of invariance
(e.g., objectivity) were duly enforced in continuum mechanics, probably under the
influence of the flourishing of such principles in mathematical physics.

Another of Duhem’s ‘‘nonsensical’’ branches of mechanics was electromag-
netism. With the pioneering works of Toupin, Mindlin, Eringen and others, this
was successfully incorporated in modern continuum mechanics (Chap. 12). This
provided a possibility to couple deformation and all types of electric and magnetic
behaviours and to treat a large number of applications at the crossing point of
mechanics, materials science, and electrical engineering with the same rationality
as pure problems of continuum mechanics.

Poro-elasticity (in particular by Biot) and a theory of consolidation of soils
allowed a fruitful co-operation between continuum mechanics and an emerging
science of geo-materials to the benefit of civil-engineering applications. At the
same time, thermo-elasticity, one of the first theories of coupled fields thanks to
the pioneering work of Duhamel, developed tremendously to include couplings
with electric fields such as in thermo-piezo-electricity, with many contributions
from Japan and China. This will particularly apply to new microscopic electro-
magneto-mechanical components known as MEMS.

Other thermo-mechanical couplings are those that necessarily play a fundamental
role in phase transformations of deformable solids. The invaluable contributions of
mechanicians of the continuum (from all over the world, but particularly from the
USA, Russia, France, Germany, and Japan) to the mathematical description of such
phenomena have brought this community in useful co-operational contact with the
community of metallurgists and condensed-matter physics. No doubt that the way of
approach and tools favoured by mechanicians—exploitation of balance laws, jump
equations at moving discontinuities, considerations of configurational mechanics
and variational formulations, mathematical refinements with special classes of
functions—have permitted a rational but physically justified description that would
have largely escaped the traditional tools of metallurgists. Works by applied math-
ematicians such as Jerald Ericksen, D.S. Kinderlehrer, John Ball and Richard D.
James have been essential in such developments. Here the role played by the Uni-
versity of Minnesota should be underlined.

If we now recall the original works of Duhem and the Cosserats on elastic
materials with a microstructure, then after a rest period of some 56 years, their
original ideas developed into a real ‘‘industry’’ materializing in various paths to a
truly generalized continuum mechanics as exposed in Chap. 13. Three essential
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lines have expanded, being represented by polar and micromorphic materials,
materials described by higher order gradients of deformation, and the so-called
non-local theory of materials. In all these we must acknowledge the leading role
played by mechanicians such as Toupin, Mindlin, Eringen, Kröner, Kunin, Edelen,
not to forget the German pioneers and their followers. What was again instru-
mental in the most recent developments of these research paths was a now obvious
relation of such schemes of deformable matter with real materials, whether of
natural origin (crystals of various types) or man-made new materials (composites,
cellular materials, etc.). Of necessity this has led to considering representative
length scales, and scale effects in general.

16.2 The Influence of New Experimental Equipments
and Computational Means

What could not be guessed at the dawn of the twentieth century were ‘‘things to
come’’, future developments in both experimental and numerical means that would
often be the consequence of progress in small-scale physics, especially wave and
quantum mechanics that revolutionized solid-state physics. As a matter of fact,
mechanics in the early twentieth century is still based on (1) standard observational
means (e.g., the naked eye and optical microscopes) and testing machines in a most
elementary—entirely mechanical—form, and (2) the search for analytical solutions,
if not of graphical ones by hand. It is at this gauge that we must appreciate the
extraordinary achievements of some people in analytical solutions, often based on
astute Ansatze that reflect a gifted capture of the physics and symmetries of the
looked for solutions. Still, practically only ‘‘simple’’ academic problems could be
solved (e.g., in elasto-plasticity where problems are free-boundary ones).

With progress in atomic physics and the applications of modern physics to
electronics, experimental means progressed at giant steps (think of electronic
microscopy, atomic-force microscopy, image processing, etc.) with a tremendous
decrease in scale of observation, while new means of computations were created
(electronic computers, miniaturization) with easy access by the common user only
in the nineteen seventies. These two facts created a new situation in which large
computations of complicated real structures made of materials with complex
constitutive equations (think of plastic-forming in large deformations with visco-
elasto-plastic constitutive equations) could be performed in finite strains. Scientists
like Juan Simo in the USA and people around Erwin Stein in Germany, who
combined an excellent knowledge of continuum thermo-dynamics, performing
computational methods, and mathematical results, had the most efficient back-
ground to realize such wonderful computations. This also applies to large com-
putations in the bio-mechanics of soft tissues such as the practically complete
mechanical simulation of the human heart structure with its multi-layered enve-
lope made of variously oriented fibres (see Humphrey 2002).
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Personal touch: In the same way as they cannot remember Bakelite telephones and the
desperate look for a telephone booth with the requirement to carry dimes in your pocket to get
in touch with the phone operator—see old black-and-white mystery US movies of the 1950s,
(so-called ‘‘films noirs’’ in the jargon of aficionados); also remember the inenarrable
sequence in ‘‘Dr Strangelove’’ when the British officer tries to enter in contact with the White
House -, young readers may have difficulties to imagine a time (1950–1960s) at which only
electro-mechanical desk computers existed. These were essentially used to make boring
astronomical calculations, or to help tracing a curve starting from a painstakingly obtained
analytical solution. Just to illustrate this, the author recalls that he first did some computations
of fluid mechanics on an analogue computer in 1965. He had his first experience on a
cumbersome—but extremely weak—digital electronic computer doing only simple alge-
braic operations in 1966, with programming in machine language. It is only going to the
United States that he met more powerful large computers but with programming in Fortran
language. One had to bring a thick batch of prepared punched cards to the computer centre
and collect the results on large printed output sheets one or two days later. Only finite-
difference schemes were available to treat problems of fluid mechanics. The finite-element
method was invented only in 1965–1966 to make large computations on aeronautical
structures; it took some time to become a commonly used tool.

Another consequence of this drastic development in both experimental and
computational means was the rapid transformation of part of the mechanics of
structures into a real mechanics of materials, that is, the due consideration of the
intimate structure of the material with its inherent inhomogeneity, multi-compo-
nent contributions, and transformations. It is only with modern fast computations
that the mathematical theory of homogenization could be applied, delivering the
effective coefficients of the replacement material by solving a set of exemplary
problems on the relevant basic cell. Simultaneously, the new experimental means
produced the appropriate images and measurements to confirm the numerical
simulations. From these emerged this new science of the mechanics of materials,
the last avatar of continuum mechanics. This gives a rather good visual perspective
of developments to come in a near future.

A particular point to be emphasized is that while continuum mechanics was for
a long time reserved to the study of inert matter, this new mechanics of materials
now dares to attack the landscape of living matter in the framework of biome-
chanics and mechano-biology for the study of growth, resorption, ageing,
remodelling, and morphogenesis. If we already mentioned that non-linear elas-
ticity was in some sense saved from oblivion by its useful applications in bio-
mechanics (Chap. 3; many works by Odgen and Holzapfel), most recent
developments in biomechanics involve all new ingredients and ideas introduced in
thermo-mechanics within the last 50 years: multiplicative decomposition of the
finite deformation gradient, theory of mixtures, notion of internal variables of
thermodynamic state, higher-order gradient theory, configurational forces, non-
linear waves, and homogenisation techniques, all to a high degree of sophistication
[see, for instance, in alphabetic order, Ciarletta and Maugin (2011), Ciarletta et al.
(2012), Cowin (1996), Cowin and Hegedus (1976), Epstein (2012; Chap. 7),
Epstein and Maugin (2000), Ganghoffer (2005), Humphrey (2002), Maugin (2011;
Chap 10), Porubov and Maugin (2011), Rodriguez et al. (1994), Taber (1995)].
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16.3 Towards Interactions Between Scales

For a long time continuum mechanics benefited in its simplest form—Hooke’s law
with two Lamé coefficients—to the evaluation of the strength of large structures.
By this we mean human scale and above. The main trait that clearly emerges from
the above reminder is a complexification of the modelling allied to a focus on
smaller scales with a neat tendency towards the crystal size, microstructure, and an
approach to the discrete description. Already mentioned examples relate to the
fields of dislocations and phase transformations. Thanks to the power of present-
day computational tools, it is now possible to simulate the movement of a large
ensemble of interacting dislocations, as also to relate meso- and macro-scopic
mechanical responses to it. It is this mutual enrichment between scales that is most
characteristic of the developments in the beginning of the twenty first century. The
new multi-scale techniques involving matching between continuum (finite-ele-
ments) and atomistic computations vividly illustrate this tendency (see, e.g.,
Tadmor and Miller 2011).

Along a somewhat different line one may wonder if the exploitation of direct
simulation techniques such as molecular dynamics—with an appropriate choice of
interaction potentials (see Rapaport 1995)—does not relegate the very concept of
continuum to the ‘‘dark ages’’ of phenomenological physics. But if this technique
yields spectacular results in some cases (e.g., propagation of cracks and other local
structural rearrangements) there is no obvious proof that this may replace the
continuum approach—appropriately discretized—in the computed response of
structural elements at any scale.

Another question is whether the development of nano-mechanics brings a true
revolution in the field (see Bhushan 2007; Liu et al. 2006). Of course one has to
account for scale effects, noticeably for the natural enhancement of surface effects.
Surprisingly enough, many mechanical engineers approach this mechanics with a
rather simple adaptation of tools used in macroscopic physics. Progress will
necessarily be done in this field.

Also, we cannot avoid a return to geometrical concepts. No doubt that geometry
is the basis on which the kinematics and deformation theory of continuum
mechanics rely. Until recently only geometry as made analytical by René Des-
cartes and considering the three-dimensional Euclidean space as the normal arena
of continuum mechanics was acknowledged as the standard background. Differ-
ential geometry as formulated by nineteenth century mathematicians (above all
Gauss and Riemann) was the tool that introduced the notions of metric and
eventually curvature (and therefore, by negation, a good definition of flatness;
think of the Navier-Saint–Venant equations of compatibility). Two facts have
complicated the picture. One was the influence of the consideration of non-
Euclidean spaces in gravitational theory following Einstein and others. The sec-
ond, in fact related to the first, was the recognition that taking account of the
presence of many structural defects requires abandoning the peculiarity of the
Euclidean nature of material space in favour of more general concepts introduced
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by modern differential geometers such as Elie Cartan: non-Riemannian spaces and
the allied incursion of group theoretical concepts. A fundamental question is raised
for the future of such developments that have already reached an incredible level
of sophistication which unfortunately drastically reduces the potential readership
to a happy few while of course becoming extremely strict from a mathematical
viewpoint. A similar problem appears in the geometric approach to unified theories
of physics that is apprehended by a very few. In mechanics, this will require from a
selected group of scientists an education of equivalently high level in modern
differential geometry, materials science, and continuum mechanics. Some pub-
lished books go in that direction; see Epstein 2010; Frankel 2004.

Personal touch. It was the idea of the author to initiate in 1997 a series of International
seminars on the subject of Geometry, Continua and Microstructure with a view to gather
informally geometers, mechanicians of the continuum, and materials scientists. Eight such
seminars were held in various European countries since 1997.

As a final but trivial remark, like in all scientific fields, the second part of the
twentieth century has witnessed an internationalisation in notation and research
themes. All involved personnel now read the same scientific journals that have
gained a true international public, and they practically all have access to a stu-
pendous flux of information by electronic means. Although local scientific tradi-
tions and masters are still active, the ‘‘provincial’’ print that we highlighted in
some chapters is fading away, giving a chance to all, even in remote or more
recently scientifically developed regions, to participate in the marvellous
adventure of science of which, obviously, continuum mechanics is only a very
small part, but often one at the meeting point of various scientific disciplines.
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Appendix
Selected Biographies of Mechanicians

Here we call ‘‘mechanicians’’ those academics and researchers who worked in the
field of applied and/or theoretical mechanics in departments such as those of
Mechanical Engineering, Applied Mechanics, Theoretical Mechanics, Engineering
sciences, Applied Mathematics, Aerospace and Aeronautics, etc.

Writing about Darwin in the London Review of Books of January 07, 2010, p. 5,
the Harvard historian of sciences Steven Shapin says: ‘‘The very idea of paying
homage to the great scientists of the past is problematic. Scientists are not widely
supposed either to be heroes or to have heroes. Modern sensibilities insist on
scientists’ moral equivalence to anyone else, and notions of an impersonal
Scientific Method, which have gained classical dominance over ideas of scientific
genius, make the personalities of scientists irrelevant’’. Of course, scientists, if
they do not see themselves as heroes, do have heroes. This was the case of all
scientists I met, sometimes with the proud posting of their heroes’ portraits on the
walls of their office. Now the exercise of writing a short biographical note of
contemporary scientists is even more perilous, in particular when speaking about
living persons whose personality and ego are often quite strong. There is a prime
difficulty in choosing the few words authorized by the exercise. I have been careful
in this choice, avoiding any negative bias of the practice or personality of persons
who are just human beings not devoid of such a trait. But the result is not exactly
hagiography, and I tried to be as neutral as possible except in a few cases where
my enthusiasm went much over my caution. All the people cited I have met or, for
the older ones, they have had a strong influence on my own works or they left a
definite print in my memory. I am obviously parsimonious with my own age class
where the choice may seem arbitrary to many, especially to those who are not cited
in a list that is necessarily limited. I have remedied this shortcoming to some
extent by listing names of younger scientists who have been influenced or
mentored by our elders. The list concerns uniquely people active in general
continuum mechanics and solid mechanics, so that pure fluid mechanicians,
excellent as they obviously are and so close to our community, are not cited unless

G. A. Maugin, Continuum Mechanics Through the Twentieth Century,
Solid Mechanics and Its Applications 196, DOI: 10.1007/978-94-007-6353-1,
� Springer Science+Business Media Dordrecht 2013
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they also contributed to general continuum mechanics and/or solid mechanics.
Only a very few scientists born after 1950 are listed, and most of those cited in this
class died unexpectedly in their fifties or sixties.

Achenbach Jan D. (born 1935): Dutch/American mechanical engineer. Ph.D.
Stanford (1962). Spent most of his career at Northwestern University nearby
Chicago. An internationally known and recognized specialist of wave propagation
in solids and non-destructive evaluation techniques: waves and vibrations in
viscoelastic solids, dynamics of composite materials, fracture, acoustic
microscopy, quantitative ultrasonics, elasto-dynamics. Author of the classic
book ‘‘Wave propagation in elastic solids’’ (1973). Founder and first editor of the
influential WAVE MOTION journal. Has received many awards including the
National Medal of Science of the USA. Mentored Andrew Norris, Yves Angel, and
others.

Aifantis (At‹ uamsg91) Elias C. (born 1950): Greek-American physicist educated
in Greece and Minnesota, with a marked interest in diffusion processes and the
motion of defects, in particular that of dislocations, and dissipative structures
(under the influence of PRIGOGINE’s group). One of the main exponents and
developers of the theories of elasticity and plasticity with strain gradients.
Professor at the Aristotle University of Thessaloniki and also in Michigan.

Ball John Macleod (Sir) (born 1948): British applied mathematician, FRS,
Professor at the Mathematical Institute, Oxford University after B.Sc. at
Cambridge, Ph.D. (1972) Sussex University with David Eric Edmunds, and a
professorship of Applied Analysis at Herriot-Watt University in Edinburgh
(1982–1996). Recipient of many honours. Specialist of large strain elasticity and
the mathematics of materials with phase transitions. Author of fundamental
theorems in the subject. President of the International Mathematical Union
(2003–2006).

Barenblatt (<APEHBKAT) Grigory I. (born 1927): Russian mechanician-
applied mathematician, Doctoral degree under A. N. Kolmogorov in Moscow,
internationally recognized for his contributions to fracture mechanics (the
Barenblatt-Dugdale model), the theory of fluid and gas flows in porous media,
the mechanics of non-classical deformable solids, turbulence, self-similarity and
intermediate asymptotics, nonlinear waves. Honored by many awards. Influenced,
among others, Genady P. Cherepanov.

Bažant Zdeněk P. (born 1937): American civil engineer native of
Czechoslovakia, formed in Prague. At Northwestern University in Evanston,
USA, since 1969. A prolific author of many papers and books with a large number
of co-authors. Supervised many Ph.D. Theses including the one of Gilles
Pijaudier-Cabot from France. Both a theoretician and an experimentalist with
works on the creep of concrete, the stability of structures, and above all scale effects
in solid mechanics and a nonlocal theory of damage (with G. Pijaudier-Cabot).
A much cited and honoured author in the field.
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Berdichevsky (<EPLBXEBCRBQ) Victor L. (born 1944): Russian-American
applied mathematician-mechanical engineer. Initially formed under the leadership
of Academician Leonid D. Sedov in Moscow. After immigration to the USA,
professor at Georgia Tech and then at Wayne State University in Michigan. Best
known for his proposal of general variational principles, his works on dislocation
theory, and the formulation of asymptotic homogenization for slender structures.
Later interested in the foundations of thermodynamics and stochastic processes.
Author of a remarkable book on variational principles in mechanics, physics and
thermodynamics (Russian version, 1983; English much enlarged version, 2009).

Bingham Eugene C. (1878–1945): American scientist, who coined the term
‘‘rheology’’ together with Markus Reiner. Was a professor at, and Head of, the
Department of chemistry at Lafayette College, Pennsylvania. Bingham
viscoplastic fluids are named after him. Both a theoretician and experimentalist
in rheology. Founded the Society of Rheology in 1929. Considered to be the father
of the science of rheology.

Biot Maurice A. (1905–1985): Belgian-American physicist-geophysicist.
Educated at the French speaking University of Louvain (Belgium; D.Sc. 1931),
also Ph.D. at Caltech (1932). Worked at various American universities (Harvard,
Columbia, Brown) and for a number of agencies and companies. An original but
somewhat lonely researcher, he is famous for his theory of poro-elasticity (so-
called ‘‘Biot theory’’), but also for his various works on variational principles, the
incremental theory of deformable solid mechanics, and irreversible
thermodynamics.

Bowen Ray M. (born 1936): American mechanical engineer. Ph.D. Texas
A&M University (1961). Taught at Rice University (1967–1983), University of
Kentucky (1983–1989), and became President of Texas A&M University
(1994–2002). Known for his theory of fluid mixtures in continuum mechanics.
A gifted administrator, he was instrumental in expanding Texas A&M University.

Bridgman Percy W. (1882–1961): American physicist who studied at Harvard
(AB, AM, PhD) and was a Professor of mathematics and natural philosophy there
until his retirement. A specialist of high-pressure deformation and flow (plasticity),
he was the one who experimentally proved that plastic behaviour is essentially due
to slip (or shear) strain (for nonporous metals). He is the author of a famous book
‘‘The nature of thermodynamics’’ (1941) that poses correctly the interpretation of
irreversible thermodynamics in continua, in fact proposing the consideration of
internal variables of state. He received the Nobel prize in Physics for 1946,
probably the only ‘‘mechanician’’, together with Lord Rayleigh (NP, 1904), to
have been honoured by this prize.

Budiansky Bernard (1925–1999): American mechanician, Ph.D. Brown 1950,
With NACA at Langley (1950–1955) and then Professor at Harvard University
from 1955. Author of seminal contributions to the mechanics of solids and
materials, and micromechanics. Influenced the whole school of mechanical
engineering in the USA.
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Bui Hui Dong (born 1937): French mechanician of Vietnamese origin,
educated at Ecole Polytechnique, Paris, student of Jean Mandel. Best known for
his extensive creative works in the theory of fracture. Research career spent at
Electricité de France and Laboratoire de Mécanique des Solides, Ecole
Polytechnique, first in Paris and then in Palaiseau. Member of the French
Academy of Sciences (Paris).

Caratheodory (Jaqaheodxqg9 ) Constantin (1873–1950): Born in Berlin of
Greek parents. Educated in Belgium (Lycée, Engineering military school).
Worked as a civil engineer in Egypt while educating himself in mathematical
analysis. Completed his formal education in mathematics in Berlin and then
Göttingen under the supervision of Herrmann MINKOWSKI. Published in 1909 a
celebrated axiomatics of thermodynamics introducing the notion of
thermodynamic adiabatic accessibility, a work acclaimed by Max Planck and
Max Born. Professor (1908–1920) in Bonn, Hannover, Breslau, Göttingen, and
Berlin. Then taught in Smyrna, Athens, Munich and finally Berlin until 1950.
Published famous mathematical works in analysis with many theorems and
conjectures bearing his name.

Cattaneo Carlo (1911–1979): Italian mathematical physicist. A student of
Antonio Signorini. Main works in elasticity, thermoelasticity and relativistic
continuum mechanics. The heat conduction equation called the Cattaneo-Vernotte
equation yielding a finite velocity of heat disturbances is named after him and the
French engineer Vernotte. Was a professor at the University or Rome (now Roma
I—La Sapienza).

Cherepanov (XEPEGAHOB) Genady P. (born 1937): Russian born American
mechanician. Ph.D., Moscow, 1962, Dr of Sc. Moscow 1964 (the youngest ever in
Mechanics in the former Soviet Union); a student of G. I. Barenblatt.
Internationally known for his seminal work in the theory of deformation and
fracture of materials and structures; one of the creators of configurational
mechanics with the original introduction of invariant and path-independent
integrals in fracture science. Immigrated to the USA in 1990 and taught at Florida
International University before retirement.

Christov (Xpbcnod) Christo I. (1951–2012): Imaginative Bulgarian/American
applied mathematician formed in Sofia and Novosibirsk (PhD with N. N. Yanenko
in 1980). Successively at the Meteorological Institute in Sofia, scientific visitor in
Madrid, Paris, Brussels, and Stanford before settling down in Lafayette, Louisiana,
USA as a university professor of mathematics. Multiple interests in both fluid and
solid mechanics with a special knack for numerical simulations. Developed
analytical techniques in turbulence (random point approximation), introduced
dissipative soliton, models of elastic crystals with high-degree dispersion
(generalized Boussinesq systems), constitutive equations yielding hyperbolicity.
Works in co-operation with K. Z. Markov, Manuel Velarde and G. A. Maugin.
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Ciarlet Philippe G. (born 1938): French applied mathematician in the French
‘‘Lions’’ line. Educated at Ecole Polytechnique and School of Ponts & Chaussées
(ENPC), Paris; Ph.D., Cleveland (1966). Renowned specialist of finite-element
techniques and the mathematics of elasticity with an interest in plates and shells,
and the so-called ‘‘zoom’’ technique (with Ph. Destuynder), allowing passing from
3d to 2d or 1d schemes for structural elements. Developed more recently an
interest in differential geometry. Professor at the University of Paris 6 and then at
the City University of Hong Kong, after retirement.

Coleman Bernard D. (born 1930): American chemical engineer turned
‘‘rational mechanician’’ at the contact of Clifford A. Truesdell and Walter Noll;
Ph.D. Yale 1954. Author of most influential fundamental works in rational
continuum thermomechanics and modern rheology (e.g., media with fading
memory, the ‘‘Coleman-Noll’’ thermodynamics of continua, etc). Recently
interested in biological structures such as DNA. First at Carnegie-Mellon in
Pittsburg and then at Rutgers University in New Jersey.

Cosserat Eugène (1866–1931) and Cosserat François (1852–1914):
Respectively, French mathematician-astronomer (Professor at the University of
Toulouse) and French civil engineer (‘‘Corps des Ponts et Chaussées’’), brothers,
authors of the celebrated book ‘‘Théorie des corps déformables’’ (1909) considered
to be a pioneers’ vision of generalized continua (introduction of couple stresses).
‘‘Cosserat media’’ and ‘‘Cosserat spectrum’’ (in 2d elasticity) are named after
them. Among the first scientists to have introduced the notion of groups in
continuum mechanics (see their ‘‘Euclidean action’’), and thus much acclaimed by
Elie Cartan, the famous geometer.

Coussy Olivier (1953–2010): French civil engineer (Dipl. Ing. ENPC, Paris,
1975), PhD 1978, DSc (Habilitation) 1985, both at the UPMC, Paris. From 1979
researcher at the Laboratoire Central des Ponts et Chaussées, Paris, while teaching
mechanics in various « grandes écoles » (Polytechnique, ENPC). Head of the Navier
Institute of civil engineering (2003). Author of original creative works in the thermo-
mechanics of porous and chemically active continua; Biot Medal (2003). Has written
a remarkable book on the ‘‘Mechanics of porous continua’’ (Wiley, 1995).

Drucker Daniel C. (1918–2001): American applied mechanician. Taught at
Brown University, the University of Illinois, and the University of Florida. A
foremost authority on the theory of plasticity (e.g., Drucker’s postulate).

Duhem Pierre (1861–1916): Prolific French mathematician and historian of
sciences, epistemologist, who pioneered many aspects of the rational mechanics
and thermomechanics of continua (a precursor of the Truesdellian School).
Considered as an ‘‘energetist’’ as opposed to ‘‘atomist’’. A friend of Henri Poincaré
and Jacques Hadamard. Spent most of his career in Bordeaux, having definitively
alienated himself from Parisian authorities after his justified but premature
criticisms of the theories of Marcelin Berthelot (a ‘‘republican hero’’ of science,
but also an excellent scientist).
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Duvaut Georges (born 1934): French applied mathematician formed at Ecole
Normale Supérieure (Paris) and University of Paris with Paul Germain as mentor.
Co-author with J. -L. Lions of a landmark pioneering book on variational
inequalities in mechanics and physics (1972); applications to plasticity and
viscoplasticity. Works on periodic homogenization. Professor at the University of
Paris 6 until retirement. For some time scientific director of O.N.E.R.A (Office
National d’Etudes et de Recherches Aéronautiques).

Eckart Carl H. (1902–1973): American physicist. Ph.D. at Princeton (1925).
Post-doctoral stay in Munich with Arnold Sommerfeld. Author of known works in
quantum mechanics. Professor in Chicago (1928–1941) and then at the University
of California in San Diego (1941–1971). Became involved in oceanography and
underwater acoustics. Published in 1940 and 1948 a series of four papers that
anticipated many developments in modern (classical and relativistic) continuum
thermo-mechanics.

Edelen Dominic G. B. (1929–2010): American mathematician, Ph.D. Johns
Hopkins 1956, Worked first as a researcher at the Rand Corporation, Santa
Monica, and then taught mathematics at Lehigh University and mechanics at
Texas A&M university. An original and powerful thinker with many works in
general relativity, astrophysics, geometry, exterior calculus, the mathematical
theory of defects, gauge theory, the nonlocal theory of elasticity,
thermomechanics, and transformation methods for nonlinear partial differential
equations. Author or co-author of many books in these fields.

Epstein Marcelo (born 1944): Canadian mechanician of Argentine origin and
applied mathematician interested in both applications (structural members,
biomechanics) and the abstract rigorous framework of continuum mechanics
with a strong interest in modern differential geometry. Civil Engineer (Buenos
Aires, 1967). Ph.D. at the Technion in Haifa (1972), and professor at the
University of Calgary, Alberta, since 1976. Visited many research centres in
the world. An excellent amateur musician, and an intellectual in the best sense
interested in languages and humanities. Seminal works in co-operation with Marek
Elzanowski, Manuel de Leon and Gerard A. Maugin (Differential geometry,
Material inhomogeneities, Eshelby stress, configurational forces, theory of
material growth).

Ericksen Jerald Laverne (born 1924): American mechanician/physicist. Was
a professor at the Johns Hopkins University, Department of Mechanics
(1957–1982)—after war service in the US Navy and Ph.D. at Bloomington
(1951) and spending some time at the US. Naval Research Laboratory (NRL)—
and then joined the University of Minnesota (1982–1999) before retirement. Made
important contributions to the fields of mechanics and elasticity. He is best known
for his work on anisotropic fluids and liquid crystals, plates and shells, solid
crystals and their phase transitions viewed in thermomechanics. An original
thinker; somewhat outside main chapels. Many results and objects bear his
name—e.g., Rivlin-Ericksen tensors, Rivlin-Ericksen fluids, Baker-Ericksen
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inequalities, Doyle-Ericksen tensor, Ericksen identity, Leslie-Ericksen theory of
liquid crystals. Influenced C. M. Dafermos, F. M. Leslie, R. C. Batra, R. D. James,
M. Pitteri, and G. Zanzotto. One of the most influential mechanicians in the second
part of the 20th century.

Eringen A. Cemal (1921–2009): Turkish born American engineering scientist.
Founded the Society of Engineering Sciences (SES) and created the Journal
‘‘International Journal of Engineering Sciences’’. Internationally known for his
many seminal contributions to various generalized continua (micropolar fluids and
solids, micromorphic continua, media with microstretch, nonlocal theory of
continua, media with chemical reactions, interactions with electromagnetism, etc).
Ph.D. (1948) at the Brooklyn Polytechnic Institute under the supervision of
N. J. Hoff. Professor at the Illinois Institute of Technology (1948–1953), then in
Purdue (1953–1966), and finally at Princeton University until retirement.
Mentored and/or influenced, among others, J. C. Samuels, S. L. Koh, R.
C. Dixon, J. D. Ingram, J. W. Dunkin, Richard A. Grot, Charles B. Kafadar, Robert
Twiss, W. D. Clauss Jr, T. S. Chang, James D. Lee, Hilmi Demiray, Gerard A.
Maugin, Charles Speziale, Patrick O’Leary, Geneviève Segol, Leslie E. Hajdo,
Nas�it ARI, Byoung Song Kim, etc.

Eshelby John (‘‘Jock’’) Douglas (1916–1981): British physicist educated in
Bristol, worked in Cambridge, and taught in Sheffield (first as a reader and then as
a professor in 1971), Faculty of (the theory of) materials. Best known for his
original work on dislocation motion, the driving force on a material inhomogeneity
and on a field singularity, the continuum theory of lattice defects, and the
‘‘Eshelby’’ inclusion problem. The material Eshelby stress tensor, the spatial part
of the energy-momentum tensor, is named after him (coinage by G. A. Maugin and
C. Trimarco, 1989–1992).

Föppl August (1854–1924): German physicist-civil engineer, Professor of
Technical Mechanics and statical graphics at TU Munich (1893–1922). Interested
in mathematical physics. Introduced Heaviside’s Maxwell electrodynamics to
Germany in 1894 in a book that influenced Albert Einstein. Arnold Sommerfeld
highly valued him. Ludwig Prandtl was one of his first students. Influenced several
generations of mechanicians in Germany through his books.

Germain Paul (1920–2009), French mathematician (ENS alumnus) with early
successful works in various branches of theoretical fluid mechanics (transonic
flows, flows around delta-wings, structure of shock waves in fluids and MHD;
consideration of generalized functions and asymptotic methods in problems of
fluid mechanics), introduced a curriculum in continuum mechanics that influenced
the teaching of the matter in all institutions in France. Then turned to general
continuum thermomechanics and various applications in dissipative solids.
Revived the interest for the formulation using the principle of virtual power in
the modelling of complex continua and structures. Has shown a remarkable open-
mindedness towards various theories. Influenced, among others, Jean-Pierre
Guiraud, Georges Duvaut, Patrick Muller, Francois Sidoroff, Monique Piau,
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Gérard A. Maugin, Alain Gérard, Raymonde Drouot, and Pierre Suquet. Professor
at the Sorbonne and then University of Paris 6 (now Université Pierre et Marie
Curie) and the celebrated Ecole Polytechnique. One of the founders of the
‘‘Journal de Mécanique (Paris)’’ that was to become the ‘‘European Journal of
Mechanics A/B’’. He also created the Laboratoire de Mécanique Théorique in
association with CNRS (1975), to become the Laboratoire de Modélisation en
Mécanique (1985), and then integrated in the Institut Jean Le Rond d’Alembert by
G. A. Maugin (2007). Président of IUTAM (1984–1988). Member of main
National Academies of Sciences (Paris, USA, USSR, Poland, Royal Society,
Lincei, Pontifical Academy).

Gurtin Morton E. (born 1934): American mechanician-applied
mathematician, Ph.D. Brown University (1961) with Eli Sternberg. Taught at
Brown University and then Carnegie-Mellon. Author of seminal works in
nonlinear continuum mechanics, thermomechanics of continua, dynamical phase
transitions, evolving phase boundaries, configurational forces, dislocations and
plasticity. Influenced, among others, Ian Murdoch, Paolo Podio-Guidugli and Eliot
Fried.

Green Albert E. (1912–1999): English applied mathematician. Ph.D. (1937) in
Cambridge under Sir Geoffrey I. Taylor, Professor at Oxford University
(1968–1977), FRS, Numerous works in linear and nonlinear elasticity, important
contributions to continuum mechanics including generalized continuum mechanics
(multipolar theory, thermoelasticity, theory of shells and rods, elastic-plastic
behavior, etc). Fruitful co-operation with Ronald S. Rivlin and Paul M. Naghdi.

Grioli, Giuseppe (born 1912, reached a hundred in the spring of 2012): Italian
mathematician, Long time Professor of Mathematics (Rational mechanics) at the
University of Padova. A follower of Antonio Signorini. Specialist of mathematical
problems in elasticity and media with couple stresses.

Hamel Georg (1887–1954): German mechanician-applied mathematician,
professor in Berlin. Proposed an axiomatization of mechanics and formed many
German mechanicians through his influential books.

Hellinger Ernst (1883–1950): German mathematician. Author of a noted
(Felix Klein) Encyclopedia article on continuum mechanics (1914) and another
article with O. Toeplitz on analysis. Also known in mechanics for the Hellinger-
Reissner (two-field, displacement and stress) variational principle. Educated in
Heidelberg, Breslau and Göttingen with David Hilbert. He was professor in
Frankfurt am Main but left for the USA in 1939 and then taught at Evanston. Most
works in integral and spectral theories.

Herrmann George (1921–2007): Swiss/American mechanical engineer with
Russian as one of his native tongues (was born in Moscow which he left in his teens).
Educated at ETH Zurich; Doctoral degree in 1949 with William Prager. Left
Switzerland for North America in 1949, first in Montreal, then at Columbia
University, New York, and Northwestern University, Evanston. Professor of
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Mechanical engineering at Stanford (1970–1984). Created the journal ‘‘International
Journal of Solids and Structures’’ and was editor of the English translation of P.M.M.
Works in shell theory, stability of structures, vibrations of elastic bodies, wave
propagation, fracture, and the theory of material forces (configurational mechanics).

Hetnarsky Richard B. (born 1928): Polish/American applied mathematician.
Fundamental contributions to problems of thermoelasticity. Created the ‘‘Journal
of Thermal Stresses’’ and founded a series of international conferences under the
title of ‘‘Thermal stresses’’. Author of encyclopaedic books on thermoelasticity. In
the USA was a professor at Rochester, New York State, before retirement.

Hill Rodney M. (1921–2011): English applied mathematician. Education in
mathematics at Cambridge, Ph.D. 1949, and research career in Sheffield,
Nottingham (1953–1963) and at Cambridge (1963 on). One of the main
contributors to the modern theory of elastoplasticity and the theory of
homogenization of solids. Precocious author of a remarkable book on plasticity
(Oxford, 1950). He was the founding editor of the ‘‘Journal of the Mechanics and
Physics of Solids’’ in 1952.

Hutchinson John W. (born 1939): American mechanical engineer, BS Lehigh
1960, Ph.D. Harvard 1963 with Bernard Budiansky; Professor at Harvard, author
of seminal works in solid and fracture mechanics, and elasto-plasticity.

Hutter Kolumban (born 1941): Swiss theoretical mechanician, Dipl. Civil
Engineer Zurich (1964), Ph.D. Cornell (1973, with Y. -H. Pao). Habilitation in
Vienna with Heinz Parkus. Worked first at the Hydraulics, Hydrology and
Glaciology Research Laboratory of ETH Zurich, and then as a Professor of
Mechanics at TU Darmstadt (1987–2006). Retired in Zurich. Prolific author of
papers and books, with a marked interest in geophysical mechanics with applications
in the dynamics of glaciers and ice sheets, the mechanics of granular materials,
avalanching flows of snow, debris and mud, physical limnology, but also in the
foundations of continuum mechanics and thermodynamics, and even
electrodynamics of continua. Founder and first Editor-in-Chief of ‘‘Continuum
Mechanics and Thermodynamics’’. Max Planck Prize (1994), Alexander von
Humboldt Prize (1998). Recognized as one of the most creative and successful
applicants of modern continuum mechanics to glaciology.

Ilyushin (BKM>IBH) A. A. (1911–1995): Russian mechanical engineer.
Author of fundamental works in elasto-plasticity. Rector of the University of St
Petersburg (then Leningrad) after WWII and then Professor of continuum
mechanics at the Lomonosov State University of Moscow, Chair of elasticity.
Introduced Ilyushin’s principle in plasticity.

Kachanov (RAXAHOB) Lazar M. (1914–1993): Russian mechanician at
Leningrad/St Petersburg, noted for his pioneer’s works in the theory of damage
and creep (1958, 1961), works in viscoelasticity and rate-dependent plasticity.
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Kestin Joseph (1913–1993): Polish-American thermodynamicist in the UK and
then the USA, Brown University. The most knowledgeable specialist on all aspects
of thermodynamics. Contributed fundamentally to the modern vision of the
thermodynamics with internal state variables (one of the possible avenues to the
description of many dissipative processes).

Knops Robin J. (born 1932): British applied mathematician (B.Sc.
Nottingham, 1955; Ph.D. with Rodney HILL, 1960). Then visitor to the USA
(Brown), lecturer and reader in Newcastle (1962–1971), and finally Professor of
Mathematics and Head of Department at Heriot-Watt University in Edinburgh
until his retirement. Both an efficient organizer and a highly productive applied
mathematician with many works on the mathematics of elasticity (uniqueness
theorems, ill-posed problems, stability, Saint-Venant’s principle). Many works co-
authored with L. E. Payne from Cornell University.

Knowles James K. (1931–2009): American mechanical engineer, studied with
Eric Reissner at MIT. Professor at Caltech since 1965. Many seminal works in
elasticity and phase-transition problems in solids with Eli Sternberg, Cornelius O.
Horgan and Rohan Abeyaratne.

Koiter Warner Tjardus (1914–1997): Influential Dutch mechanical engineer.
Landmark Ph.D. Thesis Delft (1945) on the ‘‘Stability of elastic equilibrium’’
acknowledged internationally after its English translation by NACA in 1960.
Works on the asymptotic theory of initial post-buckling stability, the theory of
shells, plasticity. Professor of Applied Mechanics at Delft Technical University
(1949–1979).

Kröner Ekkehart (1919–2000): German mathematical physicist who studied
Physics in Stuttgart in 1948–1954 after the Second World War where he was a
long time prisoner of war in the Soviet Union. Professor in Clausthal and then at
the university of Stuttgart. A deep thinker and pioneer in the geometric approach to
defective crystals introducing there notions such as the incompatibility tensor and
the Einstein tensor. Definite works in elasto-plasticity of crystals (multiplicative
decomposition of deformation gradient), materials with stochastic properties,
homogenization techniques. Mentored K. H. Anthony (in defect theory) and F.
W. Hehl (in modern gravitation theory). Influenced many others, including W.
Noll, I. A. Kunin, M. Berveiller, and G. A. Maugin.

Kruskal Martin D. (1925–2006): American applied mathematician, not
exactly a mechanician, but with so many fields of interest. Formed at the
University of Chicago and then in New York (NYU, Courant Institute: Ph.D.
1952). Worked on the Matterhorn project and controlled thermonuclear fusion.
Internationally known for his seminal work on plasma instabilities and on soliton
theory (he coined the word; with co-workers he introduced the inverse-scattering
method in this field) and asymptotic methods; also, ‘‘Kruskal coordinates’’ in
general relativity in the study of black holes. Long time professor of astrophysics
and applied mathematics at Princeton University (1951–1989) and then at Rutgers
University. National Medal of Science of the USA.
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Kunin (REHBH) Isaac A. (born 1928): Russian/American scientist, Ph.D.
1958 Polytechnical Institute Leningrad. At Novosibirsk (1952–1979) and then
Professor at the University of Houston (1979–2003). All round physicist and
mechanician with works in dislocation theory, nonlocal theory of continua, media
with microstructure, mathematical physics, dynamical systems. Author of a
famous book ‘‘Media with Microstructure’’ in two volumes (English translation,
1982, edited by E. Kröner).

Lee Erastus H. (1916–2006): English-American mechanical engineer.
Education at Cambridge University, UK, and Ph.D. at Stanford (1940) with S.
Timoshenko. Spent WWII in the UK. Moved definitively to the USA in 1948.
Taught at Brown University (1948–1962) and then Stanford (1962–1982), and
finally moved to Rensselaer Polytechnic for ten years. Contributions to plasticity
of metals, viscoelasticity and plastic wave propagation. Is often attributed the
multiplicative decomposition of the finite total deformation gradient in elasto-
plasticity.

Lemaitre Jean (born 1934): French mechanical engineer with D.Sc. from the
University of Paris. Became professor of mechanics at this University while
creating the Laboratoire de Mécanique et Technologie at the Ecole Normale
Supérieure de Cachan (suburb of Paris) after applied research on fatigue and
viscoelasticity at O.N.E.RA. One of the main contributors to the continuum theory
of damage in a thermomechanical framework basing on original ideas of
Kachanov and Rabotnov. Co-author with Jean-Louis Chaboche of a pioneering
book on damage mechanics (1985).

Leslie Frank M. (1935–2000): British (Scottish) applied mathematician,
educated in Dundee and Manchester (Ph.D. 1961 with James Lighthill), FRS,
Professor in Newcastle and then in Glasgow at Strathclyde University. Especially
known for his theory of dissipative liquid crystals (1968, with Jerald L. Ericksen).

Mandel Jean (1907–1982): French engineer (‘‘Corps des Mines’’), professor of
mechanics at the celebrated Ecole Polytechnique, founder of a true school of
research in solid and soil mechanics; most influential in introducing
thermomechanics in France in the 1960–1970s, with applications to anelastic
solids. Influenced, among others, Hui D. Bui, Nguyen Quoc Son, Joseph Zarka,
Claude Stolz, and Bernard Halphen.

Marsden Jerald E. (1942–2010): Canadian applied mathematician. A prolific
author of books and papers in mechanics. B.Sc. Toronto, Ph.D. Princeton (1968).
A world leading authority in mathematical and theoretical classical mechanics
with a marked interest in differential geometry, symplectic topology, chaos, etc.
Professor at Caltech. Max Planck Research Award (2000), Foreign member of the
Royal Society of London. Main co-authors: A. E. Fischer, A. Weinstein, T.
S. Ratiu, P. J. Holmes, J. C. Simo, T. J. R. Hughes, A. J. Chorin, etc. One of the
most highly cited scientists in the field.
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Maugin Gerard A. (born 1944): French mechanical-aeronautical engineer with
an American education (Ph.D. Princeton, 1971) and a marked interest in
mathematical physics; D.Sc. in Mathematics, Paris, 1975. Successive works in
relativistic continuum mechanics, foundations of the electrodynamics of continua,
the mechanics of ferroic states (ferromagnetism and ferroelectricity), nonlinear
waves in lattices and continuum models of solids, such as shock waves and
solitons, surface waves on structures, configurational mechanics of defects, growth
of biological tissues, and dynamic materials.

Mindlin Raymond D. (1906–1978): American mechanical engineer, educated
and then Professor at Columbia University, New York, where he mentored many
students, among them Y. -H. Pao, Harry F. Tiersten, P. C. Y. Lee, and Raymond
Parnes. Internationally recognized scientist for his works in structural mechanics,
photo-mechanics, vibrations of plates, piezoelectricity and its dynamic
applications to signal processing (cf. the celebrated US Army monograph on the
vibrations of plates), and the mechanics of continua with microstructure including
granular materials.

Moreau Jean-Jacques (born 1924): French mathematician-mechanician,
Educated at Ecole Normale Supérieure, Paris; Thesis in Mathematics, Université
de Paris, (1949). Professor at University of Montpellier, France. An analyst, with
first works in hydrodynamics and theoretical fluid mechanics, and then in convex
analysis, and a strong interest in numerical simulations for problems with
unilateral constraints for which he developed special algorithms. Was instrumental
in introducing convex analysis in problems of solid mechanics (friction, plasticity,
viscoplasticity, flow of granular materials) in the 1960–1980s. Influenced Bernard
Nayroles, Michel Fremond, Michel Jean, Pierre Suquet and many others.

Müller Ingo (born 1936): German thermodynamicist, a student of J. Meixner in
Aachen. Taught at Johns Hopkins University and the Technical University of
Berlin. Best known for his exploitation of the notion of coldness, and as founder of
rational extended thermodynamics. Co-created the Journal ‘‘Continuum
Mechanics and Thermodynamics’’.

Muschik Wolfgang (born 1936): German mathematical physicist educated and
Professor at the Technical University of Berlin. A disciple of Walter Schottky
(thermodynamics of discrete systems). Author of critical studies of the bases of
thermodynamics. Main author of the theory of mesoscopic continuum mechanics
with applications to liquid crystals. Together with Joseph Kestin one of the best
analysts of the science of thermodynamics.

Naghdi Paul Mansour (1924–1994): Iranian born American mechanical
engineer. Came to the USA in 1945. B.Sc. Cornell, Ph.D. University of Michigan
1951. Joined Berkeley in 1958. Professor of mechanical engineering at the
University of Berkeley for some thirty years. Long time co-operation with A.
E. Green. A specialist of elasto-plasticity, polar materials using the director theory
(Cosserat surfaces), the theory of plates and shells, he influenced, among others,
James Casey, Miles B. Rubin, Marcel J. Crochet, and A. R. Srinivasa.
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Nelson Donald F. (born 1929): American physicist. A co-worker of C.
H. Townes in the development of LASERS at Bell Telephone Laboratories; co-
developer of the first continuously operating ruby laser (1961). Co-author (1970s)
with Melvin LAX of definite works on piezoelectric-pyroelectric crystals in the
spirit of modern continuum mechanics.

Noll Walter (born 1925): German/American scientist who, with Clifford A.
Truesdell and Bernard D. Coleman, formulated the bases of the modern
thermomechanics of continua. Also author of a famous encyclopaedia article (with
C. A. Truesdell in 1965) and a theory of uniformity of materials that influenced some
later works by C. C. Wang, M. Epstein and G. A. Maugin. Formed in Berlin, Paris and
Bloomington, Indiana. Professor at Carnegie Mellon, Pittsburgh.

Nowacki Witold (1911–1996): Polish engineer-mathematician, who, after
WWII, contributed to the creation of a successful Polish school of continuum
mechanics working in elasticity, thermoelasticity, structural mechanics, Cosserat
solids (asymmetric elasticity), plasticity, and electroelasticity.

Nguyen Quoc Son (born 1944), French cvil engineer of Vietnamese origin, a
student of Jean Mandel at Ecole Polytechnique in Paris. Seminal contributions to
fracture mechanics, the thermomechanics of continua, modelling and numerics of
elasto-plasticity, and the stability of continua.

Ogden Ray W. (born 1943): English Applied mathematician, Education at
Cambridge (BA, Ph.D. with Rodney Hill), FRS. Professor of mathematics at the
University of Glasgow. Best known for his works in nonlinear elasticity with
applications to elastomers and biological tissues.

Odqvist Folke K. G. (1899–1984): Swedish mechanical engineer, known for
his work on creep and plasticity, 1934, (Odqvist parameter, now identified with the
hardening parameter that is the past history of the magnitude of the plastic strain).
Was Professor at the Royal Institute of Technology (K.T.H) in Stockholm
(1936–1966).

Oldroyd James H. (1921–1982): British mathematician and noted rheologist.
FRS. Educated at Cambridge University. Worked at Courtaulds Research
Laboratory after WWII before teaching mathematics at Swansea (1953–1965)
and then at the University of Liverpool (1965 until retirement). A rather
parsimonious writer, he published in 1950 a landmark paper in theoretical
rheology, introducing the celebrated Oldroyd model of visco-elasticity of a non-
Newtonian fluid.

Pao, Yih-Hsing (born 1930): Chinese-American mechanical engineer, a
student of Raymond D. Mindlin, Ph.D. Columbia 1959. Professor at Cornell
University and then in Taiwan (from 1984) and Mainland China. Specialist of
physical acoustics and wave propagation in solids. Among his Ph.D. students:
Francis C. Moon (1967) and Kolumban Hutter (1973).
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Parkus Heinz (1909–1982): Austrian mechanical–aeronautical engineer. Main
works on helicopter mechanics, thermoelasticity and the electrodynamics of
deformable solids. A long-time professor of mechanics at TU Wien after
professional engineering experience in Austria and the USA. Mentored, among
others, Franz Ziegler, his successor at TU Wien. Kolumban Hutter (Switzerland)
took his Habilitation under his supervision.

Podio-Guidugli Paolo (born 1939): Italian civil engineer with a marked
interest in applied mathematics. Educated in Pisa. Many works of high standards in
continuum thermomechanics, often in cooperation, or in the line of, Morton
Gurtin. Professor of Civil Engineering at University of Roma-II.

Prager William (1903–1980): German born American applied mathematician
and mechanician. Educated at TU Darmstadt (Ph.D. 1926), he became the Director
of the Institute of applied mathematics in Göttingen at the early age of 26. Then a
professor at TU Karlsruhe. Left Germany in 1934 and first taught in Istanbul
before immigrating to the USA and joining Brown University in 1941 to stay there
until his retirement in 1973. He established there the Division of Applied
Mathematics in 1946 and founded the Quarterly Journal of Applied Mathematics
in 1943. He was the driving force behind the incredible success of mechanics at
Brown. One of the prominent figures in the theory of plasticity.

Reiner Markus (1886–1976): Polish/Israeli civil engineer (TH Vienna) who
coined the term ‘‘rheology’’ together with Eugene C. Bingham and co-created the
Society of Rheology. Moved to Palestine after WWI. Became a Professor at
the TECHNION, Haifa, after the independence of Israel. Bear his name: the
Buckingham-Reiner Equation and the Reiner-Rivlin Equation. Introduced the
Deborah number as measuring the characteristic relaxation time of flows of
viscous fluids. For ever one of the creators of the science of rheology.

Reissner Eric (1913–1996): German born (the son of an eminent physicist
working in general relativity and gravitation—cf. the celebrated Reissner-
Nordström metric) American applied mathematician. Originally Educated at TU
Berlin (Doctoral degree, 1935 in Applied Mechanics). Immigrated to the USA in
1937. Ph.D. at MIT (1938) where he conducted his research, becoming Professor
of Mathematics there (1949–1969), and then at the university of California at San
Diego (from 1969). Published more than 300 papers in scientific journals, many
dealing with the elastic theory of beams, plates and shells (e.g., shear-deformation
plate theory) that led to significant advances in civil and aeronautical engineering.
Much professional recognition.

Rice James R. (born 1940): Education at Lehigh University, Ph.D. in applied
mathematics 1964. Professor of Theoretical and Applied Mechanics at Brown
University (1964–1981) and then Professor of Engineering Sciences and
Geophysics at Harvard University (since 1981). One of the most creative,
reputed and honoured American mechanician. Seminal works in theoretical
mechanics, civil-environmental engineering and materials physics. Known for his
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works in crack propagation in elastic-plastic metals, path-independent integrals in
elasticity (the celebrated J-integral of fracture), the structure of inelastic
constitutive equations, microscopic mechanisms of cleavage and ductile or creep
rupture, deformation localization into shear zones, landslides, with applications to
geophysics, earthquake studies, fault systems in geology, etc.

Rivlin Ronald S. (1915–2005): British born, later American citizen, applied
mathematician, Education at Cambridge University, Ph.D. 1952. First worked as a
physicist for the British Rubber Producers Research Association, and then
Professor of Applied Mathematics at Brown University (1953–1967), and Director
of the Centre for the Application of Mathematics at Lehigh University
(1967–1980). Developed the basic mathematical theory of large elastic
deformations which became the foundation of the mechanics of rubber
elasticity. Are named after him: the Reiner-Rivlin fluids, the Rivlin-Ericksen
fluids, the Mooney-Rivlin energy formula for incompressible solids. Influenced a
full generation of researchers in continuum mechanics.

Sanchez-Palencia Enrique/Evariste (born 1941): Spanish/French applied
mathematician. Originally formed as an Aeronautical Engineer (Madrid), D.Sc. in
Mathematics, Paris, 1969. One of the creators of the asymptotic technique of
homogenization of periodic structures. Also mathematical works on
magnetohydrodynamics and slendered elastic structures (plates, shells). Member
of the French Academy of Sciences (Paris).

Schottky Walter H. (1886–1976): German physicist, Ph.D. Berlin 1912 under
Max PLANCK. Taught at Jena, Würzburg and Rostock and then joined Siemens
Research Laboratories until retirement. Best known for his works in quantum
physics, thermodynamics, and above all semi-conductors. Book on
Thermodynamics, Berlin 1929.

Sedov (CELOB) Leonid I. (1907–1999): Leading and powerful Russian
mechanician; Specialist of continuum mechanics, theoretical fluid mechanics
(explosions, hydrodynamics, hydrofoils), solid mechanics, general principles of
continuum physics, gravitational field, asymptotic and similarity methods.
Developed also a genuine interest in variational formulations on basic
principles. Author of classic textbooks on two-dimensional problems in fluid
mechanics, similarity and dimensional analysis, and on general continuum
mechanics in Russian with many influential translations. Mentored, among
many, V. Z. Parton, Zhelnorovich, Victor L. Berdichevsky, and Lev M.
Truskinovsky, etc. During WWII he devised the so-called SedovSimilarity
Solution for a blast wave (also attributed to G. I. Taylor in the West). He was
also the first chairman of the USSR Space Exploration program. President of the
International Astronautical federation (1959–1961). Until recently, it had been
thought that L. I. Sedov was the principal Soviet scientist behind the Sputnik
project. He admitted to the author that he was just placed there as a figure head
(‘‘every great national project needs an official representative’’). Nonetheless a true
great scientist.
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Sidoroff François (born 1943): French mechanical engineer with D.Sc. from
Paris University (1976). One of the scientists much influenced by Paul Germain. A
specialist of anelastic materials, large deformations and thermomechanics. Formed
with Patrick Muller, Raymonde Drouot, Monique Piau and Gérard A. Maugin the
initial group of continuum thermomechanics under the leadership of Paul Germain
at Paris 6. Became a professor of mechanics at the Ecole Centrale de Lyon
(Mechanical engineering) until his retirement.

Signorini Antonio (1888–1963): Italian mathematician, specialist of
mathematical problems in elasticity (cf. the celebrated Signorini problem (1959)
involving boundaries with unilateral contact and the first appearance of a
variational inequality). Works in finite–strain elasticity (e.g., Signorini’s
perturbation method). Professor in Rome. Had an enduring influence on the
Italian rational mechanics of continua and applied mathematics.

Simo Juan C. (1952–1994): Spanish mechanical engineer educated first in
Madrid (B.Sc. M.Sc.) and then at Berkeley (M.Sc., 1980, Ph.D., 1982). A foremost
authority on computational mechanics in finite strains. Rapidly gained an
international recognition to become one of the highest cited and most influential
scientists in the field. Professor in the Applied Mechanics Division at Stanford
University from 1985 to his untimely death in 1994.

Soós Eugen (1937–2001): Highly productive Romanian applied
mathematician. PhD 1972 with Caius JACOB in Bucarest. Worked as a
Professor in the Department of Mathematics of the University of Bucarest and
the Institute of Mathematics of the Romanian Academy of Sciences. Marked
interest in many facets of continuum mechanics including anelasticity, the
mechanics of composites, electromagnetism, the structure of mechanics, tensor
and spinor algebra.

Spencer Anthony J. M. (1929–2008): English applied mathematician with
Cambridge education, Ph.D. with Ian Sneddon, FRS. Author of fundamental works
in the theory of invariants for anisotropic bodies, the elasticity and elastoplasticity
of anisotropic bodies, and the mechanics of solids with inextensible fibres.

Stroh Alan Neil (1926–1962): Formed (B.Sc., M.Sc.) initially in his native
South Africa, moved to the UK in 1951, and obtained his Ph.D. (1953) in Bristol
under the supervision first of J. D. Eshelby and then of Sir Nevill Mott. Then spent
one year at Cavendish Laboratory in Cambridge. Taught at Sheffield (1955–1958),
and moved to M.I.T. (USA) in 1958. Killed in a car accident in 1962 while joining
his new position on the West coast of the USA. A very original thinker with
creative works in the dynamics of dislocations, cracks and plasticity. The inventor
of the rightly celebrated ‘‘Stroh’’ formalism in anisotropic elasticity that greatly
helps the formulation of boundary and transmission conditions.

Suquet Pierre (born 1954): French mathematician-mechanician, formed at
Ecole Normale Supérieure, Paris, and the University of Paris 6 under the influence
of Georges Duvaut and Paul Germain. Seminal works in mathematical plasticity
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(existence of solutions, functions with bounded variations), nonlinear
homogenization, and others. Member of the French Academy of Sciences (Paris).

Szabò Istvan (1906–1980): Hungarian/German mechanician, influential
Professor of Applied Mechanics at TU Berlin (1948–1973). Author of a
celebrated History of the Principles of Mechanics (Birkhäuser, 1977). Walter
Noll was his assistant in the early 1950s.

Tiersten Harry F. (1936–2006): American mechanical engineer, a student of
Raymond D. Mindlin at Columbia. Worked at Bell Labs and then became
Professor of Mechanical Engineering at the Rensselaer Polytechnic Institute.
Author of many creative works on polar continua, linear piezoelectricity, and more
generally coupled fields and the electrodynamics of deformable solids with
applications to electro-mechanical devices and signal processing.

Toupin Richard A. (born 1926): Ph.D. Thesis at Syracuse with Melvin LAX.
A co-worker of Jerald L. Ericksen and Clifford A. Truesdell who spent most of his
career at IBM. Co-author of the celebrated Handbuch article on the classical theory
of fields with C. A. Truesdell (1960). Also works in generalized continuum
mechanics (gradient theory, couple stresses) and a pioneer in the study of
nonlinear elastic electrically polarized materials. Acousto-elasticity (Bernstein-
Toupin), and fundamental problems of continuum mechanics.

Truesdell Clifford A. (1919–2000): American applied mathematician and
historian of science. Ph.D. Princeton, 1943. The most well known and active
contributor to the renewal of continuum mechanics in the years 1940–1970,
‘‘godfather’’ of modern continuum thermomechanics. Co-author of celebrated
Encyclopaedia articles (Handbuch der Physik). Created the influential ‘‘Journal of
Rational Mechanics and Analysis’’, and then the ‘‘Archives of Rational Mechanics
and Analysis’’. Taught at the University of Indiana in Bloomington and then Johns
Hopkins University, Baltimore. Mentored W. Noll, R. A. Toupin, etc. Prolific
author. Never tired editor of Euler’s works.

Willis John R. (born 1937): English applied mathematician, B.Sc. (1961) and
Ph.D. (1964) at the Imperial College, London. Professor of Applied Mathematics
at Bath (1972–1994, 2000–2001), Professor of Theoretical Solid Mechanics at
Cambridge University (1994–2000, 2001–2007), FRS. Editor of the ‘‘Journal of
the Mechanics and Physics of Solids’’ (1982–2006). Best known for his numerous
works in the mathematical investigation of problems arising mostly in the
mechanics of solids, including the statics and dynamics of composite materials,
dislocation theory, nonlinear fracture mechanics, elastodynamics of crack
propagation, and ultrasonic nondestructive evaluation. Recipient of many honors.

Wilmanski Krzysztof (1940–2012): Internationally renowned Polish/German
applied mathematician with an initial formation in Łodź (PhD 1965) and a
Habilitation in Warsaw (1970). At the I.P.P.T. of the Polish Academy of Sciences
(1966–1986) and then in various places in Germany (Berlin, Paderborn, Hamburg-
Harburg, Essen, Weierstrass Institute in Berlin), and finally in Zielona-Gora in Poland.
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Multiple scientific interests including early the axiomatics of thermodynamics and
more recently poroelasticity in which he introduced new modellings accounting for
finite strains, thermal effects, and tortuosity, and considered wave propagation and
applications in geophysics. Works in thermomechanics in the line of the Trusdellian
school and Ingo Müller.

Ziegler Hans (1910–1985): Swiss mechanical engineer educated (mechanics,
physics) at the Swiss Federal Institute of Technology, ETH Zurich. D.Sc. with E.
Meissner (Switzerland) and R. Grammel (Germany). Professor at ETH from 1942
to his retirement in 1977. A well known specialist of structural and dynamical
stability (1948–1956). Switched to the plasticity of solids under the influence of
William Prager during a one-year visit at Brown University—cf. the Prager-Ziegler
hardening rule. Then developed a strong and creative interest in irreversible
thermodynamics and the generalization of Onsager’s reciprocity relations to the
nonlinear case; introduction of a principle of orthogonality. His deep thoughts on the
matter are exposed in his book entitled ‘‘An introduction to thermomechanics’’
(1986).

Zorski Henryk (1927–2003): Polish scientist with various interests in
mathematical problems of continuum mechanics, the theory of defects, and
nonlinear waves. Refugee in the Soviet Union during WWII, he also studied in the
UK, and then back in Poland. Like many other Polish scientists of the period,
worked first at the Military Academy and then at the Institute of Fundamental
Technical Research (IPPT) of the Polish Academy of Sciences. A rather
parsimonious writer of papers, but with a large knowledge of mathematical
physics and an original thinker, he nonetheless influenced many scientists in
theoretical mechanics and materials science, both in Poland and outside, among
them Dominik Rogula, and Milan V. Mićunović from Serbia.
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