
Chapter 15
Sensory Pathway Modulation by Calcium
Channel ’2•1 Subunit

Chunyi Zhou and Z. David Luo

Abstract Voltage-gated calcium channels (VGCC) are importantly involved in
modulation of pathophysiological functions, including the transduction of noci-
ceptive and non-nociceptive signals. As an auxiliary subunit of VGCC, the ’2•

(Cav’2•) subunit plays critical roles in modulating VGCC expression and functions
such as regulations of VGCC trafficking, kinetics of voltage-dependent activation
and inactivation. Cav’2• also modulates neuronal and synaptic functions through
both VGCC-dependent and independent mechanisms. Among Cav’2•1–4 subunits,
Cav’2•1 subunit is implicated in pain processing because (1) its upregulation
in neuropathic pain models is shown to play a critical role in the onset and
maintenance of pain states; (2) its upregulation in sensory neurons leads to dorsal
spinal cord neuron sensitization; (3) it is the receptor for gabapentinoids that
can normalize activity of sensitized dorsal spinal cord neurons, and have anti-
neuropathic pain properties in animal models and patients. In this chapter, we briefly
review the regulation of Cav’2• and its functional contribution to pathophysiological
conditions with a main focus on pain transduction and processing. Underlying
mechanisms related to Cav’2•1 contributions to pain processing and the therapeutic
effects of gabapentinoids are also discussed.
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15.1 Introduction

Ca2C is one of the most important and abundant elements in the body. Membrane
depolarization activates voltage-gated calcium channels (VGCC), and causes Ca2C
influx, which in turn acts as a second messenger to trigger various intracellular
events including enzyme activation, neurotransmitter and hormone release, cell-cell
communication, contraction of different kinds of contractile cells, gene expression,
cell division, migration and death.

The purified VGCC complex is composed of four subunits, primary channel-
forming ’1, auxiliary “, ’2•, and in some tissue, ” subunits (Takahashi and Catterall
1987; Takahashi et al. 1987; Ertel et al. 2000). Four homologous domains of
the ’1 subunit form a Ca2C selective pore. The intracellular “/” subunits and
transmembrane ’2• subunit modulate the trafficking and functioning of the VGCC
(Felix 1999; Hofmann et al. 1999; Catterall 2000).

Based on membrane potentials required for activation, VGCC were initially
divided into high-voltage-activated (HVA) and low-voltage-activated (LVA) chan-
nels (Fedulova et al. 1985), then further classified as L-, N- P/Q-, R- and T-type
based on their distinct biophysical and pharmacological properties (Nowycky et al.
1985; Dolphin 2006). T-type VGCC have a low-voltage activation threshold, can be
activated at the resting membrane potential, thus, contributing to pacemaker activity
in excitable cells. Other VGCC have high-voltage activation thresholds, and can be
activated at more depolarized membrane potentials. Functional L-, N-, P/Q- and
R-type VGCC comprise the principle ’1 subunit, as well as the “ and ’2• auxiliary
subunits in a 1:1:1 stoichiometry. T-type VGCC, on the other hand, appear to require
only ’1 subunit for correct function (Bean 1989; Felix 1999; Hofmann et al. 1999;
Catterall 2000; Ertel et al. 2000; Dolphin 2006).

The development of selective Cav’2• ligands, the gabapentinoids including
gabapentin and pregabalin, not only provides us with novel therapeutic agents for
neuropathic pain management, but also allows more extensive study of the function
of Cav’2• at the cellular and molecular level. It is known that Cav’2• plays a
role in regulating VGCC trafficking to the plasma membrane (Gurnett et al. 1997;
Bernstein and Jones 2007), and fine-tuning channel gating properties (Mori et al.
1991; Singer et al. 1991; Klugbauer et al. 1999, 2003; Gao et al. 2000; Davies
et al. 2006). There is also emerging evidence suggesting that Cav’2• may have
functions independent of VGCC. After a brief overview of VGCC subunits, this
chapter mainly focuses on structure, cellular/molecular biology and functions of
the Cav’2• subunit, the mechanisms underlying the action of Cav’2•1 proteins on
synaptic calcium channel activities, excitatory synaptogenesis that may underlie the
mechanism of gabapentinoids in pain modulation.
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15.2 Calcium Channel Subunits

The channel forming ’1 subunit (Cav’1, 175 kDa) is the principle subunit of VGCC.
In mammalian cells, there are ten genes encoding Cav’1. Based on amino acid
sequence similarity, the Cav’1 subunit can be divided into three subfamilies: Cav1,
Cav2, and Cav3 (Catterall 2000; Ertel et al. 2000; Arikkath and Campbell 2003),
which are classified as L-type (Cav1.1, Cav1.2, Cav1.3, Cav1.4), P/Q-type (Cav2.1),
N-type (Cav2.2), R-type (Cav2.3), and T-type (Cav3.1, Cav3.2, Cav3.3) VGCC based
on their pharmacology, electrophysiological properties, as well as physiological
functions (Hofmann et al. 1999; Catterall 2000; Striessnig and Koschak 2008). Each
Cav’1 contains four homologous domains connected by cytoplasmic loops. Each
domain has six transmembrane segments. There is a pore-forming loop (P-loop)
between S5 and S6, which contains a highly conserved, negatively charged amino
acid, either glutamate or aspartate, forming a signature locus that is essential for
Ca2C selection and conduction (Kim et al. 1993; Kuo and Hess 1993). The S4
segment of each domain that contains positively charged amino acids serves as
the voltage sensor for activation and initiation of conformational changes that
open the pore. These structural features contribute to VGCC gating, ion selectivity,
and permeation. Cav’1 also contains the interaction sites for other subunits,
VGCC blockers and activators. Although Cav’1 subunits are responsible for the
physiological and pharmacological properties of calcium channels, the trafficking
and functioning of different types of VGCC require the auxiliary “ and ’2• subunits
(Ertel et al. 2000; Arikkath and Campbell 2003; Buraei and Yang 2010).

The “ subunit (Cav“, 54 kDa) is an intracellular hydrophilic protein. There are
four different types of Cav“ (Cav“1–4), each with splice variants, encoded by four
distinct genes. All four Cav“ share a common central core, whereas their N- and
C-termini differ significantly. All four Cav“ dramatically enhance calcium channel
currents when they are coexpressed along with the Cav’1 subunit in heterologous
expression systems. Cav“ can also modulate the voltage-dependence, kinetics of
activation and inactivation without affecting ion permeation (Obermair et al. 2008;
Dolphin 2009; Karunasekara et al. 2009). Cav“ interacts with Cav’1 mainly through
the “-interaction domain (BID) that binds with high-affinity to the ’-interaction
domain (AID) in the cytoplasmic loop of Cav’1 connecting the first two homologous
repeats (De Waard et al. 1995; Witcher et al. 1995; Chen et al. 2004).

The ” subunit (Cav”, 30 kDa) is an intracellular hydrophilic protein. There are
eight different genes encoding Cav” subunits (Cav”1–8). Various Cav” subunits have
been shown to affect kinetics and voltage-dependent gating of VGCC (Kang and
Campbell 2003; Chen et al. 2007). Cav”1 was first cloned from muscle VGCC
(Jay et al. 1990). Coexpression of Cav” subunit with L-type calcium channel
subunits modulates Ca2C peak current, activation and inactivation kinetics. This
has been confirmed by subsequent studies in Cav”1 knockout mice (Arikkath et al.
2003), which show increased Ca2C peak currents and altered inactivation kinetics
compared with their age and sex matched wild type littermates (Freise et al. 2000).
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In stagazer mutant mice, Cav”2 subunit levels are significantly reduced, and this
change shifts calcium channel inactivation to more negative potentials. This deficit
accounts for the distinctive phenotype, including head-tossing and ataxic gait (Letts
et al. 1998).

All Cav1 and Cav2 channels contain transmembrane auxiliary Cav’2•

subunits (Felix 1999; Dolphin 2009). There are four subfamilies of Cav’2•

subunits (Cav’2•1–4), each encoded by a unique gene, and the ’2 (143 kDa)
and • (24–27 kDa) peptides are cleaved then linked by disulfide bounds post-
translationally (Felix 1999). When co-expressed along with Cav’1 and Cav“

subunits of Cav1 or Cav2 channels in heterologous expression systems, Cav’2•

subunits can dramatically increase calcium channel currents (Mori et al. 1991;
Singer et al. 1991; Klugbauer et al. 1999, 2003; Gao et al. 2000; Davies et al. 2006).
The enhancement is associated with the increased trafficking and retention of Cav’1

to the plasma membrane (Gurnett et al. 1997; Canti et al. 2005; Bernstein and Jones
2007). The systemic tissue distribution of Cav’2• subunits has been analyzed at the
mRNA and protein levels by different laboratories (Klugbauer et al. 1999; Hobom
et al. 2000; Gong et al. 2001; Marais et al. 2001). Cav’2•1 is abundantly expressed
in excitable tissues such as the brain, heart, and muscles. Cav’2•2 is expressed in
various tissues with the highest levels in brain, heart, pancreas, and skeletal muscles.
In a more restricted way, Cav’2•3 expression levels are high in the brain, but low in
the heart and skeletal muscles.

Since Cav’2•1 and Cav’2•2 are binding sites for gabapentin and pregabalin,
which were originally designed as antiepilepsy drugs but have unexpected antineu-
ropathic pain properties (Gee et al. 1996; Field et al. 2006), the contribution of
Cav’2• subunits, specially the Cav’2•1 subunit, to pain processing has been studied
extensively in the past decade.

15.3 Structure of Cav’2• Subunits

Studies of transmembrane topology of Cav’2• subunits have shown that the ’2 pep-
tide is entirely extracellular (Brickley et al. 1995; Gurnett et al. 1996). The • peptide
is originally assumed to be transmembrane through a hydrophobic domain (Brickley
et al. 1995; Gurnett et al. 1996). However, Davies et al. have recently reported that
the • peptide is attached to the membrane through a glycosylphosphatidylinositol
linker (Davies et al. 2010). Even though Cav’2•2 and Cav’2•3 share only 56 and
30 % sequence homology with Cav’2•1 respectively (Klugbauer et al. 1999), Cav’2•

subunits share important structure features including a similar transmembrane
topology and heavy glycosylation at the extracellular domain (Klugbauer et al.
1999). Gurnett et al. have shown that both the disulfide bond and glycosylation
in Cav’2•1 play a critical role in enhancing Cav2.1 currents (Gurnett et al. 1996,
1997). Data from Western blot studies indicate that Cav’2•1, Cav’2•2, Cav’2•3

and Cav’2•4 have similar molecular weights: 200 kDa, 190 kDa, 166 kDa and
138 kDa, respectively (Marais et al. 2001). Splicing variants of Cav’2• subunits
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(five for Cav’2•1, and three for Cav’2•2), which differ by three to eight amino acid
residues, greatly increase the proteome diversity of calcium channels. These splice
variants are differentially expressed in cardiac tissue and brain (Klugbauer et al.
1999; Marais et al. 2001).

It has been shown that Cav’2• binds to extracellular domains of Cav’1 subunit
(Felix et al. 1997; Gurnett et al. 1997). One important domain in Cav’2• subunits
that has been identified through sequence homology is the highly conserved Von
Willebrand factor type A domain (VWA, residues 253–430 of Cav’2•1, and residues
294–472 of Cav’2•2), which is also present in integrins. The VWA domain is
extracellular, has binding sites for extracellular matrix proteins, and contains a metal
ion-dependent adhesion site (MIDAS) motif (Whittaker and Hynes 2002). Only
Cav’2•1 and Cav’2•2, but not Cav’2•3 or Cav’2•4, subunits contain the MIDAS
motif. Recent findings have suggested that Cav’2•1 and Cav’2•2 can both interact
with Cav’1 subunit through the MIDAS motif and undergo an integrin-like switch,
therefore, enhancing cell surface trafficking and currents of the calcium channel
complex (Canti et al. 2005).

15.4 Pathophysiological Functions of Cav’2• Subunit

15.4.1 Regulation of VGCC Expression

Numerous studies indicate that Cav’2• subunits can markedly increase normal
VGCC surface expression indicated by increased current amplitude in various in
vitro heterologous expression systems, including Xenopus oocytes and mammalian
cell lines (Mori et al. 1991; Singer et al. 1991; Shistik et al. 1995; Klugbauer et al.
1999, 2003; Gao et al. 2000; Hobom et al. 2000; Barclay et al. 2001; Canti and
Dolphin 2003; Field et al. 2006; Davies et al. 2010). Mutation or overexpression
of the Cav’2• genes in vivo provides us with useful tools to characterize physi-
ological and pathological roles of Cav’2•2 in vivo. Spontaneous mutations in the
Cav’2•2 gene disrupt Cav’2•2 expression in ducky mice (Brodbeck et al. 2002).
Electrophysiological recording data have shown that the loss of Cav’2•2 subunit in
Purkinje cells of ducky mice results in a 35 % decrease in P-type calcium channel
current amplitude, but has no effect on single P-type calcium channel conductance
(Barclay et al. 2001). These results indicate that loss of Cav’2•2 in vivo reduces
VGCC surface expression. In contrast, Cav’2•1 subunit overexpression in neuronal
cells of transgenic mice results in �60 % larger Ca2C currents in dorsal root
ganglion (DRG) sensory neurons, than that from their wild type littermates, which
can be blocked by gabapentin in a concentration-dependent manner, supporting that
increased Cav’2•1 expression leads to elevated VGCC currents in sensory neurons
(Li et al. 2006). Since Cav’2• subunits do not change single-channel properties
of VGCC such as conductance and open probability (Klugbauer et al. 2003), the
increase in current amplitude is likely associated with a chaperoning effect of
Cav’2• subunits on membrane surface VGCC expression.
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Once the calcium channel complex reaches the plasma membrane, Cav’2•

subunits also dramatically alter voltage-dependence and gating kinetics of VGCC.
In general, Cav’2• subunits shift voltage-dependent activation and inactivation
of VGCC to more negative membrane potentials, and accelerate the inactivation
kinetics of VGCC (Klugbauer et al. 2003). However, these effects may differ
among individual Cav’2• subunits (Hobom et al. 2000) and depending on Cav’2•

levels. In Cav’2•1 overexpressing transgenic mice, increased Cav’2•1 expression in
sensory neurons leads to a shift of voltage-dependent activation to a more negative
membrane potential compared with wild type neurons, an increase in voltage-
dependence and rate of activation, and a decrease in voltage-dependent deactivation
rate (Li et al. 2006). These findings support that elevated Cav’2•1 levels also
modulate VGCC kinetics.

How does Cav’2• enhance calcium channel surface expression? One hypothesis
is that a gabapentin binding site in Cav’2•1 and Cav’2•2 subunits has a chaperoning
effect on VGCC as gabapentin intracellularly disrupts the process of Cav’2• and
Cav2 trafficking, which could be prevented by a single mutation of the gabapentin
binding site in Cav’2•1 (R217A) and Cav’2•2 (R282A) (Heblich et al. 2008).
Alternatively, the VWA domain in the Cav’2 protein may interact with Cav’1 and
thus enhance its trafficking to the plasma membrane. Mutations of three key amino
acids (D300, S302, and S304) in the MIDAS motif of the VWA domain in Cav’2•2

diminish CaV1.2, CaV2.1, CaV2.2 currents, probably through increased intracellular
retention of the Cav’1 subunit (Canti et al. 2005).

15.4.2 Presynaptic Expression of Cav˛2ı in Terminals
of Sensory Neurons

Under normal conditions, Cav’2• is expressed in sensory neurons in dorsal root
ganglia, then undergoes anterograde transport to the presynaptic terminals in dorsal
spinal cord. Dorsal rhyzotomy, which terminates the connection between dorsal root
ganglia and dorsal spinal cord, results in about 50 % reduction in dorsal spinal
cord Cav’2•1 levels (Li et al. 2004). This indicates that, under normal conditions,
Cav’2•1 in dorsal spinal cord is expressed at both presynaptic and postsynaptic
locations. A recent study provides the first direct evidence supporting that Cav’2•1

and Cav’2•2 increase P/Q VGCC accumulation at presynaptic boutons and enhance
vesicle exocytosis and presynaptic function of VGCC (Hoppa et al. 2012).

15.4.3 Cav˛2ı Functions Independent of Calcium
Channel Activity

The functions of Cav’2• have long been exclusively linked with VGCC. However,
recent studies suggest that Cav’2• may possess functions independent of their
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association with VGCC. Data from a recent study have shown that Cav’2• is the
receptor for thrombospondin (TSP), an extracellular matrix protein secreted by
astrocytes, in promoting central nervous system synaptogenesis (Eroglu et al. 2009).
Neuronal Cav’2•1 overexpression in transgenic mice results in increased excitatory
synapse numbers in the brain. TSP treatment on retinal ganglion cells with Cav’2•1

overexpression results in a 100 % increase in the number of synapses, which can
be blocked by the Cav’2•1 ligand gabapentin. L-, N- or P/Q-type VGCC blockers
fail to inhibit TSP-induced synapse formation, suggesting that the roles of Cav’2•

in synapse formation are not likely associated with VGCC functions.
Consistent with this notion, Purkinje cells in ducky mice lacking Cav’2•2 have

abnormal synapse formation (Brodbeck et al. 2002). Cav’2•3 null mutant drosophila
embryos lack boutons in neuromuscular junctions of Cav’2•3 mutant terminals due
to missing ankyrin2-XL, a protein stabilizes synapses by anchoring cell surface
proteins in synaptic terminals, that disturbs cytoskeleton arrangement (Kurshan
et al. 2009). Boutons are restored by re-expressing Cav’2•3 in Cav’2•3 null
embryos, suggesting that Cav’2•3 is involved in the formation of nerve terminals.
This process is unlikely to depend on VGCC-related actions since pore forming
Cav’1 mutant embryos have normal ankyrin2 expression and boutons in nerve
terminals (Brodbeck et al. 2002).

15.4.4 Implication of Cav˛2ı Dysregulation in Pain Processing

Three types of Cav’2• (Cav’2•1, Cav’2•2 and Cav’2•3) mRNA are identified in
primary sensory neurons in DRG (Cole et al. 2005). Cav’2•1 and Cav’2•2 mRNAs
are highly expressed in small DRG neurons but with low expression in large DRG
neurons, whereas Cav’2•3 mRNA is only present in large DRG neurons (Yusaf et al.
2001). These data suggest that Cav’2• subunits may play unique roles in sensory
information processing.

The involvement of Cav’2• in pain processing is further supported by pharmacol-
ogy data indicating that gabapentinoids, including gabapentin and pregabalin, have
high binding affinity for VGCC Cav’2•1 and Cav’2•2 subunits (Gee et al. 1996;
Marais et al. 2001), and anti-nociception properties in animal models (Hwang and
Yaksh 1997; Luo et al. 2001, 2002) and patients (Dworkin and Kirkpatrick 2005;
Guay 2005; Zareba 2005). Mutations at the gabepentin binding site within the
’2 peptide (R217A) eliminate gabapentin binding and its anti-nociceptive actions
(Field et al. 2006), further confirmed that binding of gabapentinoids to Cav’2•

proteins may underlie the anti-nociceptive actions of these drugs.
Under pathological conditions that lead to the development of behavioral

hypersensitivities, such as peripheral nerve injury and diabetic neuropathies,
Cav’2•1 upregulation has been reported in dorsal root ganglia and dorsal spinal
cord of pain models that correlates with the development of thermal and mechanical
hypersensitivities (Luo 2000, 2004; Luo et al. 2001, 2002; Newton et al. 2001;
Yusaf et al. 2001; Li et al. 2006). Interestingly, Cav’2•2 and Cav’2•3 mRNA are
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Table 15.1 Dysregulation of voltage gated calcium channel Cav’2• subunit in pain models

Cav’2•

subunit Dysregulation Model
Behavioral
hypersensitivity References

Cav’2•1 " in DRG, DSC SNL Tactile allodynia,
mechanical
and thermal
hyperalgesia

Luo et al. (2001,
2002), Newton
et al. (2001),
Yusaf et al.
(2001), Valder
et al. (2003), Li
et al. (2004), Xiao
et al. (2007),
Bauer et al.
(2009), Kim et al.
(2009), and
Boroujerdi et al.
(2011)

SNTx
CCI
DNP
Paclitaxel-evoked

neuropathy
SCI
Partial sciatic

nerve injury

Cav’2•2 # in DRG (mRNA) SNL Tactile allodynia Bauer et al. (2009)
Cav’2•3 # in DRG (mRNA) SNL Tactile allodynia Bauer et al. (2009)
Cav’2•4 ND

SNL spinal nerve ligation, SNTx spinal nerve transection, CCI chronic constriction injury of the
sciatic nerve, DNP Diabetic neuropathy, SCI spinal cord injury. ND not determined

downregulated after peripheral nerve injury, suggesting a dominant role of Cav’2•1

over Cav’2•2 and Cav’2•3 in peripheral nerve injury-induced pain processing
(Bauer et al. 2009) (Table 15.1).

This is confirmed by in vivo findings that Cav’2•1 upregulation is required for
the onset (Boroujerdi et al. 2008) as well as maintenance of neuropathic pain states
(Luo et al. 2001); The antihyperalgesic effects of gabapentin are correlated with
upregulation of Cav’2•1 subunit in neuropathic pain models (Luo et al. 2002);
Blocking injury signals that trigger Cav’2•1 upregulation or blocking injury-induced
Cav’2•1 upregulation directly in a nerve injury model prevent the development of
neuropathic pain states (Boroujerdi et al. 2008).

15.4.5 Presynaptic Modulation of Sensory Pathways
by Abnormal Cav˛2ı1 Expression

How does peripheral nerve injury-induced upregulation of Cav’2•1 proteins con-
tribute to neuropathic pain states? It has been shown that injury-induced up-
regulation of Cav’2•1, but not Cav’2•2, proteins in DRG are translocated to
presynaptic terminals of sensory afferents in dorsal spinal cord (Li et al. 2004;
Bauer et al. 2009). Several lines of evidence support that upregulated Cav’2•1 at the
presynaptic terminals of sensory afferents in dorsal spinal cord plays a critical role
in mediating dorsal horn neuron sensitization and pain processing. (1) Only protein,
but not mRNA, levels are upregulated in spinal cord suggesting that injury-induced
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Fig. 15.1 Increased frequency, but not amplitude, of AMPA receptor mediated mEPSCs in dorsal
spinal cord neurons of the Cav’2•1 transgenic mice. (a) Representative traces of mEPSCs from
dorsal spinal cord of wild type (WT) and Cav’2•1 transgenic (TG) mice, respectively. (b) Summary
of mEPSC frequency (left) and amplitude (right) from WT and TG mice, respectively. Data
presented are means ˙ SEM from at least 15 neurons in each group. ** p < 0.01 compared with
WT neurons by Students’ t test

Cav’2•1 dysregulation mainly occurs at the DRG level, which results in enhanced
anterograde axonal transport of the elevated Cav’2•1 to the presynaptic terminals of
sensory afferents in dorsal spinal cord (Luo et al. 2001; Bauer et al. 2009). (2) Dorsal
rhyzotomy that interrupts the anterograde axonal transport of Cav’2•1 can block
injury-induced Cav’2•1 upregulation in dorsal spinal cord and reverse neuropathic
pain states (Li et al. 2004). (3) Intrathecal Cav’2•1 antisense oligodeoxynucleotide
treatment abolishes injury-induced Cav’2•1 upregulation in dorsal spinal cord, not
in DRG, which correlates with a reversal of neuropathic pain states (Li et al. 2004).
(4) Intrathecal injections with glutamate receptor antagonists eliminate behavioral
hypersensitivity in spinal nerve ligated rats with Cav’2•1 upregulation in DRG
and dorsal spinal cord, and Cav’2•1-overexpressing mice (Chaplan et al. 1997;
Nguyen et al. 2009), suggesting that Cav’2•1 mediates behavioral hypersensitivity
by facilitating glutamate release at the spinal level. (5) Biochemical data indicate
that Cav’2•1 can regulate the evoked release of neurotransmitters, such as glutamate,
GABA, Substance P, by enhancing the function of presynaptic VGCC, which is
sensitive to blockade by gabapentinoids (Quintero et al. 2011). (6) Electrophysio-
logical data indicate that the frequency, but not amplitude, of glutamate (AMPA)
receptor-mediated miniature excitatory postsynaptic currents (mEPSC) is increased
in Cav’2•1-overexpressing transgenic mice (Nguyen et al. 2009) (Fig. 15.1). Since
increased frequency of AMPA-receptor mediated mEPSC is a reflection of increased
presynaptic release of glutamate, this suggests that elevated Cav’2•1 promotes
presynaptic glutamate release at the spinal cord level that, in turn, causes dorsal
horn neuron sensitization, and behavioral hypersensitivity.

Using immunostaining techniques, Bauer el al. have reported that spinal nerve
ligation injury leads to increased Cav’2•1 immunoreactivity in axons of the fascicu-
lus gracilis ascending from injured DRG rostrally up to the brainstem (Bauer et al.
2009). Chronic pregabalin treatment in the spinal nerve injured animals reduces this
axonal increase of Cav’2•1 immunoreactivity when compared with saline control
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Fig. 15.2 Possible influence of elevated Cav’2•1 at different locations along the sensory pathway.
Schematic illustration showing how injury induced upregulation of Cav’2•1 in DRG could be
translocated to multiple locations along the sensory pathway, thus affect presynaptic neurotrans-
mission at these sites. N neuron, X nerve injury

treatment, suggesting that injury-induced DRG Cav’2•1 expression could reach
presynaptic terminals of sensory afferents at the lower brainstem level to regulate
local presynaptic neurotransmission. This change could affect the excitability of
postsynaptic projection neurons sending ascending axons rostrally along the dorsal
column medial lemniscal system (Fig. 15.2). In vivo or in vitro electrophysiological
recording at that level from peripheral nerve injured animals is warranted to further
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test this hypothesis. In vitro studies have suggested that once in the presynaptic
terminals, Cav’2•1 proteins modulate presynaptic neurotransmission through two
possible molecular mechanisms. First, elevated Cav’2•1 proteins could increase the
membrane expression of presynaptic VGCC. Second, elevated Cav’2•1 proteins
could increase release probability of neurotransmitter by presumably configuring
presynaptic VGCC more favorable for driving exocytosis. The latter requires the
presence of the MIDAS motif within the predicted VWA domain of Cav’2•1

proteins (Hoppa et al. 2012). Whether similar mechanisms occur in vivo remains
to be explored.

Alternatively, Cav’2•1 proteins may modulate sensory information processing
through activities unrelated to VGCC. Recently, it has been shown that Cav’2•1

proteins are critical in promoting excitatory synaptogenesis by serving as neuronal
receptors for TSP (Eroglu et al. 2009; Kurshan et al. 2009). VWA domain within
Cav’2•1 is critical for its interaction with TSP proteins. Importantly, TSP4 is
recently identified as a pro-nociceptive factor, which is overly expressed in activated
astrocytes in dorsal spinal cord post peripheral nerve injury that leads to enhancing
pre-synaptic neurotransmission, dorsal horn neuron sensitization and neuropathic
pain processing (Kim et al. 2012). Together, it is likely that increased Cav’2•1 in
dorsal spinal cord presynaptic terminals of sensory afferents interacts with TSP4
secreted from activated astrocytes to promote formation of excitatory synapses,
which can lead to exaggerated neurotransmitter release upon peripheral stimulation
and pain sensations. Further studies are required to reveal this potential mechanism
of pain processing.

15.4.6 Descending Modulatory Pathways Regulated
by Cav˛2ı1

Descending pain modulatory pathways from the cortex, thalamus and brainstem
send both inhibitory and facilitatory inputs to the dorsal horn to modulate sensory
input from primary afferents in dorsal spinal cord. The release of serotonin,
norepinephrine and endogenous opioids from descending pathways can modulate
the release of excitatory neurotransmitters, excitatory and inhibitory interneuron
activity as well as projection neuron sensitivity at the spinal level. Impairment of
these descending modulation pathways often leads to development of chronic pain
states.

Cav’2• subunits are also expressed in discrete supraspinal regions along
descending modulatory pathways (Cole et al. 2005). It has been shown that
intracerebroventricular (i.c.v.) administration of gabapentin and pregabalin can
reduce thermal and mechanical hypersensitivities in a pain model of peripheral
nerve injury without affecting acute thermal and mechanical nociception. These
anti-hyperalgesic effects of gabapentinoids correlate with the accelerated spinal
turnover of noradrenaline. Following noradrenaline depletion by intracisternal
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injection of 6-hydroxydopamine, i.c.v. administration of pregabalin has no
effect on thermal and mechanical hypersensitivities. These findings support that
gabapentinoids activate the descending noradrenergic pain inhibitory pathway
supraspinally in alleviating pain states post nerve injury (Tanabe et al. 2005;
Takeuchi et al. 2007a, b).

Similarly, Hayashida et al. have injected gabapentin directly into locus coeruleus
(LC) in the pons, and reported that gabapentin reduces behavioral hypersensitivity
in spinal nerve ligated rats in a dose-dependent manner, which can be blocked by
intra-LC injection of idazoxan, an ’2-adrenoceptor antagonist (Hayashida et al.
2008). In addition, data from an in vitro patch clamp recording in LC slices
have shown that bath application of gabapentin dose-dependently inhibits GABAA

receptor-mediated, evoked inhibitory postsynaptic currents (IPSC) with increased
paired-pulse ratio from peripheral nerve injury mice, but has no effect on IPSC
from sham control mice. In contrast, gabapentin treatments do not affect glutamate-
mediated evoked excitatory postsynaptic currents (EPSC) in LC of nerve injury mice
(Takasu et al. 2008). The authors concluded that gabapentin inhibits GABAergic
synaptic transmission in LC through a presynaptic mechanism and subsequently
removes inhibitory effects on LC neurons and activates descending noradrenergic
inhibition under a neuropathic pain inducing condition (nerve injury). Together,
these findings suggest that gabapentin acts directly or indirectly on noradrenergic
neurons in the brainstem to stimulate descending inhibition after peripheral nerve
injury. This is supported by a clinical study in human indicating that oral gabapentin
before surgery significantly increases norepinephrine concentration in cerebrospinal
fluid (Hayashida et al. 2007). Because Cav’2•1 subunit is the only known receptor
for gabapentin and pregabalin, and is dysregulated after peripheral nerve injury,
it is possible that gabapentin and pregabalin modulate a noradrenergic descending
pathway through binding to the Cav’2•1 subunit at the supraspinal level.

Recent studies also suggest that activation of descending 5-HT3 facilitatory
pathway is required for the processing of nociceptive signals in normal and nerve
injured animals, as well as the state-dependent inhibitory actions of pregabalin in
late stages of nerve injury in a neuropathic pain model (Bee and Dickenson 2008).
Ablation of descending facilitatory cells expressing the mu-opioid receptor in rostral
ventromedial medulla renders pregabalin ineffective in inhibiting spinal neuron
activity, which can be restored by intrathecal injection of a 5HT3 receptor agonist
to mimic the descending drive at the spinal level (Bee and Dickenson 2008). This
suggests that injury-induced Cav’2•1 dysregulation, which usually occur in a late
stage of nerve injury (Li et al. 2004), may mediate neuropathic pain states through a
5-HT3 receptor-dependent pathway. To test this hypothesis, we have examined if the
descending 5-HT3 facilitatory pathway is involved in mediating pain states induced
by Cav’2•1 upregulation at the spinal level by comparing the effects of a 5-HT3

receptor antagonist in behavioral hypersensitivities in the neuropathic pain model
of spinal nerve ligation and Cav’2•1 overexpressing transgenic mice. Our findings
have indicated that intrathecally, but not systematically, injected ondansetron, a
5-HT3 receptor antagonist, can block dose-dependently mechanical and thermal
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hypersensitivities in both the nerve injury model and injury-free Cav’2•1 overex-
pressing transgenic mice (Chang et al. 2012). Together, these findings support that
the serotonergic descending facilitation pathway is involved in central sensitization
and pain states mediated by Cav’2•1 upregulation, either induced by peripheral
nerve injury or transgenic Cav’2•1 overexpression, at the spinal level.

15.5 Perspectives

Structure, cellular/molecular biology, and pathophysiological functions of Cav’2•

subunits have been extensively studied in the last two decades. Moreover, a large
body of emerging evidence indicates that Cav’2• subunit is a multifunctional
protein. It regulates not only pathophysiological functions of VGCC, but also
VGCC-independent functions. The following important questions regarding the
functions of Cav’2• subunits in disease states remain to be elucidated.

1. What is the functional implication of Cav’2• dysregulation in modulation of
VGCC trafficking and functions, facilitation of synaptic neurotransmission, and
alterations in neural circuits in disease states?

2. In addition to TSP and ankyrin2-XL, which other proteins interact with Cav’2•

under different pathological conditions? What are the signaling pathways under-
lying Cav’2• mediated pathological conditions such as pain processing?

3. Is Cav’2• dysregulation in sensory neurons cell-type specific? If so, what is
the implication of cell-type specific Cav’2• dysregulation and its neuraxial
distribution in mediating modality specific behavioural hypersensitivity?

4. What are the factors and signalling pathways involved in mediating Cav’2•

dysregulation under pathological conditions?

Discoveries leading to the understanding of these questions will provide us
with a new insight into disorders related to Cav’2• dysregulation and lead to the
development of new and target specific medications for management of disorders
involving Cav’2• dysregulation.
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