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Abstract The parameters of the two-parameter exponential distribution are
estimated in this chapter from the Bayesian viewpoint based on complete, Type-I
and Type-II censored samples. Bayes point estimates and credible intervals of the
unknown parameters are proposed under the assumption of suitable priors on the
unknown parameters and under the assumption of the squared error loss function.
Illustrative example is provided to motivate the proposed Bayes point estimates and
the credible intervals. Various Monte Carlo simulations are also performed to com-
pare the performances of the classical and Bayes estimates.

Keywords Bayes estimate · Censored samples · Credible interval · Maximum
likelihood estimate · Mean squared error · Squared error loss function

1 Introduction

Let X1, X2, . . . , Xn be a random sample of size n from a two-parameter exponential
distribution with a scale parameter θ and a location parameter λ, denoted by E(θ, λ),
where θ and λ are independent. If the lifetime of a component is assumed to follow an
exponential life model with parameters θ and λ then the parameter λ represents the
component’s guarantee lifetime, and the parameter 1/θ represents the component’s
mean lifetime.

The probability density function (p.d.f) of X at x is given by:

f (x |θ, λ) = θe−θ(x−λ); 0 ≤ λ ≤ x and θ > 0 (1)
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This distribution plays an important role in survival and reliability analysis; see
for example Balakrishnan and Basu [1].

In life testing experiments, it often happens that the experiment is censored in
the sense that the experimenter may not be in a position to observe the life times
of all items put on test because of time limitations and other restrictions on the
data collection. The two most common censoring schemes are Type-I and Type-II
censoring schemes. In Type-I censoring scheme, the experiment continue up to a
preselected fixed time T but the number of failures is random, whereas in Type-II
censoring scheme, the experimental time is random but the number of failures is
fixed, k.

The estimation of the parameters of two-parameter exponential distribution based
on Types I and II censored samples has been considered by several authors in
the literature from the Bayesian point of view. El-Sayyed [2] has derived Bayes
estimate and unbiased estimate for θ−1. Singh and Prasad [3, 4] have consid-
ered the problem of estimating the scale parameter θ−1 from the Bayesian view-
point when the scale parameter λ is known. Sarhan [5] has studied several empir-
ical Bayes estimates for one parameter exponential distribution. Singh and Kumar
[6, 7] proposed Bayes estimates for the scale parameter under multiply Type-II cen-
soring scheme. Singh and Kumar [8] proposed Bayes point estimates for the scale
parameter under Type-II censoring by using generalized non-informative prior and
natural conjugate prior. Shi and Yan [9] proposed empirical Bayes estimate for the
scale parameter under Type-I censored sample assuming known location parameter.
Recently, Bayoud [10] has proposed Bayes estimates and credible intervals for the
scale and location parameters based on Type-I censored sample under the assumption
of squared error loss function.

It is noted that in many practical applications, the value of the parameter λ may not
be known. Therefore, it is useful and important to consider the problem of estimating
the parameter θ when λ is unknown.

This chapter aims to derive Bayes point estimates and credible intervals for scale
and location parameters of a two-parameter exponential distribution in order to esti-
mate the guarantee and the mean life time of that distribution. This will be performed
based on complete, Type-I and Type-II censored samples. Bayes point estimates are
proposed under the assumption of the squared error loss function. The scale para-
meter θ is assumed to follow exponential distribution with hyper parameter A, and
the location parameter λ is assumed to follow uniform distribution from zero to B.
Suggestions for choosing the hyper parameters A and B are provided.

The rest of this chapter is organized as follows: Sect. 2 describes the probabil-
ity models that are needed in this work. Bayes point estimates for the scale and
location parameters are proposed in Sect. 3 based on complete, Type-I and Type-II
censored samples separately. Credible intervals are derived for the unknown para-
meters in Sect. 4. An illustrative example is provided in Sect. 5. Simulation studies
are performed in Sect. 6. Finally, the main conclusions are included in Sect. 7.
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2 Models

2.1 Complete Sample

Let X1, X2, . . . , Xn ∼ E(θ, λ), with p.d.f given in (1). The likelihood function of
the complete sample X1, X2, . . . , Xn given θ and λ is given by:

L (x1, x2, . . . , xn|θ, λ) = θne
−θ

n∑

i=1
(xi −λ)

(2)

Suitable priors on the unknown parameters are assumed in order to derive Bayes
estimates and credible intervals.

The parameter θ is assumed to follow exponential distribution with p.d.f
given by:

g(θ) = Ae−Aθ ; A > 0 (3)

where the hyper parameter A is a preselected positive real number that is chosen to
reflect our beliefs about the expected value of 1/θ , because the expected value of θ

equals 1/A.
The parameter λ is assumed to follow a uniform distribution with p.d.f given by:

p(λ) = 1

B
; 0 ≤ λ ≤ B (4)

where the hyper parameter B is a preselected positive real number that is chosen to
reflect our beliefs about the lower bound of the x’s , which can be easily assumed to
equal the minimum observed value, x(1).

The joint posterior p.d.f of θ and λ given {x1, x2, . . . , xn} is given by:

hC (θ, λ|x1, x2, . . . , xn) = L (x1, x2, . . . , xn|λ, θ) g (θ) p (λ)

B∫

0

∞∫

0
L (x1, x2, . . . , xn|λ, θ) g (θ) p (λ) dθ dλ

= nθne
−θ[A+

n∑

i=1
(xi −λ)]

C�(n)
(5)

where C = 1
Dn − 1

En in which D = A +
n∑

i=1
(xi − B) and E = A +

n∑

i=1
xi , θ > 0

and 0 ≤ λ ≤ B .
Therefore,
The marginal posterior p.d.f of θ given {x1, x2, . . . , xn} is given by:
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hθ,C (θ |x1, x2, . . . , xn) =
B∫

0

h (θ, λ|x1, x2, ..., xn) dλ

= θn−1

C�(n)

(
e−Dθ − e−Eθ

)
(6)

where θ > 0, D, E and C are defined in (5).
The marginal posterior p.d.f of λ given {x1, x2, . . . , xn} is given by:

hλ,C (λ|x1, x2, . . . , xn) =
∞∫

0

h (θ, λ|x1, x2, . . . , xn) dθ

= n2

C

1
(

A +
n∑

i=1
(xi − λ)

)n+1 (7)

where 0 ≤ λ ≤ B ≤ x(1) and C is defined in (5).

2.2 Type-I Censored Sample

In Type-I censored scheme a random sample of n units is tested until a predetermined
time T at which the test is terminated. Failure times of r units are observed, where r is
a random variable. Thus the lifetime xi is observed only if xi ≤ T ; i = 1, 2, . . . , n.

Let δi =
{

0; xi > T
1; xi ≤ T

Therefore, r =
n∑

i=1
δi which is assumed to be greater than zero.

The likelihood function of the Type-I censored data is given by:

L I (x1, x2, . . . , xn |θ, λ, T ) =
n∏

i=1

[ f (xi |θ, λ)]δi [1 − F(T |θ, λ)]1−δi

= θr e
−θ

n∑

i=1
xi δi

e−θ[T (n−k)−nλ] (8)

The joint posterior p.d.f of θ and λ based on the Type -I censored sample is given
by:
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hI (θ, λ|x1, x2, . . . , xn, T ) = L I (x1, x2, ..., xn |λ, θ) g (θ) p (λ)

B∫

0

∞∫

0
L I (x1, x2, ..., xn |λ, θ) g (θ) p (λ) dθ dλ

= ne
−θ

[
n∑

i=1
xi δi +T (n−k)−nλ+A

]

C1�(r)
(9)

where θ > 0, 0 ≤ λ ≤ B and C1 = 1
Dr

1
− 1

Er
1

�= 0 in which D1 =
n∑

i=1
xi δi + A +

T (n − r) − nB and E1 =
n∑

i=1
xi δi + A + T (n − r).

The marginal posterior p.d.f of θ given Type-I censored data is given by:

hθ,I (θ |x1, x2, . . . , xn, T ) =
B∫

0

hI (θ, λ|x1, x2, ..., xn, T ) dλ

= θr−1

C1�(r)

(
e−D1θ − e−E1θ

)
(10)

where θ > 0, D1, E1 and C1 are defined in (9).
The marginal posterior p.d.f of λ given Type-I censored data is given by:

hλ,I (λ|x1, x2, . . . , xn, T ) =
∞∫

0

hI (θ, λ|x1, x2, ..., xn, T ) dθ

= nr

C1

1
[

n∑

i=1
xi δi + T (n − r) − nλ + A

]r+1 (11)

where 0 ≤ λ ≤ B ≤ x(1) and C1 is defined in (9).

2.3 Type-II Censored Sample

In Type-II censored scheme the number of failures k is determined at the beginning
of the experiment, the time needed to observe those k failures equals x(k), the kth
order statistic. The likelihood function of the Type-II censored data is given by:
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L I I
(
x(1), x(2), . . . , x(k)|θ, λ

) = n!
(n − k)!

k∏

i=1

f (x(i)|θ, λ)
[
1 − F(x(k))

]n−k

= n!
(n − k)!θ

ke
−θ

[
k∑

i=1
x(i)+(n−k)x(k)−nλ

]

(12)

The joint posterior p.d.f of θ and λ based on the Type-II censored sample is given
by:

hI I
(
θ, λ|x(1), x(2), . . . , x(k)

) = L I I
(
x(1), x(2), . . . , x(k)|λ, θ

)
g (θ) p (λ)

B∫

0

∞∫

0
L I I

(
x(1), x(2), . . . , x(k)|λ, θ

)
g (θ) p (λ) dθ dλ

= nθke
−θ

[
k∑

i=1
x(i) +(n−k)x(k)−nλ+A

]

C2�(k)
(13)

where θ > 0, 0 ≤ λ ≤ B and C2 = 1
Dk

2
− 1

Ek
2

�= 0 in which D2 =
k∑

i=1
x(i) + A +

(n − k) x(k) − nB and E2 =
k∑

i=1
x(i) + A + (n − k) x(k)

The marginal posterior p.d.f of θ given Type-II censored data is given by:

hθ,I I (θ |x(1), x(2), . . . , x(k)) =
B∫

0

hI I
(
θ, λ|x(1), x(2), . . . , x(k)

)
dλ

= θk−1

C2�(k)

(
e−D2θ − e−E2θ

)
(14)

where θ > 0, D2, E2 and C2 are defined in (13).
The marginal posterior p.d.f of λ given Type-II censored data is given by:

hλ,I I (λ|x(1), x(2), . . . , x(k)) =
∞∫

0

hI I
(
θ, λ|x(1), x(2), . . . , x(k)

)
dθ

= nk

C2

1
[

k∑

i=1
x(i) + (n − k) x(k) − nλ + A

]k+1 (15)

where 0 ≤ λ ≤ B ≤ x(1) and C2 is defined in (13).
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3 Classical and Bayes Point Estimates

In this section the maximum likelihood and Bayesian estimates (MLE and BE) are
proposed for the unknown parameters based on the complete, Type-I and Type-II
censored samples. The BE are derived under the assumption of the squared error
loss function (SELF). However, the BE of a parameter equals the posterior mean of
that parameter if the SELF is assumed.

3.1 Based on Complete Sample

In the case of complete sample, the BE of the unknown parameters θ and λ are
respectively given by:

θ̂C = Ehθ ,C (θ) =
∞∫

0

θhθ,C (θ |x1, x2, . . . , xn)dθ

= n

C

(
1

Dn+1 − 1

En+1

)

(16)

λ̂C = Ehλ,C (λ) =
B∫

0

λhλ,C (λ|x1, x2, . . . , xn)dλ

= 1

C

(
B

Dn
+ 1

n(1 − n)

(
1

Dn−1 − 1

En−1

))

(17)

The MLE of θ and λ based on the complete sample are respectively: θ̂M L E,C

= n
n∑

i=1
(xi −x(1))

and λ̂M L E,C = x(1)

3.2 Based on Type-I Censored Sample

In the case of Type-I censored sample, the BE of the unknown parameters θ and λ

are respectively given by:
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θ̂I = Ehθ,I (θ) =
∞∫

0

θhθ,I (θ |x1, x2, . . . , xn)dθ

= r

C1

(
1

Dr+1
1

− 1

Er+1
1

)

(18)

λ̂I = Ehλ,I (λ) =
B∫

0

λhλ,I (λ|x1, x2, . . . , xn)dλ

= 1

C1

(
B

Dk
1

+ 1

n(1 − r)

(
1

Dr−1
1

− 1

Er−1
1

))

(19)

The MLE of θ and λ based on the Type-I censored sample are respectively:

θ̂M L E,I = r
n∑

i=1
xiδi + T (n − r) − nx(1)

and λ̂M L E,I = x(1)

3.3 Based on Type-II Censored Sample

In the case of Type-II censored sample, the BE of the unknown parameters θ and λ

are respectively given by:

θ̂I I = Ehθ,I I (θ) =
∞∫

0

θhθ,I I (θ |x(1), x(2), . . . , x(k))dθ

= k

C2

(
1

Dk+1
2

− 1

Ek+1
2

)

(20)

λ̂I I = Ehλ,I I (λ) =
B∫

0

λhλ,I I (λ|x(1), x(2), . . . , x(k))dλ

= 1

C2

(
B

Dk
2

+ 1

n(1 − k)

(
1

Dk−1
2

− 1

Ek−1
2

))

(21)

The MLE of θ and λ based on the Type-II censored sample are respectively:

θ̂M L E,I I = k
k∑

i=1
x(i) + x(k)(n − k) − nx(1)

and λ̂M L E,I I = x(1)
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4 Credible Intervals

4.1 Based on Complete Sample

Based on the complete sample x1, x2, ..., xn and by using the posterior density
function of θ that is defined in (6), the equal- tailed (1 − α)100 % credible inter-
val for θ denoted by (θL , θU ) can be obtained numerically by solving the following
integral equations:

θL∫

0

θn−1

C�(n)

(
e−Dθ − e−Eθ

)
dθ = α/2 and

∞∫

θU

θn−1

C�(n)

(
e−Dθ − e−Eθ

)
dθ = α/2

Similarly, by using the posterior density function of λ that is defined in (7), the
equal-tailed (1 − α)100 % credible interval for λ can be easily derived as:

(

−1

n

[(
Cα

2
+ F−n

)−1/n

− F

]

, −1

n

[(
2

Cα
− (F − nB)−n

)−1/n

− F

])

in which F =
n∑

i=1
xi + A.

4.2 Based on Type-I Censored Sample

Based on a Type-I censored sample and by using the posterior density function
defined in (10), the equal- tailed (1 − α)100 % credible interval for θ denoted by(
θL ,I , θU,I

)
can be obtained numerically by solving the following integral equations:

θL ,I∫

0

θr−1

C1�(r)

(
e−D1θ − e−E1θ

)
dθ = α/2 and

∞∫

θU,I

θr−1

C1�(r)

(
e−D1θ − e−E1θ

)
dθ = α/2

Similarly, by using the posterior density function of λ that is defined in (11), the
equal- tailed (1 − α) 100 % credible interval for λ can be easily derived as:
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(

−1

n

[(
C1α

2
+ F−r

1

)−1/r

− F1

]

,−1

n

[(
2

C1α
− [F1 − nB]−r

)−1/r

− F1

])

in which F1 = A +
n∑

i=1
xi δi + T (n − r).

4.3 Based on Type-II Censored Sample

Based on a Type-II censored sample and by using the posterior density function
defined in (14), the equal- tailed (1 − α)100 % credible interval for θ denoted
by

(
θL ,I I , θU,I I

)
can be obtained numerically by solving the following integral

equations:

θL ,I I∫

0

θk−1

C2�(k)

(
e−D2θ − e−E2θ

)
dθ = α/2 and

B∫

θU,I I

θk−1

C2�(k)

(
e−D2θ − e−E2θ

)
dθ = α/2

Similarly, by using the posterior density function of λ that is defined in (15) the
equal- tailed (1 − α)100 % credible interval for λ can be easily derived as:

(

−1

n

[(
C2α

2
+ F−k

2

)−1/k

− F2

]

,−1

n

[(
2

C2α
− [F2 − nB]−k

)−1/k

− F2

])

in which F2 = A +
k∑

i=1
x(i) + (n − k) x(k).

5 Numerical Example

Using Mathematica 5, if U has a Uniform(0,1) distribution, then x that satisfies
U = 1 − e−θ(x−λ) follows E(θ, λ). Let Data I = {9.25012, 9.67048, 9.98415,
8.35142, 8.26661, 11.1222, 8.79416, 8.16523, 11.3372, 8.68471, 10.478, 11.0089}
be a random sample generated from E(0.5, 8).

Table 1 summarizes the values of MLE, BE and credible interval for the scale and
location parameters. Those estimates were computed based on the complete, Type-I
and Type-II censored samples. The hyper parameters A and B were assumed to equal
one over of the available sample’s mean and the minimum observation respectively.
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Table 1 MLE, BE and 95 % credible interval for θ and λ based on data I

Complete sample (n = 12) Type-I CS (T = 11) Type-II CS (k = 6)
MLE BE 95 %CI MLE BE 95 %CI MLE BE 95 %CI

θ = 0.5 0.70 0.70 (0.40, 1.06) 0.36 0.54 (0.28, 0.86) 0.66 0.66 (0.29, 1.15)
λ = 8 8.17 8.04 (7.76, 9.60) 8.17 7.99 (7.61, 9.56) 8.17 8.01 (7.67, 8.92)

It becomes apparent from Table 1 that the MLEs and BEs give almost the same
results for estimation the scale parameter θ based on the complete and Type-II
censored samples. It can be also seen from Table 1 that BE performs, in terms of
the mean square error MSE, better than the MLE for estimation the scale parame-
ter θ based on Type-I censored sample. On another hand, BE dominates, in terms of
MSE, the MLE for estimation the location parameter λ based on complete, Type-I and
Type-II censored samples. Moreover, the proposed credible interval gives reasonable
results for estimation the parameters θ and λ in all cases.

6 Simulation Studies

In this section, the performance of the MLEs and the proposed BEs of λ and θ

is investigated through various simulation studies based on complete, Type-I (with
arbitrary T = 5) and Type-II (with arbitrary r = 3) censored schemes. Simu-
lation studies are carried out on various exponential distributions with (θ, λ) =
(0.5, 2), (3, 0.3), (1, 1) and (2, 0). The hyper parameters A and B are assumed to
equal one over the available sample’s mean and the minimum observed value, x(1)

respectively. The main reason for doing this is to allow us to compare the proposed

Table 2 Expected MLE and BE along with their MSE based on complete sample

θ λ n θ̂M L E,C θ̂B,C λ̂M L E,C λ̂B,C

1 5 0.84 (0.41) 0.77 (0.22) 1.38 (0.30) 1.08 (0.15)
30 0.53 (0.01) 0.53 (0.01) 1.07 (0.01) 1.00 (0.01)

0.5 4 5 0.85 (0.46) 0.82 (0.36) 4.40 (00.32) 4.01 (0.20)
30 0.54 (0.01) 0.54 (0.01) 4.07 (0.01) 4.00 (0.00)

1 5 4.93 (15.42) 2.56 (0.65) 1.07 (0.01) 0.97 (0.01)
30 3.20 (0.45) 2.95 (0.29) 1.01 (0.00) 1.00 (0.00)

3.0 4 5 4.88 (13.38) 3.76 (3.50) 4.07 (0.01) 3.99 (0.01)
30 3.21 (0.41) 3.13 (0.35) 4.01 (0.00) 4.00 (0.00)

1 5 8.59 (33.72) 3.25 (5.37) 1.03 (0.00) 0.96 (0.00)
30 5.87 (1.28) 5.01 (0.81) 1.01 (0.00) 1.00 (0.00)

5.5 4 5 9.25 (51.13) 5.97 (5.00) 4.04 (0.00) 4.00 (0.00)
30 5.81 (1.06) 5.55 (0.79) 4.01 (0.00) 4.00 (0.00)
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Table 3 Expected MLE and BE along with their MSE based on Type-I censored sample

θ λ n θ̂M L E,I θ̂B,I λ̂M L E,I λ̂B,I

1 5 0.84 (0.42) 0.77 (0.23) 1.38 (0.30) 1.07 (0.15)
30 0.54 (0.01) 0.53 (0.01) 1.07 (0.01) 1.00 (0.01)

0.5 4 5 0.80 (0.37) 0.77 (0.30) 4.40 (00.32) 3.97 (0.18)
30 0.52 (0.01) 0.52 (0.01) 4.07 (0.01) 4.00 (0.01)

1 5 4.93 (15.4) 2.56 (0.65) 1.07 (0.01) 0.97 (0.01)
30 3.20 (0.45) 2.95 (0.29) 1.01 (0.00) 1.00 (0.00)

3.0 4 5 4.83 (13.61) 3.73 (3.36) 4.07 (0.01) 3.99 (0.01)
30 3.18 (0.39) 3.10 (0.33) 4.01 (0.00) 4.00 (0.00)

1 5 8.59 (33.72) 3.25 (5.37) 1.03 (0.00) 0.96 (0.00)
30 5.87 (1.28) 5.01 (0.81) 1.01 (0.00) 1.00 (0.00)

5.5 4 5 9.49 (69.27) 5.97 (5.79) 4.04 (0.00) 3.99 (0.00)
30 5.83 (1.45) 5.56 (1.1) 4.01 (0.00) 4.00 (0.00)

Table 4 Expected MLE and BE along with their MSE based on Type-II censored sample

θ λ n θ̂M L E,I I θ̂B,I I λ̂M L E,I I λ̂B,I I

1 5 1.38 (3.09) 0.95 (0.49) 1.38 (0.30) 1.10 (0.16)
30 1.54 (6.23) 0.86 (0.38) 1.07 (0.01) 0.99 (0.01)

0.5 4 5 1.35 (4.19) 1.12 (1.37) 4.40 (00.32) 4.03 (0.22)
30 1.47 (7.25) 1.16 (1.44) 4.07 (0.01) 4.00 (0.01)

1 5 9.80 (615.3) 2.09 (1.06) 1.07 (0.01) 0.93 (0/01)
30 8.67 (244.9) 1.95 (1.32) 1.01 (0.00) 0.98 (0.00)

3.0 4 5 9.76 (774.9) 4.31 (5.98) 4.07 (0.01) 3.98 (0.01)
30 9.39 (1170) 4.10 (4.94) 4.01 (0.00) 4.00 (0.00)

1 5 13.5 (214.2) 2.40 (9.76) 1.03 (0.00) 0.92 (0.01)
30 14.2 (375.1) 2.27 (10.5) 1.01 (0.00) 0.98 (0.00)

5.5 4 5 14.4 (426.3) 5.63 (3.76) 4.04 (0.00) 3.98 (0.00)
30 15.2 (499.6) 5.60 (3.40) 4.01 (0.00) 4.00 (0.00)

BEs with the MLEs directly. 1000 simulated datasets are generated from E(θ, λ) by
using Mathematica 5. For the purpose of comparison, the average value of the MLE
and the proposed BE along with the mean squared error (MSE) in parentheses are
reported by assuming n = 5 and 30 based on complete, Type-I and Type-II censored
samples in Tables 2, 3 and 4 respectively. Estimators with the smallest MSE values
are preferred.

It becomes apparent from Tables 2, 3 and 4 that the proposed BEs behave better
than the existing MLEs based on the complete, Type-I and Type-II censored samples
as the MSE values of the proposed BEs are less than those of the MLEs. It has been
shown in Table 4 that the MSE values of the MLEs of θ are so high whereas the
MSE values of the proposed BEs are so small relatively to those of the MLEs, this
motivates the using the proposed BE based on Type-II censored samples. It can be
also observed that when n increases, the MSE of the proposed BEs and of the MLEs
decreases, which is expected.



Bayesian Inference of Exponential Lifetime Models 79

7 Conclusions

In this chapter, Bayes procedures for estimating the scale and location parameters, θ
and λ, of a two parameter exponential distribution were developed based on complete,
Type-I and Type-II censored samples. Prior probability distributions for the parame-
ters θ and λ were assumed to be exponential and uniform distributions respectively.
Bayes point estimates and credible intervals for θ and λ were proposed in the cases of
complete, Type-I and Type-II censored samples under the squared error loss. It was
shown from a random dataset that, the MLE and Bayes estimates gave excellent and
almost equivalent results for estimation the parameter θ in the case of complete and
Type-II censored samples. Furthermore, and based on a random dataset, excellent
results were obtained from the proposed credible intervals for estimation the scale
and the location parameters.

Bayes estimates are highly recommended to estimate the scale and location
parameters of two-parameter exponential distribution based on Type-I and Type-
II samples as simulation studies showed that the MSE values of the proposed Bayes
estimates are much less than those of the existing MLEs .
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