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Abstract This chapter deals with the study of some new properties of the intrinsic
order graph. The intrinsic order graph is the natural graphical representation of a
complex stochastic Boolean system (CSBS). A CSBS is a system depending on an
arbitrarily large number n of mutually independent random Boolean variables. The
intrinsic order graph displays its 2n vertices (associated to the CSBS) from top to
bottom, in decreasing order of their occurrence probabilities. New relations between
the intrinsic ordering and the Hamming weight (i.e., the number of 1-bits in a binary
n-tuple) are derived. Further, the distribution of the weights of the 2n nodes in the
intrinsic order graph is analyzed.

Keywords Complex stochastic Boolean systems · Hamming weight · Intrinsic
order · Intrinsic order graph · Subgraphs · Subposets

1 Introduction

Consider a system depending on an arbitrary number n of random Boolean variables.
That is, the n basic variables, x1, . . . , xn , of the system are assumed to be stochastic
(non-deterministic), and they only take two possible values (either 0 or 1). We call
such a system a complex stochastic Boolean system (CSBS). CSBSs often appear in
many different knowledge areas, since the assumption “random Boolean variables”
is satisfied very often in practice.

Each one of the possible situations (outcomes) associated to a CSBS is given by
a binary n-tuple of 0s and 1s, i.e.,

u = (u1, . . . , un) ∈ {0, 1}n

L. González (B)

Research Institute IUSIANI, Department of Mathematics, University of Las Palmas de Gran
Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain
e-mail: luisglez@dma.ulpgc.es

G.-C. Yang et al. (eds.), IAENG Transactions on Engineering Technologies, 523
Lecture Notes in Electrical Engineering 229, DOI: 10.1007/978-94-007-6190-2_40,
© Springer Science+Business Media Dordrecht 2013



524 L. González

and, from now on, we assume that the n random Boolean variables {xi }n
i=1 are

mutually independent. Hence, denoting

Pr {xi = 1} = pi , Pr {xi = 0} = 1 − pi (1 ≤ i ≤ n) ,

the occurrence probability of each binary n-tuple, u = (u1, . . . , un), can be computed
as the product

Pr {(u1, . . . , un)} =
n∏

i=1

Pr {xi = ui } =
n∏

i=1

pui
i (1 − pi )

1−ui , (1.1)

that is, Pr {(u1, . . . , un)} is the product of factors pi if ui = 1, 1-pi if ui = 0.
Throughout this chapter, the binary n-tuples (u1, . . . , un) of 0s and 1s will be also
called binary strings or bitstrings, and the probabilities p1, . . . , pn will be also called
basic probabilities.

One of the most relevant questions in the analysis of CSBSs consists of order-
ing the binary strings (u1, . . . , un) according to their occurrence probabilities. For
this purpose, in [2] we have established a simple, positional criterion (the so-called
intrinsic order criterion) that allows one to compare two given binary n-tuple prob-
abilities, Pr {u} , Pr {v}, without computing them, simply looking at the positions of
the 0s and 1s in the n-tuples u, v. The usual representation for the intrinsic order
relation is the intrinsic order graph.

In this context, the main goal of this chapter is to state and derive some new
properties of the intrinsic order graph, concerning the Hamming weights of the binary
strings (i.e., the number of 1-bits in each binary n-tuple). Some of these properties
can be found in [9], where the reader can also find a number of simple examples that
illustrate the preliminary results presented in this chapter.

For this purpose, this chapter has been organized as follows. In Sect. 2, we present
some preliminary results about the intrinsic ordering and the intrinsic order graph,
in order to make the presentation self-contained. Section 3 is devoted to present new
relations between the intrinsic ordering and the Hamming weight. In Sect. 4, we study
the distribution of the Hamming weights of the 2n nodes in the intrinsic order graph.
Finally, conclusions are presented in Sect. 5.

2 Intrinsic Ordering in CSBSs

2.1 The Intrinsic Partial Order Relation

The following theorem [2, 3] provides us with an intrinsic order criterion—denoted
from now on by the acronym IOC—to compare the occurrence probabilities of two
given n-tuples of 0s & 1s without computing them.
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Theorem 2.1 Let n ≥ 1. Let x1, . . . , xn be n mutually independent Boolean vari-
ables whose parameters pi = Pr {xi = 1} satisfy

0 < p1 ≤ p2 ≤ . . . ≤ pn ≤ 1

2
. (2.1)

Then the probability of the n-tuple v = (v1, . . . , vn) ∈ {0, 1}n is intrinsically less
than or equal to the probability of the n-tuple u = (u1, . . . , un) ∈ {0, 1}n (that is,
for all set {pi }n

i=1 satisfying (2.1)) if and only if the matrix

Mu
v :=

(
u1 . . . un

v1 . . . vn

)

either has no
(1

0

)
columns, or for each

(1
0

)
column in Mu

v there exists (at least) one

corresponding preceding
(0

1

)
column (I OC).

Remark 2.2 In the following, we assume that the parameters pi always satisfy
condition (2.1). The

(0
1

)
column preceding to each

(1
0

)
column is not required to be

necessarily placed at the immediately previous position, but just at previous position.
The term corresponding, used in Theorem 2.1, has the following meaning: For each
two

(1
0

)
columns in matrix Mu

v , there must exist (at least) two different
(0

1

)
columns

preceding to each other.

The matrix condition IOC, stated by Theorem 2.1 is called the intrinsic order
criterion, because it is independent of the basic probabilities pi and it only depends
on the relative positions of the 0s and 1s in the binary n-tuples u, v. Theorem 2.1
naturally leads to the following partial order relation on the set {0, 1}n [3]. The so-
called intrinsic order will be denoted by “�”, and we shall write u � v (u � v) to
indicate that u is intrinsically greater (less) than or equal to v. The partially ordered
set (from now on, poset, for short)

({0, 1}n ,�)
on n Boolean variables, will be

denoted by In .

Definition 2.3 For all u, v ∈ {0, 1}n

v � u iff Pr {v} ≤ Pr {u} for all set {pi }n
i=1 s.t. (2.1)

iff Mu
v satisfies IOC.

2.2 A Picture for the Intrinsic Ordering

Now, the graphical representation of the poset In = ({0, 1}n ,�)
is presented. The

usual representation of a poset is its Hasse diagram (see [12] for more details about
these diagrams). Specifically, for our poset In , its Hasse diagram is a directed graph
(digraph, for short) whose vertices are the 2n binary n-tuples of 0s and 1s, and whose
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Fig. 1 The intrinsic order graph for n = 1

edges go upward from v to u whenever u covers v, denoted by u � v. This means
that u is intrinsically greater than v with no other elements between them, i.e.,

u � v ⇔ u 	 v and � w ∈ {0, 1}n s.t. u 	 w 	 v.

A simple matrix characterization of the covering relation for the intrinsic order is
given in the next theorem; see [4] for the proof.

Theorem 2.4 (Covering Relation in In) Let n ≥ 1 and let u, v ∈ {0, 1}n. Then u �v

if and only if the only columns of matrix Mu
v different from

(0
0

)
and

(1
1

)
are either its

last column
(0

1

)
or just two columns, namely one

(1
0

)
column immediately preceded

by one
(0

1

)
column, i.e., either

Mu
v =

(
u1 . . . un−1 0
u1 . . . un−1 1

)
(2.2)

or there exists i (2 ≤ i ≤ n) s.t.

Mu
v =

(
u1 . . . ui−2 0 1 ui+1 . . . un

u1 . . . ui−2 1 0 ui+1 . . . un

)
. (2.3)

The Hasse diagram of the poset In will be also called the intrinsic order graph
for n variables, denoted as well by In .

For small values of n, the intrinsic order graph In can be directly constructed by
using either Theorem 2.1 (matrix description of the intrinsic order) or Theorem 2.4
(matrix description of the covering relation for the intrinsic order). For instance, for
n = 1: I1 = ({0, 1} ,�), and its Hasse diagram is shown in Fig. 1. Note that 0 	 1
(Theorem 2.1).

However, for large values of n, a more efficient method is needed. For this purpose,
in [4] the following algorithm for iteratively building up In (for all n ≥ 2) from I1
(depicted in Fig. 1), has been developed.

Theorem 2.5 (Building Up In from I1) Let n ≥ 2. The graph of the poset In =
{0, . . . , 2n − 1} (on 2n nodes) can be drawn simply by adding to the graph of the
poset In−1 = {

0, . . . , 2n−1 − 1
}
(on 2n−1 nodes) its isomorphic copy 2n−1+ In−1 ={

2n−1, . . . , 2n − 1
}

(on 2n−1 nodes). This addition must be performed placing the
powers of 2 at consecutive levels of the Hasse diagram of In. Finally, the edges
connecting one vertex u of In−1 with the other vertex v of 2n−1 + In−1 are given by
the set of 2n−2 vertex pairs
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Fig. 2 The intrinsic order graphs for n = 1, 2, 3, 4

{
(u, v) ≡

(
u(10 , 2n−2 + u(10

) ∣∣∣ 2n−2 ≤ u(10 ≤ 2n−1 − 1
}

.

Figure 2 illustrates the above iterative process for the first few values of n, denoting
all the binary n-tuples by their decimal equivalents.

Each pair (u, v) of vertices connected in In either by one edge or by a longer path,
descending from u to v, means that u is intrinsically greater than v, i.e., u 	 v. On
the contrary, each pair (u, v) of non-connected vertices in In either by one edge or
by a longer descending path, means that u and v are incomparable by intrinsic order,
i.e., u � v and v � u.

The edgeless graph for a given graph is obtained by removing all its edges, keeping
its nodes at the same positions [1]. In Figs. 3 and 4, the edgeless intrinsic order graphs
of I5 & I6, respectively, are depicted.

For further theoretical properties and practical applications of the intrinsic order
and the intrinsic order graph, we refer the reader to e.g., [2–11].

3 Weights and Intrinsic Ordering

Now, we present some new relations between the intrinsic ordering and the Hamming
weight. Let us denote by wH (u) the Hamming weight—or weight, simply—of u
(i.e., the number of 1-bits in u), i.e.,

wH (u) :=
n∑

i=1

ui .
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Fig. 3 The edgeless intrinsic order graph for n = 5

Fig. 4 The edgeless intrinsic order graph for n = 6

Our starting point is the following necessary (but not sufficient) condition for
intrinsic order (see [3] for the proof).

u � v ⇒ wH (u) ≤ wH (v) for all v ∈ {0, 1}n . (3.1)

However, the necessary condition for intrinsic order stated by Eq. (3.1) is not
sufficient. That is,

wH (u) ≤ wH (v) � u � v,

as the following simple counter-example (indeed, the simplest one that one can find!)
shows.
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Example 3.1 For

n = 3, u = 4 ≡ (1, 0, 0) , v = 3 ≡ (0, 1, 1) ,

we have (see the digraph of I3 in Fig. 2)

wH (4) = 1 < 2 = wH (3) .

However 4 � 3, since matrix

M4
3 =

(
1 0 0
0 1 1

)

does not satisfy IOC.

In this context, two dual questions naturally arise. They are posed in the two
subsections of this section. First, we need to set the following notations.

Definition 3.2 For every binary n-tuple u, Cu (Cu, respectively) is the set of all
binary n-tuples v whose occurrence probabilities Pr {v} are always less (greater,
respectively) than or equal to Pr {u}, i.e., those n-tuples v intrinsically less (greater,
respectively) than or equal to u, i.e.,

Cu = {
v ∈ {0, 1}n

∣∣ Pr {u} ≥ Pr {v} ,∀ {pi }n
i=1 s.t. (2.1)

}

= {
v ∈ {0, 1}n | u � v

}
,

Cu = {
v ∈ {0, 1}n

∣∣ Pr {u} ≤ Pr {v} ,∀ {pi }n
i=1 s.t. (2.1)

}

= {
v ∈ {0, 1}n | u � v

}
.

Definition 3.3 For every binary n-tuple u, Hu (Hu, respectively) is the set of all
binary n-tuples v whose Hamming weights are less (greater, respectively) than or
equal to the Hamming weight of u, i.e.,

Hu = {
v ∈ {0, 1}n | wH (u) ≥ wH (v)

}
,

Hu = {
v ∈ {0, 1}n | wH (u) ≤ wH (v)

}
.

3.1 When Greater Weight Corresponds to Less Probability

Looking at the implication (3.1), the following question immediately arises.
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Question 3.1: We try to characterize the binary n-tuples u for which the necessary
condition (3.1) is also sufficient, i.e.,

u � v ⇔ wH (u) ≤ wH (v) , i.e., Cu = Hu .

The following theorem provides the answer to this question, in a very simple way.

Theorem 3.4 Let n ≥ 1 and u = (u1, . . . , un) ∈ {0, 1}n with Hamming weight
wH (u) = m (0 ≤ m ≤ n). Then

Cu = Hu

if and only if either u is the zero n-tuple (m = 0) or the m 1-bits of u (m > 0) are
placed at the m right-most positions, i.e., if and only if u has the general pattern

u =
(

0,
n−m
�. . ., 0, 1,

m
�. . ., 1

)
≡ 2m − 1, 0 ≤ m ≤ n, (3.2)

where any (but not both!) of the above two subsets of bits grouped together can be
omitted.

Proof.

Sufficient condition. We distinguish two cases:

(i) If u is the zero n-tuple 0 ≡
(

0,
n
�. . ., 0

)
, then u is the maximum element for

the intrinsic order (see, e.g., [9]). Then

C0 = {
v ∈ {0, 1}n | 0 � v

} = {0, 1}n

= {
v ∈ {0, 1}n | wH (0) = 0 ≤ wH (v)

} = H0.

(ii) If u is not the zero n-tuple, then u has the pattern (3.2) with m > 0. Let
v ∈ Hu , i.e., let v let a binary n-tuple with Hamming weight greater than or
equal to m (the Hamming weight of u). We distinguish two subcases:

(a) Suppose that the weight of v is

wH (v) = m = wH (u) .

Then v has exactly m 1-bits and n − m 0-bits. Call r the number of 1-bits
of v placed among the m right-most positions (max {0, 2m − n} ≤ r ≤ m).
Obviously, v has r 1-bits and m − r 0-bits placed among the m right-most
positions, and also it has m − r 1-bits and n − 2m + r 0-bits placed among
the n − m left-most positions. These are the positions of the

r + (m − r) + (m − r) + (n − 2m + r) = m + (n − m) = n
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bits of the binary n-tuple v.
Hence, matrix Mu

v has exactly m − r
(1

0

)
columns (all placed among the m

right-most positions) and exactly m − r
(0

1

)
columns (all placed among the

n − m left-most positions). Thus, Mu
v satisfies IOC and then u � v, i.e.,

v ∈ Cu .
So, for this case (a), we have proved that

{
v ∈ {0, 1}n | wH (v) = wH (u) = m

} ⊆ Cu (3.3)

(b) Suppose that the weight of v is

wH (v) = m + p > m = wH (u) (0 < p ≤ n − m).

Then define a new binary n-tuple s as follows. First, select any p 1-bits
in v (say, for instance, vi1 = · · · = vi p = 1). Second, s is constructed by
changing these p 1-bits of v into 0-bits, assigning to the remainder n − p
bits of s the same values as the ones of v. Formally, s = (s1, . . . , sn) is
defined by

si =
{

0 if i ∈ {
i1, . . . , i p

}
,

vi if i /∈ {
i1, . . . , i p

}
.

On one hand, u � s since

wH (s) = wH (v) − p = m = wH (u)

and then we can apply case (a) to s.
On the other hand, s � v since matrix Ms

v has p
(0

1

)
columns (placed at

positions i1, . . . , i p), while its n − p reminder columns are either
(0

0

)
or

(1
1

)
.

Hence Ms
v has no

(1
0

)
columns, so that it satisfies IOC.

Finally, from the transitive property of the intrinsic order, we derive

u � s and s � v ⇒ u � v, i.e., v ∈ Cu .

So, for this case (b), we have proved that

{
v ∈ {0, 1}n | wH (v) > wH (u) = m

} ⊆ Cu (3.4)

From (3.3) and (3.4), we get

{
v ∈ {0, 1}n | wH (v) ≥ wH (u) = m

} ⊆ Cu,

i.e., Hu ⊆ Cu , and this set inclusion together with the converse inclusion Cu ⊆ Hu

(which is always satisfied for every binary n-tuple u; see Eq. 3.1) leads to the set
equality Cu = Hu . This proves the sufficient condition.
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Necessary condition. Conversely, suppose that not all the m 1-bits of u are placed
at the m right-most positions. In other words, suppose that

u �=
(

0,
n−m
�. . ., 0, 1,

m
�. . ., 1

)
.

Since, by assumption, wH (u) = m then simply using the necessary condition we
derive that (

0,
n−m
�. . ., 0, 1,

m
�. . ., 1

)
	 u,

and then (
0,

n−m
�. . ., 0, 1,

m
�. . ., 1

)
∈ Hu − Cu

so that,
Hu � Cu .

This proves the necessary condition. �

Corollary 3.5 Let n ≥ 1 and let

u =
(

0,
n−m
�. . ., 0, 1,

m
�. . ., 1

)
≡ 2m − 1, 0 ≤ m ≤ n,

where any (but not both!) of the above two subsets of bits grouped together can be
omitted. Then the number of binary n-tuples intrinsically less than or equal to u is

∣∣Cu
∣∣ =

(
n

m

)
+

(
n

m + 1

)
+ · · · +

(
n

n

)
.

Proof. Using Theorem 3.4, the proof is straightforward. �

3.2 When Less Weight Corresponds to Greater Probability

Interchanging the roles of u & v, (3.1) can be rewritten as follows. Let u be an
arbitrary, but fixed, binary n-tuple. Then

v � u ⇒ wH (v) ≤ wH (u) for all v ∈ {0, 1}n . (3.5)

Looking at the implication (3.5), the following dual question of Question 3.1,
immediately arises.



Labeling the Nodes in the Intrinsic Order Graph with Their Weights 533

Question 3.2: We try to characterize the binary n-tuples u for which the necessary
condition (3.5) is also sufficient, i.e.,

v � u ⇔ wH (v) ≤ wH (u) , i.e., Cu = Hu .

The following theorem provides the answer to this question, in a very simple way.
For a very short proof of this theorem, we use the following definition.

Definition 3.6 (i) The complementary n-tuple of a given binary n-tuple u ∈ {0, 1}n

is obtained by changing its 0s into 1s and its 1s into 0s

uc = (u1, . . . , un)c = (1 − u1, . . . , 1 − un) .

Obviously, two binary n-tuples are complementary if and only if their decimal
equivalents sum up to

(
1,

n
�. . ., 1

)

(10
= 2n − 1.

(ii) The complementary set of a given subset S ⊆ {0, 1}n of binary n-tuples is the
set of the complementary n-tuples of all the n-tuples of S

Sc = {
uc | u ∈ S

}
.

Theorem 3.7 Let n ≥ 1 and u = (u1, . . . , un) ∈ {0, 1}n with Hamming weight
wH (u) = m (0 ≤ m ≤ n). Then

Cu = Hu

if and only if either u is the zero n-tuple (m = 0) or the m 1-bits of u (m > 0) are
placed at the m left-most positions, i.e., if and only if u has the general pattern

u =
(

1,
m
�. . ., 1, 0,

n−m
�. . ., 0

)
≡ 2n − 2n−m, 0 ≤ m ≤ n, (3.6)

where any (but not both!) of the above two subsets of bits grouped together can be
omitted.

Proof. Using Theorem 3.4 and the facts that (see, e.g., [5, 7])

(Cu)c = Cuc
,

(
Hu)c = Huc ,

we get

Cu = Hu ⇔ (Cu)c = (
Hu)c ⇔ Cuc = Huc

⇔ uc has the pattern (3.2) ⇔ u has the pattern (3.6),
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as was to be shown. �

Corollary 3.8 Let n ≥ 1 and let

u =
(

1,
m
�. . ., 1, 0,

n−m
�. . ., 0

)
≡ 2n − 2n−m, 0 ≤ m ≤ n,

where any (but not both!) of the above two subsets of bits grouped together can be
omitted. Then the number of binary n-tuples intrinsically greater than or equal to u
is

|Cu | =
(

n

0

)
+

(
n

1

)
+ · · · +

(
n

m

)
.

Proof. Using the fact that (Cu)c = Cuc
and Corollary 3.5, the proof is straightfor-

ward. �

4 Nodes and Weights in the Intrinsic Order Graph

The results derived in Sect. 3, and more precisely those stated by Theorems 3.4
and 3.7, can be illustrated by labeling the nodes of the intrinsic order graph with
their respective Hamming weights. In this way, due to Theorem 3.4 (Theorem 3.7,
respectively), for a given binary n-tuple u with weight m whose m 1-bits are all
placed among the right-most (left-most, respectively) positions, the set of nodes v

with Hamming weight greater (less, respectively) than or equal to m will be exactly
the set of nodes v connected to vertex u by a descending (ascending, respectively)
path from u to v.

This suggests the analysis of the distribution of the Hamming weights of the 2n

nodes in the intrinsic order graph. The following Theorem provides only some basic
consequences of such analysis.

Theorem 4.1 Let n ≥ 2. Label each of the 2n nodes in the intrinsic order graph In,
with its corresponding Hamming weight. Then

(i) The weights (labels) of the 2n nodes are (with repetitions): 0, 1, . . . , n.
(ii) The weights (labels) of the 4 nodes in each of the saturated chains 4k � 4k +

1 � 4k + 2 � 4k + 3 are: wH (k) , wH (k) + 1, wH (k) + 1, wH (k) + 2.

(iii) The set of weights (labels) of the 2n nodes of the graph In = {0, 1}n can be
partitioned into the following two subsets: (a) The weights of the nodes of the top
subgraph {0} × {0, 1}n−1 of In, which one-to-one coincide with the respective
weights of the nodes of the graph In−1 = {0, 1}n−1. (b) The weights of the
nodes of the bottom subgraph {1}× {0, 1}n−1 of In, which one-to-one coincide
with 1 plus the respective weights of the nodes of the graph In−1 = {0, 1}n−1.
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Fig. 5 Weights in the edgeless
intrinsic order graph for n = 5

Proof.

(i) Trivial.
(ii) Use the fact that for all k ≡ (u1 . . . , un−2) ∈ {0, 1}n−2:

4k ≡ (u1 . . . , un−2, 0, 0) , 4k + 1 ≡ (u1 . . . , un−2, 0, 1) ,

4k + 2 ≡ (u1 . . . , un−2, 1, 0) , 4k + 3 ≡ (u1 . . . , un−2, 1, 1) .

(iii) Use Theorem 2.5 and the fact that for all (u1 . . . , un−1) ∈ {0, 1}n−1:

wH (0, u1 . . . , un−1) = wH (u1 . . . , un−1)

wH (1, u1 . . . , un−1) = wH (u1 . . . , un−1) + 1.

as was to be shown. �

Figure 5 illustrates Theorem 4.1, by labeling (and substituting) all the 32 nodes of
the graph I5 (depicted in Fig. 3) with their corresponding Hamming weights.

5 Conclusions

It is well-known that if a binary n-tuple u is intrinsically greater (less, respectively)
than or equal to a binary n-tuple v then necessarily the Hamming weight of u must
be less (greater, respectively) than or equal to the Hamming weight of v. We have
characterized, by two dual, simple positional criteria, those n-tuples u for which each
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of these necessary conditions is also sufficient. Further, motivated by these questions,
we have presented some basic properties concerning the distribution of weights of
the 2n nodes in the intrinsic order graph. For future researches, additional properties
of such distribution worth to be studied.
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