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    11.1   Introduction 

 It is not unusual to  fi nd even current depictions 
of membranes as homogenous lipid matrices 
that function primarily to support the allegedly 
 important  protein molecules embedded within. 
This belies the fascinating discoveries in the past 
two decades of cellular and organelle-speci fi c 

functions attributed to individual membrane lipids, 
and of the plethora of regulatory and signaling 
molecules derived from glycerolipids and sphin-
golipids. In this light, it is essential to elucidate 
the functions of speci fi c membrane lipids and 
the cellular consequences of their depletion. 

 A phospholipid that has been the focus of con-
siderable attention relatively recently – although 
it was  fi rst isolated and puri fi ed from beef heart in 
1942  [  1,   2  ] , is cardiolipin (CL). CL is structurally 
unique. In contrast to the other membrane phos-
pholipids, in which a single glycerol backbone 
is acylated to two fatty acid chains, CL contains 
two phosphatidyl groups (linked to a glycerol 
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     Abstract 

 This review focuses on recent studies showing that cardiolipin (CL), a 
unique mitochondrial phospholipid, regulates many cellular functions and 
signaling pathways, both inside and outside the mitochondria. Inside the 
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in the cross-talk between the mitochondria and the vacuole. Understanding 
these connections may shed light on the pathology of Barth syndrome, a 
disorder of CL remodeling.  
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backbone) and four fatty acyl chains. It is enriched 
in energy harvesting membranes of mitochon-
dria, chloroplasts, bacterial plasma membranes, 
and hydrogenosomes, underscoring the impor-
tance of this lipid in energy production  [  3–  5  ] . 
CL is tightly associated with mitochondrial pro-
teins and respiratory chain complexes and is 
essential for their optimal activity  [  6–  10  ] . In the 
inner membrane, CL provides structural stability to 
membrane proteins through hydrophobic and 
electrostatic interactions. 

 In light of its association with the respiratory 
apparatus, the role of CL in mitochondrial bioen-
ergetics was not entirely unexpected. Interestingly, 
however, recent studies carried out primarily in 
yeast indicate that CL is also required for cellular 
functions that are not directly associated with 
oxidative phosphorylation. In accordance with a 
broad de fi nition of a ‘bioactive lipid’ as one in 
which changes in levels lead to functional conse-
quences  [  11  ] , perturbation of CL composition 
(including CL levels, acyl species, and degree 
of peroxidation) leads to dramatic cellular conse-
quences: (1) Alterations in CL levels and acyl 
chain composition increases the recruitment to 
the mitochondria of cytosolic proteins that 
trigger apoptosis  [  12–  14  ] . (2) Perturbation of CL 
synthesis or remodeling leads to increased pro-
duction of reactive oxygen species (ROS), which 
induces aging  [  15–  20  ] . (3) Blocking CL synthe-
sis in yeast at the  fi rst step of the pathway delete-
riously affects cell wall biogenesis and alters the 
response of two signaling pathways, the protein 
kinase C (PKC)-Slt2 mitogen activated protein 
kinase (MAPK) and the high osmolarity glycerol 
(HOG) pathways  [  21–  23  ] . (4) The inability of 
yeast cells to synthesize CL leads to decreased 
vacuolar function and reduced V-ATPase activity, 
suggesting that CL mediates cross talk between 
mitochondria and the vacuole  [  24  ] . The current 
review focuses on the role of CL in regulating 
these cellular functions. We conclude with unan-
swered questions that remain exciting avenues 
for future studies, which may have implications 
for understanding the pathophysiology of Barth 
syndrome (BTHS), a genetic disorder of CL 
remodeling.  

    11.2   CL Biosynthesis 
and Remodeling 

 One of the most intriguing aspects of CL biosyn-
thesis is that the lipid that is initially synthesized 
contains primarily saturated fatty acids, while the 
mature CL that is essential for normal cellular 
function contains unsaturated fatty acids. The 
distinct composition of acyl chains is achieved 
through a highly conserved pathway of synthesis 
and remodeling, as shown in Fig.  11.1 . The  fi rst 
step is catalyzed by phosphatidylglycerolphos-
phate (PGP) synthase (Pgs1), which converts CDP-
diacylglycerol (DAG) and glycerol-3-phosphate 
(G-3-P) to PGP  [  25,   33  ] . PGP is dephosphory-
lated to phosphatidylglycerol (PG) by PGP phos-
phatase (Gep4)  [  26,   34  ] . The mammalian 
homologue of the yeast  GEP4  gene was recently 
identi fi ed as protein tyrosine phosphatase local-
ized in the mitochondrion (PTPMT1)  [  34  ] . CL 
synthase (Crd1) catalyzes an irreversible conden-
sation reaction in which the phosphatidyl group 
of CDP-DAG is linked to PG via cleavage of a 
high-energy anhydride bond to form CL  [  27–  30, 
  35–  38  ] . CL synthase does not show strong pref-
erence for speci fi c fatty acyl chains  [  38–  40  ] . 
How, then, is acyl speci fi city achieved? The 
newly synthesized CL undergoes deacylation by 
a CL-speci fi c deacylase (Cld1), which is homolo-
gous to the mammalian phospholipase A 

2
   [  31, 

  41,   42  ] . Cld1 removes one saturated fatty acyl 
chain from CL to form monolysocardiolipin 
(MLCL)  [  31  ] . The transacylase tafazzin (Taz1) 
reacylates MLCL with an unsaturated fatty acid 
to form mature CL  [  32,   43,   44  ] . Taz1 carries out 
exchange of acyl chains between CL and phospho-
lipids that primarily include phosphatidylcholine 
(PC), to sequentially replace the fatty acyl chains 
from all four acyl positions of CL  [  45 ,  46  ] . The 
end result of this exchange is molecular symme-
try of CL molecules across the eukaryotic king-
dom, from yeast to humans, which is characteristic 
of the organism and of speci fi c tissues and organs 
 [  47  ] . For example, in yeast, the mature form of CL 
contains oleic acid, while CL in the normal human 
heart is primarily tetralinoleoyl-CL (L 

4
 -CL)  [  47  ] . 
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A de fi ciency of tafazzin in humans leads to a 
complete absence of L 

4
 -CL, resulting in the 

severe cardiomyopathy observed in BTHS.  
 While tafazzin is the only known yeast enzyme 

that adds fatty acyl chains to MLCL, two other 
enzymes in addition to tafazzin remodel CL in 
mammalian cells. MLCL acyltransferase-1 (MLC-
LAT1), isolated and puri fi ed from pig liver 
mitochondria, shows speci fi city for linoleate 
 [  48  ] . Thus, over-expression of MLCLAT1 in 
tafazzin-de fi cient BTHS lymphoblasts increased 
incorporation of linoleic acid into CL, and RNAi 
knockdown of MLCLAT1 in HeLa cells showed 
reduced linoleic acid inclusion in CL  [  49  ] . The 
biological function of this enzyme is not clear. 
A second enzyme, acyl-CoA:lysoCL acyltrans-
ferase 1 (ALCAT1), identi fi ed in mouse, was 
initially thought to be located in the endoplasmic 
reticulum, but was subsequently determined to 
be present in the mitochondrial-associated 
membranes, where phospholipid traf fi c between 
the endoplasmic reticulum and the mitochondria 
takes place  [  17,   50  ] . In contrast to MLCLAT1, 

ALCAT1 shows no speci fi city for linoleic acid. 
ALCAT1 was shown to catalyze CL remodeling 
to incorporate long chain polyunsaturated fatty 
acyl chains such as docosahexaenoic acid (DHA) 
 [  17  ] . Enhanced incorporation of polyunsaturated 
fatty acyl chains in CL makes it more susceptible 
to oxidative damage by ROS, causing early per-
oxidation  [  51–  53  ] . ALCAT1 null mutant mice 
exhibit elevated CL levels along with increased 
L 

4
 -CL  [  16,   17  ] , whereas overexpression of ALCAT1 

has been shown to decrease total CL levels and 
increase incorporation of long chain polyun-
saturated fatty acyl chains  [  54  ] . These  fi ndings 
suggest that ALCAT1 may negatively regulate 
CL biosynthesis. 

 In light of the importance of CL in cellular 
function, it is not surprising that perturbation of 
CL synthesis leads to serious illness. The most 
direct example of this link is seen in BTHS, a 
life-threatening illness characterized by dilated 
cardiomyopathy and sudden death from arrhyth-
mia  [  55,   56  ] . BTHS results from mutation in 
the CL remodeling enzyme tafazzin  [  44,   57  ] . 

  Fig. 11.1     Synthesis and remodeling of CL in yeast.  
CL synthesis begins with the conversion of CDP-
diacylglycerol (CDP-DG) to phosphatidylglycerolphos-
phate (PGP) by PGP synthase (encoded by  PGS1)   [  25  ] . 
PGP is dephosphorylated to phosphatidylgylcerol (PG) by 
 GEP4- encoded PGP phosphatase  [  26  ] . CL synthase 
(encoded by  CRD1 ) converts PG to premature CL 

 containing primarily  saturated  fatty acids (FA)  [  27–  30  ] . 
CL is deacylated by CL deacylase (encoded by  CLD1 ) to 
monolyso-CL (MLCL)  [  31  ] , which is reacylated by the 
 TAZ1- encoded enzyme tafazzin to mature CL contain-
ing  unsaturated  fatty acids  [  32  ] . The yeast gene names 
are depicted in  green , while phospholipids and their 
intermediates are shown in  red        



198 V.A. Patil and M.L. Greenberg

This leads to an abnormal CL pro fi le characterized 
by decreased total CL, increased MLCL, and 
aberrant CL acylation, most notably the loss 
of the predominant CL species in normal myo-
cardium, L 

4
 -CL  [  58  ] . How these abnormalities 

cause the associated pathology in BTHS is not 
known  [  59  ] . 

 CL abnormalities have also been observed in 
heart failure  [  60,   61  ] . Heart failure due to dilated 
cardiomyopathy is the primary cause of death in 
diabetic patients  [  62,   63  ] . Metabolic perturbations 
observed in diabetic cardiomyopathy include 
increased utilization of fatty acid substrates, 
decreased utilization of glucose, and mitochondrial 
dysfunction  [  64–  66  ] . However, the molecular 
mechanism that leads to heart failure in diabetic 
patients is not known. Interestingly, a decrease 
in CL levels and alterations in CL acyl species 
were found in early stages of diabetes induced 
by streptozotocin in mice, suggesting that mito-
chondrial dysfunction and cardiomyopathy may 
be due to alterations in CL metabolism  [  67,   68  ] . 
The decrease in CL levels may result from remod-
eling of CL fatty acyl species with DHA, which 
is known to cause CL peroxidation by ROS 
 [  51–  53  ] . In summary, depletion of CL content 
and alterations in CL fatty acyl species lead to 
BTHS, and may also contribute to pathological 
conditions and metabolic perturbations in other 
human disorders.  

    11.3   CL and Apoptosis 

 Perturbations in CL levels and acyl composition 
play a crucial role in regulating apoptosis, the 
complex process leading to programmed cell 
death. The role of CL in apoptosis derives from 
its interactions with cytochrome c (Cyt c) and with 
apoptotic proteins (Fig.  11.2 ).  

    11.3.1   CL and Cyt c 

 Interactions between CL and Cyt c are an impor-
tant determinant of apoptosis. Cyt c, which transfers 
electrons from complex III to complex IV, is bound 
to the outer lea fl et of the mitochondrion inner 

membrane through interactions with CL  [  69,   70  ] . 
The binding of Cyt c to CL is essential to anchor 
it to the inner membrane, and release of Cyt c to 
the cytosol serves as a signal to recruit apoptotic 
proteins to the mitochondria to initiate apoptosis 
 [  74,   75,   79,   80  ] . CL binds Cyt c in two different 
conformations – a loosely bound state that is 
facilitated by means of electrostatic interactions, 
and a tightly bound state that is mediated by 
hydrophobic interactions in which Cyt c is par-
tially embedded in the inner membrane  [  69,   70  ] . 
Release of Cyt c from CL requires dissociation of 
both electrostatic and hydrophobic interactions 
 [  81  ] . The production of ROS may alter the CL-Cyt 
c association  [  80–  82  ] . Alternatively, the peroxi-
dation of CL by hydrogen peroxide generated 
in the mitochondria leads to the release of Cyt c 
from the tightly bound state into the intermembrane 
space  [  12,   76  ] .  

    11.3.2   Recruitment of Apoptotic 
Proteins 

 An early trigger of apoptosis is the change in CL 
composition in the mitochondrial inner and 
outer membranes, followed by dissipation of the 
membrane potential and  fl ipping of phosphati-
dyserine (PS) to the external surface of the 
plasma membrane  [  83,   84  ] . A diverse set of 
apoptotic proteins such as t-Bid, Bax, Bak, and 
caspase-8 are recruited to the mitochondrial sur-
face of cells undergoing apoptosis in a 
CL-dependent manner  [  71–  73  ] . Upon activa-
tion, caspase-8 migrates to the mitochondrial 
outer membrane in regions where CL is present. 
Caspase-8 is said to cleave Bid to its active form, 
tBid (truncated Bid). A signi fi cant amount of 
CL is translocated from the inner to the outer 
mitochondrial membrane, which likely serves 
as a signal for binding of the apoptotic pro-
teins  [  14,   85,   86  ] . The binding of t-Bid to CL is 
thought to further increase CL transfer to the 
outer membranes. Alternatively, apoptotic pro-
teins may be guided to the mitochondria by 
means of altering the outer membrane charge 
 [  87  ] . By increasing the CL content, the mito-
chondrial outer membrane may accrue a more 
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negative charge, which serves as a targeting signal 
for recruiting polycationic apoptotic proteins 
to the mitochondria  [  77,   85  ] . Consistent with 
this, ectopic overexpression of a CL-binding 
protein masked the negative charge on the mem-
brane and inhibited apoptosis  [  87  ] . The recruit-
ment to and oligomerization of Bak-Bax in the 
outer mitochondrial membrane is a CL depen-
dent process, which permeabilizes the outer 
mitochondria to trigger Cyt c release and pro-
gression of apoptosis  [  88,   89  ] . This suggests 
that CL-rich regions in the outer membrane serve 
as a key signal for targeting pro-apoptotic pro-
teins of the Bcl2 family to bring about apoptosis 
 [  78,   85  ] .  

    11.3.3   Translocation of CL 

 Early in apoptosis, CL translocation from the 
inner to the outer mitochondrial membrane may 
be carried out through several transport modes. 
First, the inner and outer membrane contact 

sites, which are enriched in CL through inter-
actions with mitochondrial creatine kinase 
(MtCK), could facilitate the transfer of CL from 
the inner to outer membrane  [  90–  95  ] . Second, 
phospholipid scramblase-3 (PLS-3) has been 
shown to translocate CL from the inner mem-
brane to the outer membrane during the onset of 
apoptosis  [  96–  98  ] . Consistent with this, cells 
overexpressing PLS-3 exhibit increased apopto-
sis, while inactivation of PLS-3 leads to increased 
resistance to UV-induced apoptosis  [  97  ] . CL and 
Bid interactions have been shown at the contact 
sites, which likely contribute to mitochondrial 
permeabilization to induce apoptosis  [  99  ] . 
Changes in CL content in the membrane may be 
mediated by Bid, as evidence suggests that Bid 
exhibits lipid transfer activity  [  100,   101  ] . 
Lymphoblastoid cells derived from BTHS and 
 TAZ  knockdown HeLa cells were more resistant 
to Fas-induced apoptosis  [  72  ] . Speci fi cally, reduc-
tion of mature CL caused defective activation 
of caspase-8, suggesting that processing of 
caspase-8 on the mitochondrial membranes is 

  Fig. 11.2     Perturbation of CL metabolism triggers 
apoptosis.  The binding of cytochrome c (Cyt c) to CL is 
essential to anchor it to the inner mitochondrial mem-
brane, facing the intermembrane space  [  69,   70  ] . 
Peroxidation of CL (CL-OOH) by reactive oxygen spe-
cies (ROS) leads to release of Cyt c to the cytosol, which 

serves as a signal to initiate apoptosis  [  71–  73  ] . Caspase-8 
cleaves Bid protein to its active form, truncated Bid (t-Bid) 
 [  74–  76  ] . Binding of t-Bid to CL enhances translocation of 
CL to the outer mitochondrial membrane, which facili-
tates targeting of apoptotic proteins (Bak and Bax) to the 
outer membrane  [  77,   78  ]        
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CL-dependent. To summarize, CL in the mitochon-
dria is an important mediator of apoptosis, and 
apoptotic proteins are directed to the mitochondria 
in a CL-dependent manner.   

    11.4   CL in Bioenergetics and 
Mitochondrial Dysfunction 

 The relationship between CL and ROS is com-
plex. CL physically interacts with proteins of 
the mitochondrial respiratory chain complexes 
and other components of the membrane and 
forms lipid scaffolds for tethering and stabiliz-
ing mitochondrial membrane proteins to 
enhance their enzymatic activities  [  7,   8,   102–
  105  ] . Consistent with the role of CL in bioener-
getics, mitochondria de fi cient in CL exhibit 
decreased activity of respiratory complexes and 
carrier proteins  [  106  ] . The generation of ROS 
in mitochondria, which is a byproduct of oxida-
tive phosphorylation  [  107–  109  ] , is enhanced 
upon CL de fi ciency  [  20  ] . ROS, in turn, dam-
ages CL by peroxidation of the unsaturated 
fatty acids. 

    11.4.1   CL and Supercomplexes 

 For ef fi cient substrate channeling between the 
individual complexes, the mitochondrial respi-
ratory chain components are organized in supra-
molecular structures called supercomplexes 
 [  110  ] . In mammalian cells, complex I is associ-
ated with two units of complex III and multiple 
units of complex IV. In  S. cerevisiae , which 
lacks complex I, two copies of complex III are 
bound to either one or two units of complex IV. 
CL de fi ciency in yeast leads to destabilization 
of the respiratory supercomplexes, indicating 
that CL functions to stabilize these complexes 
 [  10,   111,   112  ] . Similarly, tafazzin de fi cient 
human  fi broblasts exhibit destabilization of the 
supercomplexes  [  113  ] . For ef fi cient ADP/ATP 
exchange, CL is also required for the association 
of the ADP/ATP carrier protein with the super-
complexes  [  114  ] .  

    11.4.2   CL De fi ciency and ROS 
Generation 

 The role of CL in the supercomplexes may be 
that of a proton trap, to avoid leakage of protons 
and enhance the membrane potential for ef fi cient 
oxidative phosphorylation  [  115–  117  ] . Not sur-
prisingly, defective supercomplex formation and 
CL de fi ciency lead to increased ROS production 
 [  20,   118  ] . 

 Among the respiratory chain complexes, 
complexes I and III are prime sites for ROS gen-
eration  [  119–  122  ] . Because of the proximity of 
CL to these ROS generating centers, the unsatu-
rated fatty acyl chains of CL are susceptible to 
damage by peroxidation. Superoxide generated 
by respiratory complex III causes peroxidation 
of CL and alters the activity of Cyt c oxidase 
 [  123–  125  ] . Optimal function of Cyt c oxidase, 
the terminal enzyme complex of the respiratory 
chain, is dependent on CL  [  6,   126–  128  ] . Reduced 
activity of Cyt c oxidase from reperfused heart 
was restored speci fi cally by exogenous supple-
mentation of CL, but not by peroxidized CL or 
other phospholipids  [  129  ] . In addition, reduced 
activity and increased ROS generation by com-
plexes I and III were also rescued by CL supple-
mentation  [  125,   130  ] . These studies indicate that 
peroxidized CL cannot effectively carry out 
mitochondrial functions that are dependent on 
normal CL. 

 Peroxidation of CL by ROS is seen as the 
primary cause of CL mobilization to the outer 
lea fl et of the inner membrane. Human leukemia 
cells treated with the apoptosis-inducing drug 
staurosporine rapidly underwent apoptosis along 
with an increase in CL content in the outer mito-
chondrial membrane  [  83  ] . However, the change 
in CL content was preceded by increased ROS 
production and CL peroxidation, suggesting that 
perturbation of CL metabolism could be an early 
step in mitochondria-induced apoptosis. Due to 
the high content of unsaturated fatty acyl chains, 
CL is particularly susceptible to peroxidation 
 [  131,   132  ] . Peroxidation of CL alters the molecular 
conformation leading to formation of non-bilayer 
hexagonal structures, which could serve as a 
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marker for targeting the cytosolic apoptotic 
machinery to the mitochondria  [  77  ] .  

    11.4.3   CL in Mitochondrial 
Dysfunction and Aging 

 Under normal physiological conditions, the dam-
aged fatty acyl chains of CL may be replaced 
through the remodeling process  [  45  ] . Pathological 
remodeling of CL has been linked to mitochondrial 
dysfunction in human diseases  [  17,   18,   61,   67  ] . 
Recent studies have shown that ALCAT1 may be 
involved in the pathological remodeling of CL in 
cells undergoing oxidative stress. As mentioned 
earlier,  ALCAT1  overexpression leads to a 
decrease in CL levels and aberrant remodeling of 
CL with long chain polyunsaturated acyl chains 
such as DHA, which are highly susceptible to 
oxidation by ROS  [  17,   52,   53  ] . The close proxim-
ity of CL to respiratory complexes in the inner 
membrane where ROS is generated increases 
exposure of these long chain unsaturated fatty 
acyl chains to ROS. Aberrant CL remodeling 
resulting from increased  ALCAT1  expression 
leads to the mitochondrial dysfunction seen in 
pathological conditions such as hyperthyroid car-
diomyopathy, diabetes, and diet-induced obesity 
in mice  [  15–  17,   133  ] . ALCAT1 null mice exhibit 
increased expression of MLCAT1 along with 
elevated levels of CL containing linoleic acid. 
These  fi ndings underscore the signi fi cance of CL 
remodeling and the impact of this process on 
mitochondrial function and ROS generation. 

 A decline in CL levels appears to be a primary 
feature of aging  [  134–  139  ] . In aging cells, CL is 
pathologically remodeled with polyunsaturated 
fatty acyl chains such as arachidonic and docosa-
hexaenoic acids, which are more susceptible to 
peroxidation than linoleic acid in normal CL 
 [  18,   54  ] . Mitochondrial CL levels, along with 
oxidative capacity and ATP synthesis, decrease 
signi fi cantly with age  [  134,   140–  143  ] . 

 CL is required for the optimal function of 
several mitochondrial carrier proteins involved 
in the transport of essential metabolites into 
mitochondria  [  106  ] . In the heart, oxidation of 
pyruvate and  b -oxidation of fatty acids are 

two major sources of ATP generation  [  144–  146  ] . 
The transport of pyruvate into mitochondria by 
the pyruvate carrier and the exchange of carni-
tine esters by the carnitine:acylcarnitine translo-
case are, therefore, critical for energy metabolism. 
Studies have demonstrated that enzymatic activi-
ties of both the mitochondrial pyruvate carrier 
and carnitine:acylcarnitine translocase, which 
are dependent on CL  [  147,   148  ] , are decreased 
in aging heart muscle  [  149,   150  ] . Interestingly, 
administration of acetyl-L-carnitine in aged 
rats restored decreased CL levels and the 
activities of the mitochondrial pyruvate carrier 
and carnitine:acylcarnitine translocase to levels 
found in young rats  [  149,   150  ] . Dietary supple-
mentation of acetyl-L-carnitine also showed simi-
lar bene fi cial effects, increasing mitochondria 
membrane potential and, in turn, improving 
physical mobility in aged rats  [  141,   151  ] . These 
 fi ndings suggest that the supply of carnitine to 
the mitochondria may become limited during 
aging, hindering energy production through 
 b -oxidation  [  150,   152  ] . Although acetyl-L-carni-
tine supplementation restored CL levels and 
improved mitochondrial metabolic functions 
in aged animals, the underlying molecular 
mechanism remains unresolved.   

    11.5   CL and the PKC-Slt2 Cell 
Integrity Pathway 

 Null mutants in yeast have been characterized for 
each step of the CL biosynthetic pathway, and 
mutants blocked earlier in the pathway have 
more severe phenotypes. Thus, the  pgs1  D  mutant, 
which cannot synthesize CL or the precursor PG 
(Fig.  11.1 ), exhibits severe growth defects not 
only in non-fermentable carbon sources, which 
are metabolized by respiration, but also in fer-
mentable carbon sources, in which respiration is 
not required  [  25,   153  ] . This observation indicated 
that PG and/or CL are required for cellular func-
tions apart from mitochondrial bioenergetics 
 [  154  ] . Genetic studies to isolate spontaneous 
suppressors of the  pgs1  D  mutant growth defect 
identi fi ed a loss of function mutation of  KRE5 , 
a gene involved in cell wall biogenesis  [  21  ] . 
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Consistent with defective cell wall biogenesis, 
the  pgs1  D  mutant exhibited enlarged cell size 
characteristic of cell wall mutants, reduced levels 
of  b -1,3-glucan as a result of decreased activity 
of glucan synthase, and sensitivity to cell wall 
perturbing agents  [  155–  157  ] . These defects were 
restored by disruption of  KRE5  in  pgs1  D , which 
increased expression of the genes  FKS1  and 
 FKS2  encoding glucan synthase  [  22  ] . These 
 fi ndings were in agreement with the identi fi cation 
of  PGS1  in a screen to identify genes involved in 
cell wall biogenesis  [  158  ] . 

 Studies to gain insight into the mechanism 
linking CL to the cell wall focused on the PKC-
Slt2 cell integrity pathway. Activation of the cell 
integrity pathway is triggered by signals gener-
ated from cell wall sensor proteins to Rom2, 
which, in turn, activates formation of the GTP-
bound form of Rho1p. The activated Rho1 protein 
transmits a signal to Pkc1 to trigger the Mpk1/
Slt2 MAPK signaling cascade, which results in 
dual phosphorylation of Slt2  [  159,   160  ] . The 
dual phosphorylation of Slt2 is essential to acti-
vate transcription factors that up-regulate genes 
involved in cell wall remodeling, particularly in 
response to heat stress  [  156,   161,   162  ] . The  pgs1  D  
mutant exhibited defective activation of the PKC-
Slt2 cell-integrity signaling cascade, indicated by 
decreased Slt2 phosphorylation levels  [  22  ] . 
Consistent with this, overexpression of individual 
genes in the PKC-Slt2 pathway rescued the 
growth defect of  pgs1  D  at elevated temperature 
and improved resistance to the cell wall per-
turbing chemicals calco fl uor white and caffeine. 
Interestingly, deletion of  KRE5  in  pgs1  D  also 
led to increased activation of the PKC-Slt2 cell-
integrity pathway. 

 A mitochondrial connection to the cell wall is 
not new. Genome-wide screens have identi fi ed 
several yeast genes required for mitochondrial 
function that, when mutated, affect chemical 
components of the cell wall  [  158,   163,   164  ] . 
Furthermore, mitochondrial respiratory defects 
negatively impact the synthesis of cell wall com-
ponents  [  158,   164  ] . The underlying mechanism 
whereby CL regulates cell wall remodeling is not 
known. One possibility is that CL is required for 
activity of one or more proteins that exhibit dual 

localization in the cell wall/plasma membrane 
and mitochondria  [  165  ] . Interesting possibilities 
include three proteins of the PKC-Slt2 cell integ-
rity pathway, Fks1, Zeo1 and Rho1, which are 
found both in the mitochondria and the plasma 
membrane  [  166–  168  ] . Mitochondrial targeting of 
these proteins may be CL-dependent. Alternatively, 
their stability in the mitochondrial membrane 
may be decreased in the absence of CL. 

 The yeast cell wall also plays an important 
role in regulating replicative life span  [  169  ] . 
Consistent with this, the  pgs1  D  mutant, which 
exhibits cell wall defects, also has a decreased 
replicative life span  [  21,   23  ] . Intriguingly, experi-
ments to elucidate the mechanism linking PG/
CL to defects in the cell wall, PKC/Slt2 signaling 
and aging led to another signaling pathway – the 
HOG stress response pathway.  

    11.6   CL and the HOG Stress 
Response Pathway 

 In response to stress, cells are regulated by the 
opposing actions of the PKC-Slt2 and HOG signal-
ing pathways  [  170–  172  ] . Heat or low osmolarity 
stress leads to activation of the PKC-Slt2 
pathway, resulting in increased expression of the 
cell wall remodeling genes leading to a decrease 
in turgor pressure  [  173–  175  ] . In contrast, activa-
tion of the HOG signaling pathway causes an 
increase in turgor pressure  [  175,   176  ] . Because 
the  pgs1  D  mutant exhibited defective activation 
of the PKC-Slt2 signaling cascade, it was hypoth-
esized that growth defects of the mutant resulted 
from increased turgor pressure, which may be 
rescued by down-regulation of the HOG pathway 
(Fig.  11.3 )  [  23  ] . This hypothesis was supported 
by the  fi nding that deletion of  SHO1 , an upstream 
activator of HOG signaling, rescued growth defects, 
increased the replicative life span, and alleviated 
sensitivity to cell wall perturbing agents in  pgs1  D  
 [  23  ] . Interestingly, the mutant did not exhibit 
increased activation of the HOG pathway. It is 
possible that, in the absence of PKC-Slt2 activa-
tion, even wild type levels of HOG activation 
lead to turgor pressure levels that affect growth. 
These  fi ndings suggest that homeostasis achieved 
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by these two signaling pathways is perturbed 
upon CL de fi ciency (Fig.  11.3 ).   

    11.7   CL Mediates Cross-Talk 
Between Mitochondria 
and Vacuole 

 The yeast  crd1  D  mutant, which lacks CL, was 
shown to have defective vacuolar function 
 [  24  ] . CL de fi ciency caused decreased V-ATPase 
activity and proton pumping, reduced vacuolar 
acidi fi cation, and enlargement of the vacuole. 
The yeast vacuole plays a crucial role in adjust-
ing to high external osmolarity and decreased 
turgor pressure, and in maintaining cytosolic 
ion concentrations  [  178,   179  ] . Consistent with 

perturbation of intracellular osmotic balance in 
the  crd1  D  mutant, growth and vacuolar defects 
were rescued by supplementation of sorbitol  [  24  ] . 

 In some genetic backgrounds, the  crd1  D  
mutant exhibits increased expression of  RTG2 , a 
critical sensor of mitochondrial dysfunction 
that relays metabolic defects to the nucleus via 
the retrograde signaling pathway  [  180,   181  ] . 
Consistent with overactivation of Rtg2, deletion 
of the  RTG2  gene restored vacuolar acidi fi cation 
and V-ATPase activity and rescued the growth 
defect of the  crd1  D  mutant at elevated tempera-
ture. However, deletion of the retrograde pathway 
activator  RTG3  did not rescue the mutant, 
suggesting that the defects observed in  crd1  D  
resulted from Rtg2 functions unrelated to retro-
grade activation. 

  Fig. 11.3     CL de fi ciency leads to perturbation of PKC-
Slt2 and HOG signaling pathways.  The PKC-Slt2 and 
HOG signaling pathways coordinately regulate cell wall 
biogenesis and intracellular turgor pressure, respectively 
 [  173,   175  ] . Under hypertonic or cold stress conditions, 
extracellular osmolarity is increased, causing an ef fl ux of 
intracellular water to reduce the turgor pressure on the cell 
wall. To counteract augmented extracellular osmolarity, 
the HOG pathway is activated, which leads to an increase 
in intracellular turgor pressure  [  170,   177  ] . In contrast, 
under heat or hypotonic stress, extracellular osmolarity 

is decreased, which causes an in fl ux of water inside the 
cell to increase intracellular turgor pressure. To counteract 
the increased turgor pressure, the activated PKC-Slt2 
pathway induces cell wall synthesis  [  172,   173  ] . We 
hypothesize that disruption of the CL pathway by muta-
tion of  PGS1  generates a signal that is detected by regula-
tors or components of the PKC-Slt2 pathway, which, in 
turn, down-regulates the pathway  [  21,   22  ] . Under these 
conditions, an increase in intracellular turgor pressure 
by activation of the HOG pathway is deleterious in  pgs1  D  
cells  [  23  ]        
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 One possible explanation for the vacuolar 
defects in  crd1  D  is that the loss of CL leads to 
intracellular osmotic imbalance, as suggested by 
the enlarged cell size of the mutant (Fig.  11.4 ). 
Consistent with this, deletion of the  NHX1  gene 
(but not any of the other vacuole ion transporters) 
in  crd1  D  restored vacuolar morphology to wild 
type levels  [  24  ] . Nhx1 is the Na + /H +  exchanger 
located in late endosomal/prevacuolar membranes, 
and is involved in the export of protons in exchange 
for cytosolic Na +  or K +   [  182,   183  ] .  

 Another possibility is that CL may regulate 
vacuolar function by directly activating the 
V-ATPase (Fig.  11.4 ). While CL is predominantly 
found in the mitochondrial membranes, signi fi cant 

amounts are also detected in the vacuolar 
membrane, and the levels vary depending on the 
carbon source of the growth media  [  184  ] . How 
does CL, which is synthesized in the mito-
chondria, get to the vacuole? The most likely 
mechanism is via selective degradation of the 
mitochondria by the autophagic process known 
as mitophagy, which is strongly induced in yeast 
by nutrient starvation and during the stationary 
growth phase  [  185–  190  ] . CL that has integrated 
into the vacuolar membrane as a result of mitophagy 
may directly activate the V-ATPase and/or stabilize 
the protein. This possibility is highly speculative 
at this stage, as such interactions have not yet 
been reported. 

  Fig. 11.4     Proposed models to explain the role of CL 
in vacuolar function.  It is likely that CL is transported 
to the vacuole through mitophagy, the selective degrada-
tion of mitochondria via the autophagosome, which 
delivers its cargo to the vacuole. ( a ) Under normal 
physiological conditions, CL may provide stability to the 

V-ATPase, which is essential to maintain its activity 
 [  24  ] . ( b ) CL de fi ciency may lead to perturbation of 
mitophagy, which results in decreased delivery of CL to 
the vacuole and, subsequently, to destabilization of the 
V-ATPase, decreased ATPase activity, and enlargement of 
the vacuole       
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 Cross-talk between mitochondria and vacuole 
is further supported by a recent  fi nding, which 
showed that the vacuolar pH is a determinant of 
mitochondrial function and aging in yeast cells 
 [  191  ] . Aging yeast cells exhibit a decline in vacu-
olar acidity, which causes mitochondrial dysfunc-
tion and a decrease in replicative life-span  [  191  ] . 
Consistent with this, enhancing vacuolar acidity 
by overexpressing  VMA1  or  VPH2 , which encode 
proteins that regulate V-ATPase activity, sup-
pressed mitochondrial dysfunction. The mecha-
nisms underlying the interplay between vacuole 
and mitochondria, and the role of CL in this 
process, remain to be elucidated.  

    11.8   Unanswered Questions 
and Future Directions 

 The studies discussed here show that changes in 
the levels and species of CL affect not only mito-
chondrial function but also signaling pathways 
and other organelles. Elucidating the mechanisms 
whereby CL mediates these activities remains an 
exciting area for future investigation. In this 
regard, we pose the following questions. 

 During apoptosis, the CL content of the outer 
mitochondrial membrane increases  [  83,   87  ] . How 
is CL transferred from its site of synthesis in 
the inner mitochondrial membrane to the outer 
membrane? 

 Peroxidation of CL has been shown to be a 
major mechanism of free radical toxicity resulting 
from ischemia-reperfusion injury to cardiac myo-
cytes  [  129,   192–  194  ] . The degree of peroxidation 
is dependent upon the acyl composition of the 
lipid. What regulates the fatty acyl chain compo-
sition of CL? Is this regulation age dependent? 

 What is the mechanism whereby CL regulates 
vacuolar function and V-ATPase activity? Intere-
stingly, enlargement of the lysosome (mamma-
lian equivalent of the vacuole) was also observed 
in the mouse model of BTHS, suggesting that 
the role of CL in vacuole/lysosome function is 
highly conserved  [  195  ] . Are the vacuole/lyso-
some defects due to CL de fi ciency? Alternatively, 
are the defects an indirect consequence of pertur-
bation of mitophagy? 

 How does CL regulate the PKC-Slt2 and HOG 
signaling pathways? The mammalian homolog of 
HOG1, p38, is also a signal relay protein that 
responds to osmotic stress. p38 is involved in the 
cardiac expression of proin fl ammatory cytokines 
and in the development of cardiac dysfunction 
relative to the in fl ammatory response  [  196  ] . A role 
for p38 in cardiomyopathy is suggested by the 
 fi nding that depletion of p38 a  alleviates cardio-
myopathy induced by overexpression of the 
 a -adrenergic receptor  [  197  ] . However, the link 
between CL and p38 is speculative, as the effects 
of CL de fi ciency on mammalian p38 have not 
been studied. In addition to p38, members of 
the PKC family are also involved in maintaining 
cardiac structure and function  [  198,   199  ] . A recent 
study showed that PKC q  is expressed at signi fi cant 
levels in neonatal mouse ventricular myocytes 
and is speci fi cally activated during stress  [  200  ] . 
Furthermore, PKC q  de fi ciency leads to dilation 
of heart muscle cells and decreased viability. 
Similarly, PKC e  migrates to the mitochondria 
and plays a cardio-protective role in injuries 
arising from ischemia and reperfusion  [  201–  203  ] . 
However, it should be noted that expression 
of only a few PKC isoforms exhibit bene fi cial 
effects in cardiac injury  [  204–  206  ] . It would be 
interesting to determine if CL is involved in the 
modulation of PKC function in heart muscle. 

 Answering these questions will have impor-
tant implications for understanding the pathophys-
iology of BTHS and other disorders in which CL 
de fi ciency plays a role. Although BTHS is a 
monogenic disorder, the clinical presentation is 
highly variable, even among patients with the same 
mutation, ranging from death in the newborn 
period to asymptomatic. This suggests that physi-
ological modi fi ers may contribute to the clinical 
symptoms observed in BTHS patients. It is likely 
that additional de fi ciencies in cellular functions 
that require CL may exacerbate the symptoms of 
tafazzin de fi ciency in BTHS. 

 In conclusion, our understanding of the role 
of CL in essential cell functions and signaling 
networks has increased dramatically in recent 
years. However, it is probably safe to assume 
that we have only scratched the surface of this 
expanding  fi eld.      
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