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Abstract Similarity search is becoming a field of interest because it can be applied to
different areas in science and engineering. In real applications, when large volumes
of data are processing, query response time can be quite high. In this case, it is
necessary to apply mechanisms to significantly reduce the average query response
time. For that purpose, modern GPU/Multi-GPU systems offer a very impressive
cost/performance ratio. In this paper, the authors make a comparative study of the
most popular pivot selection methods in order to stablish a set of attractive features
from the point of view of future GPU implementations.

Keywords Clustering-based methods · Comparative study · Data structures ·
Metric spaces · Pivot-based methods · Range queries · Similarity search.

1 Introduction

In the last decade, the search of similar objects in a large collection of stored objects
in a metric database has become a most interesting problem. This kind of search
can be found in different applications such as voice and image recognition, data
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mining, plagiarism detection and many others. A typical query for these applications
is the range search which consists in obtaining all the objects that are at some given
distance from the consulted object.

1.1 Similarity Search in Metric Spaces

Similarity is modeled in many interesting cases through metric spaces, and the search
of similar objects through range search or nearest neighbors. A metric space (X, d)

is a set X and a distance function d : X
2 → R, such that ∀x, y, z ∈ X fulfills the

properties of positiveness [d(x, y) ≥ 0, and d(x, y) = 0 ⇐⇒ x = y], symmetry
[d(x, y) = d(y, x)] and triangle inequality [d(x, y) + d(y, z) ≥ (d(x, z)].

In a given metric space (X, d) and a finite data set Y ⊆ X, a series of queries
can be made. The basic query is the range query (x, r), a query being x ∈ X and a
range r ∈ R. The range query around x with range r (or radius r ) is the set of objects
y ∈ Y such that d(x, y) ≤ r . A second type of query that can be built using the range
query is k nearest neighbors (k N N ), the query being x ∈ X and object k. k nearest
neighbors to x are a subset A of objects Y, such that if |A| = k and an object y ∈ A,
there is no object z 
∈ A such that d(z, x) ≤ d(y, x).

Metric access methods, metric space indexes or metric data structures are different
names for data structures built over a set of objects. The objective of these methods
is to minimize the amount of distance evaluations made to solve the query. Searching
methods for metric spaces are mainly based on dividing the space using the distance
to one or more selected objects.

Metric space data structures can be grouped into two classes [1], clustering-
based and pivots-based methods. The clustering-based structures divide the space
into areas, where each area has a so-called centre. Some data is stored in each area,
which allows easy discarding the whole area by just comparing the query with its
centre. Algorithms based on clustering are better suited for high-dimensional metric
spaces. Some clustering-based indexes are BST [2], GHT [3], M-Tree [4], GNAT [5],
EGNAT [6] and many others.

There exist two criteria to define the areas in clustering-based structures: hyper-
planes and covering radius. The former divides the space into Voronoi partitions
and determines the hyperplane the query belongs to according to the correspond-
ing centre. The covering radius criterion divides the space into spheres that can be
intersected and one query can belong to one or more spheres.

In the pivots-based methods, a set of pivots is selected and the distances between
the pivots and database elements are precalculated. When a query is made, the query
distance to each pivot is calculated and the triangle inequality is used to discard
the candidates. Its objective is to filter objects during a request through the use of a
triangular inequality, without really measuring the distance between the object under
request and the discarded object. Mathematically, these construction and searching
processes can be expressed as follows:
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• Let {p1, p2, . . . , pk} a set of pivots, pi ∈ X. For each element y of the database
Y the distance to the k pivots (d(y, p1), . . . , d(y, pk)) is stored. Given a query q
and a range r , the distance (d(q, p1), . . . , d(q, pk)) to the k pivots is calculated.

• If for some pivot pi the expression |d(q, pi ) − d(y, pi )| > r is holding, then
for triangle inequality d(q, y) > r , and therefore it is unnecessary to explicitly
evaluate d(q, y). All the objects not discarded by this rule have to be directly
compared to the query q.

Some pivots-based indexes are LAESA [7], FQT and its variants [8], Spaghettis
and its variants [9], FQA [9], SSS-Index [10] and others.

Array-type structures implement these concepts directly. The difference among
the array-type structures lies on extra structures used to reduce the computational cost
to obtain the number of candidates keeping invariable the evaluation of distances.

Many indexes are trees and the children of each node define areas of space. Range
queries traverse the tree, entering into all the children whose areas cannot be proved
to be disjoint with the query region.

The increased size of databases and the emergence of new data types create the
need to process a large volume of data. Then, new research topics appear such
as efficient use of computational resources (storage and its hierarchy, processors,
network, etc) that allows us to reduce the execution time and to save energy. In this
sense, recent appearance of GPUs for general purpose computing platforms offers
powerful parallel processing capabilities at a low price and energy cost. However,
this kind of platforms has some constraints related to the memory hierarchy.

The present work analyses, by means of a set of experiments, the results obtained
for several metric structures in order to obtain those attractive features [11] from the
point of view of a future GPU-based implementation: selection of pivots and centres
techniques, needed storage and simplicity of the data structure.

The paper is structured as follows. In Sect. 2 the metric structures considered in
this paper are described. In Sect. 3 the features to be evaluated are presented. Section 4
outlines the experimental results and discussion. Finally, the conclusions and future
work are commented in Sect. 5.

2 Metric Structures

The metric structures considered in this comparative study are:

Generic Metric Structure (GMS). This structure represents the most basic struc-
ture: it is an array-type structure based on pivots, which are obtained randomly. From
this generic structure could be derived the rest of structures based on arrays and the
choice of the pivots could be carried out according to SSS-Index or MSD methods.
These pivot selection techniques will be introduced later.

Spaghettis [12]. It is an array-type structure based on pivots and does not assume any
pivot selection method. However, each entry in the array, that represents distances
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Fig. 1 Construction of EGNAT structure: data space and metric structure

between an element in the database and the pivots, is sorted with respect to this
distance, obtaining a reduction on the execution time by means of a binary search.
In this work, the array is sorted considering only the first pivot.

SSS-Index. SSS-Index (Sparse Spatial Selection) [10] is basically the generic struc-
ture varying the way in which the pivots are selected. The selection methods will be
introduced later.

LAESA. Like SSS-Index, it is a structure similar to the generic one, but the selection
of pivots is carried out by a method called Maximun Sum of Distances (MSD).

EGNAT. Evolutionary GNAT [6] is a clustering tree-type structure derived from
GNAT structure. This method pretends to exploit the secondary memory hierarchy
(see Fig. 1). This structure is far from the array-type of the generic structure.

The choice of these metric structures is motivated because they are representative
of this field of knowledge, and we have considered structures based on pivots and on
clustering, array-type and tree-type.

With respect to the choice of pivot selection, we have considered the following:

Randomly. As the name suggests, this method consists in selecting randomly the set
of pivots of the database.

Sparse Spatial Selection (SSS). Sparse Spatial Selection [10] is a method to select
a dynamic set of pivots or centres distributed in the space. Let (X, d) be a metric
space, U ⊂ X and M the largest distance between all pairs of objects, i.e. M =
max{d(x, y)/x, y ∈ U}. Initially, the set of pivots contains the first element of the
collection. After that, an element xi ∈ U, is selected as a pivot if and only if the
distance between it and the rest of selected pivots is greater than or equal to M ∗ α,
being α a constant whose optimum values are close to 0.4 [10] (see Fig. 2).

Maximun Sum of Distances (MSD). MSD (Maximun Sum of Distances) is used
in LAESA (Linear Aproximating Search Algorithm) [7, 13]. The underlying idea is
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Fig. 2 Partition of the space using SSS methods

to select pivots considering that the distance between them is always the maximum.
Starting with a base pivot arbitrarily selected, the distance between the objects and
the selected pivot is calculated, and then the new base pivot to be selected is the one
located to the maximum distance. The distances are added in a vector to calculate
the next base pivot. This is an iterative process that ends when the required number
of base pivots is obtained.

3 Metric Structures Features to be Evaluated

In the literature it is possible to find a wide range of metric structures for similarity
searching [1, 14].

In this work a set of representative metric structures have been considered based
on pivots, clustering, array-type or tree-type. We have considered this variety of
structures in order to determine, experimentally, if the cost in the searching process
compensates the complexity of the implementation, taking into account that the deci-
sion taken here will condition the future implementation on a GPU-based platform.

The relevant features considered in this work are:

Execution time. The execution time is a key factor in order to determine the best
implementation. In the literature lot of papers are found talking about evaluation of
distances [6, 10], but they do not consider execution time (floating point operations
and I/O operations), memory accesses, etc.

Distance evaluations. In general, the reduction on evaluation of distances has been
considered as the main goal of the new structures design, and evidently, it has a
direct impact on the execution time. However, the high processing capacity of current
computational platforms implies that distance evaluation is not always the operation
with a higher computational cost. For instance, in GPU-based platforms, sorting
operation affects to the execution time more than the evaluation of distances.

Storage requirements. A very interesting feature to evaluate is the memory needed
to store a structure, even more if memory constraints are considered as is the case of
GPU platforms. We have only addressed main memory, being secondary memory out
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of the scope of this paper. The point is, “how much storage I am willing to sacrifice
versus performance?”.

4 Experimental Evaluation

In this section, the case studies used as benchmarks and the testbed considered in
this paper are described. Moreover, preliminary results are presented.

4.1 Case of Studies and Platform

We considered two datasets: a subset of the Spanish dictionary and a color histograms
database, obtained from the Metric Spaces Library (see www.sisap.org). The Spanish
dictionary we used is composed of 86,061 words. The edit distance was used. Given
two words, this distance is defined as the minimum number of insertions, deletions
or substitutions of characters needed to make one of the words equal to the other.
The second space is a color histogram. It is a set of 112,682 color histograms (112-
dimensional vectors) from an image database. Any quadratic form can be used as a
distance, so we chose Euclidean distance as the simplest meaningful alternative.

The results presented in this section belong to a set of experiments with the
following features:

• For all data structures considered in this paper, a set of tests were carried out using
pivots from 1 to 1362 for word space and from 1 to 244 for color histograms (see
Fig. 3). From all the results, only the best results have been plotting.

• For word space, each experiment has 8,606 queries over a Spaghettis with 77,455
objects. For vector space, we have used a dataset of 101,414 objects and 11,268
queries.
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Fig. 3 Execution time for the implementation considering a generic metric structure (GMS). a
General result for Spanish dictionary b General result for color histograms
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• For each query, a range search between 1 and 4 was considered for the first space,
and for vectors space we have chosen ranges which allow to retrieve 0.01, 0.1 and
1 % from the dataset.

We have chosen this experimental environment because is the most usual envi-
ronment to evaluate this kind of algorithms. Also, these datasets are representative
of discrete and continuous searching, respectively.

The hardware platform used is called Marte and belongs to the Albecete Research
Institute of Informatics (I3A: http://www.i3a.uclm.es.). Marte is a 2 Quadcore Xeon
E5530 at 2.4GHz and 48GB of main memory, and Ubuntu 9.10 (64 bits) Linux
Operating System. The compilation has been done using gcc 4.3.4 compiler.

4.2 Experimental Results and Discussion

Although results are usually shown considering the search ranges in the X axis, in this
paper we have considered a different approach. In order to compare the behaviour
of different pivot-based structures, in our opinion, it is more interesting to show the
results againts the number of pivots, typically 4, 8, 16 and 32, but also 1 and a number
of pivots bigger than 32, especially when we need to compare with SSS-Index. This
structure does not allow to choose the number of pivots (they are calculated depending
on several parameters such as the value of α and the kind of search space) and usually
uses a big number of pivots.

Figure 3 shows an overview of the behaviour of the generic structure based on
pivots for both datasets.

Usually in metric structures, the performance of a structure increases with the
number of pivots. Nevertheless, as can be seen in Fig. 3 for the generic structure,
the performance increases till a point (that depends on the range considered, e.g. 32
pivots for range 1) from where the performance remains the same or decreases. This
behaviour is common to all the structures as shown in Fig. 4. In this figure only the
results close to the best one are shown.

Notice that when using the SSS structure we cannot select a priori an exact number
of pivots. This is the reason why the minimum number of pivots is 44 (for word space)
and 35 (for color histograms). For word space, as the distance is discrete, there are
not values between 328 and 665, so the value 500 does not exist in SSS-Index. The
value 500 neither is shown in EGNAT because the needed structure is bigger than
the RAM memory, swapping is needed and consequently performance is poor.

Analysing the results in Fig. 4 we can conclude that for small ranges Spaghettis
has the overall best performance considering both datasets. The reason is that the
use of binary search allows a quick search of the first element in the database inside
the range. GMS is very close to Spaghettis performance, and the other 3 structures
have a bad behaviour in one of the two datasets, color histograms in MSD and SSS,
and the Spanish dictionary in EGNAT. Nevertheless when we consider bigger search
ranges, the advantage of Spaghettis is lost; in this case the price in time of the binary
search is not worthy because less elements are discarded.
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Fig. 4 Execution time for the implementation considering all structures. a General result for Span-
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Fig. 5 Distance evaluations for the implementation considering all structures. a General result for
Spanish dictionary. b General result for color histograms

Figure 5 shows the same scenario for distance evaluations. The number of evalu-
ations decreases when the number of pivots increases. This means that, comparing
Figs. 4 and 5, at some point is not worthy to increase the number of pivots because
the time consumed in their management is bigger than the time consumed in the
distance evaluations we save. We can also conclude that using more pivots is better
for big ranges, and it has little influence for small ranges.

Tables 1 and 2 show, in detail, the execution time (in seconds) of the best cases
depending on the range or on the data retrieved percentage, respectively. In these
tables several modifications of the generic structure are considered. In these modifi-
cations the pivots were not selected randomly but following the pivots selection meth-
ods used by the other structures. Thus, first we get a subset of pivots from the database
randomly or using SSS and then MSD is applied to get the number of pivots for the
best performance case (32 or 44 depending on the range). Only modifications of the
structure with a good performance are considered in the tables (e.g. “MSD x on SSS
y” cases are not included in color histograms because they have a poor performance).

The results obtained for the modified generic structures are good. For small ranges
Spaghettis is still better, but when the range increases the new structures have better
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Table 1 Execution time for the best methods on word space (column: range; row: data structure)

Index 1 2 3 4

Spaghettis 32 18.24 270.39 1434.78 2769.06
MSD 32 on GMS 665 25.32 255.37 1453.01 2783.26
MSD 32 on GMS 1362 25.78 251.16 1436.40 2802.90
MSD-Laesa 32 25.84 291.08 1510.68 2879.07
GMS 32 26.18 274.37 1428.74 2754.02
MSD 32 on SSS 665 27.61 249.92 1489.16 2953.54

MSD 44 on random 1362 27.79 168.91 1200.94 2647.71
MSD 32 on SSS 1362 27.86 269.72 1506.16 2910.85
SSS-Index 44 (α = 0.55) 31.93 180.91 1404.33 3153.15

Table 2 Execution time for the best methods on color histograms (column: data retrieved percent-
age; row: data structure)

Index 0.01 0.1 1.0

Spaghettis 32 21.00 54.90 182.87
GMS 32 37.77 69.89 190.74
MSD 32 on GMS 119 39.28 71.85 190.26
MSD 32 on GMS 1014 46.55 96.10 246.91

EGNAT 32 53.01 91.86 180.89
SSS-Index 57 (α = 0.6) 55.77 95.91 249.85
MSD-Laesa 35 91.33 199.75 406.99

performance. The advantage of using MSD over a big number of pivots randomly
chosen is that it allows to choose the best pivots and the exact number of pivots
desired and, consequently, it allows to determine the size of the structure which is
an important factor to consider when we need to fit the structure in a virtual page or
in GPU memory.

Looking forward to the GPU implementation, the size of the structure is a very
important factor. A structure that does not fit into GPU memory will not have a good
performance. Figure 6 shows that EGNAT structure is much bigger than pivot-based
structures. As expected, the size of the structure in pivot-based structures is directly
proportional to the number of pivots. In order to have a more detailed view, the
bigger values were removed from the table (e.g. in color histograms EGNAT with
119 centres needs 2 GBytes, in word space EGNAT with 328 centres needs 6 GBytes).

Tree-type structures have a good performance when the radius increases, and they
are very stable with respect to the number of pivots or centres. This means that we
can get a good performance even selecting a small number of centres. The problem
with this kind of structure is that when a new node in the tree is created, there is no
guarantee that it will be completed, leading to a situation in which the size of the
structure can grow a lot depending on how objects are distributed in subtrees. In the
tree-based structure used in this paper we obtained that less than 20 % of the nodes
were completed.
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clustering-based structures (EGNAT). a General result for Spanish dictionary. b General result
for color histograms

5 Conclusions and Future Works

In this work a comparative study of different metric structures has been carried out.
Different types of metric structures and pivot selection methods have been consid-

ered in order to make a good comparison. The comparison has been made according
to three criteria: execution time, evaluation of distances and storage requirements.

According to the experimental results, it is not possible to select a metric structure
as the best one, because it depends on the space distribution of the database. Three
structures are candidates to be eligible as the best: Spaghettis, Generic structure +
MSD and EGNAT. However from the point of view of a future GPU implementation
the best one is Generic + MSD due to:

1. By using a generic structure it is not necessary to apply a binary search like
Spaghettis. Binary search operation is very expensive in a GPU-based platform
in comparison with the evaluation of distances.

2. Using a generic structure the storage requirements are lower than using a EGNAT
structure.

3. Thanks to the combination of generic structure and MSD pivot selection, it is
possible to reduce the number of pivots till satisfying the memory constraints
inherent to the GPU-based platforms.

To sum up, using the generic structure we will take benefits in terms of execution
time, storage and, in addition, the code is more simple.

As we said in the introduction, the work presented in this paper allows us to choose
the best option from the point of view of a parallel implementation of the similarity
search method based on metric structures on a GPU-based platform, representing
that the future work.
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