
On Fast Algorithms for Triangular
and Dense Matrix Inversion

Ryma Mahfoudhi and Zaher Mahjoub

Abstract We first propose in this paper a recursive algorithm for triangular matrix
inversion (TMI) based on the ‘Divide and Conquer’ (D&C) paradigm. Different
versions of an original sequential algorithm are presented. A theoretical performance
study permits to establish an accurate comparison between the designed algorithms.
Our implementation is designed to be used in place of dtrtri, the level 3 BLAS TMI.
Afterwards, we generalize our approach for dense matrix inversion (DMI) based on
LU factorization (LUF). This latter is used in Mathematical software libraries such
as LAPACK xGETRI and MATLAB inv. A = LU being the input dense matrix,
xGETRI consists, once the factors L and U are known, in inverting U then solving
the triangular matrix system XL = U−1 (i.e. LTXT = (U−1)T, thus X = A−1).
Two other alternatives may be derived here (L and U being known) : (i) first invert
L, then solve the matrix system UX = L−1 for X ; (ii) invert both L and U, then
compute the product X = U−1L−1. Each of these three procedures involves at
least one triangular matrix inversion (TMI). Our DMI implementation aims to be
used in place of the level 3 BLAS TMI-DMI. Efficient results could be obtained
through an experimental study achieved on a set of large sized randomly generated
matrices.

Keywords Dense matrix inversion · Divide and conquer · Level 3 BLAS · LU
factorization · Recursive algorithm · Triangular matrix inversion

R. Mahfoudhi (B) · Z. Mahjoub
Faculty of Sciences of Tunis, University of Tunis El Manar,
University Campus - 2092 Manar II, Tunis, Tunisia
e-mail: rimahayet@yahoo.fr

Z. Mahjoub
e-mail: zaher.mahjoub@fst.rnu.tn

G.-C. Yang et al. (eds.), IAENG Transactions on Engineering Technologies, 45
Lecture Notes in Electrical Engineering 229, DOI: 10.1007/978-94-007-6190-2_4,
© Springer Science+Business Media Dordrecht 2013

46 R. Mahfoudhi and Z. Mahjoub

1 Introduction

Triangular matrix inversion (TMI) is a basic kernel used in many scientific applica-
tions. Given its cubic complexity in terms of the matrix size, say n, several works
addressed the design of practical efficient algorithms for solving this problem. Apart
the standard TMI algorithm consisting in solving n linear triangular systems of size
n, n − 1, . . .1 [1], a recursive algorithm, of same complexity, has been proposed by
Heller in 1973 [2–4]. It uses the ‘Divide and Conquer’ (D&C) paradigm and consists
in successive decompositions of the original matrix. Our objective here is two-fold
i.e. (i) design an efficient algorithm for TMI that outperforms the BLAS routines and
(ii) use our TMI kernel for dense matrix inversion (DMI) through LU factorization,
thus deriving an efficient DMI kernel.

The remainder of the paper is organized as follows. In Sect. 2, we present the D&C
paradigm. We then detail in Sect. 3 a theoretical study on diverse versions of Heller’s
TMI algorithm. Section 4 is devoted to the generalization of the former designed
algorithm for DMI. An experimental study validating our theoretical contribution is
presented in Sect. 5.

2 Divide and Conquer Paradigm

There are many paradigms in algorithm design. Backtracking, Dynamic program-
ming, and the Greedy method to name a few. One compelling type of algorithms is
called Divide and Conquer (D&C). Algorithms of this type split the original problem
to be solved into (equal sized) sub-problems. Once the sub-solutions are determined,
they are combined to form the solution of the original problem. When the sub-
problems are of the same type as the original problem, the same recursive process
can be carried out until the sub-problem size is sufficiently small. This special type of
D&C is referred to as D&C recursion. The recursive nature of many D&C algorithms
makes it easy to express their time complexity as recurrences. Consider a D&C algo-
rithm working on an input size n. It divides its input into a (called arity) sub-problems
of size n/b. Combining and conquering are assumed to take f(n) time. The base-case
corresponds to n = 1 and is solved in constant time. The time complexity of this
class of algorithms can be expressed as follows:

T(n) = O(1) if n = 1

= aT(n/b) + f(n) otherwise.

Let f(n) = O(nδ)(δ ≥ 0) , the master theorem for recurrences can in some
instances be used to give a tight asymptotic bound for the complexity [1]:

• a < bδ ⇒ T (n) = O(nδ)

• a = bδ ⇒ T (n) = O(nδ logb n)

On Fast Algorithms for Triangular and Dense Matrix Inversion 47

• a > bδ ⇒ T (n) = O(nlogb a)

3 Recursive TMI Algorithms

We first recall that the well known standard algorithm (SA) for inverting a triangular
matrix (either upper or lower), say A of size n, consists in solving n triangular systems.
The complexity of (SA) is as follows [1]:

SA(n) = n3/3 + n2/2 + n/6 (1)

3.1 Heller’s Recursive Algorithm (HRA)

Using the D&C paradigm, Heller proposed in 1973 a recursive algorithm [2, 3]
for TMI. The main idea he used consists in decomposing matrix A as well as its
inverse B (both of size n) into 3 submatrices of size n/2 (see Fig. 1, A being assumed
lower triangular). The procedure is recursively repeated until reaching submatrices
of size 1. We hence deduce:

B1 = A−1
1 , B3 = A−1

3 , B2 = −B3 A2 B1 (2)

Therefore, inverting matrix A of size n consists in inverting 2 submatrices of
size n/2 followed by two matrix products (triangular by dense) of size n/2. In [3]
Nasri proposed a slightly modified version of the above algorithm. Indeed, since
B2 = −B3 A2 and B1 = −A−1

3 A2 A−1
1 , let Q = A−1

3 A2. From (2), we deduce:

A3 Q = A2, B2 A1 = −Q (3)

Hence, instead of two matrix products needed to compute matrix B2, we have
to solve 2 matrix systems of size n/2 i.e. A3Q = A2 and (A1)

T(B2)
T = −QT. We

precise that both versions are of n3/3 + O(n2) complexity [3].
Now, for sake of simplicity, we assume that n = 2q(q ≥ 1). Let RA-k be the

Recursive Algorithm designed by recursively applying the decomposition k times
i.e. until reaching a threshold size n/2k(1 ≤ k ≤ q). The complexity of RA-k is as

Fig. 1 Matrix decomposition
in Heller’s algorithm

48 R. Mahfoudhi and Z. Mahjoub

follows [3]:
RA − k(n) = n3/3 + n2/2k+1 + n/6 (4)

3.2 Recursive Algorithm Using Matrix Multiplication (RAMM)

As previously seen, to invert a triangular matrix via block decomposition, one requires
two recursive calls and two triangular matrix multiplications (TRMM) [5]. Thus, the
complexity recurrence formula is:

RAMM(n) = 2RAMM(n/2) + 2TRMM(n/2) + O(n2)

The idea consists in using the fast algorithm for TRMM presented below.

ALGORITHM 1

RAMM

Begin
 If (n= 1) then
 B1 =1/A1

 B3 = 1/A3

 B2 = -B3*A2*B1

 Else /* splitting matrices into three blocks of sizes n/2
 B1 = RAMM(A1)
 B3 = RAMM (A3)
 C = TRMM(-B3,A2)
 B2 = TRMM(C,B1)
 Endif
End

• TRMM algorithm

To perform the multiplication of a triangular (resp. dense) by a dense (resp. tri-
angular) via block decomposition in halves, we require four recursive calls and two
dense matrix-matrix multiplications (MM) Fig. 2.

Fig. 2 Matrix decomposition in TRMM algorithm

On Fast Algorithms for Triangular and Dense Matrix Inversion 49

ALGORITHM 2

TRMM

Begin
 If (n= 1) then
 A11*B11=C11

 A11*B12=C12

 A21*B11+A22*B21= C21

 A21*B12+A22*B22=C22

 Else /* splitting matrices into four blocks of
sizes n/2
 C11 = TRMM(A11,B11)
 C12 = TRMM(A11,B12)
 C21 = MM(A21,B11) + TRMM(A22,B21)
 C22 = MM(A21,B12) + TRMM(A22,B22)
 Endif
End

The complexity recurrence formula is thus :

TRMM(n) = 4TRMM(n/2) + 2MM(n/2) + O(n2).

To optimize this algorithm, we will use a fast algorithm for dense MM i.e. Strassen
algorithm.

• MM algorithm

In [6, 7], the author reported on the development of an efficient and portable
implementation of Strassen MM algorithm. Notice that the optimal number of recur-
sive levels depends on both the matrix size and the target architecture and must be
determined experimentally.

3.3 Recursive Algorithm Using Triangular
Systems Solving (RATSS)

In this version, we replace the two matrix products by two triangular systems solving
of size n/2 (see Sect. 3.1). The algorithm is as follows:

50 R. Mahfoudhi and Z. Mahjoub

ALGORITHM 3

RATSS

Begin
 If (n=1) then
 B1 = 1/A1,
 B3 = 1/A3

 Q = A2/A3

 B2 = -Q/A1

 Else /* splitting matrices into four blocks of sizes n/2
 B1 = RAMM(A1)
 B3 = RAMM(A3)
 Q = TSS(A3, A2)
 B2 = TSS(A1

T,-QT)
Endif

End

• TSS algorithm

We now discuss the implementation of solvers for triangular systems with matrix
right hand side (or equivalently left hand side). This kernel is commonly named
trsm in the BLAS convention. In the following, we will consider, without loss of
generality, the resolution of a lower triangular system with matrix right hand side
(AX = B). Our implementation is based on a block recursive algorithm in order to
reduce the computations to matrix multiplications [8, 9].

Begin
 If (n=1) then
 X = B/A
 Else /* splitting matrices into four blocks of sizes n/2

 X11 = TSS(A11,B11)
 X12 = TSS(A11,B12)
 X21 = TSS(A22, B21-MM(A21,X11))
 X22 = TSS(A22, B22-MM(A21,X12))
 Endif
End

ALGORITHM 4

TSS

On Fast Algorithms for Triangular and Dense Matrix Inversion 51

3.4 Algorithms Complexity

As well known, the complexity of the Strassen’s Algorithm is MM(n) = O(nlog2 7)

Besides, the cost RAMM(n) satisfies the following recurrence formula:

RAMM(n) = 2RAMM(n/2) + 2TRMM(n/2) + O(n2).

Since

TRMM(n) = 4TRMM(n/2) + 2MM(n/2) + O(n2)

= 4TRMM(n/2) + O(nlog27) + O(n2)

= n2 + O(nlog27) + O(n2) = O(nlog27)

We therefore get :

RAMM(n) = 2RAMM(n/2) + 2TRMM(n/2) + O(n2)

= nlog(n) + O(nlog27) + O(n2) = O(nlog27)

Following a similar way, we prove that TRMM(n) = O(nlog27)

4 Dense Matrix Inversion

4.1 LU Factorization

As previously mentioned, three alternative methods may be used to perform a DMI
through LU factorization (LUF). The first one requires two triangular matrix inver-
sions (TMI) and one triangular matrix multiplication (TMM) i.e. an upper one by a
lower one. The two others both require one triangular matrix inversion (TMI) and a
triangular matrix system solving (TSS) with matrix right hand side or equivalently
left hand side (Algorithm 4). Our aim is to optimize both LUF, TMI as well as TMM
kernels [10].

4.2 Recursive LU Factorisation

To reduce the complexity of LU factorization, blocked algorithms were proposed in
1974 [11]. For a given matrix A of size n, the L and U factors verifying A=LU may
be computed as follows:

52 R. Mahfoudhi and Z. Mahjoub

ALGORITHM 5

LUF

Begin
 If (n=1) Then
 L=1; U=A
 Else /* split matrices into four blocks of sizes n/2

 (L1, [U1, U2]) = LUF([A11 A12])

L3= A21

H = A22 – L3U2

 (L4, U4) = LUF(H)
 Endif
End

4.3 Triangular Matrix Multiplication (TMM)

Block wise multiplication of an upper triangular matrix by a lower one, can be
depicted as follows:

Thus, to compute the dense matrix C = AB of size n, we need:

• Two triangular matrix multiplication (an upper one by a lower one) of size n/2
• Two multiplications of a triangular matrix by a dense one (TRMM) of size n/2.
• Two dense matrix multiplication (MM) of size n/2.

On Fast Algorithms for Triangular and Dense Matrix Inversion 53

ALGORITHM 6

TMM

Begin
 If (n=1) Then
 C = A*B
 Else /* split matrices into four blocks of sizes n/2
 C1 = TMM(A1,B1)+MM(A2,B3)
 C2 = TRMM(B4, A2)
 C3 = TRMM(A4,B3)
 C4 = TMM(A4,B4)
 Endif
End

Clearly, if any matrix-matrix multiplication algorithm with O(nlog27) complex-
ity is used, then the algorithms previously presented both have the same O(nlog27)

complexity instead of O(n3) for the standard algorithms.

5 Experimental Study

5.1 TMI Algorithm

This section presents experiments of our implementation of the different versions of
triangular matrix inversion described above. We determinate the optimal number of
recursive levels for each one (as already precised, the optimal number of recursive
levels depends on the matrix size and the target architecture and must be determined
experimentally). The experiments (as well as the following on DMI) use BLAS
library in the last level and were achieved on a 3 GHz, 4Go RAM PC. We used the
g++ compiler under Ubuntu 11.01.

We recall that dtrtri refers to the BLAS triangular matrix inversion routine with
double precision floating points. We named our routines RAMM, RATSS, see fig. 3.

Fig. 3 Time ratio
dtrtri/RATSS

T
im

e
R

at
io

Matrix Size (n)

54 R. Mahfoudhi and Z. Mahjoub

Table 1 Timing of triangular matrix inversion (seconds)

Matrix size dtrtri RAMM RATSS Time ratio dtrtri/RATSS

256 0.01 0.02 0.01 1
512 0.02 0.03 0.02 1
1024 0.23 0.25 0.2 1.15
2048 2.03 2.08 1.71 1.16
4096 15.54 15.58 13.27 1.17
8192 121.64 127.77 102.9 1.18
16384 978.17 981.35 810.68 1.21
32768 7902.14 7927.85 6396.87 1.23
65536 64026.02 64296.97 51548.52 1.24

We notice that for increasing matrix sizes, RATSS becomes even more efficient
than dtrtri (improvement factor between 15 and 24 %). On the other hand, dtrtri is
better than RAMM, see table 1.

5.2 DMI Algorithm

Table 2 provides a comparison between LU factorization-based algorithms i.e.
MILU_1 (one TMI and one triangular matrix system solving), MILU_2 (two TMIs
and one TMM), and the BLAS routine where the routine dgetri was used in combi-
nation with the factorization routine dgetrf to obtain the matrix inverse (see Fig. 4).

We remark that the time ratio increases with the matrix size i.e. MILU_1 and
MILU_2 become more and more efficient than BLAS (the speed-up i.e. time ratio
reaches 4.4 and more).

Table 2 Timing of dense matrix inversion (seconds)

Matrix size Blas MILU_1 MILU_2 Time ratio BLAS
MILU_1 Time ratio BLAS

MILU_2

256 0.06 0.06 0.06 1.02 1.03
512 0.12 0.07 0.08 1.63 1.56
1024 1.46 0.65 0.73 2.24 1.99
2048 12.00 2.91 3.40 4.12 3.53
4096 96.01 21.97 24.06 4.37 3.99
8192 764.35 174.51 191.09 4.38 4.00
16384 5922.38 1349.06 1473.23 4.39 4.02
32768 50276.71 11400.61 12322.72 4.41 4.08
65536 401295.45 90585.88 97638.80 4.43 4.11

On Fast Algorithms for Triangular and Dense Matrix Inversion 55

Fig. 4 Time ratio:
BLAS/MLU_1 and
BLAS/MLU_2

T
im

e
R

at
io

n
Matrix Size (n)

6 Conlusion and Future Work

In this paper we targeted and reached the goal of outperforming the efficiency of
the well-known BLAS library for triangular and dense matrix inversion. It has to
be noticed that our (recursive) algorithms essentially benefit from both (recursive)
Strassen matrix multiplication algorithm, recursive solvers for triangular systems
and the use of BLAS routines in the last recursion level. This performance was
achieved thanks to (i) efficient reduction to matrix multiplication where we optimized
the number of recursive decomposition levels and (ii) reusing numerical computing
libraries as much as possible.

These results we obtained lead us to precise some attracting perspectives we intend
to study in the future. We may particularly cite the following points.

• Achieve an experimental study on matrix of larger sizes.
• Study the numerical stability of these algorithms
• Generalize our approach to other linear algebra kernels

References

1. Quarteroni A, Sacco R, Saleri F (2007) Méthodes numériques. Algorithmes, analyse et appli-
cations, Springer, Milan

2. Heller D (1978) A survey of parallel algorithms in numerical linear algebra. SIAM Rev 20:740–
777

3. Nasri W, Mahjoub Z (2002) Design and implementation of a general parallel divide and conquer
algorithm for triangular matrix inversion. Int J Parallel Distrib Syst Netw 5(1):35–42

4. Aho AV, Hopcroft JE, Ullman JD (1975) The design and analysis of computer algorithms.
Addison-Wesley, Reading

5. Mahfoudhi R (2012) A fast triangular matrix inversion. Lecture notes in engineering and
computer science: Proceedings of the world congress on engineering 2012, WCE 2012, London,
UK, 4–6 July 2012, pp 100–102

6. Steven H, Elaine M, Jeremy R, Anna T, Thomas T (1996) Implementation of Strassen’s algo-
rithm for matrix multiplication. In: Supercomputing ’96 proceedings ACM/IEEE conference
on supercomputing (CDROM)

56 R. Mahfoudhi and Z. Mahjoub

7. Strassen V (1969) Gaussian elimination is not optimal. Numer Math 13:354–356
8. Andersen BS, Gustavson F, Karaivanov A, Wasniewski J, Yalamov PY (2000) LAWRA—

Linear algebra with recursive algorithms. Lecture notes in computer science, vol 1823/2000,
pp 629–632

9. Dumas JG, Pernet C, Roch JL (2006) Adaptive triangular system solving. In: Proceedings of
the challenges in symbolic computation software

10. Mahfoudhi R, Mahjoub Z (2012) A fast recursive blocked algorithm for dense matrix inver-
sion. In: Proceedings of the 12th international conference on computational and mathematical
methods in science and engineering, cmmse 2012, La Manga, Spain

11. Aho AV, Hopcroft JE, Ullman JD (1974) The design and analysis of computer algorithms.
Addison-Wesley, Reading

	4 On Fast Algorithms for Triangular and Dense Matrix Inversion
	1 Introduction
	2 Divide and Conquer Paradigm
	3 Recursive TMI Algorithms
	3.1 Heller's Recursive Algorithm (HRA)
	3.2 Recursive Algorithm Using Matrix Multiplication (RAMM)
	3.3 Recursive Algorithm Using Triangular Systems Solving (RATSS)
	3.4 Algorithms Complexity

	4 Dense Matrix Inversion
	4.1 LU Factorization
	4.2 Recursive LU Factorisation
	4.3 Triangular Matrix Multiplication (TMM)

	5 Experimental Study
	5.1 TMI Algorithm
	5.2 DMI Algorithm

	6 Conlusion and Future Work
	References

