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  Abstract 

 Sulfatides are sphingolipids commonly found at the surface of most of 
eukaryotic cells. Sulfatides are not just structural components of the plasma 
membrane but also participate in a wide range of cellular processes includ-
ing protein traf fi cking, cell adhesion and aggregation, axon-myelin interac-
tions, neural plasticity, and immune responses, among others. The intriguing 
question is how can sulfatides trigger such cellular processes? Their dynamic 
presence and speci fi c localization at plasma membrane sites may explain 
their multitasking role. Crystal and NMR structural studies have provided 
the basis for understanding the mechanism of binding by sulfatide-interacting 
proteins. These proteins generally exhibit a hydrophobic cavity that is 
responsible for the interaction with the sulfatide acyl chain, whereas the 
hydrophilic, negatively charged moiety can be found either buried in the 
hydrophobic cavity of the protein or exposed for additional intermolecular 
associations. Since sulfatides vary in their acyl chain composition, which are 
tissue-dependent, more emphasis on understanding acyl chain speci fi city 
by sulfatide-binding proteins is warranted. Importantly, changes in cellular 
sulfatide levels as well as circulating sulfatides in serum directly impact 
cardiovascular and cancer disease development and progress. Therefore, 
sulfatides might prove useful as novel biomarkers. The scope of this review 
is to overview cell functions and mechanisms of sulfatide recognition to 
better understand the role of these lipids in health and disease.  
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    3.1   Introduction to Sulfatides 

 Sulfatides (also known as 3- O -sulfogalactosylce-
ramides, sulfated galactocerebrosides, or SM4) 
are sphingolipids found at the extracellular lea fl et 
of the plasma membrane of most eukaryotic cells. 
They were  fi rst isolated from human brain tissue 
by Thudichum in 1884  [  105  ] . Sulfatides are not 
only membrane components but they are also 
involved in protein traf fi cking, cell adhesion and 
aggregation, axon-myelin interactions, modula-
tion of sodium and potassium channels, learning 
and memory, and neural plasticity  [  9,   13,   16,   66, 
  109,   113  ] . Sulfatides are expressed in a variety of 
cells, predominantly in the myelin sheath of the 
nervous system, representing ~4 % of the total 
myelin lipids  [  47  ] . Also, these sphingolipids are 
largely found at the surface of blood cells such as 
erythrocytes  [  57  ] , neutrophils  [  93  ] , and platelets 
 [  85  ]  and they are major component of lipopro-
teins in blood serum  [  100  ] . Sulfatides are esters 
of sulfuric acid with galactosylceramides at C3 of 
the galactose moiety, which is connected to the 
primary hydroxyl group of the  N -acylated 

D- erythro -sphingosine base via a  b -glycosidic 
bond (Fig.  3.1 ). The fatty acid chain length of 
sulfatides varies, with the majority being com-
posed of C16 to C26, including 2-hydroxy fatty 
acids  [  47  ] . Sulfatides containing nervonic acid 
(C24:1) are the most abundant in myelin, whereas 
high levels of the lipid with stearic acid (C18:0) 
are present in the cortical grey matter  [  46  ] . Other 
structural variants of sulfatides (C22:0) are found 
in kidney tissue  [  47  ] , with shorter acyl chains 
(C16:0) being predominant form in pancreas 
 [  23  ] . Sulfatides are also modi fi ed by hydroxyla-
tion at the  a -2 carbon of the fatty acid by the fatty 
acid 2-hydroxylase  [  4  ]  and both hydroxylated 
and nonhydroxylated forms of the lipid are found 
distinctly distributed in the cerebral cortex 
 [  119  ] .   

    3.2   Sulfatide Synthesis 
and Degradation 

 Synthesis of sulfatides occurs in the endoplasmic 
reticulum and the Golgi apparatus. Initially, a 
galactose residue is transferred from UDP-
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  Fig. 3.1    The synthesis and degradation pathway of 
sulfatides. Ceramide is converted to galactocerebroside 
by addition of a galactose group from UDP-galactose, a 
reaction catalyzed by UDP-galactose:ceramide galacto-
syltransferase (CGT). Galactocerebroside is a substrate 
of 3 ¢ -phosphoadenosine-5 ¢ -phosphosulfate:cerebroside 
sulfotransferase (CST), which adds a sulfate group to the 
galactose moiety, using 3 ¢ phosphoadenosine-5 ¢ -phospho-
sulfate (PAPS), to generate sulfatide. Sulfatide turnover is 
mediated by arylsulfatase A (ASA), an enzyme that removes 

the sulfate group and generates galactocerebroside. ASA 
requires saposin B activity, a cysteine-rich protein that 
extracts sulfatides from membranes and allows ASA to 
catalyze the reaction on diffusible protein-lipid com-
plexes. The chemical structure of ceramides is character-
ized by the presence of a sphingosine group and an 
additional fatty chain, which usually varies with different 
lengths and, therefore, depicted with an R group. Commonly 
found R-groups in ceramides and sulfatides are depicted 
at the  bottom        
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galactose to 2-hydroxylated or nonhydroxylated 
ceramide at the luminal membrane lea fl et of 
the endoplasmic reticulum, a reaction catalyzed 
by the UDP-galactose:ceramide galactosyltrans-
ferase (CGT; C 2.4.1.45) (Fig.  3.1 ). The product 
of this reaction, galactocerebroside, is delivered 
to the Golgi apparatus where it is modi fi ed by 
sulfation at position 3 of the galactose moiety 
through the action of a 3 ¢ -phosphoadenosine-5 ¢ -
phosphosulfate:cerebroside sulfotransferase (CST; 
EC 2.8.2.11)  [  117  ] . Tissue-dependent expression 
of sulfatides correlates with the expression of 
both CGT and CST genes  [  35,   39,   123  ] . Recently, 
Aoyama and colleagues determined that the CST 
gene is transcriptionally stimulated by the acti-
vated peroxisome proliferator-activated receptor 
 a  and this effect directly enhances sulfatide 
levels in mice  [  75  ] . Mice lacking CST or CGT 
cannot produce sulfatides  [  38,   89  ] . Absence of 
the CST gene leads to disorganized paranodes 
and a lack of septate-like junctions, defects that 
promote a reduction of the nerve conduction 
velocity due to the lack of sulfatides  [  15,   19,   38  ] . 
Degradation of sulfatides is mediated by lyso-
somal arylsulfatase A (ASA; EC 3.1.6.8), which 
hydrolyzes the sulfate group from the galactose 
moiety leading to the formation of galactocere-
broside. Sulfatide accumulation by the lack of ASA 
is associated with demyelination and metach-
romatic leukodystrophy (MLD), a lethal neuro-
logical disease  [  21,   84  ] . Overall, accumulated 
evidences indicate that alteration of sulfatide 
synthesis has a major impact on the generation of 
neuronal defects. 

 The reaction catalyzed by ASA depends upon 
the presence of saposin B, a sphingolipid activator 
protein that removes sulfatides from membranes 
and, thus, allows sulfatides to interact with ASA 
 [  56  ] . The crystal structure of saposin B shows a 
shell-like dimer of a helical bundle that encloses 
a hydrophobic cavity  [  2  ] , a structural organiza-
tion that is observed in many sulfatide-binding 
proteins  [  91  ] . Saposin B adopts a V-shaped con-
formation with  fi ve amphipathic  a -helices, 
which associates to another saposin B molecule 
to build a large hydrophobic cavity in the dimer. 
The structure also reveals a region of elongated 
electron density that could be a potential lipid-

binding site, an association that may require a 
conformational change of saposin B to expose its 
inner hydrophobic cavity to membranes  [  2  ] . 

 Sulfatides can be intracellularly distributed by 
action of the glycolipid transfer protein (GLTP), 
a cytosolic peripheral protein that transfers gly-
colipids from the cytosolic lea fl et of the plasma 
membrane or the endoplasmic reticulum and acts 
as a sensor of glycolipid levels  [  68  ] . GLTP employs 
a helical two-layer sandwich motif to transfer 
glycolipids and is able to recognize the sugar 
head group using hydrogen bonds and a hydro-
phobic pocket that associates with most of the 
nonpolar hydrocarbon chains of the ceramide 
region of the glycolipid  [  65  ] . There are two modes 
of glycosphingolipid binding by GLTPs  [  64  ] : (i) 
“ Sphingosine in ” mode, in which both the acyl 
and sphingosine chains are located in the same 
hydrophobic pocket of GLTP and (ii) “ Sphingosine 
out ” mode, in which the acyl chain of the sphin-
golipid remains in the hydrophobic pocket of 
GLTP, where the sphingosine backbone becomes 
exposed to the protein surface and allows interac-
tion with another GLTP, forming a dimer. Recently, 
studies using the crystal structures of the wild-type 
human GLTP and a mutant (Asp 48 Val; D48V) 
version of the protein in complex with sulfatides 
reveal that the D48V mutation favors the transfer 
selectivity to sulfatides by switching GLTP to 
the “ sphingosine in ” mode  [  91  ] . The D48V GLTP 
exhibits a cavity that allows the sulfate group to 
ef fi ciently accommodate the sulfatide molecule 
in the protein, enhancing sulfatide binding over 
other neutral glycosphingolipids, such as galac-
toceramides. Consequently, sulfatides favor 
dimerization of GLTP, whose dimerization inter-
face resembles the membrane-binding domains 
of the protein  [  54,   64  ] .  

    3.3   Cellular Mechanisms Mediated 
by Sulfatides 

    3.3.1   Nervous System 

 Sulfatides are present in high levels in the myelin 
sheath, in both the central and peripheral nervous 
systems  [  108  ] . Myelin contains 70–75 % lipid, 
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4–7 % of which are sulfatides  [  77  ] . Sulfatides are 
also found in other glial cells, astrocytes, and 
neurons  [  11,   46,   81  ]  and are myelin-associated 
inhibitors of central nervous system axon regen-
eration  [  114  ] . Increased cellular concentration of 
sulfatides is associated with MLD, in which 
patients exhibit accumulation of the lipid in 
lysosomes of oligodendrocytes, Schwann cells, 
macrophages, astrocytes, and neurons  [  79  ] ; 
elevated levels of sulfatides are also associated 
with epileptic and audiogenic seizures  [  107  ] . 
Although unusual, de fi ciency in saposin B has 
also been observed in MLD  [  124  ] . Nonetheless, 
MLD leads to a progressive loss of myelin, in 
which the individual ultimately dies in a decere-
brated state. Patients with Multiple Sclerosis or 
Parkinson’s disease exhibit elevated levels of 
anti-sulfatide antibodies in serum and cerebrospi-
nal  fl uid compared to healthy individuals  [  55  ] . 
Indeed, sulfatides act as autoantigens in Multiple 
Sclerosis patients  [  33  ] . Overall, these  fi ndings 
indicate that release of sulfatides from myelin 
is associated with the development of central ner-
vous system diseases. Changes in sulfatide levels 
have been observed in other neuronal diseases, 
including epilepsy with mental retardation and 
Alzheimer’s disease (for more details, see  [  20  ] ).  

    3.3.2   Platelet Adhesion 
and Aggregation 

 Platelets represent an important linkage between 
thrombus formation and in fl ammatory processes. 
First, they prevent post-traumatic blood loss by 
forming  fi brin-containing thrombi at the site 
of vascular injury, followed by the release of a 
battery of potent in fl ammatory and mitogenic 
molecules within the microenvironment that 
alters the chemotactic and adhesive properties of 
endothelial cells. These events facilitate the teth-
ering and rolling of leukocytes over an in fl amed 
vessel wall (activated endothelium  [  24,   25  ] ), 
which then either  fi rmly adhere and transmigrate 
into the arterial intima or simply detach  [  26,   27  ] . 
Among the various glycoproteins involved in 
these events, selectins are crucial for the initial 
contact between platelets and the vascular endothe-

lium, and remarkably, mediate rosetting of platelets 
with monocytes and neutrophils to form platelet-
leukocyte aggregates  [  60,   104  ] . Despite some 
contradictory results reviewed by Kyogashima 
 [  59  ] , accumulated recent evidence suggests that 
sulfatides promote platelet adhesion and aggre-
gation  [  18,   31,   70,   113  ] . 

 One of the key cell surface receptors mediat-
ing leukocyte recruitment and exhibiting pro-
aggregatory activity is P-selectin (for a review, 
see  [  12  ] ). Most of the P-selectin ligands contain 
post-translational modi fi cations needed for receptor 
binding and signal transduction in which sulfate 
moieties are frequently present  [  83,   88  ] . Sulfatides 
modulate P-selectin activity at the platelet surface 
 [  72  ]  leading to further degranulation and increased 
surface P-selectin expression, which reinforces 
platelet aggregation  [  70,   113  ] . Moreover, 
P-selectin-sulfatide interaction leads to the formation 
of stable platelet aggregates and surface sulfatides 
enhance the formation of platelet-leukocyte 
aggregates  [  70  ] . Platelet P-selectin expression is 
decreased by  fi brinogen de fi ciency  [  118  ] . 

 Frequently, soluble platelet aggregation ago-
nists bind to and induce conformational changes 
in the extracellular domains of the  a  

IIb
  b  

3
  integrin 

receptor, triggering the inside-out integrin-sig-
naling pathway  [  49  ] . Simultaneously,  fi brinogen 
activates the outside-in signaling pathway by 
association with the  a  

IIb
  b  

3
  integrin receptor via 

two Arg-Gly-Asp (RGD) motifs located in its 
 a -chain  [  82  ] . In addition to  fi brinogen, other integ-
rin receptor agonists include the von Willebrand 
factor (vWF) and  fi bronectin and these associa-
tions stimulate platelet spreading and aggregation 
on vascular surfaces  [  49  ] . The adaptor protein 
Disabled-2 (Dab2) negatively regulates  fi brinogen-
 a  

IIb
  b  

3
  integrin receptor association and, conse-

quently, inhibits cell adhesion and cell signaling 
 [  18,   41  ] . The inhibitory function of the cytosolic 
pool of Dab2 is mediated by phosphorylation in 
its Ser24 residue, a post-translational modi fi cation 
that triggers the association of Dab2 to the cyto-
plasmic tail of the  b 3 subunit of the integrin 
receptor  [  41  ] . Binding of Dab2 to the integrin 
receptor is likely to be enhanced by phosphati-
dylinositol 4,5-bisphosphate-mediated membrane 
anchoring (Fig.  3.2 ). Consequently, Dab2 acts as 
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a negative regulator of integrin receptor inside-
out signaling.  

 Dab2 is also localized in  a -granules of both 
megakaryocytes  [  41  ]  and resting platelets  [  18,   42  ] . 

Upon activation, Dab2 is secreted to the mega-
karyocyte and platelet surface via the  a -granule 
secretory pathway where it binds to the  a  

IIb
  b  

3
  

integrin receptor, blocking  fi brinogen-platelet 

  Fig. 3.2    An updated model of sulfatide- and Dab2-
mediated modulation of platelet aggregation. Resting 
platelets are enriched in  a -granules, which contain pro-
coagulant ( i.e. , P-selectin,  a  

IIb
  b  

3
  integrin receptor) and 

anti-coagulant proteins ( i.e. , Dab2). Another pool of platelet 
Dab2 is distributed cytosolically. Also, platelets contain 
signaling lipids including sulfatides (found at the outer 
lea fl et of the plasma membrane) and PtdIns(4,5)P 

2
  (found 

at the inner lea fl et of the plasma membrane). Upon activa-
tion, platelets change shape and release the  a -granular 
content. Released Dab2 is partitioned in two pools: one 
associates with the  a  

IIb
  subunit of the integrin receptor 

through its RGD motif, and therefore, competes with 
 fi brinogen for integrin receptor binding. Consequently, 
Dab2 negatively controls clot formation by modulating 
platelet aggregation. The second pool of Dab2 associates 
with cell surface sulfatides, whose levels are increased 

upon platelet activation. Upon platelet activation, cytosolic 
Dab2 is recruited to the plasma membrane in a phospho-
rylated state where interacts and inhibits the  b 3 subunit 
of the integrin receptor. Membrane recruitment of Dab2 is 
likely enhanced by its association to PtdIns(4,5)P 

2
 . The 

fate of phosphorylated Dab2 after membrane recruitment 
is unknown. The function of extracellular Dab2 is 
modulated by the agonist thrombin, which cleaves Dab2 
making it inactive (Dab2(i)). Both P-selectin and L-selectin 
bind to cell surface sulfatides mediating platelet-platelet 
platelet-leukocyte interactions, respectively. Furthermore, 
platelet-leukocyte interactions are enhanced by the 
association of P-selectin with PSGL-1. Both homotypic 
and heterotypic interactions are negatively modulated by 
Dab2. The presence of Dab2 at the cell surface is transient 
since it has been shown to be internalized back to  a -granules 
( dotted arrows )       
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interactions  [  42  ] . Integrin-binding takes place 
because of the presence of an RDG motif in 
Dab2, an association that can be inhibited by 
the  fi brinogen-derived Arg-Gly-Asp-Ser (RGDS) 
peptide  [  42  ] . Dab2 targets platelet surface 
membranes, as a result of platelet activation, via 
its N-terminal region containing the phosphoty-
rosine-binding (N-PTB) domain  [  18  ] . N-PTB is 
necessary and suf fi cient to inhibit platelet 
adhesion and aggregation by competing with 
 fi brinogen for binding to the  a  

IIb
  b  

3
  integrin recep-

tor through its RGD motif  [  18  ] . In addition, Dab2 
binds membrane sulfatides, an association that 
redistributes the protein at the platelet surface 
 [  18  ] . Dab2 recognizes sulfatides through the 
residues Lys25, Lys49, Lys51, and Lys53, which 
are located within the XBBXBX (B, basic resi-
due; X, any residue) and BXBXBX motifs in its 
N-PTB region  [  18  ] . This class of basic clusters 
also mediates sulfatide binding of other cell 
adhesive proteins, including thrombospondins, 
laminins, and selectins  [  47  ] . The sulfatide-binding 
site of Dab2 overlaps with that of the phospho-
inositide PtdIns(4,5)P 

2 
 binding site  [  3  ] , but com-

petition likely does not occur in a physiological 
context since sulfatides are predominantly found 
at the plasma membrane surface, presumably in 
lipid rafts  [  96  ] , whereas the phosphoinositide is 
predominantly found at the cytosolic lea fl et of 
the plasma membrane  [  58  ] . Whereas sulfatides 
contribute to Dab2 membrane insertion, which is 
likely accompanied by a conformational change 
of the protein, phosphoinositide recognition 
occurs by electrostatic interactions associated 
with minor local structural changes in Dab2  [  3  ] . 
Sulfatide recognition by Dab2 impairs cleavage 
by thrombin, a strong platelet agonist  [  18  ] . 
Consequently, a pool of Dab2 remains intact at 
the platelet surface upon activation, and is even-
tually internalized back to  a -granules by an actin 
cytoskeleton-dependent mechanism  [  18  ] . Also, 
sulfatides modulate the availability of Dab2 for 
binding to the integrin receptor  [  18  ] . Taken 
together, Dab2 may be distributed in two pools at 
the platelet surface (Fig.  3.2 ). One pool of Dab2 
competes with  fi brinogen for binding to the 
integrin receptor, whereas a second pool binds 
sulfatides at the platelet surface. The second 

pool of Dab2 also exerts an additional layer of 
modulation of platelet aggregation since sulfatide 
binding by Dab2 blocks P-selectin-sulfatide 
interactions (Fig.  3.2 )  [  113  ] , which are required 
to sustain platelet aggregation  [  71  ] . Indeed, sul-
fatides promote surface expression of P-selectin 
in activated platelets  [  70,   113  ] . The N-PTB region 
of Dab2 not only blocks platelet-platelet interac-
tions, but also controls the extent of heterotypic 
cell interactions, such as those with leukocytes 
 via  its recognition to cell surface sulfatides  [  113  ] . 

 We have recently generated a Dab2-derived 
peptide that contains the two sulfatide-binding 
motifs (SBMs) of the protein  [  116  ] . The Dab2 
SBM peptide adopts a helical and amphipathic 
structure when embedded in dodecylphospho-
choline (DPC) micelles. The majority of the 
sulfatide-interacting residues map to the second 
sulfatide-binding motif with the basic residues 
Lys49, Lys51, and Lys53 as well as the nonpolar 
residues Ala52, Leu54 and Ile55 playing a major 
role in the interaction with the sphingolipid 
 [  116  ] . Using a combination of paramagnetic 
probes, we established that the peptide lies in a 
parallel orientation below the sulfatide-enriched 
DPC micellar surface but does not cross the 
hydrophobic core of the micelle. Using mic-
ro fl uidic devices that readily mimic vasculature, 
we showed that Dab2 SBM displays anti-
aggregatory platelet activity, comparable to that 
described for the  fi brinogen-derived peptide, 
Arg-Gly-Asp-Ser (RGDS)  [  116  ] . Thus, by bind-
ing to cell surface sulfatides, Dab2 SBM provides 
the basis for rational design, promising anti-aggre-
gatory low-molecular mass molecules for thera-
peutic applications. 

 Sulfatides also interact with homeostatic cell 
adhesion proteins, such as vWF  [  86  ] , chemok-
ines  [  92  ] , laminin  [  86  ] , and thrombospondin  [  85  ] . 
Sulfatides inhibit vWF’s platelet adhesion in 
 fl owing blood and under physiological shear 
stress conditions  [  9  ] . The sulfatide-binding site 
in vWF overlaps with that of the glycoprotein 
Ib and, consequently, the lipid can inhibit glyco-
protein Ib-mediated platelet adhesion  [  9  ] . vWF 
binds sulfatides by a region comprising residues 
1,391–1,409 within the A1 domain of the protein 
 [  5  ] . Further site-directed mutagenesis studies 
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demonstrated that the residues Arg1392, Arg1395, 
Arg1399, and Lys1423 are critical for sulfatide 
recognition as shown using ELISA-based plates 
coated with sulfatides  [  76  ] . The residues Arg1392 
and Arg1395 within the A1 domain of vWF are 
also relevant for glycoprotein Ib binding  [  67  ] , 
con fi rming that sulfatides and glycoprotein Ib 
compete with each other for vWF binding. 

 Chemokines are cytokines that bind to cell 
surface sulfated glycosaminoglycans, modulating 
the activity of chemokine receptors. In addition 
to glycosaminoglycan binding, chemokines bind 
sulfatides  [  92  ] , although the role of sulfatide rec-
ognition by these proteins is not clear. Whereas 
chemokine production is reduced by sulfatides 
when tested in peripheral leukocytes and fat cells 
 [  10,   87  ] , it is stimulated in brain immune cells  [  52  ] . 

 Laminins contain a series of G-like modules 
of about 200 amino acids each that bind to sul-
fatides, an association that may facilitate the 
polymerization of the protein into networks  [  53  ] . 
Two XBBXBX and three BXBXBX sequences 
were initially suggested to be potential sulfatide-
binding motifs for the protein  [  103  ] . Timpl and 
colleagues demonstrated that sulfatide binding 
is increased when laminin G-like modules are in 
tandem  [  102  ] , indicating their cooperation in 
ligand recognition. Structural data indicate that 
residues K3027 and K3028 within the XBBXBX 
motif of laminin  a 2 G-like 4–5 domains are critical 
for sulfatide binding  [  37,   102  ] . Furthermore, resi-
dues K3088 and K3091 present in a basic cluster 
BXXBXXXB of the same protein contribute to 
sulfatide binding  [  37  ] . Likewise, the  2831 RAR and 
 2766 KGRTK residues of the related laminin  a 1 
G-like 4–5 domains, which belong to potential 
BXBXBX motifs, are crucial for sulfatide binding 
 [  34  ] . However, other basic clusters involved in 
heparin recognition are dispensable for sulfatide 
binding  [  34  ] , suggesting that the association of 
laminin to different ligands may trigger unique 
biological responses. 

 Thrombospondins are extracellular calcium-
binding proteins that are involved in wound 
healing, angiogenesis, vessel wall biology, syn-
aptogenesis, and connective tissue organization 
(for a review, see  [  1  ] ). Thrombospondins are 
known to bind many partners  [  1  ] . Sulfatides and 

heparins show strong af fi nity to thrombospondin-
derived peptides containing the WSXW (where 
X is any residue) sequence with no polybasic 
motif required for sulfatide binding  [  32  ] . Indeed, 
these peptides strongly inhibit sulfatide and hep-
arin binding to the thrombospondin, blocking 
binding of this protein to melanoma cells  [  32  ] .  

    3.3.3   Innate Immunity 
and Autoimmunity 

 T cells recognize antigens, such as foreign and 
self-lipids and peptides, leading to the production 
of cytokines and, therefore, contributing to 
immune responses  [  7  ] . T cells also use their cell 
surface receptor to recognize lipid antigen-bound 
cluster of differentiation 1 (CD1) molecules at 
the surface of professional antigen-presenting 
cells such as macrophages, dendritic cells, and a 
small group of B cells. There are three groups of 
CD1 surface proteins: ( i ) CD1a, CD1b, and CD1c 
(group 1), ( ii ) CD1d (group 2), and ( iii ) CD1e 
(group 3)  [  17  ] . CD1 proteins contain three extra-
cellular domains ( a 1,  a 2, and  a 3), a transmem-
brane domain, and a cytoplasmic tail. The 
extracellular domains form a surface groove 
(named the lipid-binding groove) formed by two 
 a -helices ( a 1 and  a 2) on top of a  b -sheet  [  120, 
  122  ] . The lipid-binding groove, which is narrow 
and deep, contains hydrophobic residues that can 
interact with the acyl chains of the glycolipids 
 [  6  ] , whereas the polar head group becomes 
exposed in the CD1-lipid complex, allowing 
recognition by T cell receptors  [  73  ] . In CD1a 
proteins, the lipid- binding groove contains two 
large hydrophobic regions termed A’ and F’  [  120  ] . 
In the CD1a-sulfatide complex, the sulfatide 
adopts an S-shaped conformation in which the 
A’ pocket contributes to the C 

18
  sphingosine back-

bone recognition, and the acyl chain of the lipid 
emerges from the A’ pocket and extends its asso-
ciation into the F’ pocket  [  120  ] . The galactose 
moiety forms hydrogen bonds with residues 
Arg76 and Ser77, whereas the sulfate group 
forms hydrogen bonds with residues Arg76 and 
Glu154 and with water that is in complex between 
residues Arg73 and Glu154  [  120  ] . Consequently, 
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the sulfated galactose residue becomes exposed 
at the surface of the complex for T cell receptor 
recognition. Sulfatides can be presented by all 
members of the CD1 group 1 and by CD1d  [  8,   94  ] . 
However, the sulfatide-binding af fi nity varies 
with each CD1 molecule, with the CD1a-sulfatide 
being the most stable complex  [  94  ] . 

 Sulfatides have also been shown to be self-
glycolipid antigens recognized by CD1d, assem-
bling a complex that activates type II natural 
killer T (NKT) cells  [  50  ] . Sulfatides induce 
proliferation and expansion of memory, but not 
naïve, T cells  [  48  ] . The mechanism by which the 
T-cell receptor from type II NKT cells (XV19 
hybridoma) interacts with the CD1d-sulfatide 
complex has been recently reported  [  78  ] . Whereas 
the type I NKT T-cell receptor exclusively con-
tacts the F’ pocket of CD1d, the type II NKT 
T-cell receptor binds orthogonally above the A’ 
pocket of CD1d, emphasizing different CD1d 
points of contact. More importantly, T cells 
highly reactive to sulfatides are increased in 
number and CD1d is upregulated in the central 
nervous system of patients with experimental auto-
immune encephalomyelitis  [  33,   50  ] . The presence 
of the sulfate group and the  b -anomeric linkage 
are critical for CD1d activation-dependent T 
cells  [  94  ] . The dominant sulfatide species for 
CD1d-dependent immune responses is a C24:1 
 [  121  ] , which bears one unsaturation at the 8–9 
position (Fig.  3.1 ). The crystal structure of the 
CD1d-C24:1 sulfatide complex shows the acyl 
chain in the A’ pocket, whereas the sphingosine 
chain associates with the F’ pocket, leaving the 
sulfated head group exposed at the protein sur-
face  [  121  ] .  

    3.3.4   Host-Pathogen Interactions 

 The action of protein toxins from pathogenic 
organisms requires speci fi c sphingolipids at the 
cell surface to mediate protein endocytosis and to 
enhance the virulence of the pathogen. Sulfatide 
recognition by pathogen proteins includes the coli 
surface antigen 6, the heat-stable toxin b, and the 
987P- fi mbriae from  Escherichia coli   [  14,   30,   51  ] , 
and heat shock proteins from  Helicobacter pylori  

 [  43,   44  ] . The only structural data reported for this 
class of toxins is that for the  Naja atra  Taiwanese 
Cobra cardiotoxin A3 (CTX -A3) in complex 
with sulfatides using hexaethylene glycol mono-
decyl ether detergent as a membrane mimetic 
 [  110  ] . CTX-A3 acts as a toxin by a sulfatide-
dependent internalization mechanism that leads 
to pore formation in the host cell membrane 
 [  115  ] . The crystal structure of CTX-A3 reveals a 
dimer of two  b -sheet proteins, an oligomerization 
state that is induced upon sulfatide binding. 
In the CTX-A3-sulfatide complex, the sulfatide 
head group is buried so that the sulfate group 
forms a hydrogen bond with the amino group of 
the residue Lys35, whereas the galactose sugar 
forms hydrogen bonds with the amino groups of 
the residues Lys12 and Lys18 and the carbonyl 
oxygen group on Arg36 and Cys38  [  110  ] . The 
side chain of Lys44 interacts with the amide 
region of the ceramide backbone through a single 
hydrogen bond. The remaining lipid tail becomes 
exposed to the detergent-enriched solvent that 
facilitates the dimerization of CTX-A3. Membrane 
insertion and pore formation by CTX-A3 requires 
both protein and sulfatide conformational changes 
 [  106  ]  and the presence of sulfatide-containing 
lipid domains  [  115  ] . 

 Glycosphingolipids are also employed as 
receptors for virus infection. Both galactocere-
brosides and sulfatides facilitate HIV type 1 virus 
binding to the Cd4 −  cell surface  via  the viral 
envelope gp120 protein  [  22  ] . Similarly, sulfatides 
are thought to be alternative cell surface receptors 
for the In fl uenza A virus  [  99  ]  and the vaccinia 
virus  [  80  ] . In addition, sulfatides have been shown 
to enhance the formation and release of the 
progeny of infectious In fl uenza A viruses as well 
as translocation of newly synthetized viral nucle-
oprotein to the cytoplasm  [  101  ] . Indeed, sulfatide 
administration prevents cell viral infection 
 [  22,   99,   112  ]  as it has been demonstrated for the 
bovine immunode fi ciency virus, in which its 
internalization is inhibited by the glycosphingo-
lipid during syncytium formation  [  112  ] . More 
recently, Kumar and colleagues demonstrated 
that sulfatide administration in mice inhibits HIV 
type 1 replication more ef fi ciently than treatment 
with the nucleoside analog reverse transcriptase 
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inhibitor azidothymidine  [  98  ] . This is in agree-
ment with the observation that antibodies that 
neutralize HIV-1 also recognize sulfatides  [  69  ] . 
Furthermore, the presence of sulfatides enhances 
mice hematopoiesis, which is usually lost during 
HIV-1 infection  [  98  ] . Overall, this evidence 
suggests that sulfatides represent novel tools to 
target viral infections.   

    3.4   Implications of Sulfatides 
in Disease Development 
and Progression 

    3.4.1   Cardiovascular Diseases 

 Sulfatides are known to play a critical role in the 
development of cardiovascular disease. Indeed, 
the measurement of serum sulfatide levels has 
been proposed to predict the incidence of car-
diovascular disease in patients with end-stage 
renal disease (ESRD)  [  40  ] . The level of sulfati-
des in ESRD patients undergoing hemodialysis 
therapy and those with cardiovascular disease is 
consistently lower than in healthy individuals 
 [  40  ] . Patients with kidney transplantation show 
a signi fi cant increase of serum sulfatides in a 
time-dependent manner, which is correlated 
with an increment of platelet levels  [  111  ] . The 
recovery of sulfatide levels may be associated 
with the attenuation of the systemic oxidative 
stress triggered by the chronic kidney dysfunc-
tion in these patients  [  111  ] . Sulfatides are 
P-selectin ligands and as such mediate platelet-
leukocyte interactions via P-selectin and CD11b/
CD18 (Mac-1), an integrin receptor localized 
at the surface of monocytes, neutrophils, and 
T-cells  [  28  ] . Sulfatides increase Mac-1 surface 
expression in neutrophils, which may contribute 
to the development of intimal hyperplasia after 
endothelial injury  [  95  ] . Further studies demon-
strate that sulfatides contribute to the progress 
of neointimal thickening after vascular injury, 
which can eventually trigger atherosclerosis 
 [  45  ] . In the same context, erythrocyte membrane 
sulfatides signi fi cantly increase in sickle eryth-
rocytes and play a relevant role in sickle cell 
adhesion to endothelial cells  [  125  ] .  

    3.4.2   Cancer Diseases 

 Increased levels of sulfatides have been observed 
in renal cell carcinoma  [  90  ] , well-differentiated 
endometrial adenocarcinoma  [  97  ] , some types of 
lung tumors  [  29  ] , brain tumors  [  61  ] , and colon 
 [  74  ] , hepatocellular  [  36  ] , and ovarian cancers 
 [  62,   63  ] . Sulfatides have been proposed as early 
predictors of ovarian cancer  [  63  ] . Recently, using 
a combination of mass spectrometry metabolite 
analysis and gene expression pro fi les, it has been 
established that sulfatide levels are elevated in 
ovarian cancer compared to normal ovarian tissue 
 [  62  ] . Consistent with this observation, higher lev-
els of mRNA that codi fi es for the enzymes CGT 
and CST, required for sulfatide synthesis, are 
also detected in epithelial ovarian carcinoma cells, 
whereas the levels of ASA, saposin, and galacto-
sylceramidase remain unchanged  [  62  ] . Taken 
together, measurements of sulfatide levels using 
mass spectrometry analysis of tumor tissues 
represent an excellent and sensitive tool to be 
used as serum biomarkers for early tumors.   

    3.5   Conclusions and Future 
Perspectives 

 As summarized in this review, the role of mem-
brane sulfatides in the nervous system, innate and 
adaptive immunity, platelet adhesion and aggre-
gation, and bacterial and viral infection is clearly 
emerging. However, there are several questions 
about how membrane sulfatides signal that 
need to be addressed. For example, a precise 
measurement of membrane sulfatide levels elic-
ited by external cues is required to understand 
sulfatide-mediated signaling. Also, the levels of 
the enzymes that participate in the synthesis and 
degradation of sulfatides should play a key role 
in the modulation of the membrane levels of the 
sphingolipid. 

 The number of identi fi ed sulfatide-binding 
proteins has substantially increased over the past 
15 years. The general sulfatide binding mechanism 
consists of the formation of hydrogen bonds 
between the acyl chains of the sphingolipid with 
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residues located in the hydrophobic cavity and 
accompanied by a few hydrogen bonds and 
electrostatic interactions between the side chain 
of basic residues of the protein and the negatively 
charged sulfate group of the galactose moiety. 
Perhaps, the key role of sulfatides center on the 
features of their acyl chains as they interact with 
protein hydrophobic cavities leaving, in some 
cases, the head group exposed at the surface of 
the protein. Thus, development of high-resolution 
methods for the discrimination of sulfatides with 
different fatty acid compositions is warranted. 
This is important as sulfatides with speci fi c acyl 
chains lengths, unsaturation, or even hydroxylation 
modi fi cations are tissue-dependent. Furthermore, 
predicting a sulfatide-binding site from the amino 
acid sequence of a protein is not an easy task. 
Whereas sulfatide-binding sites typically exhibit 
basic clusters of residues that follow the sequence 
BXBXBX or XBBXBX, some sulfatide-binding 
proteins exhibit unique sulfatide-binding basic 
motifs and some others do not employ basic 
residues at all. 

 With recent high-resolution structures of 
sulfatide-binding proteins we may also soon 
understand the role of sulfatides in protein mem-
brane targeting as well as intra- and extracellular 
sulfatide-dependent protein dynamics. However, 
we still lack the information about sulfatide 
dynamics at membranes, its intracellular distribu-
tion of the glycosphingolipid, or its presence and 
relative concentration in lipid rafts. Moreover, 
the engagement of sulfatides in cardiovascular 
and cancer diseases makes this area of research 
clinically relevant. The identi fi cation of additional 
sulfatide-binding proteins and the appropriate 
measurement of sulfatide levels in serum and 
tumor tissues will certainly contribute to early 
prognosis.      
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