
Parallel Algorithm for Multiplying Integer
Polynomials and Integers

Andrzej Chmielowiec

Abstract This chapter aims to develop and analyze an effective parallel algorithm
for multiplying integer polynomials and integers. Multiplying integer polynomials
is of fundamental importance when generating parameters for public key cryptosys-
tems, whereas their effective implementation translates directly into the speed of
such algorithms in practical applications. The algorithm has been designed specif-
ically to accelerate the process of generating modular polynomials, but due to its
good numerical properties it may surely be used to multiply integers. The basic idea
behind this new method was to adapt it to parallel computing. Nowadays, it is a very
important property, as it allows us to fully exploit the computing power offered by
modern processors. The combination of the Chinese Remainder Theorem and the
Fast Fourier Transform made it possible to develop a highly effective multiplica-
tion method. Under certain conditions our integer polynomial multiplication method
is asymptotically faster than the algorithm based on Fast Fourier Transform when
applied to multiply both: polynomials and their coefficients. Undoubtedly, this result
is the major theoretical conclusion of this chapter.

Keywords CRT · Fast multiplication · FFT multiplication · Integer multiplication ·
Multiplication algorithm · Parallel multiplication · Polynomial multiplication

Polish National Science Centre grant N N516478340.

A. Chmielowiec (B)

Institute of Fundamental Technological Research, Polish Academy of Sciences,
Pawinskiego 5B, 02-106 Warszawa, Poland
e-mail: achmielo@ippt.gov.pl; andrzej.chmielowiec@cmmsigma.eu

G.-C. Yang et al. (eds.), IAENG Transactions on Engineering Technologies, 605
Lecture Notes in Electrical Engineering 229, DOI: 10.1007/978-94-007-6190-2_46,
© Springer Science+Business Media Dordrecht 2013

606 A. Chmielowiec

1 Introduction

In 1971 Schönhage and Strassen [15] proposed a new algorithm for large integer
multiplication. Since that time, methods based on the Fast Fourier Transform (FFT)
have been continuously developed and upgraded. Now we have many multiplication
algorithms which are based on the FFT. They are used to multiply integers [4, 13]
or power series [10, 14, 17, 18]. Some of them are architecture independent and
some are dedicated to a specific processor. The algorithms serve as black boxes
which guarantee the asymptotic complexity of the methods using them. However,
practical implementation often works in the case of such numbers for which it is
ineffective to apply a fast multiplication method. The determination of modular
polynomials is a good illustration of this problem. The latest methods for generating
classic modular polynomials were developed by Charles, Lauter [1] and Enge [6].
Moreover, Müller [12] proposed another family of modular polynomials which may
also be used in the process of counting points on an elliptic curve. The Müller’s
polynomials are characterized by a reduced number of non-zero coefficients and
lower absolute values of coefficients, compared to classic modular polynomials.
All the aforesaid authors give the computational complexity of algorithms used to
determine modular polynomials based on the assumption that both polynomials and
their coefficients are multiplied with the use of the Fast Fourier Transform. The
complexity of such a multiplication algorithm is

O((n log n)(k log k)),

where n is the degree of the polynomial, and k is the number of bits of the largest
coefficient. However, the application of an asymptotically fast algorithm to multiply
numbers becomes effective only when the numbers are of considerable length. Ac-
cording to Garcia’s report [7], fast implementation of multiplication in GMP (GNU
Multiple Precision Arithmetic Library) becomes as effective as classic multiplication
algorithms only for numbers of at least 217 = 131072 bits. That is why it would be
worth to develop a multiplication algorithm which operates fast for polynomials with
relatively small coefficients. In order to achieve that, we decided to use the Chinese
Remainder Theorem (CRT). This chapter presents results described in our WCE’12
article [2] and extends it to show that the proposed method can also be used to im-
plement fast parallel integer multiplication. In general our idea fits into the scheme
proposed in the work [8].

The chapter is organized as follows.
In Sect. 2 for completeness we briefly recall the general idea of the Fast Fourier

Transform. The FFT may be implemented in many forms and a choice of proper
implementation depends on the problem we want to solve and the processor we are
using.

In Sect. 3 we show in detail how to use the CRT to distribute polynomial arith-
metic between many processors. Our new method is very simple both in concept and
implementation. It does not need any communication between processors, which is

Parallel Algorithm for Multiplying Integer 607

an additional advantage. This algorithm may use any implementation of the FFT.
Particularly it may be used with parallel FFT, which reduces the total time of
computation.

In Sect. 4 we present numerical results of our 32-bit implementation based on
OpenMP parallel programming standard. We compare the proposed method with
algorithm based on the FFT over large finite field.

In Sect. 5 we show how fast the 64-bit implementation dedicated and optimized for
x86-64 processors is. We compare this implementation to GMP integer multiplication
algorithm.

To summarize, to multiply polynomials developer combines two independent
techniques to achieve the best performance from a machine or processor:

1. distribution of computations between smaller domains being polynomial rings
(apply CRT),

2. optimization of FFT operations within these smaller domains.

The whole idea is illustrated on the following scheme.

Fp1 [X] FFT−−→ Fp1 [X]
...

...
...

Z[X] CRT−−→ Fpi [X] FFT−−→ Fpi [X] CRT−1−−−−→ Z[X]
...

...
...

Fpk [X] FFT−−→ Fpk [X]

It means that multiplications in Z[X] can be distributed between k independent rings
Fpi [X] and each such multiplication can be done independently in parallel.

2 Fast Fourier Transform and its Implementations

A Fast Fourier Transform (FFT) is an efficient algorithm to compute the Discrete
Fourier Transform. The basic idea of DFT is to represent polynomials as sequences
of values rather than sequences of coefficients. Computing DTF of n values using the
definition takes O(n2) arithmetic operations, while FFT can compute the same result
in only O(n log n) operations. This is the reason why the Fast Fourier Transform
plays a very important role in efficient computations and is considered in many
publications. Some of them give a general description of the FFT [3, 5, 9, 11],
others contain details about very fast implementations [10, 16–18]. In our numerical
experiments in the last section a classic algorithm of FFT has been used. However
for practical purposes we suggest application of the cache-friendly truncated FFT

608 A. Chmielowiec

recently developed [10]. This new FFT method reduces the computational cost and
is optimized against modern processor architecture.

3 Using Chinese Remainder Theorem to Distribute
Computations Between Many Processors

In the rest of this chapter we will assume that the largest absolute value of polyno-
mial coefficients is less than B. To multiply integer polynomials we have to find a
family of finite fields Fpi in which computations will be done. It is clear that the
product

∏k
i=1 pi should be large enough to eliminate modular reduction during the

multiplication process.

Definition 1.1 Let f (X) = fn−1 Xn−1 + · · · + f1 X + f0 ∈ Z[X] and M ∈ Z. We
define f (X) mod M as follows

f (X) mod M = (fn−1 mod M)Xn−1 + . . . + (f0 mod M),

where

fi mod M ∈
{⌊−M + 1

2

⌋

, . . . ,−1, 0, 1, . . . ,

⌊
M − 1

2

⌋}

.

Lemma 1.2 Let f (X) = fn−1 Xn−1 + · · · + f1 X + f0, g(X) = gn−1 Xn−1 + · · · +
g1 X + g0 be polynomials with integer coefficients such that | fi | < B and |gi | < B.
If integer M satisfies the following condition

2nB2 < M

then f (X)g(X) mod M = f (X)g(X).

Proof: If f (X)g(X) = h(X) = h2n−2 X2n−2 + · · · + h1 X + h0 then

h(X) =
(

n−1∑

i=0

fi X i

) ⎛

⎝
n−1∑

j=0

g j X j

⎞

⎠

=
n−1∑

i=0

i∑

j=0

f j gi− j X i +
n−1∑

i=1

n−1−i∑

j=0

fi+ j gn−1− j Xn−1+i

=
n−1∑

i=0

Xi
i∑

j=0

f j gi− j +
n−1∑

i=1

Xn−1+i
n−1−i∑

j=0

fi+ j gn−1− j

Based on the assumption that | fi | < B and |gi | < B we have

Parallel Algorithm for Multiplying Integer 609

1. for all i from 0 to n − 1 we have

|hi | =
∣
∣
∣
∣
∣
∣

i∑

j=0

f j gi− j

∣
∣
∣
∣
∣
∣
≤

i∑

j=0

| f j ||gi− j |

<

i∑

j=0

B2 = (i + 1)B2,

2. for all i from 1 to n − 1 we have

|hn−1+i | =
∣
∣
∣
∣
∣
∣

n−1−i∑

j=0

fi+ jgn−1− j

∣
∣
∣
∣
∣
∣
≤

n−1−i∑

j=0

| fi+ j ||gn−1− j |

<

n−1−i∑

j=0

B2 = (n − i)B2.

It means that |hi | < nB2 for all i from 0 to 2n−2. If M > 2nB2, then all coefficients
(represented as in Definition 0) of f (X), g(X) and h(X) can be represented in residue
system modulo M without reduction. This leads to the formula f (X)g(X) mod M =
f (X)g(X) and ends proof. �

Theorem 1.3 Let f (X) = fn−1 Xn−1 +· · ·+ f1 X + f0, g(X) = gn−1 Xn−1 +· · ·+
g1 X + g0 be polynomials with integer coefficients such that | fi | < B and |gi | < B.
If prime numbers pi satisfy the following conditions:

• pi �= p j ,
• M = ∏k

i=1 pi ,
• 2nB2 <

∏
pi = M,

• pi = 2m+1ri + 1 for some 2m+1 ≥ 2n and ri ∈ Z,

then
f (X)g(X) = f (X)g(X) mod M

= (f (X) mod M)(g(X) mod M) mod M

and fields Fpi can be used to parallel multiplication of polynomials f and g with
FFT method.

Proof: Since operation mod M is a natural homomorphism of Z then we have

(f (X) mod M)(g(X) mod M) mod M =
f (X)g(X) mod M

Based on Lemma 1.2 we achieve the second equality

f (X)g(X) mod M = f (X)g(X).

610 A. Chmielowiec

It means that the multiplication of g(X), f (X) ∈ Z[X] gives the same result as the
multiplication of g(X) mod M, f (X) mod M ∈ (Z/MZ)[X] if elements of ring
Z/MZ are represented by {− M−1

2 , . . . ,−1, 0, 1, . . . , M−1
2 }. But M is a product

of different primes pi and the Chinese Remainder Theorem implies the following
isomorphism:

Z/MZ � Fp1 × · · · × Fpk .

It is clear that the above isomorphism can be extended to isomorphism of polynomial
rings, more precisely we have:

(Z/MZ)[X] � Fp1 [X] × · · · × Fpk [X].

It means that multiplications in (Z/MZ)[X] can be distributed between k independent
rings Fpi [X] and each such multiplication can be done independently in parallel.
Moreover all prime numbers pi = 2m+1ri +1 were chosen in the way to be well suited
for FFT because each field Fpi contains primitive root of unity of degree 2m+1. �

In practice it is quite easy to find primes satisfying the assumptions of Theorem 1.3.
For example, there exist 56 primes of the form

pi = ri · 222 + 1,

where 512 < ri < 1024. This set of primes allows us to multiply polynomials for
which

• deg f + deg g < 222,
• max{| fi |, |gi |} ≤ 2871.

If we want to use the proposed algorithm to multiply polynomials with larger degrees
and coefficients then we can use 64-bit primes. For example the following set

P64 = {pi : pi ∈ P, pi = ri · 232 + 263 + 1, 1 < ri < 231}

can be used to multiply polynomials for which

• deg f + deg g < 232,
• max{| fi |, |gi |} < 26099510377.

Suppose now that we have k prime numbers pi that have the same bit length and
satisfy the conditions described in Theorem 1.3. We have the following theorem:

Theorem 1.4 If �log2(pi)	 = �log2(p j)	 and formal power series have precision
n, then the multiplication algorithm described in Theorem1.3 consists of

c1k2n + kn(2 + 3 log(n)) + c2k2n

multiplications in Fpi . Where c1, c2 are some constants.

Parallel Algorithm for Multiplying Integer 611

Proof: Since �log2(pi)	 = �log2(p j)	 for each i, j , then we can assume that the
cost of multiplication in every Fpi is the same. Single FFT multiplication consists of
three basic steps:

1. Reduction modulo every chosen prime requires c1k2n multiplications in Fpi .
Each coefficient can be reduced modulo pi using c1k multiplications in Fpi . We
have n coefficients and k small primes. It means that the total cost of this step is
equal to c1k · n · k = c1k2n.

2. We perform the FFT multiplication for all i ∈ {1, . . . , k}:
(a) Fourier transform of two power series with n coefficients requiring 2n log(n)

multiplications in Fpi ,
(b) scalar multiplication of two vectors with 2n coefficients, which requires 2n

multiplications in Fpi ,
(c) inverse Fourier transform of the vector to the power series with 2n coeffi-

cients requiring n log(n) multiplications Fpi .

3. Application of the Chinese Remainder Theorem to get back final coefficients re-
quires c2k2n multiplications in Fpi . Each solution of the system x ≡ ai mod pi

can be reconstructed using c2k2 multiplications in Fpi . Since we have to recon-
struct n coefficients, the total cost is equal to c2k2 · n = c2k2n.

Thus the multiplication algorithm described in Theorem 1.3 consists of

c1k2n + kn(2 + 3 log(n)) + c2k2n

multiplications in Fpi . �

Finally, let us see how the new algorithm compares with the method using the
Fast Fourier Transform for multiplying both: polynomials and coefficients. If we
assume that numbers pi are comprised within a single register of the processor, then
the complexity of the algorithm which multiplies the polynomial and its coefficients
using FFT is

O((n log n)(k log k)).

The complexity of our algorithm is equal to

O(kn log n + k2n).

If we assume that k = O(n), it is clear that the algorithm based totally on FFT is
much faster. Its complexity is equal to O(n2 log2 n), whereas our algorithm works in
time O(n3). But what happens when the polynomial coefficients are reduced? Let us
assume that k = O(log n). Under this assumption, the complexity of the algorithm
based totally on FFT is O(n log2 n log log n), whereas the asymptotic complexity
of our method is O(n log2 n). Although the difference is not significant, we defi-
nitely managed to achieve our goal which was to develop an effective algorithm for
multiplying polynomials with coefficients of an order much lower than the degree.

612 A. Chmielowiec

Table 1 Multiplication of
two polynomials of degree
n/2 − 1 with coefficients less
than 2256

Polynomial FFT FFT-CRT FFT-CRT
degree Fp544

⊗18
i=1 Fpi

⊗18
i=1 Fpi

(1 core) (1 core) (4 cores)

n/2 − 1 T1(s) T2(s) T3(s) T1/T2 T2/T3

511 0.0423 0.0183 0.0052 2.3 3.5
1023 0.0930 0.0383 0.0111 2.4 3.4
2047 0.2020 0.0803 0.0259 2.5 3.1
4095 0.4360 0.1705 0.0481 2.6 3.5
8191 0.9370 0.3575 0.1012 2.6 3.5
16383 2.0100 0.7444 0.2161 2.7 3.4
32767 4.2700 1.5491 0.4283 2.8 3.6
65535 9.0700 3.2168 0.9339 2.8 3.4
131071 19.1700 6.6716 1.8919 2.9 3.5

Corollary 1.5 If k = O(log n), the complexity of the proposed algorithm is lower
than the complexity of the multiplication algorithm based on FFT only, and equals
to

O(n log2 n),

whereas the complexity of the FFT-based algorithm is

O(n log2 n log log n).

However, in practice we managed to achieve much more than this. The numerical
experiments showed that the new algorithm brings obvious benefits already in the
case of polynomial coefficients consisting of several hundred bits. It means that its
application is effective already for small values of k and n.

4 Results of Practical Implementation for 32-bit Processors

The implementation of the fast algorithm for multiplying polynomials has been
prepared for 32-bit architecture with the use of OpenMP interface. The obtained
time results turned out exceptionally good. They confirmed that in practice, the
combination of the Fast Fourier Transform with the Chinese Remainder Theorem
considerably accelerates computations. Tables 1 and 2 present the performance times
of the algorithm for multiplying polynomials of the same degree with coefficients
ranging from [0, 2256) and [0, 2512).

Our 32-bit implementation is fully compatible with ANSI C99 and was not op-
timised against any special architecture. The numerical experiments were done on
Intel Core 2 processor (2.4 GHz) and confirmed that the simultaneous application

Parallel Algorithm for Multiplying Integer 613

Table 2 Multiplication of
two polynomials of degree
n/2 − 1 with coefficients less
than 2512

Polynomial FFT FFT-CRT FFT-CRT
degree Fp1088

⊗36
i=1 Fpi

⊗36
i=1 Fpi

(1 core) (1 core) (4 cores)

n/2 − 1 T1(s) T2(s) T3(s) T1/T2 T2/T3

511 0.1598 0.0511 0.0136 3.1 3.7
1023 0.3500 0.1055 0.0280 3.3 3.8
2047 0.7600 0.2203 0.0608 3.4 3.6
4095 1.6420 0.4562 0.1210 3.6 3.8
8191 3.5310 0.9430 0.2527 3.7 3.7
16383 7.5500 1.9412 0.5254 3.9 3.7
32767 16.0900 3.9944 1.0960 4.0 3.6
65535 34.1300 8.2184 2.1926 4.1 3.7
131071 72.2100 16.9245 4.5895 4.3 3.7

of CRT and FFT is very efficient. To the end of this section we will assume that:
p544 = 2544 − 232 + 1, p1088 = 21088 − 2416 + 2256 + 1 and 231 < pi < 232. We
compare our FFT-CRT based implementation with multiplication algorithm based
on FFT over fields Fp544 and Fp1088 .

We use OpenMP standard to implement parallel version of the proposed algo-
rithm. In Tables 1 and 2 fraction T2/T3 gives us information about how many of our
4 cores are on average used by a single multiplication. We can see that the algorithm
based on the FFT and CRT uses between 80 % and 90 % computational power. It is
a very good result for arithmetic algorithm.

5 Fast 64-bit Implementation and its Application
to Integer Multiplication

To demonstrate the speed of our method we decided to compare it with GMP (The
GNU Multiple Precision Arithmetic Library) implementation of integer multiplica-
tion. Every algorithm dedicated to multiply integer polynomials can be easily adapted
to multiply integers. Suppose we have two integers a, b ∈ Z such that

a = a0 + a1 R + a2 R2 + · · · + an−1 Rn−1,

b = b0 + b1 R + b2 R2 + · · · + bn−1 Rn−1.

These integers can be converted to integer polynomials

614 A. Chmielowiec

Table 3 Speed comparison of our algorithm and GMP FFT integer multiplication

Factor bits GMP-FFT FFT-CRT

512-bit digits 1024-bit digits
1 core (s) 1 core (s) 4 cores (s) 1 core (s) 4 cores (s)

221 0.040 0.069 0.023 0.073 0.022
222 0.082 0.145 0.050 0.153 0.047
223 0.176 0.302 0.106 0.318 0.097
224 0.395 0.612 0.224 0.663 0.203
225 0.858 1.268 0.419 1.365 0.403
226 1.837 2.628 0.971 2.820 0.873

 0

 1

 2

 3

 4

 5

 100 1000

M
ul

tip
lic

at
io

n
tim

e
[s

]

Digit bits

FFT-CRT (1 core)
FFT-CRT (4 cores)

GMP FFT

Fig. 1 Mutiplication time of two integers with 226 bits each

A(X) = a0 + a1 X + a2 X2 + · · · + an−1 Xn−1,

B(X) = b0 + b1 X + b2 X2 + · · · + bn−1 Xn−1

and multiplied to get polynomial C(X) = ∑2n−2
i=0 ci Xi . If n R < R2, then we can

compute c = ab as follows

c =
2n−2∑

i=0

(ci mod R)Ri + R
2n−2∑

i=0

(⌊ci

R

⌋
mod R

)
Ri+

R2
2n−2∑

i=0

(⌊ ci

R2

⌋
mod R

)
Ri .

One can see that if we have coefficients ci and R is power of 2 then c can be computed
using two multiple precision additions.

Parallel Algorithm for Multiplying Integer 615

To properly compare the proposed algorithm with 64-bit implementation of integer
multiplication in GMP we decided to optimise our implementation against x84-64
architecture (including inline assembler functions). Numerical tests show that we
can achieve the best performance for a single thread for R = 2512. Unfortunately
it is about 1.45 times slower than in GMP. We have a better situation in the case of
parallel computing. If we can use 4 parallel threads, then R should be equal to 21024

and our implementation is about 2 times faster than GMP which can not be run in
parallel.

6 Summary

We present an analysis of a new algorithm for multiplying integer polynomials and
integers. It has been designed so as to exploit fully the computing power offered by
modern multicore processors. Thanks to using the Chinese Remainder Theorem, it
is possible to easily allocate tasks between the available threads. Moreover, under
the adopted approach there is no need to synchronize the computations and to ensure
communication between individual threads, which is an additional asset. For that rea-
son the algorithm can be easily implemented with the use of a parallel programming
standard OpenMP. The ratio T2/T3 in Tables 1 and 2 shows how many processors
out of the four ones available were used on average during a single multiplication.
The measurements show that the algorithm uses from 80 to 90 % of the available
computing power. In the case of an arithmetic algorithm, this should be considered
a very good result. Therefore, we may conclude that the goal which consisted in
designing a parallel algorithm for multiplying polynomials has been achieved.

As far as the theoretical results of the chapter are concerned, the analysis conducted
in Sect. 3 and Corollary 1.5 being its essence, are of key importance. If we assume
that the degree of the polynomial is n and the accuracy of its coefficients is k, then
the asymptotic complexity of the proposed algorithm is

O(kn log n + k2n).

Owing to the two essential components of the asymptotic function, it is impossible
to determine explicitly whether the new solution is better or worse than the method
based on FFT only. It is due to the fact that if we use the Fast Fourier Transform to
multiply both the polynomial and its coefficients, the complexity is equal to

O((n log n)(k log k)).

Therefore, one can see that if k = O(n), the proposed algorithm performs worse
than the method based on FFT only. However, if k = O(log n), the complexity
of the new algorithm is lower. The computational complexity ratio is O(log n) to
the advantage of the method presented in the chapter. This reasoning allows us to
conclude that the algorithm based on CRT and FFT should be used when the number
of coefficients of a polynomial exceeds greatly their accuracy. This is often the case

616 A. Chmielowiec

when computations use long polynomials or power series with a modular reduction
of coefficients.

The results of numerical tests presented in Sect. 4 show that the proposed method
has numerous practical applications. In this section the algorithm has been intention-
ally compared with the implementation using the classic algorithm for multiplying
coefficients in large fields Fp. It results from the fact that in the case of numbers
p consisting of 500 or 1000 bits, multiplication based on the Fourier Transform is
completely ineffective. The measurement results came as a great surprise, as it turned
out (Tables 1 and 2) that the proposed algorithm is several times faster even when its
application is not parallel.

In Sect. 5 we prove that our algorithm can be also used to multiply integers.
Table 3 and Fig. 1 show that our four-thread parallel implementation is much faster
than single-thread implementation of GMP.

References

1. Charles D, Lauter K (2005) Computing modular polynomials. J Comput Math 8:195–204
2. Chmielowiec A (2012) Fast, parallel algorithm for multiplying polynomials with integer coef-

ficients. Lecture notes in engineering and computer science: Proceedings of the world congress
on engineering WCE 2012, 4–6 July 2012 UK, London, pp 1136–1140

3. Cormen TH, Leiserson CE, Rivest RL, Stein C (2003) Introduction to algorithms. MIT Press,
New York

4. Crandall R, Fagin B (1994) Discrete weighted transforms and large integer arithmetic. Maths
Comput 62:305–324

5. Crandall R, Pomerance C (2001) Prime Numbers— a computational perspective. Springer,
New York

6. Enge A (2009) Computing modular polynomials in quasi-linear time. Math Comp 78:1809–
1824

7. Garcia L (2005) Can Schönhage multiplication speed up the RSA encryption or decryption?.
University of Technology, Darmstadt

8. Gorlatch S (1998) Programming with divide-and-conquer skeletons: a case study of FFT. J
Supercomput 12:85–97

9. Grama A, Gupta A, Karypis G, Kumar V (2003) Introduction to parallel computing. Addison
Wesley, London

10. Harvey D (2009) A cache-friendly truncated FFT. Theor Comput Sci 410:2649–2658
11. Knuth DE (1998) Art of computer programming. Addison-Wesley Professiona, London
12. Müller V (1995) Ein Algorithmus zur Bestimmung der Punktzahlen elliptischer Kurven über

endlichen Körpern der Charakteristik grösser drei. Ph.D. Thesis, Universität des Saarlandes
13. Nussbaumer HJ (1980) Fast polynomial transform algorithms for digital convolution. IEEE

Trans Acoust Speech Signal Process 28(2):205–215
14. Schönchage A (1982) Asymptotically fast algorithms for the numerical multiplication and

division of polynomials with complex coefficients. Lecture notes in computer science, vol 144.
Springer, Berlin, pp 3–15

15. Schönhage A, Strassen V (1971) Schnelle multiplikation grosser zahlen. Computing 7:281–292
16. Takahashi D, Kanada Y (2000) High-performance radix-2, 3 and 5 parallel 1-D complex FFT

algorithms for distributed-memory parallel computers. J Supercomput 15:207–228
17. Van der Hoeven J (2004) The truncated Fourier transform and applications. ISSAC 2004 ACM,

pp 290–296
18. Van der Hoeven J (2005) Notes on the truncated Fourier transform. Unpublished, avaliable on

http://www.math.u-psud.fr/vdhoeven/

http://www.math.u-psud.fr/vdhoeven/

	46 Parallel Algorithm for Multiplying Integer Polynomials and Integers
	1 Introduction
	2 Fast Fourier Transform and its Implementations
	3 Using Chinese Remainder Theorem to Distribute Computations Between Many Processors
	4 Results of Practical Implementation for 32-bit Processors
	5 Fast 64-bit Implementation and its Application to Integer Multiplication
	6 Summary
	References

