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       1.1   Introduction 

 Although the discovery of sphingomyelin (SM) 
was reported more than a century ago, its role as a 
signi fi cant ‘bioactive lipid’ along with other mem-
bers of the sphingolipid family have been recog-
nized just couple of decades ago. Technological 
advances in lipid detection,  analysis, and quanti-
tation have played a key role in promoting the 
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  Abstract 

 Sphingolipid  de novo  biosynthesis is related with metabolic diseases. 
However, the mechanism is still not quite clear. Sphingolipids are ubiqui-
tous and critical components of biological membranes. Their biosynthesis 
starts with soluble precursors in the endoplasmic reticulum and culminates 
in the Golgi complex and plasma membrane. The interaction of sphingo-
myelin, cholesterol, and glycosphingolipid drives the formation of plasma 
membrane rafts. Lipid rafts have been shown to be involved in cell 
 signaling, lipid and protein sorting, and membrane traf fi cking. It is well 
known that toll-like receptors, class A and B scavenger receptors, and 
insulin receptor are located in lipid rafts. Sphingomyelin is also a reservoir 
for other sphingolipids. So, sphingomyelin has important impact in cell 
 signaling through its structural role in lipid rafts or its catabolic inter-
mediators, such as ceramide and glycoceramide. In this chapter, we will 
discuss both aspects.  
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development of the sphingolipid research  fi eld. 
There have been numerous studies establishing 
sphingolipids’ multifunctional roles in the regula-
tion of various cellular processes such as cell 
growth, death, senescence, adhesion, migration, 
in fl ammation, angiogenesis and intracellular 
traf fi cking  [  1,   2  ] . 

 However, the concept that SM is involved in 
cellular signaling is relatively new. We believe 
that SM mediated cellular signaling can be 
broadly manifested in two ways:
    (i)    SM metabolism resulting in the production of 

various interconvertible bioactive sphingolip-
ids or derivatives such as ceramide, diacylg-
lyceride, and sphingosine-1-phosphate. These 
bioactive lipids act on their speci fi c targets 
within the cell and regulate various signal 
transduction pathways, thereby affecting 
 cellular functions.  

    (ii)     SM-enriched lipid raft mediated cell signal-
ing. The interaction of SM with cholesterol 
and glycosphingolipid is known to drive the 

formation of plasma membrane microdo-
mains called lipid rafts  [  3  ] . As much as 70 % 
of all cellular SM is found in these rafts  [  4,   5  ]  
and they have proven to be involved in cell 
signaling, lipid, and protein sorting, and 
membrane traf fi cking  [  3,   6,   7  ] .     
 This review speci fi cally aims at deciphering 

the role of SM as a bioactive lipid in cellular 
signaling through its metabolism and its contri-
bution to lipid rafts.  

    1.2   Structure, Sub-cellular 
Localization, and Measurement 
of Sphingomyelin Levels 

 The SM molecule consists of two regions: a 
phosphorylcholine head group attached to a 
ceramide molecule (Fig.  1.1 ). The latter in turn is 
made up of a sphingosine backbone and a fatty 
acid (acyl chain). SM usually contains 16:0, 18:0, 
22:0, 24:0, and 24:1 acyl chains but the most 

  Fig. 1.1    Molecular structure of sphingomyelin       
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abundant SM species found in mammalian  tissues 
are 16:0  [  8  ] . Whether or not the differing acyl 
chain lengths in SMs dictate unique functions or 
important biophysical distinctions has not yet 
been established.  

 SM is the most abundant sphingolipid in 
 mammalian cells and the majority of the cellular SM 
is located in the outer lea fl et of plasma  mem  branes 
 [  5,   9  ] . SM is indispensable for mammalian cell 
viability, as evidenced by the inability of mamma-
lian cells to survive in culture, when they are unable 
to produce SM  [  10  ] . 

 SM levels can be measured by the following 
methods: (i) enzyme-based assay: tissue homoge-
nates can be incubated with bacterial sphingomy-
elinase, alkaline phosphatase, choline oxidase, 
peroxidase, N-ethyl-N-(2-hydroxy-3-sulfopropyl)-
3,5-dimethoxyaniline, and 4-aminoantipyrine for 
45 min. This results in a product with blue color, 
whose intensity is proportional to the SM present 
in the tissue sample, and can be measured at an 
optimal absorption of 595 nm  [  11  ] ; (ii) liquid chro-
matography tandem mass spectrometry (LC/MS/
MS); and, (iii) lysenin-mediated cell lysis assay. 
Lysenin is a SM-speci fi c cytotoxin, which recog-
nizes SM only when it forms aggregates or micro-
domains and eventually leads to cell lysis  [  12  ] . 
Based on the lysenin-mediated cell lysis intensity, 
plasma membrane SM levels can be indirectly 
evaluated. More SM on the plasma membrane can 
cause high cell mortality  [  12,   13  ] .  

    1.3   Sphingomyelin Metabolism-
Mediated Cell Signaling 

    1.3.1   De Novo Sphingomyelin 
Synthesis 

 SM biosynthesis initiates in the endoplasmic 
reticulum (ER), utilizing non-sphingolipid hydro-
philic precursor molecules, serine, and palmitoyl-
CoA (Fig.  1.2 ). The condensation of L-serine 
and palmitoyl-CoA to form 3-ketodihy-
drosphingosine is facilitated by ER membrane 
associated serine palmitoyltransferase (SPT). 
The next step in the sphingolipid biosynthesis 
is the reduction of 3-ketodihydrosphingosine 

to dihydrosphingosine by a reductase. N-acylation 
of the dihydrosphingosine gives rise to dihy-
droceramide, a product that is still relatively 
hydrophilic. Conversion of dihydroceramide to 
ceramide is facilitated by ceramide synthases 
and involves a desaturation step. Ceramides are 
hydrophobic and therefore become membrane 
associated. The majority of ceramides are trans-
ported from ER to the Golgi by ceramide trans-
port protein (CERT), and the rest are converted 
to ceramide phosphoethanolamine (CPE). In the 
Golgi apparatus, ceramides are further converted 
to sphingomyelin by the sphingomyelin synthase 
(SMS)  [  14,   15  ] , to glucosylceramide by the 
 glucosylceramide synthase and, then, to more 
complex sphingolipids such as glucosylceramide 
and hematoside (GM3) by their respective syn-
thases (Fig.  1.2 ). These products are then trans-
ported to plasma membrane, the major cellular 
reservoir for these lipids. SM and other sphingo-
lipids may reach to the blood circulation through 
lipoprotein secretion or lipid ef fl ux (Fig.  1.2 ).   

    1.3.2   Sphingomyelin and Its Related 
Bioactive Lipids 

 Sphingomyelin synthase (SMS), utilizing 
 cera mide and phosphatidylcholine as its two 
 substrates to produce SM and diacylglyceride, 
sits at the crossroads of bioactive lipid synthe-
sis (Fig.  1.3 ). SM can also be hydrolyzed by 
sphingomyelinase (SMase) to yield ceramide 
and  choline phosphate. The resulting ceramide 
can be further converted into sphingosine and 
 sphingosine-1-phosphate (Fig.  1.3 ). Potentially, 
manipulating SMS and SMase could in fl uence 
these bioactive lipid levels, thus in fl uencing 
cell biological functions.  

    1.3.2.1   Sphingomyelinase-Mediated 
Ceramide Production 

 Twenty years ago, it had been disclosed that 
SMase-mediated SM hydrolysis (SM cycle) is a 
novel pathway of transmembrane signal trans-
duction. In response to extracellular agonists, 
membrane SM can be hydrolyzed by SMase to 
yield ceramide and choline phosphate  [  16–  20  ] . 
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 So far,  fi ve type of SMases have been 
reported and they are classi fi ed based on their 
optimal pH and metal ion dependence activity 
 [  21  ] . They are lysosomal acid SMase, secreted 

zinc-dependent acid SMase, magnesium-depen-
dent neutral SMase, magnesium-independent 
neutral SMase, and alkaline SMase. Multiple 
reviews have  summarized the current knowl-
edge about these SMases, from an overview of 
structure and  catalysis to speci fi c properties, 
roles, and  regulation of these enzymes in physi-
ological and pathological contexts  [  22–  24  ] . 

 Ceramide is a product of SMase reaction 
(Fig.  1.3 ) and has been identi fi ed as a second 
messenger, mediating the effects of cell growth, 
cell differentiation, and apoptosis. Hannun and 
Obeid  [  25  ]  have recently summarized a large 
body of information with regards to metabolism, 
structure, and function of ceramides.  

  Fig. 1.2    Scheme of sphingomyelin biosynthesis.  SMS  1 
and 2, sphingomyelin synthase 1 and 2;  SMSr , sphingo-
myelin synthase related protein;  GCS  glucosylceramide 

synthase,  CPE  ceramide phosphoethanolamine synthase, 
 CERT  ceramide traf fi cking protein,  GM3  hematoside,  ER  
endoplasmic reticulum,  PM  plasma membrane       

  Fig. 1.3    SMS and SMase-related bioactive lipid productions. 
 SMS  sphingomyelin synthase,  SMase  sphingomyelinase       
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    1.3.2.2   Sphingomyelin Synthase-
Mediated Diacylglycerol 
Production 

 There are three different pathways that can 
 produce diacylglycerol  [  26  ]  (Fig.  1.4 ). Many 
studies have clearly established the signi fi cant 
role of diacylglycerol in the regulation of funda-
mental cellular functions such as proliferation 
and apoptosis through the activation of protein 
kinase C  [  27–  29  ] . However, we still do not know 
the importance of the diacylglycerol produced by 
the reaction catalyzed by SMS. This is because 
hydrolysis of membrane inositol phospholipids 
by phospholipase C, or hydrolysis of other 
 membrane phospholipids, particularly choline 
phospholipids, by phospholipase D and phospho-
lipase A2 can produce diacylglycerol that links 
extracellular signals to intracellular events 
through activation of protein kinase C  [  30  ] . 
However, it is conceivable that SMS activity-
mediated diacylglycerol can potentially play an 
important role in maintaining cellular diacylglyc-
erol pools  [  26  ] .     

    1.4   Sphingomyelin as a Critical 
Component of Lipid Rafts in 
Mediating Signal Transduction 

    1.4.1   Sphingomyelin-Enriched 
Cell Membrane Lipid Rafts 

 Sphingolipids, including SM and glycosphingo-
lipids, together with cholesterol, have been 
implicated in lateral microdomain or ‘lipid raft’ 
formation in biological membranes. These micro-
domains serve as signaling platforms and are 
involved in cellular processes, such as signal 

transduction, membrane traf fi cking, and  protein 
sorting  [  31,   32  ] . Other lipids found in raft struc-
tures include phosphatidylethanolamine, glycero-
phospholipids, phosphatidylserine, arachidonic 
acid, phosphatidylglucoside, ceramide, and lacto-
sylceramide  [  33,   34  ] . 

 The formation of lipid rafts in biological mem-
branes is driven by lipid–lipid interactions, which 
are largely dependent on the structure and bio-
physical properties of the lipid components. It is 
favored by the presence of long-chain saturated 
sphingolipids and phospholipids as well as by 
physiological proportions of cholesterol  [  35, 
  36  ] . There is strong evidence suggesting a prefer-
ential interaction between SM and cholesterol, 
stabilized by hydrogen bonding  [  37–  39  ] . Infrared 
spectroscopic studies have also con fi rmed the 
presence of intermolecular hydrogen bonding 
between the amide group of SM and the 3-hydroxyl 
group of cholesterol  [  40  ] . The levels of choles-
terol and SM in the plasma membrane are also 
tightly controlled  [  41,   42  ] . Greater lateral packing 
density in SM-containing membranes is known 
to be responsible for lowering the rate of sponta-
neous cholesterol transfer from SM-containing 
membranes  [  43  ] . Highly saturated glycosphingo-
lipids are also capable of forming extensive 
hydrogen-bonding network with cholesterol and 
are therefore found in lipid rafts. However, in the 
presence of both SM and glycosphingolipids, 
cholesterol preferentially interacts with SM  [  44  ] . 
The rafts co-existing with the  fl uid matrix of the 
plasma membrane exist in the liquid-ordered 
phase  [  45,   46  ]  due to its cholesterol content. 
Cholesterol promotes phase separation of satu-
rated SMs  [  47  ]  and SM needs cholesterol to be 
detergent-insoluble  [  45  ] .  

    1.4.2   Lipid Rafts and Cell Signaling 

 Lipid rafts act as organizing centers for processes 
such as membrane traf fi cking and signal trans-
duction  [  48,   49  ] . Cytoplasmic proteins that are 
covalently modi fi ed by saturated fatty acids 
(palmitoyl or myristoyl moieties) and cell surface 
proteins that are attached via a glycosyl phos-
phatidylinositol (GPI) anchor are highly concen-
trated within lipid rafts. Many proteins involved 

  Fig. 1.4    Three pathways for diacylglyceride production. 
(1) phosphatidylinositol phospholipase C; (2) phosphati-
dylcholine phospholipase D; (3) phosphatidic acid phos-
phatase; (4) sphingomyelin synthase       
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in signal transduction, such as Src family kinases, 
G proteins, growth factor receptors, mitogen-
activated protein kinase (MAPK), and protein 
kinase C are predominantly found in lipid rafts 
 [  32  ] . In addition, lipid rafts are dynamic in nature, 
which tends to scaffold certain signaling mole-
cules, while excluding others. By such spatial 
segregation, lipid rafts not only provide a favor-
able environment for intra-molecular cross talk 
but also aid to expedite the signal relay. 

 Due to their insolubility in nonionic deter-
gents such as Triton X-100, lipid rafts have 
been frequently termed as ‘detergent resistant 
membranes’ (DRMs). In fact, subpopulations 
of rafts have been proposed, in part based on 
their size, constituents, and functional proper-
ties  [  50,   51  ] . Caveolae are a subset of rafts and 
are considered to be 50–100 nm  fl ask-like 
invaginations of the plasma membrane. Rafts 
and caveolae are dynamic entities, forming and 
dissipating in response to various external stim-
uli  [  52  ] . Upon stimulation, they internalize and 
serve a clathrin (coated pit)-independent mech-
anism of endocytosis of plasma membrane con-
stituents. Raft/caveolae-mediated endocytosis 
is reported to facilitate transportation of entities 
to other cellular regions and across the cell 
(transcytosis)  [  53–  55  ] . 

 Membrane rafts and caveolae usually express 
speci fi c proteins like  fl otillins and caveolins 
(Cavs) within their structure  [  56  ] . Cavs are 
structural proteins that provide an important, 
de fi ning feature of caveolae and can be secreted 
into the extracellular space  [  57,   58  ] . Cavs are 
highly conserved among species and the three 
different isoforms of Cavs (Cav-1, -2, and -3) are 
differentially expressed in cells: Cav-3 is 
restricted to skeletal, cardiac, and smooth muscle, 
Cav-1 is more ubiquitously expressed, while 
expression of Cav-2 generally parallels that of 
Cav-1  [  59  ] . Cavs also undergo covalent 
modi fi cations like palmitoylation and phosphory-
lation  [  57–  61  ] . It is known that insulin receptor (IR) 
is located in caveolae  [  62  ]  and insulin receptor 
can interact with Cav1  [  63  ] . In caveolae, the 
mobility of IR is increased by dissociation of the 
IR–Cav1 interaction  [  63  ] . It has been reported that 
SMS2 is able to regulate the dynamic structure of 

SM-rich lipid microdomains on the plasma 
 membrane  [  64,   65  ]  and could modify protein 
function, such as that of CD36 or Cav 1 located 
in the lipid microdomains  [  64  ] . SMS2 gene 
knockout (KO) mice exhibited disrupted regula-
tion of the lipid microdomains function, leading 
to a prevention of lipid droplet formations, fatty 
liver, obesity, and insulin resistance  [  64,   65  ] .  

    1.4.3   Role of the Lipid Rafts 
in In fl ammatory Signaling 

 Toll like receptors (TLRs) are critically involved 
in in fl ammatory responses  [  66,   67  ] . Lipid rafts 
appear to provide a platform for the interaction of 
TLRs with their ligands in cells  [  68–  71  ] . 

 Each one of TLRs has a unique extracellular 
domain that allows speci fi c ligand recognition. 
The intracellular toll/interleukin-1 (IL-1)  receptor 
(TIR) domain of TLRs shares high degree of 
homology, but there are enough differences to 
cause diversi fi ed functions mediated by different 
TLRs  [  66,   67,   72,   73  ] . Upon ligand-induced 
stimulation, the TIR domain of TLRs associates 
with the TIR domain of their respective adaptor 
molecules to initiate intracellular signaling. 
Myeloid differentiation primary response gene 
88 (MyD88) is a common TLR adaptor used by all 
TLRs, except for TLR3  [  73  ] . Upon stimulation 
with a speci fi c ligand, the membrane-associated 
TLRs (such as TLR2 and TLR4, and other com-
ponents of the TLR complex) are recruited into 
the lipid rafts  [  74,   75  ] . These rafts aid in the inter-
action of TLRs with their ligands in macrophages 
 [  68–  71  ] , initiating nuclear factor kappa-light-
chain-enhancer of activated B cells (NF k B) and 
MAP kinase activation and proin fl ammatory 
cytokine production, thus resulting into in fl amma-
tory responses. 

 Tumor necrosis factor alpha (TNF a ) is one of 
the cytokines involved in systemic in fl ammation. 
TNF a  can speci fi cally bind to TNF receptors 
(TNFRs). It is known that lipid rafts play an essen-
tial role in TNFR1 clustering  [  76  ] . Upon contact 
with TNF a , TNF receptors form trimers and this 
binding causes a conformational change to occur 
in the receptor, leading to the dissociation of the 
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inhibitory protein silencer of death domain 
(SODD) from the intracellular death domain. 
This dissociation enables the adaptor protein 
TNFR type 1-associated DEATH domain protein 
(TRADD) to bind to the death domain, serving as 
a platform for subsequent protein binding. 
Following TRADD binding, three pathways can 
be initiated  [  77,   78  ] : (1) activation of NF k B, (2) 
activation of MAPK pathways, and, (3) induction 
of cell death signaling. 

 Luberto et al.  [  79  ]  found that D609, a 
nonspeci fi c SMS inhibitor, blocks TNF a  and 
phorbol ester-mediated NF k B activation that was 
concomitant with decreased levels of SM and 
diacylglyceride. Moreover, this did not affect the 
generation of ceramide, suggesting SM and dia-
cylglycerol, derived from SM synthesis, are 
involved in NF k B activation. However, D609 is 
widely used to inhibit PC-phospholipase C (PLC) 
(Fig.  1.4 ), a well-known regulator of NF k B acti-
vation via diacylglyceride-mediated signaling 
 [  80  ] . Thus, it remains unclear what pathway is 
inhibited by D609 in particular that causes a 
diminished NF k B activation.  

    1.4.4   Role of Lipid Raft Sphingomyelin 
in In fl ammatory Signaling 

 Studies from our laboratory  [  81  ]  indicate that 
SMS2 knockdown in macrophages results in 
blockage of ligand-induced internalization as 
well as recruitment of TNFR1 to lipid rafts, sug-
gesting a mechanism for the modulation of 
NF k B activity by SMS2. On similar lines, 
lipopolysaccharide (LPS)-induced plasma mem-
brane recruitment of TLR4-MD-2 (TLR4 co-
receptor) complex is also diminished in 
SMS2-knockout macrophages. As a result, 
SMS2 de fi ciency attenuates both NF k B and 
MAP kinase pathways, both of which are sig-
naled via raft-associated TNFR1 and TLR4 
along with their adaptor proteins. These  fi ndings 
strongly suggest the critical role of SMS2-
synthesized SM for the normal function of 
TNFR1 and TLR4 on the plasma membrane fol-
lowing stimulation by their respective ligands 
(TNF a  and LPS)  [  81  ] . 

 We also created SMS1 knockout mice and 
found that SMS1 de fi ciency signi fi cantly 
decreased SM in plasma, liver, and macrophages 
but had only a marginal effect on ceramide 
levels  [  82  ] . Surprisingly, we found that SMS1 
de fi ciency dramatically increased glucosylcer-
amide and hematoside (GM3) levels in plasma, 
liver, and macrophages (4- to 12-fold), while 
SMS2 de fi ciency had no such effect. We evalu-
ated total SMS activity in tissues and found that 
SMS1 de fi ciency causes 77 % reduction of SMS 
activity in macrophages  [  82  ] , while SMS2 
de fi ciency causes 70 % reduction of SMS activity 
in the liver  [  13  ] , indicating SMS1 is the major 
SMS in macrophages, whereas SMS2 is pre-
dominant in the liver. We also found that SMS1 
de fi ciency signi fi cantly attenuated TLR4-
mediated NF k B and MAP kinase activation 
after LPS treatment. 

 The content of SM in the plasma membrane 
can also be modulated by SPT, the  fi rst and 
rate-limiting enzyme of the sphingolipid bio-
synthetic pathway  [  83  ] . SPT de fi ciency in mac-
rophages also results in lower plasma membrane 
SM content as evidenced by lysenin-sensitivity 
assays, making the cells more resistant to lysis 
when treated with lysenin  [  81,   84  ] . LPS treat-
ment of SPT de fi cient macrophages results in 
lesser recruitment of TLR4-MD2 complex, 
thereby attenuating both NF k B and MAP 
kinase activation. SPT de fi cient macrophages 
produce less TNF a  and IL-6  in vitro  when 
treated with LPS. SM supplementation experi-
ments further prove that exogenous SM can 
enrich plasma membrane SM levels and can 
eventually restore the wild-type in fl ammatory 
phenotype in SPT de fi cient macrophages [ 128 ]. 
In general, SMS2 de fi ciency and SPT partial 
de fi ciency yield similar phenotypes, in terms of 
membrane SM levels, NF k B and MAP kinase 
activation. Unlike SMS2 de fi ciency, SPT partial 
de fi ciency does not change ceramide at the intra-
cellular level or either in the plasma membrane 
or its lipid rafts. Thus, ceramide levels may have 
negligible role in mediating in fl ammatory signal-
ing [ 128 ]. A reduction of plasma membrane SM 
levels are closely related to in fl ammation 
 [  81,   82  ] .  
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    1.4.5   Role of Lipid Raft Sphingomyelin 
Content in Cholesterol 
Homeostasis 

 Reverse cholesterol transport (RCT) is a multi-
step process resulting in the net movement of 
cholesterol from peripheral tissues back to the 
liver via the plasma  [  85  ]  and it plays a major role 
in cholesterol homeostasis. The  fi rst and most 
crucial step of RCT is cholesterol ef fl ux from 
peripheral tissues, such as macrophages  [  85  ] . 

 Foam cell formation due to excessive accu-
mulation of cholesterol by macrophages is a 
pathological hallmark of atherosclerosis  [  86  ] . 
Macrophage scavenger receptor class A is impli-
cated in the deposition of cholesterol in arterial 
walls during atherogenesis, through receptor-
mediated endocytosis of modi fi ed low-density 
lipoproteins  [  87  ] . A member of scavenger recep-
tor class B, CD36, is also involved in macrophage 
foam cell formation  [  88  ] . However, macrophages 
cannot limit the uptake of cholesterol, and there-
fore depend on cholesterol ef fl ux pathways for 
preventing their transformation into foam cells. 
Several ATP-binding cassette (ABC) transport-
ers, including ABCA1  [  89  ]  and ABCG1  [  90  ] , as 
well as scavenger receptor class B1 (SR-B1) 
 [  90  ] , facilitate the ef fl ux of cholesterol from 
macrophages. 

 In macrophages, ABCA1 exports cholesterol 
and phospholipids to lipid-free apolipoproteins, 
while ABCG1 and SR-BI export cholesterol to 
phospholipid-containing acceptors  [  90  ] . ABCA1-
dependent cholesterol ef fl ux requires aid from 
membrane lipid rafts  [  91,   92  ] , while ABCG1 is 
mainly found intracellularly in the basal state, 
with little cell surface presentation. Under stimu-
lation, for example by liver X receptor agonist 
treatment, ABCG1 redistributes itself to the 
plasma membrane, and increases cholesterol 
mass ef fl ux to HDL  [  93  ] . ABCA1 and ABCG1 
are known to cooperate in cholesterol ef fl ux  [  90  ] . 
SR-BI also facilitates cholesterol ef fl ux from 
macrophages  [  94  ] . ABCA1, ABCG1, and SR-BI 
are located in the plasma membrane, and exist 
either in rafts (SR-BI)  [  95,   96  ] , or associated 
with the redistribution of lipids in the plasma 

membrane (ABCA1 and ABCG1)  [  90,   97  ] . It is, 
therefore, conceivable that fundamental changes 
in SM and glycosphingolipid levels of the plasma 
membrane can in fl uence the functions of these 
proteins and alter cholesterol ef fl ux  [  98,   99  ] . 

 SM is also known as a cholesterol-binding 
molecule and there by plays an important role in 
cholesterol ef fl ux. There are two possible 
SM-mediated cholesterol ef fl ux mechanisms. 
Firstly, SM is involved in the recruitment of 
ef fl ux-related transporters to the plasma mem-
brane  [  94  ] . Indeed, SM-de fi cient cells enhance 
apoA-I-dependent cholesterol ef fl ux by ABCA1 
 [  98,   99  ] . This is further supported by SMS2 
de fi cient and SPT partial de fi cient macrophage 
studies, where decrease of SM levels in mac-
rophage plasma membrane increases both 
ABCA1 and ABCG1 protein levels on mac-
rophage surfaces, thereby increasing cholesterol 
ef fl ux  in vitro  and  in vivo   [  100 ,  128  ] . Although 
ABCA1 is known to be located in a non-raft 
region, its levels in fl uence lipid raft composition 
 [  101  ] . Overexpression of ABCA1  [  97  ]  and treat-
ment of cells with high- density lipoprotein 
(HDL) or apoA-I  [  102,   103  ]  disrupts or depletes 
raft domains, inhibiting raft-dependent signaling. 
This indicates a possible interaction between 
ABCA1 and raft-containing lipids. 

 Secondly, SM is also critical for cholesterol 
sequestration in the plasma membrane. It is known 
that lysosomal SMase is involved in cholesterol 
transport from lysosomes to the plasma mem-
brane  [  98  ] . Because SM avidly binds cholesterol 
 [  104  ] , SMase de fi ciency inhibits macrophage 
cholesterol ef fl ux through promoting cholesterol 
sequestration by SM. Thus, SPT de fi ciency, lead-
ing to reduced plasma membrane SM levels, pro-
duces the inverse effect of SMase de fi ciency with 
reference to macrophage cholesterol ef fl ux. SPT 
de fi ciency, therefore, aids in cholesterol ef fl ux by 
inducing less cholesterol sequestration in the 
macrophage plasma membrane [ 128 ]. This is fur-
ther supported by the  fi nding that exogenously 
added SM signi fi cantly diminishes cholesterol 
ef fl ux mediated by ABCA1  [  99  ] , suggesting that 
the increase of SM content in the plasma mem-
brane prevents cholesterol ef fl ux.  
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    1.4.6   The Effect of Macrophage Lipid 
Raft Sphingomyelin Levels 
on Cholesterol Ef fl ux 
and In fl ammation 

 It is known that macrophage cholesterol ef fl ux and 
in fl ammation are inversely related to each other. 
Yvan-Charvet et al. reported that macrophage 
ABCA1 and ABCG1 de fi ciencies increase free 
cholesterol accumulation and increase cell signal-
ing via TLRs  [  105  ] . Zhu et al. reported that mac-
rophage ABCA1 reduces MyD88-dependent TLR 
traf fi cking to lipid rafts by reduction of lipid raft 
cholesterol  [  106  ] . In addition, ABCA1 expression 
decreases cellular plasma membrane rigidity by 
reducing formation of tightly packed lipid rafts  [  97  ] . 
Therefore, more cholesterol ef fl ux is related to 
less in fl ammation in macrophages. A recent report 
indicated that IL-6 markedly induced ABCA1 
expression and enhanced ABCA1-mediated choles-
terol ef fl ux from human macrophages to apoA-I 
 [  107  ] . We found that SPT partial de fi cient mac-
rophages have signi fi cantly lower SM levels in 
plasma membrane lipid rafts. This reduction not 
only impaired in fl ammatory responses triggered by 
TRL4 and its downstream NF k B and MAPK path-
ways, but also enhanced reverse cholesterol trans-
port mediated by ABC transporters [ 128 ]. Our 
 fi ndings in this study clearly provided the evi-
dence that plasma membrane SM levels are also 
critical for the inverse relationship between mac-
rophage cholesterol ef fl ux and in fl ammation.  

    1.4.7   Signi fi cance of Lipid Raft 
Sphingomyelin in Insulin 
Sensitivity 

    1.4.7.1   A Question from SPT Inhibition 
Studies 

 A previous study has indicated that treatment 
with myriocin, a potent SPT inhibitor and an 
immune suppressor, effectively ameliorates glu-
cocorticoid-, saturated fat-, and obesity-induced 
insulin resistance  [  108  ] . Insulin resistance is a 
pathological condition where the insulin becomes 
less effective at lowering blood sugars. The 
authors attributed that effect to the reduction of 

ceramide in tissues, but they did not evaluate SM 
levels, especially in the plasma membrane. We 
and others have noted that myriocin treatment not 
only reduces ceramide, but also SM and gly-
cosphingolipid levels  [  109–  111  ] . This arises a 
fundamental question from the SPT inhibition 
studies: which sphingolipid in particular, ceramide, 
or SM, is responsible for causing the insulin 
resistance?  

    1.4.7.2   Ceramide and Insulin Resistance 
 There are two considerations linking ceramide 
and insulin resistance. Firstly, ceramide blocks 
the translocation of Akt/Protein Kinase B (PKB) 
to the plasma membrane  [  112  ] . It has also been 
reported that ceramide inactivation of Akt/PKB 
requires the atypical PKC isoform PKC z   [  113, 
  114  ] . Secondly, ceramide may impair the action 
of insulin by facilitating signaling pathways initi-
ated by in fl ammatory cytokines, such as TNF a  
and IL-6, which are known to impair insulin sig-
naling  [  115,   116  ] . However, it has also been 
reported that various glycosphingolipid synthase 
inhibitors augment insulin-stimulated phospho-
rylation of the insulin receptor, as well as Akt/
PKB and/or mammalian target of rapamycin 
phosphorylation, in the skeletal muscle  [  117  ]  and 
liver  [  117,   118  ]  of obese rodents, without altering 
ceramide levels. While ceramide accumulates in 
some insulin-resistant models  [  119,   120  ] , it fails 
to do so in lipid-infused animals. In fact, the rela-
tive increase of ceramide in obese rodents and 
humans is rather quite small  [  121,   122  ] . Moreover, 
it is not known whether muscle ceramide content 
is a major factor in muscle insulin sensitivity. 
Adams et al. demonstrated that ceramide content 
is increased in skeletal muscle from obese, insu-
lin-resistant humans  [  121  ] , while Skovbro et al. 
found that human skeletal muscle ceramide 
content is not a major factor in muscle insulin 
sensitivity  [  123  ] . In general, the role of cellular 
ceramide in insulin resistance is controversial. 
Therefore more studies needs to be done in this 
 fi eld to establish this relationship.  

    1.4.7.3   Lipid Rafts and Insulin Resistance 
 Insulin resistance, abdominal obesity, dyslipi-
demia coupled with high blood pressure, and a 
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proin fl ammatory state are common disorders 
associated with type 2 diabetes and atherosclero-
sis  [  124  ] . An important question is how these 
interrelated risk factors could be mechanistically 
coupled in a physiological situation. Considering 
a simple scenario, lipid raft disruption could 
affect insulin signaling. It has been suggested 
that lipid rafts play an important role in the patho-
genesis of insulin resistance  [  125  ] . Indeed, dis-
ruption of caveolae in cultured cells by cholesterol 
extraction with  b -cyclodextrin results in progres-
sive inhibition of tyrosine phosphorylation of 
insulin receptor substrate 1, as well as reduced 
activation of glucose transport in response to 
insulin  [  126  ] . 

 Glycosphingolipids are also known to be 
structurally and functionally important compo-
nents in the lipid rafts  [  127  ] . Pharmacological 
inhibition of glycosphingolipid synthesis mark-
edly improves insulin sensitivity in rodent 
models of insulin resistance  [  118  ] . De fi ciency of 
GM3 ganglioside (a key glycosphingolipid in the 
rafts) is also known to enhance insulin receptor 
tyrosine phosphorylation  [  62  ] . Moreover, GM3 
could dissociate insulin receptor/Cav-1 complex, 
thus causing insulin receptor dysfunctionality 
 [  63  ] . Since SM is also one of the major compo-
nents within lipid rafts, it is conceivable that 
diminishing SM in the plasma membrane could 
have a similar impact on insulin signaling.  

    1.4.7.4   Reducing Plasma Membrane 
Sphingomyelin Increases Insulin 
Sensitivity 

 We utilized two models: SPT partial de fi cient 
mice and SMS2 knockout mice for the insulin 
sensitivity study  [  65  ] . We found that: (i) both 
SPT partial and SMS2 complete de fi ciency 
enhances insulin sensitivity; (ii) both de fi ciencies 
decrease plasma membrane SM levels, which 
contribute to the enhancement of insulin sensitiv-
ity; (iii) SPT de fi ciency decreases ceramide, 
while SMS2 de fi ciency increases it, therefore, 
ceramide is probably not the regulator of insulin 
sensitivity; (iv) there, they were no signi fi cant 
changes of glucosylceramide and GM3 levels 
in tissues or even cell plasma membrane, so 
they might not play a signi fi cant role in insulin 

sensitivity in the above models; and  fi nally, 
(v) this leads us to conclude that SPT or SMS2 
inhibition is a promising pharmacological 
approach for the treatment of insulin resistance 
and metabolic syndrome.    

    1.5   Conclusions 

 The role of SM as a signaling molecule other 
than its membrane structural properties is recently 
being recognized in greater depth. And only a 
few of these important functions have been high-
lighted in this chapter, however, the scope of SM 
as a bioactive lipid mediator is enormous. 
Therefore, it is indeed essential to study and 
understand how SM is synthesized and degraded 
via its complex metabolic network. This would 
further shed light on this enigmatic molecule and 
its noteworthy roles in physiological processes. 
On the other hand, accumulating evidence showed 
that dynamic modi fi cation of SM in lipid rafts on 
cell plasma membrane controls development of 
obesity, insulin resistance, fatty liver, 
in fl ammation, and atherosclerosis. It is important 
to investigate the relationship between SM and 
other lipids, and between SM and functional pro-
teins, such as insulin receptor, CD36, TLRs, and 
so on, in the lipid rafts.      
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