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Abstract  Essential oils are odoriferous substances traditionally used in the per-
fumery, food, and pharmaceutical industries. The most volatile fraction (con-
stituting 90–95  % of total oil) comprises, in most cases, complex mixtures that 
may contain hundreds of compounds, which are composed mainly of terpenoids. 
Each of these constituents contributes for the biological effects of these essential 
oils. In this chapter, a total of 20 essential oil constituents, which presented posi-
tive results on cytotoxic drug screening, were selected; among them, ascaridole, 
α-bisabolol, (E)-caryophyllene, β-elemene, β-eudesmol, d-limonene, terpinen-
4-ol, and thymol have been extensively studied with promissory results. Herein, 
we highlighted the recent advances in the knowledge of the chemical and antican-
cer properties of these compounds, establishing new goals for future research.

19.1 � Introduction

Plant secondary metabolites have amazing structural diversity and biological 
activities, including anticancer proprieties [1, 2]. Among these, essential oils are 
odoriferous substances traditionally used in the perfumery, food, and pharma-
ceutical industries. Essential oils may be found in different plant parts generally 
in flowers (e.g. Acacia spp., Dianthus caryophyllus, Jasminum spp., Lavandula 
spp., Rosa spp., Rosmarinus officinalis, Syzygium aromaticum, etc.), fruits (Citrus 
spp., Juniperus communis, etc.), leaves (e.g. Cymbopogon spp., Mentha spp., 
Ocimum spp., etc.), leaves and stems (e.g. Aloysia citriodora, Cinnamomum 
spp., Pelargonium spp., Pogostemon cablin, etc.). Moreover, bark (e.g. Betula 
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pubescens, Cinnamomum cassia), rhizomes (e.g. Acorus calamus, Curcuma longa, 
Zingiber officinale, etc.), roots (e.g. Angelica archangelica, Vetiveria zizanioides, 
etc.), seeds (e.g. Coriandrum sativum, Foeniculum vulgare, Myristica spp., etc.), 
and wood (e.g. Aniba rosaeodora, Eremanthus erythropappus, Pinus sylvestris, 
Santalum album, etc.) are also natural sources of commercially important essential 
oils [3, 4].

The most volatile fraction (constituting 90–95  % of total oil) comprises, in 
most cases, complex mixtures that may contain hundreds of compounds which are 
composed mainly of terpenoids (mono-, sesqui-, and even diterpenes). Besides, 
it may contain benzenoids, phenylpropanoids, aliphatic aldehydes, alcohols, and 
esters. Terpenoids (mono- and sesquitepenes) are the primary constituents of the 
essential oils of many types of herbs; many of them are commercially important, 
and are widely used as flavoring agents, perfumes, insecticides, antimicrobial 
agents, and raw material for important chemicals [5].

In this chapter, a total of 20 essential oil constituents, which presented posi-
tive results on cytotoxic drug screening, were selected (Fig. 19.1). In addition, we 
highlighted the recent advances in the knowledge of the chemical and anticancer 
properties of these compounds, establishing new goals for future research.

19.2 � Chemical and Botanical Data

A rigid scheme for classifying secondary metabolites is not applicable due to 
their immense structural diversity; however, three main classes are often used: 
terpenoids and steroids; fatty-acid derivatives and polyketides; and alkaloids. 
Terpenoids constitute the largest and one of the most diverse classes of second-
ary metabolites and they are classified according to the number of containing five-
carbon units coupled through biosynthetic pathways [6, 7]. In volatile fraction, we 
found terpenoids that are classified as hemiterpenes (C5), monoterpenes (C10), ses-
quiterpenes (C15), and even some diterpenes (C20).

Despite their diversity, all plant terpenoids derive from the common build-
ing units isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate 
(DMAPP) that are synthesized via two parallel pathways known as mevalonate 
(MVA) and methylerythritol 4-phosphate (MEP) [6]. In general, MVA pathway 
leads to the synthesis of some sesquiterpenes and triterpenes (sterols) in the cyto-
plasm, while the MEP pathway is responsible for the synthesis of monoterpenes, 
diterpenes, tetraterpenes (carotenoids) and polyterpenes [7, 8].

In the most volatile fraction of essential oils, terpenoids are generally unsatu-
rated compounds which easily decomposable by light, heat or oxygen to produce 
undesirable compounds. So, the steps of isolation, concentration and purification 
in methods for extraction of essential oil become critical. The most commonly 
used technique is the so-called traditional methods [9], i.e., those based on 
mechanical pressing (e.g. citrus oils) and by hydro- or steam-distillation. Steam 
distillation is the worldwide procedure for extraction of essential oils from plant 
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material, which is usually made by Clevenger-type apparatus in laboratory scale 
(hydro-distillation). The main drawback of this technique is related to the decom-
position of labile compounds and the possibility of formation of non-natural 
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Fig. 19.1   Chemical structures of selected essential oil components
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compounds (artifacts). Therefore, it is desirable to employ mild conditions to 
avoid oxidation, thermal deterioration or other chemical changes. Modern meth-
ods of sampling using small volume or no organic solvent have emerged in recent 
years. Techniques such as supercritical fluid extraction with CO2 (SFE-CO2), 
microwave assisted extraction (MAE) and pressure liquid extraction (PLE) have 
gained in interest as a green approach in volatile fraction extractions which can be 
used in small and large scale. These techniques have advantages and limitations, 
which have been recently reviewed [10–12].

Gas chromatograph (GC) coupled with a mass spectrometer (MS) has been the 
main analytical technique for the chemical characterization of essential oils [10] 
and together forms a powerful tool for high quality quantitative and qualitative 
analysis. However, GC/MS analysis of this complex mixture often is a time-
consuming task due to limitations in techniques and instrumentation. Advances 
in this field have led to increased sensitivity, reproducibility and shorter times for 
analysis of volatile components. For example, fast GC often yields faster analy-
sis times than conventional GC while maintaining resolution and allowing more 
samples to be analyzed per shift. Nevertheless, the use of fast GC for essential oils 
analysis is still exploring [13, 14].

For identification of essential oil constituents, computerized matching of 
acquired mass spectrum with those stored in the mass spectral libraries (NIST 
and Wiley) and with that of an authentic standard, comparison of retention indices 
[15] determined at least on two columns with distinct polarities together are 
currently the most widely used for structural identification [7]. Quadrupole mass 
spectra obtained by electron ionization (EI) at 70 eV has been preferred to the ion- 
trap-derived mass spectra due to resulting in fragmentation characteristics of each 
compound [16], especially for the identification of unknown compounds. Tandem 
mass spectrometry (MS–MS), Fourier transform infrared spectroscopy (FT-IR) 
and time-of-flight mass spectrometry (TOF–MS) are alternative techniques for 
detection employed to identify closely related isomers or overlapping compounds. 
The latter has been the detector of choice for GC × GC analysis [10, 17].

In addition, enantiomer separation and determination of enantiomeric ratio or 
enantiomeric excess (e.e.) remains with increasing interest mainly due to possible 
difference in enantiomer biological properties [18]. Two-dimensional (2D) chro-
matographic approach has been required for chiral recognition of components in 
complex samples. The most used techniques is heart-cutting multidimensional 
GC (MDGC) and comprehensive 2D GC (GC × GC). Advantages and limits of 
both techniques are well-known, although recently mass spectrometry as a second 
dimension in detection has gained further interest because of the role it can play in 
speeding up enantioselective GC analysis (es-GC) [18, 19]. Derivatized cyclodex-
trins (CDs) based columns are the most popular chiral stationary phase for es-GC 
[20] and has been successfully applied in the 2D GC analysis of chiral compo-
nents from essential oils [21].

Recently there has been growing interest in terpenoids compounds due to the 
biological activity shown by some of them, especially as anticancer agents. In 
addition, terpenoid enantiomers are particularly useful chiral building blocks for 
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the chemical and biotechnological syntheses [22]. Thus, essential oils are a rich 
source of highly value compounds and their commercialization has increasing 
because they are also used widely in prevent and therapy several diseases [23].

Despite the importance of the issue, to our knowledge, little attention was paid 
on the investigation of chiral components of essential oils and their anticancer 
activity [24, 25].

It is widely known that many substances produced by living organisms are 
chiral and can occur alone (only one enantiomer) or can be present in varying 
amounts or even as racemic mixtures, exerting the same or distinct activities. For 
example, (4S)-(+)-carvone smell like caraway and (4R)-(−)-carvone has a dis-
tinct sweet spearmint odor with both enantiomers presenting different effects on 
the central nervous system [26]. Moreover, the isomers of the monoterpene alco-
hol (3R)-(−)- and (3S)-(+)-linalool have distinctive odors [27], but show the same 
antifungal activity [28].

The biosynthetic pathways of the essential oil components can produce one 
form only of an optically active chemical. Sometimes one form of an enantiomer 
may be produced in larger amounts, but often the relative abundances of both 
enantiomeric forms are very specific to the species and geographical origin of an 
essential oil [29].

Except for α-humulene, γ-terpinene, eugenol, and thymol exists chirality (ste-
reogenic centers) in the other molecules mentioned in Fig. 19.1. Moreover, enan-
tiomeric distribution of constituents from essential oils is still scarce, especially 
for sesquiterpenes. Nevertheless, some papers have been published mainly on 
the enantiomeric variation of monoterpenes such as (±)-limonene, (±)-linalool, 
(±)-α-pinene, and (±)-terpinen-4-ol [27, 28, 30, 31].

The enantiomers of the linalool are found in variable distribution from dif-
ferent plant species [21, 28]. In general, the optically active (3S)-(+)- and (3R)-
(−)-linalool were isolated from lavender oil and coriander oil respectively, but 
both forms can be found in variable proportion in the wood and leaves essential 
oils of Brazilian rosewood (Aniba rosaeodora Ducke) [32]. It is noteworthy that 
the chiral stability may be influenced by the developmental stage of plant mate-
rial, pH value and sampling techniques. In comparison, increasing amounts of the 
(3S)-(+) linalool was detected in oils produced by hydro-distillation of longer than 
1 h duration [33]. In the same way, ascaridole, a monoterpene endoperoxide found 
as major component (up to 92 % of total oil) of essential oil from Chenopodium 
ambrosioides from various origins, is a heat-sensitive compound which rearranges 
to isoascaridole [34].

The enantiomeric composition of the monoterpene limonene is different for 
the various plant parts and changes during the development of the umbels as well 
as antimicrobial efficacy of the individual enantiomers and the racemic mixture 
showed variation [35]. For example, (4R)-(+)-limonene, the major component 
orange and other citrus peel oils, is one of the most investigated monoterpenes 
regarding the prevention of chemically induced tumors [36]. From a biosynthetic 
point of view, (4S)-(−)-limonene then serves as a precursor to other oxygenated 
monocyclic monoterpenes such as (−)-perillyl alcohol and (−)-perillaldehyde 
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which are minor components in many aromatic plants including Perilla frutescens 
(Lamiaceae) and also have been linked to anticancer activity [23, 24, 36].

The sesquiterpene α-(−)-bisabolol was first isolated from the blossoms of 
Matricaria chamomilla (Asteraceae) which may exist in three others possible ste-
reoisomers: (+)-α-bisabolol and (+)- and (−)-epi-α-bisabolol. Besides, chamomile, 
another source of α-(−)-bisabolol is sage (Salvia runcinata) that contain up to 90 % 
and candeia (Eremanthus erythropappus) which may contain up to 85 % from the 
wood [37].

(−)-trans-β-elemene is a sesquiterpene that has attracted attention due to recent 
developments on their use in the antitumor therapy of many kinds of cancer.  
A comprehensive review that includes its natural occurrence, biogenesis, anticancer 
activity, and synthesis and chemical characterization was recently published [38].

Caryophyllene is probably the most widely distributed sesquiterpene in nature. 
The pure form of the (−)-(E)-caryophyllene is frequently present in the essen-
tial oil from Humulus lupulus, Piper nigrum, Syzygium aromaticum leaf, and 
Copaifera officinalis, etc. However, (+)-(E)-caryophyllene is rare and has been 
found in essential oils of liverworts [39].

Phenylpropanoid volatile compounds are found in essential oil composition 
of many plant species presenting significant biological activities. One such com-
pound is eugenol which has been used by humans since antiquity for food preser-
vation and flavoring and for medicinal purpose. Essential oil from clove (Syzigium 
aromaticum) is the main natural source of eugenol (up to 90 % of total oil) [40].

19.3 � Anticancer Proprieties

As already mentioned, we selected a total of 20 compounds that presented posi-
tive results on cytotoxic drug screening; among them, ascaridole, α-bisabolol, (E)-
caryophyllene, β-elemene, β-eudesmol, d-limonene, terpinen-4-ol, and thymol 
have been extensively studied with promissory results. Therefore, a special atten-
tion was given to these compounds. Moreover, the relevant compounds were sum-
marized and included in a condensed form in Table 19.1.

Ascaridole exhibits cytotoxic activity against leukemia, melanoma, brain, and 
colon cancer cell lines, as well as, multiple drug resistance cancer cell lines [41, 42]. 
It also presented in vivo antitumor in a sarcoma murine model with no toxic side 
effects [42]. More recently, cell cycle and DNA damage analyses revealed a remark-
able NER (nucleotide excision repair) specificity of ascaridol. Ascaridole decreased 
the G1 phase in three cells lines, but it caused G2/M phase arrest only in NER-
deficient cells. It also induced an increase in the subG1 peak which was consider-
ably higher in NER-deficient cells than in proficient cells. Moreover, DNA damage 
induction was substantially higher in NER-deficient cells. In addition, ascaridole 
led to a dose-dependent increase in intracellular levels of reactive oxygen species 
at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced 
amount of 8-oxodG sites [43].
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α-Bisabolol showed cytotoxic effect on several human and rat malignant 
cell lines. The action of α-bisabolol seems to be selective as its effect in nor-
mal mouse astroglial cells was not cytotoxic. It also exhibited apoptotic activity 
by induction of the liberation of cytochrome c and via Fas receptor [44, 45]. In 
addition, Gomes-Carneiro et al. [46] showed that α-bisabolol is non-mutagenic in 
the Salmonella microsomal test, and it can even neutralize the effect of various 
mutagenic substances. Moreover, α-bisabolol also showed an antigenotoxic effect 
against the hydrogen peroxide effect [45].

(E)-Caryophyllene has been reported to have cytotoxic activity over a wide 
range of tumor cell lines, but not against normal cells [47–49]. In addition, it 
caused an induction of apoptosis accompanied by DNA ladder and caspase-3 cata-
lytic activity in tumor cell lines [49].

β-Elemene exhibits in vitro and in vivo antitumor activity on human and 
murine tumor cells. Many studies showed that the cell proliferation inhibited by 
β-elemene is correlated to G2/M phase arrest and induction of apoptotic cell death 
by reduction of Bcl-2 protein expression. β-Elemene also enhances caspase-3 
activity, and inhibits protein expression of eukaryotic initiation factors eIFs (4E, 
4G), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor 
(VEGF) [50–57].

Furthermore, β-elemene markedly enhanced taxanes or cisplatin-induced 
cytotoxicity [57–59]. The combination treatments induced increased cytochrome 
c release from mitochondria, significant caspase-8 and -3 cleavage, and down-
regulation of Bcl-2 and Bcl-XL expression. The suppression of specific ‘sur-
vival’ gene expression appears to be the key action leading to the synergistic 
effect of combination treatments with β-elemene and taxanes [58, 59]. In vivo, 
the growth of laryngeal cancer cell-transplanted tumors in nude mice was inhib-
ited by intraperitoneal injection of elemene. Compared with control groups, 
elemene significantly inhibited the protein expression of eIFs (4E and 4G), 
bFGF, and VEGF and decreased the microvessel density (MVD) [57]. Moreover, 
some clinical trials indicated that the possible side effects of β-elemene given 
intravenously include slight fever (usually lower than 38  °C), gastro-intestinal 
reactions, allergic reactions, local pain, and phlebitis. No bone marrow, liver, 
cardiac, or renal toxicities were found to be related to clinical treatment with 
β-elemene [50, 60, 61].

β-Eudesmol produced inhibitory effect on the growth of various tumor cells 
lines, but it had no effect on the proliferation of the rat aortic smooth muscle 
cells and astrocytes [62–64]. In addition, β-eudesmol induced apoptosis accom-
panied by cleavage of caspase-3, caspase-9, and poly (ADP-ribose) polymerase; 
downregulation of Bcl-2 expression; release of cytochrome c from mitochon-
dria; and decrease in mitochondrial membrane potential (MMP). Activation of 
c-Jun N-terminal kinases (JNK) mitogen-activated protein kinases was observed 
in β-eudesmol-treated cells, and the inhibitor of JNK blocked the β-eudesmol-
induced apoptosis, downregulation of Bcl-2, and the loss of MMP, suggesting that 
β-eudesmol induces apoptosis by mitochondrial apoptotic pathway, which is con-
trolled through JNK signaling [63].
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β-Eudesmol also inhibited angiogenesis by blocking extracellular regulated 
protein kinases (ERK) MAPK signaling [62]. Moreover, it inhibited the growth of 
mouse H22 and S180 tumor and the formation of new blood vessels in tumor tis-
sues in vivo [65].

d-limonene is a known anticarcinogenic compound that it was proved to have 
antitumor activity [66–70]. In recent studies, d-limonene showed able to inhibit 
the growth of human gastric cancer cell in vitro through a mechanism of inducing 
the apoptosis of tumor cells [70].

In xenograft model, d-limonene alone or combined with 5-FU decreased dras-
tically, the metastasis to liver, peritoneum and the occurrence of ascites were 
inhibited significantly compared with the control group. In addition, a notably 
decreased expression of MVD and VEGF in d-limonene and combined group 
were observed, suggesting the anti-angiogenic mechanism of d-limonene via 
down-regulation of VEGF [71].

Many studies have indicated that terpinen-4-ol exerts cytotoxic effects against 
several tumor cell lines without affecting normal cells. It is also able to induce 
cell-cycle arrest and cell death through apoptosis or necrosis pathways [72, 73]. In 
addition, Wu et al. [74] demonstrated that caspase-dependent mitochondrial dys-
function is the mechanism of terpinen-4-ol-induced apoptosis. Downregulation of 
Bcl-2, XIAP and survivin suggests that terpinen-4-ol increases the susceptibility of 
cancer cells to apoptosis induction. Notably, the ability of terpinen-4-ol to induce 
apoptosis in tumor cells was p53-dependent. Furthermore, the growth of s.c. xeno-
graft tumors was remarkably inhibited by intratumoral injection of terpinen-4-ol, 
indicating that the agent also has potential for clinical anticancer activity.

The cytoprotective and antimutagenic effects of thymol has been extensively 
reported [75–78]. Anyway, some studies also have indicated the antitumor activ-
ity of thymol [79–81]. Thymol caused activation of caspase-9, -8 and -3 and con-
comitant PARP cleavage and it induced disruption of mitochondrial membrane 
potential, which is associated with caspase-dependent apoptosis. The disruption of 
mitochondrial membrane and activation of apoptosis appears to be dependent on 
reactive oxygen species. The translocation of AIF from mitochondria to cytosol and 
then to nucleus indicates thymols’ ability to induce apoptosis through caspase inde-
pendent pathway as well [79]. In addition, Hsu et al. [80] demonstrated that thymol 
induces a [Ca2+] concentration rise by inducing phospholipase C- and protein kinase 
C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via non 
store-operated Ca2+ channels. Thymol induced cell death that may involve apoptosis.

19.4 � Conclusions and Perspectives

A great amount of essential oil constituents with anticancer potential are found. 
The most of them presented cytotoxic activity only high range of IC50 val-
ues; therefore, they present weak clinical potential use. On the other hand, some 
of them have been extensively studied with promissory results. In short, 20 
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compounds were identified for their activities in the experimental models used for 
cytotoxic drug screening; among them, ascaridole, α-bisabolol, (E)-caryophyllene, 
β-elemene, β-eudesmol, d-limonene, terpinen-4-ol, and thymol have been shown 
promissory results. Anyway, further investigations are necessary to validate these 
compounds as novel clinically useful cancer chemotherapeutic agents.
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