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    10.1   Phosphatidylserine 
Biosynthesis, Degradation 
and Cellular Distribution 

 Phosphatidylserine (PS) is a glycerophospholipid 
present in cellular membranes of all eukaryotic 
cells. Like other phospholipids, PS has a polar 

phosphate on  sn -3 of the glycerol backbone; a 
serine attached to the phosphate gives PS its 
distinctive head-group, which has a net negative 
charge under physiological conditions (Fig.  10.1a ). 
This is in contrast to the most abundant lipids 
phosphatidylcholine (PC) and phosphatidyletha-
nolamine (PE), which have a zwitterionic head 
group and therefore bear no net charge. When PS 
is present in large amounts, the net negativity of 
its head group can confer signi fi cant electrostatic 
charge to membranes, which can have important 
implications on the recruitment of soluble cations 
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  Abstract 

 Phosphatidylserine (PS), a phospholipid with a negatively charged head 
group, is an important constituent of eukaryotic membranes. Rather than 
being a passive component of cellular membranes, PS plays an important 
role in a number of signaling pathways. Signaling is mediated by proteins 
that are recruited and/or activated by PS in one of two ways: via domains that 
stereospeci fi cally recognize the head group, or by electrostatic interactions 
with membranes that are rich in PS and therefore display negative surface 
charge. Such interactions are key to both intracellular and extracellular 
signaling cascades. PS, exposed extracellularly, is instrumental in trigger-
ing blood clotting and also serves as an “eat me” signal for the clearance of 
apoptotic cells. Inside the cell, a number of pathways depend of PS; these 
include kinases, small GTPases and fusogenic proteins. This review will 
discuss the generation and distribution of PS, current methods of phospho-
lipid visualization within live cells, as well as the current understanding of 
the role of PS in both extracellular and intracellular signaling events.  
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and proteins; such recruitment, in turn, can have 
important signaling implications, as discussed 
below.  

 Both the  sn -1 and  sn -2 positions of PS, as with 
the majority of glycerophospholipids, have fatty 
acyl chains attached. A large variety of acyl chains 
are known to exist on PS, with the  sn -1 position 
tending to have saturated chains of 16 carbons or 
longer, and the  sn -2 position generally having 
unsaturated chains of 18 carbons or longer  [  84  ] . 
Interestingly, however, PS tends to display the 
greatest acyl chain composition diversity between 
tissues, with brain PS being especially enriched 
in long, poly-unsaturated fatty acyl chains, espe-
cially docosahexaenoic acid (22:6n-3); this has 
been speculated to have implications in neuronal 
development and function  [  60,   75,   161  ] . 

 In mammalian cells, PS synthesis can occur 
via two pathways, using either PC or PE as a 
precursor (Fig.  10.1b ). The enzyme PS synthase 

1 (PSS1) exchanges the choline on PC for a serine, 
while the enzyme PSS2 can exchange the 
ethanolamine on PE for serine. These two syn-
thesis pathways are at least partially redundant, 
as mice without either PSS1 or PSS2 are viable, 
though double-knockout of both synthases is lethal 
 [  8,   16  ] , indicating that PS is an essential phospho-
lipid in mammals. In yeast cells, a single PSS 
enzyme exists, encoded by  CHO1 , which converts 
phosphatidic acid (PA) to PS via cytidine diphos-
phate-diacylglycerol (CDP-DAG) (Fig.  10.1b ). 
In contrast to mammals, yeast mutants without 
PSS expression – and thus no PS – are able to 
survive, albeit rather precariously, in medium 
supplemented with ethanolamine  [  112  ] . 

 Degradation of PS occurs mainly by decar-
boxylation of the PS head group to produce PE, a 
reaction mediated by the enzyme PS decarboxylase 
(PSD). There is one PSD in mammals, encoded 
by the  Psd  gene, and two in yeast, psd1p and 

a

b

  Fig. 10.1     Phosphatidylserine and its production and 
degradation pathways.  ( a ) Diagram of the structure of 
PS, with one saturated and one unsaturated fatty acyl 
chains. Note that at physiological pH the head group bears 
one net negative charge. ( b ) Diagram showing pathways 
of production of PS in both mammalian and yeast cells. 
In mammalian cells PS can be produced from either 

phosphatidylcholine (PC) or phosphatidylethanolamine 
(PE) by PS synthase (PSS) 1 or 2, respectively, while in 
yeast phosphatidic acid (PA) is the only precursor that can 
be converted to PS, via CDP-diacylglycerol (CDP-DG). 
In both cases, PS is converted to PE by PS decarboxylases 
(PSDs)       
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psd2p, encoded by the  PSD1  and  PSD2  genes, 
respectively (Fig.  10.1b )  [  84,   161  ] . Mammalian 
PSD and yeast Psd1p are found on the outer 
lea fl et of the inner mitochondrial membrane 
 [  161  ] , leading to production of a unique pool 
of PE from PS within the mitochondria. This 
mitochondrial production of PE is unable to be 
fully complemented by the CDP-ethanolamine 
pathway, as  Psd  −/−  mice do not survive beyond 
embryonic day 9  [  145  ] . Additio-nally, in mice 
missing three of four PSS alleles, where the 
catalytic levels of PSS are reduced to ~10 % of 
wild type mice and PS levels are consequently 
reduced, PE levels are concomitantly reduced  [  8  ] . 
Thus, PS is an important precursor for the pro-
duction of mitochondrial PE, which is in turn 
important for the functioning of mitochondria. 
Finally, though a minor contributor to overall 
degradation, some phospholipases are addition-
ally capable of degrading PS with some of the 
resulting products, especially lyso-PS, having 
important signaling effects  [  7,   65  ] ; these will be 
discussed later in greater detail. 

 The intracellular (organellar) distribution of PS 
is not homogeneous, with the majority of the 
PS of the cell being on the plasma membrane 
(PM) (Table  10.1 ). The endoplasmic reticulum 
(ER) is the main site for lipid synthesis, and in 
mammals both PSS1 and PSS2 are localized and 
active in specialized areas of the ER, which are 
known as mitochondria-associated membranes 
due to their close relationship and tendency to be 
isolated with mitochondria  [  163  ] . Despite being 
produced at the ER, PS is not particularly abundant 
in this compartment (Table  10.1 ), suggesting 
that selective transport or removal of PS must 
occur. One means of removal of PS from the ER 
is by transport to the mitochondria where, as 

mentioned above, PS can be converted to PE. 
Transport from the ER to mitochondria appears 
to occur at the mitochondria-associated mem-
branes. At this specialized junction PS delivery 
occurs by direct inter-membrane movement, 
possibly assisted by soluble or membrane-bound 
carrier proteins; vesicular-mediated transport is 
not involved  [  114,   140,   160,   162  ] . The other main 
method of PS removal from the ER is via antero-
grade vesicular transport to the Golgi apparatus, 
likely occurring via bulk  fl ow, although speci fi c 
transport mechanisms cannot be ruled out  [  84,   160  ] . 
How high PS levels are maintained at the PM 
without being returned to the Golgi apparatus via 
retrograde traf fi c, is not entirely clear.  

 Another important aspect of PS is its tendency 
to be asymmetrically distributed between lea fl ets 
of membranes. This is especially evident at the 
plasmalemma, where virtually all the PS is on 
the inner (cytoplasmic facing) lea fl et in healthy 
cells, with none detectable on the outer lea fl et. 
This asymmetry of PS at the surface membrane 
substantially increases the mole percentage of PS 
in the inner lea fl et to 25–30 % of the total lipid. By 
contrast, the transmembrane distribution of PS in 
other organelles remains poorly de fi ned; according 
to some reports the ER has little, if any, PS remain-
ing on the outer (cytoplasmic-facing) lea fl et, with 
the majority of detectable PS being on the inner 
(lumen-facing) monolayer  [  22,   42,   61,   74  ] . 

 The distribution of PS across membrane lea fl ets 
is maintained by various  fl ippases,  fl oppases and 
scramblases. Flippase is a general name for lipid 
translocases that move lipid toward the cytoplas-
mic-facing lea fl et of a bilayer. ATP-dependent 
 fl ippases with selectivity for PS are known to 
function at the PM; these translocases belong 
to the family of P 

4
 -ATPases  [  34,   135,   154  ] . Five 

   Table 10.1    Phospholipid content of organellar membranes   

 Membrane  PC  PE  PI  PS  References 

 Endoplasmic reticulum  55 a   30  15  3–5   [  84,   160  ]  
 Golgi complex  50  15  10  5 
 Early endosome  47  23  8  8.5 
 Late endosome  48  18.5–20  4–7  2.5–3.9 
 Mitochondria  40–45  30–35  5–10  1 
 Plasma membrane  42  25  3  12 

   a Numbers indicate percentage of total lipid present in mammalian cells  
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different P 
4
 -type ATPases have been identi fi ed in 

yeast (DRS2, DNF1, DNF2, DNF3 and NEO1), 
and over a dozen have been deduced by sequence 
homology in humans; a number of these have 
been shown experimentally to have PS  fl ippase 
activity  [  34,   51,   119,   134  ] . A number of the yeast 
proteins are located on intracellular membranes 
and their deletion has implications in membrane 
traf fi c  [  31,   66  ] . This implies that PS asymmetry 
occurs, and is important for, the function of intra-
cellular organelles. 

 Floppases function to transport lipids away 
from the cytoplasm to the luminal-facing lea fl et 
of organelles, or the topological equivalent of the 
PM, the extracellular-facing lea fl et. Most belong 
to the ATP-binding cassette (ABC) superfamily 
but to date, only limited evidence exists for the 
ability of these proteins to move PS across 
membranes  [  34  ] . Scramblases, by contrast, are 
ATP-independent, bidirectional and function to 
randomize lipids across membranes  [  128  ] . 
Scramblases are important in the exposure of PS 
on the cell surface during apoptosis, discussed in 
more detail later. 

 The abundance of PS in the PM, together with 
its asymmetric distribution between lea fl ets and 
its negative charge, have important electrostatic 
implications. Soluble cations, polycations and 
proteins with cationic clusters can all be concen-
trated in the immediate vicinity of membranes, 
where they can in fl uence biochemical and sig-
naling events. Thus, the unique subcellular and 
transmembrane distribution of PS confers onto 
this lipid a special signaling connotation. 

 The importance of PS in cellular signaling and 
survival is highlighted by examination of cells 
lacking PS. Yeast cells lacking the PSS gene 
( cho1 D  ) survive, but grow very poorly and have 
elevated phosphatidylinositol levels  [  9  ] , possibly 
a compensatory attempt to increase levels of alter-
native negatively charged lipids.  Cho1 D   cells do 
have normal  fl uid phase uptake,  a -factor matura-
tion, CPY traf fi cking and septin ring maturation 
 [  41,   109  ] , but polarization of the yeast PM and 
recruitment of CDC42 are greatly inhibited, 
preventing proper formation of buds and mating 
projections  [  41  ] . The role of PS is even more pro-
minent in higher organisms. In contrast to yeast, 

mammalian cells completely lacking both PSS 
genes are not viable  [  8  ] , and cell lines that have 
greatly reduced PSS functionality are only viable 
when PS is added exogenously  [  129  ] . Although 
mice with only one of three PSS alleles remain-
ing are viable (despite some tissues only having 
10 % of wild type PS levels  [  8  ] ), PS is clearly an 
important lipid for proper survival and growth 
and participates in many signaling cascades, as 
discussed below.  

    10.2   Detection 
of Phosphatidylserine 

 In order to determine the involvement of PS in 
signaling cascades, it is  fi rst necessary to determine 
the presence and localization of PS. Traditional 
methods of PS detection were biochemical in 
nature, such as the covalent reaction of its head 
group with amino-reactive chemicals such as 
2,4,6-trinitrobenzenesulfonate, followed by extrac-
tion and thin layer chromatography or mass 
spectrometry. Such methods were successfully 
used to determine that PS resides exclusively on 
the cytoplasmic lea fl et of the PM in healthy 
mammalian cells  [  92,   132  ] , as well as to establish 
the sidedness of PS in a limited number of organ-
elles  [  143,   158  ] . However, the usefulness of such 
probes is limited as they are generally slow to 
react, also label PE, and their use can compromise 
cellular viability  [  23  ] . 

 Fluorescent analogues have also been success-
fully used to study the properties of PS within the 
cellular environment. Fluorescent PS analogues 
generally have a  fl uorescent moiety attached to a 
shortened  sn-2  acyl chain, where it is presumed 
to interfere minimally with the unique head group. 
The most commonly used  fl uorophore has been 
7-nitro-2-1,3-benzoxadiazol-4-yl (NBD). Indeed, 
NBD-PS has been useful in measuring the activity 
of proteins involved in PS  fl ipping  [  35,   93,   121  ] . 
However, NBD has a strong dipole moment which 
forces the attached acyl chain to loop towards the 
aqueous interface and distorts the PS-like mole-
cule  [  29,   30,   104  ] , reducing its hydrophobicity 
and allowing it to be removed easily from the 
membrane  [  74,   93  ] . More recently, a second 
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 fl uorescent PS analogue, TopFluor-PS, based on 
a BODIPY-derivative (1-palmitoyl-2-(dipyrrome-
theneboron di fl uoride) undecanoyl- sn -glycero-3-
phospho-L-serine) has been successfully used to 
examine PS dynamics in cellular membranes; 
this analogue is perceived to have fewer draw-
backs than NBD-PS  [  74  ]  (Fig.  10.2 ).  

 Speci fi c interactions of proteins with PS can 
also be used for detection of the phospholipid. 
There are two main means whereby proteins 
interact with PS. One of them is charge-based: 
a number of proteins that are prenylated or lipi-
dated have in addition a stretch of cationic amino 
acids that can interact electrostatically with PS; 
however, the interaction is non-selective and such 
polycationic probes interact also with other 
anionic phospholipids. A number of Ras and Rho-
family GTPases, as well as the tyrosine kinase 
Src have this property  [  43,   56,   141  ] . While these 
proteins do not interact with PS speci fi cally, they 
do partition preferentially to PS-enriched mem-
branes, which have a net negative surface charge 
 [  56,   141  ] . While these types of interactions can 
have important signaling consequences, they are 
not generally useful for speci fi c detection of PS. 

 The second type of protein-PS interaction 
involves protein domains that recognize PS in a 

more speci fi c manner, often by a stereospeci fi c 
PS head group interaction domain. These include 
the calcium-dependent C2 domain of proteins 
such as annexin V, protein kinase C (PKC)  a  and 
PKC b , the calcium-independent C2 discoidin-
like domain of proteins such as lactadherin (also 
known as MFG-E8), and the  g -carboxyglutamic 
acid (Gla) domain on prothrombin (Table  10.2 ). 
Many of these interactions also have important 
signaling consequences, which will be discussed 
below, but some of these domains, or the entire 
proteins that contain them, can be used as probes 
for the speci fi c detection of PS in cells. The best 
known example of this is annexin V, which has 
been used extensively to stain PS in apoptotic 
cells  [  80  ] . Annexin V works well for detecting PS 
that has appeared on the exofacial lea fl et of the 
plasmalemma; however, due to its requirement for 
comparatively high (mM) concentrations of 
calcium  [  5  ] , its usefulness for visualization of 
intracellular PS in live cells is limited. While the 
approach was reported  [  27  ] , effective binding 
required arti fi cial elevation of the cytosolic 
calcium concentration, which activates signaling 
cascades, degradative enzymes, etc. Furthermore, 
binding of annexin V to membranes is not strictly 
PS-dependent; it is instead sensitive to anionic 

  Fig. 10.2     Phosphatidylserine detection in cellular 
membranes of live cells.  Two examples of PS detection 
in live HeLa cells. Cells were either transfected with a 
genetically encoded GFP-LactC2 ( left ), or were loaded 
with TopFluor-PS analogue ( right ). Both methods of PS 

visualization show  fl uorescence at the plasma membrane 
and internal (endosomal) membranes. Both probes have 
been used successfully for the detection and examination 
of live cell dynamics of PS       
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lipids in general  [  98,   99  ] . Thus, while annexin V 
has been instrumental in furthering the under-
standing of PS exposure outside cells, its useful-
ness as an intracellular probe is questionable.  

 More recently, a new probe based on the 
discoidin-like C2 domain of the glycoprotein 
lactadherin has been developed  [  172  ] . Unlike 
conventional C2 domains, the discoidin-like C2 
domain of lactadherin binds PS speci fi cally in a 
calcium-independent manner (Table  10.2 )  [  3, 
  86  ] . When the lactadherin C2 domain is linked to 
green  fl uorescence protein (GFP), the resulting 
chimera (GFP-LactC2) is highly speci fi c for PS, 
has stereospeci fi city for the phospho-L-serine 
moiety over phospho-D-serine, has greater avidity 
for PS than does annexin V and, importantly, 
binds PS under intracellular physiological condi-
tions  [  138,   139,   172  ] . Therefore, this probe pro-
vides a new tool to examine PS-mediated signaling 
events that occur within the cell. When combined 
with additional probes like TopFluor-PS, GFP-
LactC2 can be used with minimal concern about 
possible effects on lipid scavenging by the probe 
itself  [  74  ] . Although much remains to be discov-
ered, the new probes have been successfully used 
in a number of recent studies examining PS dis-
tribution, dynamics and PS-mediated signaling 
events in the intracellular environment (Fig.  10.2 ) 
 [  12,   41,   42,   74,   106,   156,   172,   173  ] .  

    10.3   Phosphatidylserine-Mediated 
Extracellular Signaling Events 

 A great deal of attention has been paid to the 
appearance of PS on the cell surface. This re fl ects 
primarily the availability and convenience of 

annexin V for exofacial PS detection. A brief 
overview of what is currently known about extra-
cellular signaling mediated by PS follows. 

    10.3.1   Hemostasis 

 As mentioned above, in healthy, unstimulated 
cells PS is normally present on the cytoplasmic 
lea fl et of the cell, with virtually none on the exo-
facial lea fl et. Changing this resting distribution 
of PS has a strong potential for initiating signaling. 
This was  fi rst recognized in the case of platelet 
activation. When stimulated, platelets expose PS 
on their surface, thereby triggering the coagula-
tion cascade. The collagen receptor glycoprotein 
VI on platelets, which recognizes the underlying 
collagen upon breakage of a blood vessel, is a 
potent activator of platelets  [  17,   57,   58,   77,   177  ] . 
Platelet activation and PS exposure are also 
triggered by  fi brin-binding receptors such as 
glycoprotein Ib-V-IX (vWF receptor) and integrin 
 a  

IIb
  b  

3
   [  20,   124  ] . Engagement of the receptors by 

their cognate ligands triggers a cascade of tyrosine 
and serine protein phosphorylation, with resultant 
activation of phospholipase C g 2 and subsequent 
generation of inositol 1,4,5- tris phosphate. Inositol 
1,4,5- tris phosphate is required for the release of 
calcium from intracellular stores and their depletion, 
in turn, activates calcium entry from the extracel-
lular medium, amplifying the response  [  58  ] . While 
elevated calcium inhibits PS  fl ippase activity, this 
is not enough on its own to cause the observed 
rapid appearance of exofacial PS required for 
ef fi cient blood clotting to occur  [  85,   178  ] . Instead, 
the main effect of calcium is thought to be the 
activation of lipid scrambling. Scramblase activity 

   Table 10.2    Phosphatidylserine-binding domains   

 Class  Calcium dependency  Speci fi city  Examples  References 

 C2 domain 
(conventional) 

 Yes  Electrostatic, limited 
speci fi city for PS, but 
often nonspeci fi c 

 Annexin V   [  151  ]  

 PKC a    [  148  ]  

 PKC b  
 Discoidin-like C2 
domain 

 No  L-serine stereospeci fi c 
binding 

 Coagulation 
factors V and VIII 

  [  88  ]  

 Lactadherin   [  136  ]  

  g -Carboxyglutamic 
acid (Gla) 

 Yes  Speci fi c serine head group 
binding 

 Prothrombin   [  68  ]  
 Gas6 
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requires a sustained calcium elevation, and it can 
be inactivated simply by the removal of calcium 
 [  19,   167  ] . While the underlying molecular entity 
was elusive for many years, a bona  fi de calcium-
dependent scramblase, TMEM16F, was identi fi ed 
recently and is thought to be involved in the trans-
location of PS in platelets  [  85,   149  ] . 

 Once PS is exposed on the surface of the 
platelet, it functions as a scaffold for the coagu-
lation cascade to occur in the correct location, 
which is in the vicinity of the activated platelet. 
Factor VIII, a co-factor for the factor Xa com-
plex and factor V, a co-factor for the prothrom-
binase enzyme complex, both have discoidin-like 
C2 domains that speci fi cally bind exposed PS 
by interacting with its unique head group  [  49, 
  88,   122,   126,   159  ] . In addition, factors X, VII, 
IX and II (prothrombin) contain ‘Gla’ domains, 
rich in glutamic acid residues, which are  g -car-
boxylated in a vitamin K-dependent reaction 
 [  171  ] . These domains also interact with PS 
speci fi cally, but in a calcium-dependent manner 
 [  68  ] , and serve to bring these additional factors 
to the activated platelet. The importance of the 
scaffolding function of PS in bringing together 
the required clotting factors is highlighted by 
patients with Scott syndrome. In these patients, 
platelets fail to scramble PS in response to acti-
vation, at least in some cases due to the lack a 
functional TMEM16F scramblase; as a result 
these patients present with a bleeding disorder 
 [  28,   125,   149,   165  ] . Further, it has been shown 
that the Xa and prothrombinase enzyme com-
plexes depend indirectly on PS, as their enzy-
matic activity is completely lost or highly 
diminished by blocking the PS-binding capabil-
ity of factor V and VIII with either antibodies, 
blocking peptides, or by mutations in the 
PS-binding sites  [  50,   69,   76,   137  ] . 

 In addition to PS exposure on the surface of 
activated platelets, microvesicles formed by the 
evagination of the plasma membrane are released 
from platelets; these microvesicles also expose 
PS  [  33,   46  ] . The PS exposed on the surface of the 
microvesicles can also promote procoagulant 
activity, as highlighted by the fact that mice lack-
ing serum lactadherin (which binds and promotes 
the clearance of microvesicles) suffer from exces-
sive coagulation  [  37  ] . 

 Finally, exofacial PS on activated platelets can 
be bound speci fi cally in a calcium-dependent 
manner by the proteins Gas6 and protein S through 
their Gla domains  [  108  ] . When these proteins 
interact with their receptors – members of the TAM 
family (Tyro3, Axl and Mer) of tyrosine kinase 
receptors– under hemostatic conditions, they appear 
to stabilize thrombus formation by promoting 
platelet aggregation  [  6,   32  ] .  

    10.3.2   Apoptosis 

 Cells turn over constantly, undergoing death and 
replacement. Apoptosis is the programmed death 
that allows for the removal of cells without the 
release of potentially harmful intracellular enzymes 
and antigens, and therefore without causing an 
in fl ammatory response. PS exposure on the sur-
face of apoptotic cells is another highly studied 
area, as it is known to be the signal for the rapid 
uptake of cell corpses by phagocytes. Exposure 
of PS is therefore thought of as an ‘eat-me’ signal 
 [  40  ] . While the signaling cascades and cellular 
processes that result in a commitment to apopto-
sis are the subject of intense study and are quite 
well de fi ned  [  39,   105  ] , the determinants of PS 
exposure, other than a requirement for caspase 
activation, are not well known  [  94,   107  ] . In apop-
tosis, as during platelet activation, the movement 
of PS to the exofacial lea fl et likely involves the 
activation of scramblases. However, the time-
scale for PS scrambling is vastly different, with 
PS exposure occurring in platelets on the scale 
of minutes, while PS exposure on apoptotic 
cells develops over hours  [  24,   168,   169,   178  ] . 
Additionally, while calcium has been implicated 
in upstream apoptotic signaling  [  1,   21,   70,   73,   96  ] , 
whether calcium elevation is an absolute require-
ment for the scrambling of PS during apoptosis 
is not clearly de fi ned. While most studies show 
there is no requirement for in fl ux of extracellular 
calcium, the possible involvement of intracellular 
calcium storage sites is less clear  [  10,   13,   36,   53, 
  101,   102,   133,   168,   176  ] . What is evident, 
however, is that patients with Scott syndrome 
have normal apoptotic PS exposure despite having 
no calcium-induced PS exposure on activated 
platelets or lymphocytes  [  18,   125,   165,   168  ] ; this 
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suggests that a scramblase other than TMEM16F 
may be involved in exofacial exposure of PS 
during apoptosis. Possible candidates are the phos-
pholipid scramblases 1–4, or members of the 
ABC transporter family, though recent evidence 
suggests that these are not ef fi cient PS scrambla-
ses and that phospholipid scramblase proteins 
are in fact signaling proteins  [  19,   91,   128  ] . 

 Once exposed on the surface of apoptotic cells, 
PS is one of the most potent ‘eat me’ signals, 
directing phagocytic cells to internalize and degrade 
the apoptotic cell. There are a number of receptors 
on the phagocyte membrane that recognize exo-
facial PS on apoptotic cells (Table  10.3 ), either 
by directly interacting with the lipid or through 
an intermediate protein. Gas6, protein S and 
lactadherin are proteins identi fi ed as PS-binding 
proteins that can act as bridging molecules that 
allow receptors to engage and take up apoptotic 
cells  [  4,   54,   108  ] . In addition to their role in 
hemostasis described above, protein S and Gas6 
are important for phagocytic cells to recognize 
targets and signal through their TAM receptors. 
This applies not only to macrophages and dendritic 
cells, but also to Sertoli cells that clear the apop-
totic cells formed during spermatogenesis, and to 
retinal pigment epithelial cells that take up sections 
of photoreceptor cells that are shed daily  [  83  ] . 
Lactadherin is expressed by macrophages and 
immature dendritic cells and, when interacting 
with PS via its C2 domain as described earlier, 
it can simultaneously associate with  a  

v
  b  

3
  or  a  

v
  b  

5
  

integrins on phagocytic cells, thereby stimulating 
the engulfment of the apoptotic cell  [  54,   170  ] .  

 Apoptotic receptors that have been reported to 
bind directly to PS include stabilin-2, brain speci fi c 
angiogenesis inhibitor 1 (BAI1) and members of 
the T cell immunoglobulin mucin (TIM) family 

 [  79,   115,   117  ] . Stabilin-2 appears to interact with 
PS speci fi cally, in a calcium-dependent manner 
 [  118  ] , while BAI1 interacts with phosphatidylino-
sitol 4-phosphate, PA and the mitochondrial lipid 
cardiolipin as well as PS  [  115  ] . Both TIM-1 and −4 
bind PS in a calcium-independent manner, 
holding the head group of PS in a speci fi c metal 
ion-dependent pocket  [  130  ] . Finally, a portion of 
the exposed PS appears to be oxidized during the 
apoptotic process  [  155  ] , and CD36 has been 
shown to interact with oxidized lipids and with 
oxidized PS preferentially over other oxidized 
lipids, promoting the uptake of apoptotic bodies 
 [  52  ] . How all these receptors capable of PS 
binding interact and/or cooperate to allow for the 
recognition and uptake of apoptotic cells is still 
not clear, but PS is most certainly a signal from 
apoptotic cells that they need to be engulfed and 
eliminated  [  107,   123  ] . 

 There is evidence to suggest that lyso-PS, a 
deacylated form of PS having increased aqueous 
solubility  [  111  ] , may be involved  in vivo  in cellular 
signaling, especially in the context of the 
immune system  [  45,   90  ] . Lyso-PS was shown by 
mass spectrometry to be present in the serum of 
lipopo-lysaccharide-treated mice and in perito-
neal lavages of casein- or zymosan-treated ani-
mals  [  44  ] . Because there is no known pathway for 
its  de novo  synthesis, lyso-PS is thought to be 
produced only by a deacylation reaction catalyzed 
by phospholipase A (PLA) enzymes. A secreted 
isoform that is PS-speci fi c (PS-PLA 

1
 ), is massively 

upregulated by various in fl ammatory stimuli  [  65, 
  90  ]  and was shown to be released from activated 
platelets  [  131  ] . When treated with lyso-PS, mast 
cells undergo enhanced degranulation  [  95,   142  ] , 
T-cell growth is inhibited  [  15  ]  and macrophage 
uptake of activated or apoptotic neutrophils is 

   Table 10.3    Receptors recognizing phosphatidylserine on apoptotic cells   

 Phagocytic receptor  Direct PS recognition?  Accessory ligand  References 

 TIM-1, TIM-4  Yes  –   [  79  ]  
 BAI1  Yes  –   [  115  ]  
 Stabilin-2  Yes  –   [  117  ]  
 Mer  No  Gas6, protein S   [  4  ]  

  a  
v
  b  

3
  or  a  

v
  b  

5
  integrins  No  Lactadherin   [  54  ]  

 CD36  Oxidized lipid  ?   [  52  ]  
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enhanced  [  44  ] . Additionally, lyso-PS stimulates 
 fi broblast migration  [  116  ]  and may therefore play 
a role in tissue remodeling following injury. Thus, 
while there are tangible suggestions that lyso-PS 
may be playing important roles in both immune 
regulation and wound healing, much work is 
clearly required to understand the full conse-
quences and signi fi cance of this more soluble and 
potentially more mobile form of PS.   

    10.4   Phosphatidylserine-Mediated 
Intracellular Signaling Events 

 While the detection and visualization of PS in 
live cells has until recently been dif fi cult, 
there is still a fair amount known about the 
involvement and importance of PS in vari-
ous intracellular signaling events. Recall that 
PS is heterogeneously and asymmetrically dis-
tributed throughout the cell (Table  10.1  and 
Fig.  10.2 ). It makes up to 30 % of the lipid on 
the inner lea fl et of the PM; this, combined with 
its negatively charged head group, confers onto 
PS a nonpareil ability to direct the recruitment of 
both proteins containing polycationic stretches, as 
well as proteins that posses a speci fi c PS-reco-
gnition site (Table  10.2 ). 

    10.4.1   Phosphatidylserine Charge-
Based Interactions 

 A number of proteins contain lipidation or 
prenylation sites that drive their association with 
membranes; when a polycationic motif exists 
next to a lipidated site, the positive charge will 
promote the preferential partition and stabili-
zation of the protein on membranes endowed 
with negative surface charge, e.g., membranes 
enriched in PS. One such example is the small 
GTPase K-Ras4B, which is essential for the signal 
transduction of a number of growth factors. The 
majority of Ras superfamily member proteins 
are geranylgeranylated or farnesylated at their 
C-terminal CAAX box  [  166  ] , and while many 
are also palmitoylated or otherwise lipid-
modi fi ed to allow their attachment to membranes 

strictly by hydrophobic means, K-Ras4B is not 
 [  55  ] . Instead, the polycationic stretch present 
near the C-terminus of K-Ras4B is an essential 
second signal (in addition to its farnesylation) 
for the PM association of K-Ras4B  [  56  ] . This 
highly charged polycationic stretch of K-Ras4B 
does not interact speci fi cally with PS, but this 
lipid contributes signi fi cantly to the overall sur-
face potential of the PM, aiding in the recruit-
ment of Ras4B to the plasmalemma  [  56,   113, 
  172,   174  ] . 

 Src, a tyrosine kinase and the  fi rst known 
oncogene, as well as Rac1, an additional member 
of the Ras superfamily, are both important for a 
number of signaling events  [  2,   25,   64  ] . Both Src 
and Rac1 are proteins whose membrane targeting 
requires a polycationic stretch in addition to lipid 
modi fi cations  [  100,   141  ] . In fact, the distribution 
of Src within the cell parallels very closely that 
of PS (as determined by GFP-LactC2), being on 
the PM and endosomal system  [  172  ] . This is due 
to the fact that not only can the existence of a 
polycationic stretch of amino acids direct the 
association of proteins with the PM, but also other 
anionic membranes, depending on their charge. 
Thus, the polycationic stretch next to the farnesy-
lation site of K-Ras4B, which has a net charge 
of +8, locates almost exclusively at the PM, but if 
the net charge of this stretch is varied, the resulting 
mutants are directed additionally to other mem-
branes; constructs of intermediate charge (e.g., +5) 
localize to endosomal membranes  [  172,   174  ] . 
The same behavior was noted for Src, which has 
a polycationic stretch next to its myristoylated 
residue at the N-terminus. The cationic motif of 
Src has a net charge of +5, and the kinase was 
found to associate not only with the PM but also 
extensively with PS-enriched endosomal mem-
branes  [  172,   173  ] . Further evidence that PS is 
important for the charge-based distribution of Src 
was obtained with phagocytosis. When certain 
pathogens cause depletion of PS from phagosomes, 
Src is also lost  [  173  ] . Rac1, which has a polybasic 
region with a net charge of +6, associates more 
strongly with the PM but is rapidly removed 
from a sealing phagosome, despite the persis-
tence of PS  [  174  ] , possibly through additional 
posttranslational modi fi cations  [  110  ] . Overall, 
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we can conclude that the pattern of PS distribution 
among intracellular membranes (Table  10.1 ) plays 
an important role in determining their ability 
to interact with important signaling proteins, 
particularly those with cationic characteristics. 

 In some instances, cationic motifs on proteins 
are not suf fi cient to direct proteins to a membrane, 
but do in fl uence their targeting. This is the case for 
other signaling proteins, such as with RhoB, TC10 
and CDC42  [  81,   100  ] . In such instances cationic 
motifs likely play a complementary role. Evidence 
to this effect comes from recent studies in yeast, 
where polarized PS is required for the recruitment 
of the signaling and polarity-regulating molecule 
CDC42 to the forming bud neck  [  41  ] . Without PS 
present, CDC42 remains mainly Golgi-associated 
and buds are very inef fi ciently formed, leading to 
poor growth  [  41  ] . 

 Overall, then, there is an increasing body of 
evidence that the intracellular asymmetry of 
PS, and the resultant distribution of negative 
charge, is responsible for recruiting – through 
charge-based interactions – soluble or amphiphilic 
molecules to their proper location within the cell, 
where they serve crucial roles in signal transduc-
tion and propagation.  

    10.4.2   Phosphatidylserine-Speci fi c 
Interactions: Head Group 
Recognition 

 In addition to the general charge-based interactions 
outlined above, there are a number of proteins that 
have domains that will stereospeci fi cally interact 
with the PS head group (Table  10.2 ). Such interac-
tions are often important for the localized initiation 
and propagation of various signaling cascades 
within the cell. Classical PKCs ( a ,  b I,  b II and  g ) 
contain a conventional C2 domain, a calcium-
dependent cysteine-rich region that recognizes 
PS and is responsible, in coordination with the 
C1 domain that binds to DAG, for activating 
and localizing the kinase to the PM of suitably 
stimulated cells  [  127,   152,   153  ] . The binding of 
PS is relatively speci fi c, as the binding pocket 
of the C2 domain coordinates the binding of 

calcium and prefers  l -PS  [  38,   164  ] . Without this 
calcium-dependent binding to PS, the classical 
PKC isoforms are not activated. By contrast, the 
novel PKC isoforms have a modi fi ed C2 domain 
that does not bind calcium and the atypical PKC 
isoforms lack a C2 domain entirely, making them 
independent of PS binding  [  164  ] . 

 Synaptotagmins, a family of proteins whose 
members also mostly contain C2 domain-like 
regions that bind to PS, are important for calcium-
mediated vesicle fusion, particularly for the fast, 
calcium-dependent release of neurotransmitters 
 [  26,   89,   147,   164  ] . The C2 domains of synap-
totagmins tend to be fairly promiscuous, binding 
most acidic phospholipids  [  150  ] . However, as 
discussed earlier, PS is the most abundant acidic 
phospholipid at the PM, where neurotransmitter 
release occurs. During neurotransmitter secretion, 
when synaptotagmin binds calcium, in addition 
to increasing the af fi nity of synaptotagmin for 
acidic phospholipids 100–10,000 times, a hydro-
phobic loop of the protein is released which 
penetrates the membrane, stabilizing the protein 
on the lipid bilayer  [  11,   150  ] . Numerous  in vitro  
studies document the importance of PS in synap-
totagmin function during vesicle fusion, including 
the observation that the phospholipid needs to 
be present in both the plasmalemma as well as 
the incoming vesicles  [  146  ] . Moreover, recent 
 in vivo  studies have also shown that PS in fl uences 
the opening and dilation of fusion pores during 
calcium-triggered vesicle fusion  [  175  ] . 

 PS-speci fi c binding is also important in the 
function of A-, B- and C-Raf kinases, important 
regulators of many signal transduction pathways. 
Raf kinases are generally downstream from the 
Ras GTPases, and transmit information to activate 
mitogen-activated protein kinase (MAPK) sig-
naling  [  157  ] . When inactive, Raf kinases exist in 
the cytosol in a closed conformation, with their 
regulatory domain bound to, and inhibiting, the 
kinase domain. The protein 14-3-3 is additionally 
bound to the inactive Raf, stabilizing its inactive 
conformation. Activation of Raf occurs upon 
recruitment to the membrane by Ras, but a num-
ber of lipids have been found to interact with Raf 
and potentially play a role in its stimulation 
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 [  59,   72,   157  ] . The Raf proteins have a conserved 
N-terminal cysteine-rich domain that has some 
structural similarity to PKC-type C2 domains; 
this C2-like domain is responsible for PS binding 
to Raf in a calcium-independent manner  [  47,   48, 
  103  ] . In addition, there is a separate C-terminal 
domain that binds PA and a region also near the 
N-terminal that is involved in phosphoinositide 
binding  [  47,   59,   72  ] . While there is still much 
uncertainty about the functional role of all these 
lipid interactions  [  59,   157  ] , the importance of PS 
binding for the recruitment of Raf to membranes, 
the release of 14-3-3, and the activation of the 
kinase has been demonstrated  [  47,   48,   97  ] . Thus, 
PS plays important roles in multiple steps of the 
cascades initiated by receptor tyrosine kinases 
that signal through Ras and Raf through to the 
MAPK system. 

 Sphingosine kinase (SK) 1 and SK2 are 
enzymes that convert sphingosine to sphin-
gosine 1-phosphate, an important extracellular 
messenger involved in stimulating endothelial 
differentiation, migration and mitogenesis  [  62  ] , 
as well as being implicated in intracellular sig-
naling cascades leading to cytoskeletal changes, 
motility, release of intracellular calcium and 
protection from apoptosis  [  63,   82,   144  ] . SK is a 
cytosolic protein that can be phosphorylated 
and recruited to the PM upon stimulation of 
PKC  [  71,   120  ] . Current evidence suggests that 
SK displays a binding region that is speci fi c for 
PS, and the binding af fi nity of SK for PS 
increases upon phosphorylation; this interac-
tion with PS is essential for its proper recruitment 
and full enzymatic activity both  in vitro  and 
 in vivo   [  144  ] . 

 Finally, some signaling proteins with pleck-
strin homology (PH) domains have been shown 
to have the binding of their cognate phospho-
inositide enhanced in the presence of PS. For 
example Grp1, a guanine nucleotide-exchange 
factor (GEF) for Arf family GTPases, has greatly 
enhanced binding to phosphatidylinositol 
3,4,5-trisphosphate-containing vesicles when PS 
is also present  [  78  ] . Similarly, the PH domain of 
Akt has been found to have basic residues nearby 
that are involved in binding of PS, which is 

required for its full activation  [  67  ] . Additionally, 
phosphoinositide-dependent kinase-1 (PDK1) is 
a serine/threonine kinase that functions upon 
binding to phosphatidylinositol-3,4,5-trisphos-
phate and phosphatidylinositol-3,4-bisphosphate 
to regulate a subgroup of 3-phosphoinositide-
responsive protein kinase family members includ-
ing Akt, p70 ribosomal S6 kinase, serum- and 
glucocorticoid-induced protein kinase, and atypical 
PKC  [  14  ] . PDK1 is partially bound to the PM in 
the absence of 3’-phosphoinositides and recent 
studies have shown that there is a site – separate 
from the canonical phosphoinositide-binding 
site – that speci fi cally binds PS, is responsible 
for recruiting PDK1 to the PM and is important for 
its signaling function  [  87  ] .   

    10.5   Conclusions 

 PS is an essential glycerophospholipid present 
in all mammalian cells with an asymmetric distri-
bution throughout the cell. It is becoming clear 
from the research highlighted in this chapter that 
rather than being an inert component of biologi-
cal membranes, PS, with its unique head group 
and combination of abundance and subcellular 
distribution, plays an important role in a number 
of signaling pathways. As detailed, signaling via 
PS is mediated by the interaction of proteins 
with PS in one of two ways: via domains that 
stereospeci fi cally recognize the head group, or by 
electrostatic interactions with membranes that 
are rich in PS and therefore display negative 
surface charge, such as the PM. As outlined, 
such interactions are key to both intracellular and 
extracellular signaling cascades. Overall, then, 
there are a number of signaling proteins that 
depend upon the unique head group and cellular 
distribution of PS for their proper localization 
and activation. In closing, it is worth emphasiz-
ing that while much of the current understanding 
of PS involvement in signaling has been derived 
from  in vitro  studies, future studies will in all 
likelihood uncover additional signaling roles for 
PS in the physiological context, now that suitable 
tools to analyze in live cells are emerging.      
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