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Abstract A comprehensive research on the existing Block Backward Differentiation
Formulae (BBDF) was done. Based on the suitability in solving stiff ordinary differ-
ential equations (ODEs), BBDF of order 3 up 5 is collected using simplified strategy
in controlling the step size and order of the method. Thus, Extended Block Back-
ward Differentiation Formulae (EBBDF) is derived with the intention of optimizing
the performance in terms of precision and computation time. The accuracy of the
method are investigated using linear and non linear stiff initial value problems and
its performance is compared with MATLAB’s suite of ODEs solvers namely ode15s
and ode23s.
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1 Introduction

Applied problems arise from chemical, biological and physical phenomenon,
particularly in many field of science and engineering [1–4], have inspired numbers of
researches to develop effective and very accurate methods to solve stiff initial value
problems (IVP) [5]. Many renowned method for solving stiff problems are based on
backward differentiation formula (BDF) which also known as Gear’s method and
was first introduced in [6]. The method was then developed to improve the results
in terms of accuracy and computation time. The evidence is in the advancements of
many other codes to meet the same objective of finding the most accurate approxima-
tion for IVPs. These codes include EPISODE, VODE, LSODE, MEBDF etc. [5–7].

Many in recent chapters have tried to describe and compare some of the best
codes by taking into accounts their accuracy, rate of convergence, and computation
time [8]. Consequently, some excellent codes which are both efficient and reliable
for solving these particular classes of problems are made available. With the same
objective, this chapter consider the numerical solution of the first order initial value
problem,

y′ = f (x, y) (1)

with given initial values y(a) = y0 in the given interval x ∈ [a, b].
From the study on BBDF in [9], the competency of computing concurrent solution

values at different points were revealed. The idea in [10, 11] was then extended by
increasing the order of the method up to order 5. In this chapter, we extend and
review the study of Extended Block Backward Differentiation Formulae (EBBDF)
in [12]. Additionally, this chapter investigates the consistency and convergence of
the method.

2 Derivation of Extended Block Backward Differentiation
Formulae Method

2.1 Construction of EBBDF

Two values of yn+1 and yn+2 were computed simultaneously in block by using earlier
blocks with each block containing a maximum of two points (Fig. 1). The orders of the
method (P3, P4 and P5) are distinguished by the number of backvalues contained
in total blocks. The ratio distance between current (xn) and previous step (xn−1) is
represented as r and q in Fig. 1. In this chapter, the step size is given selection to
decrease to half of the previous steps, or increase up to a factor of 1.9. For simplicity,
q is assigned as 1, 2 and 10/19 for the case of constant, halving and increasing the step
size respectively. The zero stability is achieved for each of these cases and explained
in the next section.
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Fig. 1 EBBDF method of
order (P3 − P5)

We find approximating polynomials Pk(x), by means of a k-degree polyno-
mial interpolating the values of y at given points are (xn−3, yn−3), (xn−2, yn−2),

(xn−1, yn−1) . . . , (xn+2, yn+2).

Pk =
∑k

j=0
y(xn+1− j ).Lk, j (x) (2)

where

Lk, j (x) =
k∏

i = 0
i �= j

(x − xn+1−i )

(xn+1− j − xn+1−i )
for each j = 0, 1, . . . , k.

The interpolating polynomial of the function y(x) using Lagrange polynomial in
(2) gives the following corrector for the first point y p

n+1, and second point y p
n+2. The

resulting Lagrange polynomial for each order was given as follows:

For EBBDF of order P3 (P = 3)

P(x) = P(xn+1 + sh)

= (r + 1 + s)(s + 1)(s)

2r + 4
yn+2 + (r + 1 + s)(s + 1)(s − 1)

−1 − r
yn+1

+ (r + 1 + s)(s − 1)(s)

2r
yn + (1 + s)(s − 1)(s)

−r(−1 − r)(−r − 2)
yn−1 (3)

For EBBDF of order P4 (P = 4)

P (x) = P (xn+1 + sh)

= (2r + 1 + s) (r + 1 + s) (1 + s) (s)

2 (2r + 2) (r + 2)
yn+2

+ (2r + 1 + s) (r + 1 + s) (1 + s) (s − 1)

− (2r + 1) (r + 1)
yn+1
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+ (2r + 1 + s) (r + 1 + s) (s) (s − 1)

4r2 yn

+ (2r + 1 + s) (1 + s) (s) (s − 1)

−r2 (−r − 1) (−r − 2)
yn−1

+ (r + 1 + s) (1 + s) (s) (s − 1)

2r2 (−2r − 1) (−2r − 2)
yn−2 (4)

For EBBDF of order P5 (P = 5)

P (x) = P (xn+1 + sh)

= (q + 2r + 1 + s) (2r + 1 + s) (r + 1 + s) (1 + s) s

2 (q + 2r + 2) (2r + 2) (r + 2)
yn+2

+ (q + 2r + 1 + s) (2r + 1 + s) (r + 1 + s) (1 + s) (s − 1)

− (q + 2r + 1) (2r + 1) (r + 1)
yn+1

+ (q + 2r + 1 + s) (2r + 1 + s) (r + 1 + s) s (s − 1)

4 (q + 2r) r2 yn

+ (q + 2r + 1 + s) (2r + 1 + s) (1 + s) s (s − 1)

−r2 (q + r) (−r − 1) (−r − 2)
yn−1

+ (q + 2r + 1 + s) (r + 1 + s) (1 + s) s (s − 1)

2qr2 (−2r − 1) (−2r − 2)
yn−2

+ (2r + 1 + s) (r + 1 + s) (1 + s) s (s − 1)

−q (−q − r) (−q − 2r) (−q − 2r − 1) (−q − 2r − 2)
yn−3 (5)

By substituting s = 0 and s = 1 gives the corrector for the first and second point
respectively. Therefore by letting r = 1, q = 1, r = 2, q = 2 and r = 1, q = 10/19
we produced the following equations for the first and second point of EBBDF.

EBBDF of order P3 (p = 3)
When r = 1, q = 1

yn+1 = 2h fn+1 − 2

3
yn+2 + 2yn − 1

3
yn−1

yn+2 = 6

11
h fn+2 + 18

11
yn+1 − 9

11
yn + 2

11
yn−1

When r = 2, q = 2

yn+1 = 3h fn+1 + 9

8
yn+2 + 9

4
yn − 1

8
yn−1

yn+2 = 4

7
h fn+2 + 32

21
yn+1 − 4

7
yn + 1

21
yn−1

When r = 1, q = 10/19
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yn+1 = 29

19
h fn+1 − 841

1824
yn+2 + 841

380
yn − 361

480
yn−1

yn+2 = 48

91
h fn+2 + 4608

2639
yn+1 − 576

455
yn + 6859

13195
yn−1

EBBDF of order P4 (P = 4)
When r = 1, q = 1

yn+1 = 6

5
h fn+1 − 3

10
yn+2 + 9

5
yn − 3

5
yn−1 + 1

10
yn−2

yn+2 = 12

25
h fn+2 + 48

25
yn+1 − 36

25
yn + 16

25
yn−1 − 3

25
yn−2

When r = 2, q = 2

yn+1 = 15

8
h fn+1 − 75

128
yn+2 + 225

128
yn − 25

128
yn−1 + 3

128
yn−2

yn+2 = 12

23
h fn+2 + 192

115
yn+1 − 18

23
yn + 3

23
yn−1 − 2

115
yn−2

When r = 1, q = 10/19

yn+1 = 1131

1292
h fn+1 − 14703

82688
yn+2 + 1279161

516800
yn

− 183027

108800
yn−1 + 10469

27200
yn−2

yn+2 = 1392

3095
h fn+2 + 89088

40235
yn+1 − 242208

77375
yn

+ 198911

77375
yn−1 − 658464

1005875
yn−2

EBBDF of order P5(P = 5)
When r = 1, q = 1

yn+1 = 12

13
h fn+1 − 12

65
yn+2 + 24

13
yn − 12

13
yn−1

+ 4

13
yn−2 − 3

65
yn−3

yn+2 = 60

137
h fn+2 + 300

137
yn+1 − 300

137
yn + 200

137
yn−1

− 75

137
yn−2 + 12

137
yn−3

When r = 2, q = 2
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yn+1 = 105

71
h fn+1 − 3675

9088
yn+2 + 3675

2272
yn − 1225

4544
yn−1

+ 147

2272
yn−2 − 75

9088
yn−3

yn+2 = 24

49
h fn+2 + 3072

1715
yn+1 − 48

49
yn + 12

49
yn−1

− 16

245
yn−2 + 3

343
yn−3

When r = 1, q = 10/19

yn+1 = 402

449
h fn+1 − 13467

77228
yn+2 + 13467

7184
yn − 13467

13021
yn−1

+ 4489

8980
yn−2

7428297

44792240
yn−3

yn+2 = 516

1189
h fn+2 + 177504

79663
yn+1 − 5547

2378
yn + 59168

34481
yn−1

− 5547

5945
yn−2 + 7428297

23102270
yn−3

As similar to analysis for order of Linear Multistep Method (LMM) given in [13],
we use the following definition to determine the order of EBBDF method.

Definition 1 The LMM [13] and the associated difference operator L defined by

L [z(x); h] =
j∑

k=0

[
αk z(x + kh)− hβk z′(x + kh)

]
(6)

are said to be of order p if co = c1 = . . . = cp = 0,C p+1 �= 0. The general form
for the constant Cq is defined as

Cq =
j∑

k=0

[
kqαk − 1

(q − 1)!kq−1βk

]
, q = 2, 3, . . . p + 1 (7)

Consequently, BBDF method can be represented in standard form by an equation∑k
j=0 A j yn+ j = h

∑k
j=0 B j fn+ j where A j and B j are r by r matrices with elements

al,m and bl,m for l,m = 1, 2, . . . r. Since EBBDF for variable order (P) is a block
method, we extend the Definition 1 in the form of

L [z(x); h] =
j∑

k=0

[
Ak z(x + kh)− h Bk z′(x + kh)

]
(8)
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And the general form for the constant Cq is defined as

Cq =
j∑

k=0

[
kq Ak − 1

(q − 1)!kq−1 Bk

]
q = 2, 3, . . . p + 1 (9)

Ak is equal to the coefficients of yk where k = n = (p − 2), . . . , n + 1, n + 2 and
P = 3, 4, 5.

Throughout this section, we illustrate the effect of Newton-type scheme which in
general form of

y(i+1)
n+1,n+2 − y(i)n+1,n+2 =

−
[
(i − A)− h B

∂F

∂y
y(i)n+1,n+2

]−1 [
(I − A) yi

n+1,n+2 − h B F
(

y(i)n+1,n+2

)
− ξ

]

(10)

The general form of EBBDF method is

yn+1 = α1h fn+1 + θ1 yn+2 + ψ1
yn+2 = α1h fn+2 + θ1 yn+1 + ψ2

}
(11)

With ψ1 and ψ2 are the back values. By setting,

I =
[

1 0
0 1

]
, yn+1,n+2 =

[
yn+1
yn+2

]
, B =

[
α1 0
0 α2

]
, Fn+1,n+2 =

[
fn+1
fn+2

]
, and

ξn+1,n+2 =
[
ψ1
ψ2

]

Equation (11) in matrix-vector form is equivalent to

(I − A)yn+1,n+2 = h B Fn+1,n+2 + ξn+1,n+2 (12)

Equation (12) is simplified as

f̂n+1,n+2 = (I − A)yn+1,n+2 − h B Fn+1,n+2 − ξn+1,n+2 = 0 (13)

Newton iteration is performed to the system f̂n+1,n+2 = 0, by taking the

analogous form of (10) where Jn+1,n+2 = (
∂F
∂Y

) (
Y (i)n+1,n+2

)
, is the Jacobian matrix

of F with respect to Y . Equation (10) is separated to three different matrices denoted
as

E (i+1)
1,2 = y(i+1)

n+1,n+2 − y(i)n+1,n+2 (14)

Â = (I − A)− h B
∂F

∂Y

(
y(i)n+1,n+2

)
(15)
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B̂ = (I − A)y(i)n+1,n+2 − h B F
(

y(i)n+1,n+2

)
− ξn+1,n+2 (16)

Two-stage Newton iteration works to find the approximating solution to (1) with
two simplified strategies based on evaluating the Jacobian (Jn+1,n+2) and LU fac-
torization of Â [13].

2.2 Consistency and Convergence of EBBDF Methods

We first consider the general form of a block linear multistep method (LMM):

∑k

j=0
A j yn+ j = h

∑k

j=0
B j Fn+ j (17)

where A j and B j are r by r matrices with elements αim, βim for i.m = 0, 1, . . . , r.
Equation (17) is applied for EBBDF method

∑k

j=0
αi j yn+2− j = h

∑k

j=0
β j fn+2− j (18)

The expression (18) is expanded to give the following system of equation.

[
α1,0 α1,1
α2,0 α2,1

] [
yn+2
yn+1

]
+ ...+

[
α1,k−1 α1,k
α2,k−1 α2,k

] [
yn+3−k

yn+2−k

]

= h

[[
β1,4 β1,5
β2,4 β2,5

] [
fn+2
fn+1

]
+ ...+

[
β1,k−1 β1,k
β2,k−1 β2,k

] [
fn+3−k

fn+2−k

]]

(19)

With

A0 =
[
α1,0
α2,0

]
, . . . , Ak =

[
α1,k
α2,k

]
, and B1 =

[
β1,1
β2,1

]
, . . . , Bk =

[
β1,k
β2,k

]

Adopting the order procedure used in the single case for the block method, we
associate with a linear difference operator L [y (xn) , h], given as

L [y (xn), h] =
∑k

j=0

[
α j y (xn + jh)− hβ j f

(
xn + jh, y (xn + jh)

)]
(20)

The use of appropriate Taylor expansions about a suitable x , reduces (20) to the
form

L [y (xn), h] = c0 y (xn)+ c1hy′(xn) + · · · + cr hr yr (xn) (21)

where



Solving Stiff Ordinary Differential Equations Using EBBDF 39

c0 =
∑k

j=0
A j , c1 =

∑k

j=0
j A j −

∑k

j=0
B j and,

cr = 1

r !
k∑

j=0

jr AJ − 1

(r − 1)!
k∑

j=0

jr−1 B j

The EBBDF method is said to be of order p if c0 = c1 = · · · = cp = 0, cp+1 �= 0
and the local truncation error is

tn+k = cp+1h p+1 y p+1 (xn)+ 0(h p+2) (22)

2.3 Stability Regions of the EBBDF Method

Definition 2 A method is said to be absolute stable in a region R for a given hλ if for
that hλ, all the roots rs of the stability polynomial π(r, hλ) = ρ(r)− hλσ(r) = 0,
satisfy|rs | < 1, s = 1, 2, . . . , k.

Definition 3 The LMM is said to be zero-stable if no root of the first characteristic
polynomial ρ(r) has modulus greater than one, and if every root with unit modulus
is simple.

By applying test equation y′ = λy to (1.1) we obtain,

∑k

j=0
αi j yn+2− j = h

∑k

j=0
β jλn+2− j (23)

The Eq. (23) is equivalent to

∑r

j=0
A j Y j = 0 (24)

where A j = [A0, A1, . . . , Ar ],Y j = [Y0,Y1, . . . ,Yr ] and,

A j =
[

α1,2 j α1,(2 j+1) − β1,(2 j+1)hλ
α2,(2 j)−β2,(2 j)hλ α2,(2 j+1)

]
,Y j =

[
yn+2−2 j

yn+1−2 j

]

The stability polynomial, R(t, ĥ) associated with the method of (18) is given by

det
(∑r

j=0
A j t

j
)

(25)

while the absolute stability region of this method in the hλ plane is determined by

solving det
(∑r

j=0 A j t j
)

= 0. The stability region was given by the set of points
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determined by the boundary t = eiθ , 0 ≤ θ ≤ 2π. The stability region is obtained
by finding the region for which |t | < 1.

2.4 Order and Stepsize Selection

The importance of choosing the step size is to achieve reduction in computation time
and number of iterations. Meanwhile changing the order of the method is designed
for finding the best approximation. Strategies proposed in [14] are applied in this
study for choosing the step size and order. The strategy is to estimate the maximum
step size for the following step. Methods of order P − 1, P , P + 1 are selected
depending on the occurrence of every successful step. Consequently, the new step
size hnew is obtained from which order produces the maximum step size.

The user initially will have to provide an error tolerance limit, TOL on any given
step and obtain the local truncation error (LTE) for each iteration. The LTE is obtained
from

LT Ek = y(P+1)
n+2 − y(P)n+2, P = 3, 4, 5

where y(P+1)
n+2 is the (P + 1)th order method and y(P)n+2 is the kth order method.

By finding the LTEs, the maximum step size is defined as

h P−1 = hold ×
(

T O L

LT EP−1

) 1
P

,h P = hold ×
(

T O L

LT EP

) 1
P+1

,h P+1 = hold ×
(

T O L

LT EP+1

) 1
P+2

where hold is the stepsize from previous block and hmax is obtained from the maxi-
mum stepsize given in above equations.

The successful step is dependent on the condition LTE<TOL. If this condition
fails, the values of yn+1,yn+2 are rejected, and the current step is reiterated with step
size selection (q = 2). On the contrary, the step size increment for each successful
step is defined as hnew = c ×hmax and if hnew > 1.9×hold then hnew = 1.9×hold .
Where c is the safety factor, p is the order of the method while and is the step size
from previous and current block respectively. In this chapter, c is set to be 0.8 so as
to make sure the rejected step is being reduced.

3 Numerical Results

We carry out numerical experiments to compare the performance of EBBDF method
with stiff ODE solvers in MATLAB mentioned earlier. This chapter considers the
comparison of four different factors namely number of steps taken, average error,
maximum error and computation time. These test problems are performed under
different conditions of error tolerances—(a) 10−2, (b) 10−4 and, (c) 10−6
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Table 1 Numerical results
for problem 1

VSVO ODE15s ODE23s

TOL 1.000e-002
Total steps 29 41 37
Maximum error 6.4925e-003 0.0084 0.0045
Average error 8.8396e-004 9.1188e-004 0.0011
Time 0.0104 0.1094 0.0781

TOL 1.000e-004
Total steps 74 94 182
Maximum error 1.9531e-006 1.6634e-004 2.5500e-004
Average error 4.6275e-007 1.9159e-005 4.7081e-005
Time 0.0107 0.1250 0.1563

TOL 1.000e-006
Total steps 279 163 1194
Maximum error 9.8112e-007 3.0953e-006 1.0911e-005
Average error 4.8070e-007 1.3149e-006 1.1596e-006
Time 0.0125 0.2813 0.6250

The test problems and solution are listed below
Problem 1

y′ = −1000y + 3000 − 2000e(−x)y(0) = 0 0 ≤ x ≤ 20

With solution: y(x) = 3 − 0.998e(−1000x) − 2.002e(-x)

Problem 2

Table 2 Numerical results
for problem 2

VSVO ODE15s ODE23s

TOL 1.000e-002
Total steps 35 45 137
Maximum error 3.0045e-004 0.0146 0.0030
Average error 4.6584e-005 0.0069 0.0014
Time 0.0111 0.0156 0.2031

TOL 1.000e-004
Total steps 84 99 1211
Maximum error 1.1002e-005 2.7591e-004 6.3075e-005
Average error 2.5775e-006 7.6548e-005 2.4915e-005
Time 0.0123 0.0469 0.3281

TOL 1.000e-006
Total steps 380 186 8289
Maximum error 8.9627e-008 6.1936e-006 1.5667e-006
Average error 2.4244e-008 2.1681e-006 5.3155e-007
Time 0.0199 0.0781 2.3750
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y′
1 = −2y1 + y2 + 2 sin(x) y1(0) = 2 0 ≤ x ≤ 10

y′
2 = 998y1 − 999y2 + 999

(
cos(x)− sin(x)

)
y2(0) = 3

With solution:
y1(x) = 2e(−x) + sin(x)

y2(x) = 2e(−x) + cos(x)

From Tables 1 and 2, among the three methods tested, our method, EBBDF method
requires the shortest execution time, smallest maximum error and average error for
each given tolerance level. Moreover, EBBDF outperformed ode15s and ode23s in
term of total steps when the tolerance level is less than 10−4.

4 Conclusion and Future Work

Extended Block Backward Differentiation Formulae (EBBDF) was derived in this
chapter. From the numerical experiments, the comparisons between EBBDF and
solvers in MATLAB, show improvements in term of computation time, average error
as well as maximum error. Therefore, we conclude that EBBDF can serve as an
alternative solver for solving stiff ODEs. Subsequently, the method can be extended
to solve higher order ODEs in future. One can also apply parallel computing to
improve the computation time.

References

1. Sack-Davis R (1980) Fixed leading coefficient implementation of SD-formulas for stiff ODEs.
ACM Trans Math Softw 6(4):540–562

2. Yatim SAM, Ibrahim ZB, Othman KI, Suleiman MB (2011) Quantitative comparison of numer-
ical method for solving stiff ordinary differential equations. Math Prob Eng 2011, ID 193961

3. Mahmood AS, Casasus L, Al-Hayani W (2005) The decomposition method for stiff systems
of ordinary differential equations. Appl Math Comput 167(2):964–975

4. Ibanez J, Hernandez V, Arias E, Ruiz PA (2009) Solving initial value problems for ordinary
differential equations by two approaches: BDF and piecewise-linearized methods. Comput
Phys Commun 180(5):712–723

5. Enright WH, Hull TE, Lindberg B (1975) Comparing numerical methods for stiff systems of
O.D.Es. BIT 15(1):10–48

6. Byrne GD, Hindmarsh AC, Jackson KR, Brown HG (1977) A comparison of two ode codes:
gear and episode. Comput Chem Eng 1(2):133–147

7. Cash JR, Considine S (1992) An MEBDF code for stiff initial value problems. ACM Trans
Math Softw 18(2):142–155

8. Abelman S, Patidar KC (2008) Comparison of some recent numerical methods for initial-value
problems for stiff ordinary differential equations. Comput Math Appl 55(4):733–744



Solving Stiff Ordinary Differential Equations Using EBBDF 43

9. Ibrahim ZB, Suleiman MB, Othman KI (2008) Fixed coefficients block backward differentia-
tion formulas for the numerical solution of stiff ordinary differential equations. Eur J Sci Res
21(3):508–520

10. Ibrahim ZB, Othman KI, Suleiman MB (2007) Variable step size block backward differentiation
formula for solving stiff odes. In: Proceedings of the world congress on engineering 2007, WCE
2007, London, UK, pp 785–789, 2–4 July 2007

11. Yatim SAM, Ibrahim ZB, Othman KI, Suleiman MB (2010) Fifth order variable step block
backward differentiation formulae for solving stiff ODEs. Proc World Acad Sci Eng Tech
62:998–1000

12. Yatim SAM, Ibrahim ZB, Othman KI, Suleiman MB (2012) Numerical solution of extended
block backward differentiation formulae for solving stiff ODEs, Lecture notes in engineering
and computer science: proceedings of the world congress on engineering 2012, WCE 2012,
London, UK, pp 109–113, 4–6 July 2012

13. Lambert JD (1973) Computational methods ordinary differential equation. Wiley, New York
14. Hall G, Watt JM (1976) Modern numerical methods for ordinary differential equations. Claren-

don Press, Oxford


	3 Solving Stiff Ordinary Differential Equations Using Extended Block Backward  Differentiation Formulae
	1 Introduction
	2 Derivation of Extended Block Backward Differentiation Formulae Method
	2.1 Construction of EBBDF
	2.2 Consistency and Convergence of EBBDF Methods
	2.3 Stability Regions of the EBBDF Method
	2.4 Order and Stepsize Selection

	3 Numerical Results
	4 Conclusion and Future Work
	References


