Chapter 3
Crystal Pathologies

Todd O. Yeates

Abstract Truly ideal crystals are rarely realized in macromolecular crystallography.
The conformational complexity of protein molecules and the promiscuity of
their chance interactions often conspire to give crystals in which the molecules
are present in alternative configurations. When the alternative configurations
occur randomly throughout the crystal, one is faced by a case of static disorder
(often indistinguishable from thermal motion), leading to limited resolution and
potential challenges in modeling the underlying structural variations. Despite those
challenges, the case of random disorder is arguably the simplest to understand and
interpret. A variety of more complex categories of crystal disorder occur when
alternative molecular configurations, orientations, or positions are not random, but
correlated to each other in one way or another throughout the crystal specimen.
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3.1 Twinning

Twinning describes a broad set of situations where a crystal specimen is composed
of multiple domains, which individually behave like ideal crystals, but which are
oriented differently relative to each other (Fig. 3.1). The subject of twinning in
macromolecular crystals has been well-reviewed [3, 8, 11, 24, 25, 27, 28]. The
misorientation of distinct crystal domains in a twinned specimen is made possible
(or even probable) by the ability of molecular spacings to be matched at the
interfaces between differently oriented twin domains. A fairly non-specific type
of twinning, referred to as non-merohedral twinning, gives rise in a diffraction
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Fig. 3.1 Hierarchy of various types of twinning (Adapted from Yeates and Tsai [28])

experiment to a pattern composed of two (or more) independent, interpenetrating
reciprocal lattices. This is usually easily recognized. Continual improvements in
software have made it possible to deal effectively with diffraction patterns of this
type, by integrating spots from distinct lattices separately, accounting for perfectly
or closely overlapping reflections, etc.

Merohedral twinning is a more interesting, or at least more insidious, phe-
nomenon. Here, the different twin domains of the specimen occur in (typically)
two different orientations, related by an operation that is obeyed by the symmetry
of the lattice (i.e. the holohedry) but which is not part of the crystal space group
symmetry. This is possible whenever the lattice symmetry is higher than the space
group symmetry. Figure 3.2 illustrates the case of space group P4; the underlying
tetragonal lattice has extra rotational symmetry (422) not obeyed by the space group;
the alternate twin domains are related by this extra operation. With merohedral
twinning, the separate diffraction patterns arising from the multiple distinct twin
domains are exactly superimposed, giving no visual indication that things are amiss.

The chief consequence of merohedral twinning is that the measured intensities
are not really the true crystallographic intensities of individual reflections. Instead,
each is a weighted sum of two twin-related but crystallographically independent
reflections, I(h;) and I(h,), according to the value of the twin fraction, o

Iobs, 1 = (1 —a)I(h;) + al(hy)
Iobs,2 = al(h;) + (1 —a) I(hy)

One challenge in recognizing and dealing with merohedral twinning is that the
problem can manifest itself in different ways, depending on the twin fraction. When
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Fig. 3.2 A cartoon depicting partial merohedral twinning in space group P4. (a) Two twin domains
growing together, related by a twofold twin-operation perpendicular to the fourfold symmetry axis.
(b) The diffraction patterns of individual domains and their overlapping combination expected in
a diffraction experiment (Adapted from Yeates and Fam [25])

a is equal to or very nearly equal to 1/2 (a situation often referred to as ‘perfect
twinning’), the outcome is erroneously high symmetry in the recorded X-ray data.
For a successful structure determination, the crystallographer must come to realize
that the true crystal space group symmetry is lower than it seems. When a < 1/2
(‘partial twinning’), the observed symmetry is correct, but one must realize and
deal with the fact that the observed intensities do not reflect correct crystallographic
quantities. Understanding which of these two scenarios is at play is essential in
arriving at a correct interpretation in the end.

3.1.1 Testing for Twinning

It is possible to delineate two distinct effects that twinning has on intensity data.
Each effect gives rise to various statistical tests for twinning. These are now broadly
implemented in macromolecular software packages. Here again, understanding the
distinction between the different effects of twinning and their respective tests, and
how they relate to the dichotomy between perfect and partial twinning, is critical for
a proper analysis.

First, twinning causes twin-related reflection pairs, which should be crystallo-
graphically independent, to have intensities more similar to each other than expected
by chance; in the extreme case of a = 1/2, they are exactly equal. The magnitude
of the effect depends on o, and statistical tests based on a comparison of twin-pairs
(sometimes referred to as tests for partial twinning) typically return an estimate
for a. A variety of useful comparison metrics have been developed over the years
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[5, 15, 23]. One of these gives an easy to remember interpretation. If H is defined
to be the difference between two twin-related observed intensities divided by their
sum, then the mean value of |H| over the data set should be equal to (1—2a)/2 [23].
Rearrangement gives a quick estimate for a as 1/2 — < |H|>. Methods for treating
errors in estimating o have been developed [4, 5, 9, 15].

Two points of caution are called for in estimating the twin fraction by comparing
potential twin-pairs. First, non-crystallographic symmetry (NCS) can cause the
same effect as partial twinning — i.e. similarity between potentially twin-related
reflections — so tests of this type, without further scrutiny, can lead to false
conclusions of twinning. Second, tests of this type are of no utility in situations of
perfect or near-perfect twinning; the equivalence between twin-related reflections
would already be implicit from the apparent higher symmetry obtained during data
reduction. And reducing data in a lower symmetry and then performing a test for
partial twinning (i.e. comparing potentially twin-related reflections) can only lead to
confusion; such a comparison would necessarily report near-equivalence of potential
twin-pairs, which is consistent with perfect twinning, though no twinning may be
present.

Various statistical measures are commonly employed to examine overall intensity
distributions for evidence of perfect or very-high twinning [14, 18]. Perhaps the
easiest to remember is <I>>/(<I>?), which should be 2.0 for untwinned (acentric)
data, and 1.5 for perfectly twinned (acentric) data. A more recent approach
was designed to try to circumvent the obfuscating effects of anisotropy, whose
presence along with other phenomena such as pseudo-translational symmetry can
shift distributions in a way that masks the presence of twinning. In this more
modern variation, the overall intensity distribution is not evaluated over individual
reflections, but instead for reflection pairs nearby in reciprocal space (but not related
by a potential twin operation). The local difference, L = (I —Ig)/(I5 + Iz) obeys
a simple distribution and has a simple expected mean value: <|L|>=1/2 for
untwinned (acentric) data and 3/8 for perfectly twinned (acentric) data [10]. This
local test is generally more robust than the traditional approaches that date back to
Wilson [22] (Fig. 3.3).

3.1.2 NCS

Non-crystallographic symmetry can confound attempts to analyze diffraction data
for twinning. This situation is worsened by the observation that NCS very often
occurs as an underlying feature in cases of twinning, typically with an NCS
operator nearly parallel to a twin-operator. Although dissecting the two effects can
be problematic, a generally useful approach can be to examine the behavior of
various tests as a function of resolution; the effects of NCS typically break at higher
resolution, whereas the effects of twinning persist across all resolution ranges.
Tests that give resolution-dependent results can be illuminating. For example, if
an initial test for partial twinning (by comparing twin-pairs) suggests that twinning
may be present, but repeating the test using only higher resolution data shows
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Fig. 3.3 Robustness of local intensity difference statistics in the presence of anisotropic scattering.
Theoretical distributions for acentric data are shown by bold curves, while those for centric data are
shown by the thinner curves. Distributions for observed acentric data are shown by open circles.
The example (PDB code lawu) illustrates a case where anisotropic scattering partially obscures
the presence of twinning based on a traditional intensity distribution test (a), while the test of
local differences, L, gives a clear indication of twinning, as seen in (b) (Adapted from Padilla and
Yeates [10])

strongly reduced evidence for twinning, one might suspect that the situation results
from simple NCS falsely mimicking twinning at lower resolution. Alternatively, one
might examine the overall intensity statistics (in a test for perfect twinning) and find
weak or ambiguous evidence for twinning at low to moderate resolution, but much
stronger shifts in the intensity distribution based only on higher resolution data. This
is consistent with true twinning nearly coincident with a nearly crystallographic
NCS operation. At low resolution, the twin operator would mix together reflections
whose intensities are already nearly equal to each other because of the NCS.
Therefore, the intensity distribution might be almost normal at low resolution,
and show strong evidence for twinning only at resolutions where the nearly
crystallographic nature of the NCS breaks down.

3.1.3 The End Game for Twinning

If twinning is properly recognized, chances for successful structure determination
are often good, especially by molecular replacement. Assuming that the true crystal
symmetry has been correctly assigned, modern programs provide robust routines
for refining structures against twinned data. How is this possible, given that the true
intensities were never measured? In one type of approach, it is sometimes possible
to effectively correct the observed data and estimate what the observed intensities
should have been in the absence of twinning; this is referred to as ‘detwinning’. In
contrast, most approaches to structure determination and refinement take the reverse
strategy, modeling the effects of twinning into the calculated intensities instead.
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As a precautionary note, it should be understood that the averaging effects of
twinning tend to produce lower R-values for purely statistical reasons not reflective
of model quality. Therefore, obtaining a lower R-value in atomic refinement when
twinning is invoked is, by itself, not evidence for the presence of twinning. More
careful analyses of the type described above (and in more thorough reviews) are
essential.

3.1.4 Other Variations on Twinning

The twinning situations noted above cover only the simpler types; there are
numerous more complicated scenarios (Fig. 3.1). Pseudo-merohedral twinning can
occur in space groups where twinning is not ordinarily expected, if a fortuitous
unit cell geometry causes a low symmetry lattice to have nearly higher rotational
symmetry. A rare situation known as reticular merohedral twinning can occur
when only a subset of the reflections superimpose on each other; this can lead
to strange diffraction patterns. Finally, twinning of higher order — i.e. with more
than two distinct domain orientations — is possible. Several macromolecular cases
of tetartohedral twinning (n = 4) have been reported in recent years [1, 6, 16, 29],
and equations for handling such cases have been introduced [26].

3.2 Other Disorder Pathologies

Other kinds of disorder, distinct from twinning, have been reported in macro-
molecular crystals. One broad category includes cases where a single molecular
configuration is maintained in a crystallographically ordered fashion in one layer (or
row), but successive layers (or rows) might contain the molecule in an alternative
configuration. When this occurs stochastically from layer to layer, the result has
been described as an order-disorder (OD) phenomenon. Although cases are known
where the distinction between alternate molecular configurations is a difference
in orientation [12], most cases occur as a difference in relative position between
molecules in different layers or rows [7, 17, 19-21, 30]. These cases are often
described as lattice translocation disorders (LTD); their discovery dates to the
case of methemoglobin in 1954, before the first crystal structures of proteins were
determined [2].

LTD and other OD cases do not typically give the kinds of intensity distribution
shifts seen in twinning; the short length scale of the stochastic variations between
molecules causes structure factors to sum by interference in the usual way; complex
F’s add rather than intensities. LTD is therefore diagnosed in different ways.
During the middle stages of structure determination, the presence of interpenetrating
molecular density may provide a clue, echoing the presence of unmodeled molecular
configurations that cannot exist simultaneously. Warning signs can often be seen
before this stage. Intensity statistics can be ‘hyper-centric’ (shifted opposite from
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Fig. 3.4 A lattice translocation disorder in crystals of a bacterial microcompartment shell protein.
(a) Prominent streaking is observed in certain directions, along c* in this case. (b) Impossibly
close packing peaks in a native Patterson map; the indicated molecular positions are not all
simultaneously possible (Adapted from Tsai et al. [19])

the case of twinning) because of the modulating effects of translationally related
molecules. However, hyper-centric intensity distributions are fairly common (e.g.
whenever pseudo translational symmetry is present) even in crystals that do not
suffer from disorder. Two features that appear to be common in LTD cases are
systematic streaking of a subset of the reflections in a defined direction (Fig. 3.4a),
and strong packing peaks in native Patterson maps at positions so close to the origin
or to each other that they would imply impossibly close molecular packing if all the
molecular positions were simultaneously occupied (Fig. 3.4b).

As with twinning, if a suitable model of the OD/LTD disorder can be developed,
the structure can be determined correctly. As before, in some cases the observed
intensities can be corrected by undoing the effects of having multiply shifted,
partially occupied molecular positions. Alternatively, refinement can be performed
in a way that incorporates the disorder into the model.

Beyond these kinds of disorders, others even more complex have been noted.
Systematic off-Bragg peaks in crystals of a profilin-actin complex have been
interpreted in terms of a complex modulated filament, whose period may not
necessarily be commensurate with the lattice spacings in the crystal [13].

3.3 Concluding Remarks

Despite progress in identifying and dealing with disorder in macromolecular
crystals, one thing that remains relatively clear is that the treatments employed
are only approximations for what must be occurring in real crystals. The failures
of final models to fully capture reality are especially evident in the cases of LTD
treated so far. The models give reasonable approximations to the Bragg scattering
(i.e. satisfactory R-values), but they do not account for the substantial scattering
observed as streaking around Bragg peaks. To better understand and treat problems
of disorder, renewed efforts are needed in the area of modeling diffraction from
non-crystalline materials.
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