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Abstract By constructing suitable Lyapunov functions, we study the existence,
uniqueness and global exponential stability of periodic solution for impulsive Hop-
field neural networks with time-varying delays. Our condition extends and general-
izes a known condition for the global exponential periodicity of continuous Hopfield
neural networks with time-varying delays. Further the numerical simulation shows
that our system can occur many forms of complexities including gui strange attractor
and periodic solution.
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1 Introduction

In recent years, stability of different classes of neural networks with time delay,
such as Hopfield neural networks, cellular neural networks, bidirectional associa-
tive neural networks, Lotka-Volterra neural networks, has been extensively stud-
ied and various stability conditions have been obtained for these models of neural
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networks. A citation will look like this, [1, 3, 6]. Here are some more citations
[5, 10, 13, 16, 17].

Stability and convergence properties are generally regarded as important effects
of delays. Both in biological and man-made neural systems, integration and commu-
nication delays are ubiquitous, and often become sources of instability. The delays
in electronic neural networks are usually time varying, and sometimes vary violently
with time due to the finite switching speed of amplifiers and faults in the electrical
circuit. They slow down the transmission rate and tend to introduce some degree
of instability in circuits. Therefore, fast response must be required in practical elec-
tronic neural-network designs. The technique to achieve fast response troubles many
circuit designers. So, it is important to investigate the delay independent stability and
decay estimates of the states of analog neural networks.

However, in implementation of networks, time delays are inevitably encountered
because of the finite switching speed of amplifiers, see [2, 4, 7, 11, 12]. On the other
hand, impulsive effect likewise exists in a wide variety of evolutionary processes in
which states are changed abruptly at certain moments of time, involving such fields as
medicine and biology, economics, mechanics, electronics and telecommunications,
etc. Many interesting results on impulsive effect have been gained. Here are some
more citations [2, 4, 7–9, 11, 12, 15, 18]. As artificial electronic systems, neural
networks such as Hopfield neural networks, bidirectional neural networks and recur-
rent neural networks often are subject to impulsive perturbations which can affect
dynamical behaviors of the systems just as time delays. Therefore, it is necessary to
consider both impulsive effect and delay effect on the stability of neural networks.

In this chapter, we consider the following impulsive Hopfield neural networks
with time-varying delays:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋi (t) = −ai xi (t)+
n∑

j=1
ai j g j (x j (t))

+
n∑

j=1
bi j g j (x j (t − τi j (t)))+ Ii (t), t �= tk,

�xi (tk) = γik xi (tk), i = 1, 2, . . . , n, k = 1, 2, . . . ,

(1)

where n is the number of neurons in the network, xi (t) is the state of the i th neuron
at time t , ai j is the rate at which the i th neuron resets the state when isolated from
the system, bi j is the connection strength from the j th neuron to the i th neuron.
g(x) = (g1(x1), g2(x2), . . . , gn(xn))

T : R
n → R

n is the output of the i th neuron at
time t , I (t) = (I1(t), I2(t), . . . , In(t))T ∈ R

n is the ω-periodic external input to the
i th neuron.

Throughout this chapter, we assume that
(H1) For j ∈ {1, . . . , n}, g j (u) ( j = 1, 2, . . . , n) is globally Lipschitz-

continuous with the Lipschitz constant L j > 0. That is,

|g j (u1)− g j (u2)| � L j |u1 − u2|,
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for all u1, u2 ∈ R = (−∞,∞).
(H2) There exists a positive integer p such that, tk+p = tk + ω, γi(k+p) =

γik, k > 0, k = 1, 2, . . .
(H3) τi j (t)(i, j = 1, 2, . . . , n) are continuously differentiable ω-periodic func-

tions defined on R
+, τ = sup0 � t �ω τi j (t) and inf t∈R+{1 − τ̇i (t)} > 0.

In order to describe the initial condition accompanying Eq. (1), we introduce the
following notations.

Definition 1 A functionφ : [−τ, 0] → R is said to be a C∗-function if the following
two conditions are satisfied:

(a) φ is piecewise continuous with first kind discontinuity at the points tk . Moreover,
φ is left-continuous at each discontinuity point.

(b) For all i ∈ {1, . . . , n} and k ∈ {1, . . . , p}, φi (tk + 0) = φi (tk)+ γikφi (tk).

Let C∗ denote the set of all the C∗-functions. Obviously, (C∗,R,+, ·) forms a vector
space on R. Now consider (C∗,R,+, ·) endowed with the norm defined by

‖φ‖∞ = sup
−τ�θ�0

‖φ(θ)‖ = sup
−τ�θ�0

max
1�i�n

|φi (θ)|.

Definition 2 A function x : [−τ,∞] → R is said to be the special solution of
Eq. (1) with initial condition φ ∈ C∗ if the following two conditions are satisfied:

(c) x is piecewise continuous with first kind discontinuity at the points tk , k ∈
{1, . . . , p}.

(d) x satisfies Eq. (1) for t � 0, and x(θ) = φ(θ) for θ ∈ [−τ, 0].
Henceforth, we let x(t, φ) denote the special solution of Eq. (1) with initial condition
φ ∈ C∗

Definition 3 Equation (1) is said to be globally exponentially periodic if it possesses
a periodic solution x(t, φ∗), and x(t, φ∗) is globally exponentially stable. That is,
there exist positive constants ε and M such that every solution of Eq. (1) satisfies

‖x(t, φ)− x(t, φ∗)‖∞ � M‖φ − φ∗‖e−εt , f orall t � 0.

2 Main Result

Now we define ψ(t) = t − τi (t), then ψ−1(t) has inverse function ν. Set

δi = max

{
1

1 − τ̇i (ψ
−1
i (t))

: t ∈ R

}

, i = 1, 2, . . . , n.
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Theorem 4 Equation (1) is globally exponentially periodic if the following two con-
ditions are satisfied:

(H4) |1 + γik | � 1, for all i ∈ {1, . . . , n}, and k ∈ {1, . . . , p},
(H5) There exist positive numbers α1, α2, . . . , αn, such that

αi ai > Li

n∑

j=1

α j
(|b ji | + δ j |c ji |

)
, i = 1, 2 . . . , n.

In order to prove Theorem 4, we need the following Lemma.

Lemma 5 Let x(t, φ), x(t, ϕ)be a pair of solutions of Eq. (1). If the two conditions
given in Theorem 4 are satisfied, then there is a positive number ε such that,

‖x(t, φ)− x(t, ϕ)‖∞ � M(ε)‖φ − ϕ‖∞e−εt , for all t � 0.

where

M(ε) = 1

min
1� j�n

α j

n∑

i=1

αi

[

1 + 1

ε
L jδ j |ci j |

(
eετ − 1

)
]

.

Proof Let x(t, φ) = (x1(t, φ), x2(t, φ), . . . , xn(t, φ))T and x(t, ϕ) = (x1(t, ϕ),
x2(t, ϕ), . . . , xn(t, ϕ))T be an arbitrary pair of solutions of Eq. (1). Let

�xi (t, φ, ϕ) = xi (t, φ)− xi (t, ϕ),

�g j (x j (t, φ, ϕ)) = g j (x j (t, φ))− g j (x j (t, ϕ)),

V (t) =
n∑

i=1

αi

{

|�xi (t, φ, ϕ)|e−εt

+
n∑

j=1

∫ t

t−τ j (t)

L j |ci j ||�x j (s, φ, ϕ)|
1 − τ̇ j (ψ

−1
j (s))

eε(s+τ j (ψ
−1
j (s))ds

}

. (2)

We proceed by considering two possibilities.

Case 1. t �= tk for all k ∈ {1, . . . , p}. From the second condition in Theorem 4,
there is a small positive number ε such that

αi (ai − ε) > Li

n∑

j=1

α j
(|b ji | + δ j |c ji |eετ

)
, (3)

where i = 1, . . . , n.Calculating the derivatives of V (t) along the solutions of Eq. (1),
we get
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D+V (t) =
n∑

i=1

αi

{

e−εt D+|�xi (t, φ, ϕ)|

+
n∑

j=1

[
L j |ci j |

1 − τ̇ j (ψ
−1
j (t))

|�x j (t, φ, ϕ)| · eε(t+τ j (ψ
−1
j (t))

− L j |ci j ||�x j (t − τ j (t), φ, ϕ)|eεt
]

+ εe−εt |�xi (t, φ, ϕ)|
}

. (4)

Note that for i = 1, . . . , n,

ẋi (t, φ)− ẋi (t, ϕ) = − ai�xi (t, φ, ϕ)

+
n∑

j=1

bi j�g j (x j (t, φ, ϕ)

+
n∑

j=1

ci j�g j (x j (t − τ j (t), φ, ϕ),

which plus (H1) yields

D+|x(t, φ)− x(t, ϕ)| � − ai |�xi (t, φ, ϕ)| +
n∑

j=1

L j |bi j ||�x j (t, φ, ϕ)|

+
n∑

j=1

L j |ci j ||�x j (t − τ j (t), φ, ϕ)|. (5)

Substituting Eq. (5) into Eq. (4), we obtain

D+V (t) =
n∑

i=1

αi

[

− ai e
−εt |�xi (t, φ, ϕ)|

+ e−εt
n∑

j=1

L j |bi j ||�x j (t, φ, ϕ)|

+ e−εt
n∑

j=1

L j |ci j ||�x j (t − τ j (t), φ, ϕ)|

+ εe−εt |�xi (t, φ, ϕ)|

+
n∑

j=1

L j |ci j |
1 − τ̇ j (ψ

−1
j (t))

|�x j (t, φ, ϕ)|eε(t+τ j (ψ
−1
j (t))
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−
n∑

j=1

L j |ci j ||�x j (t − τ j (t), φ, ϕ)|eεt
]

� e−εt
n∑

i=1

αi

[

(ε − ai )|�xi (t, φ, ϕ)|

+
n∑

j=1

L j |bi j ||�x j (t, φ, ϕ)|

+
n∑

j=1

L jδ j |ci j |eετ |�x j (t, φ, ϕ)|
]

= e−εt
n∑

i=1

[

αi (ε − ai )

+ Li

n∑

j=1

(|b ji | + δi |c ji |eετ
)
]

· |�xi (t, φ, ϕ)| � 0. (6)

Case 2. t = tk, for some k ∈ {1, 2, . . . , p}. Then

V (t + 0) =
n∑

i=1

αi

[

|�xi (t + 0, φ, ϕ)|e−εt

+
n∑

j=1

∫ t

t−τ j (t)

L j |ci j |�x j (s, φ, ϕ)

1 − τ̇ j (ψ
−1
j (s))

eε(s+τ j (ψ
−1
j (s))ds

]

.

According to Eq. (2) and (H4), we obtain

V (t + 0)− V (t) = e−εt
n∑

i=1

αi

(
|�xi (t + 0, φ, ϕ)| − |�xi (t, φ, ϕ)|

)

= −e−εt
n∑

i=1

αi
(
1 − |1 + γik |

)|�xi (t, φ, ϕ)| � 0.

Namely, V (t + 0) � V (t).
Combining the above discussions, we obtain V (t) � V (0) for all t � 0. This plus

the inspections that

V (t) � eεt
n∑

i=1

αi |�xi (t, φ, ϕ)|

� min
1� j�n

α j e
εt

n∑

i=1

|�xi (t, φ, ϕ)|
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� min
1� j�n

α j e
εt

∥
∥xi (t, φ)− xi (t, ϕ)

∥
∥∞, (7)

and

V (0) =
n∑

i=1

αi

[

|xi (0, φ)− xi (0, ϕ)|

+
n∑

j=1

∫ 0

−τ j (0)

L j |ci j |
1 − τ̇ j (ψ

−1
j (s))

·�x j (s, φ, ϕ)e
ε(s+τ j (ψ

−1
j (s))ds

]

�
n∑

i=1

αi

[
∣
∣φi (0)− ϕi (0)

∣
∣

+
n∑

j=1

∫ 0

−τ
L jδ j |ci j |eετ

∣
∣φ j (s)− ϕ j (s)

∣
∣eεsds

�
n∑

i=1

αi

[

1 + L jδ j

ε
|ci j |

(
eετ − 1

)
]

‖φ − ϕ‖∞. (8)

This implies that the conclusion of the Lemma hold by using Eqs. (6)–(8). �
Proof of Theorem 4. First, we prove that Eq. (1) possesses an ω-periodic solution.

For each solution x(t, φ) of Eq. (1) and each t � 0, we can define a function xt (φ)

in this fashion:
xt (φ)(θ) = x(t + θ, φ), for θ ∈ [−τ, 0].

On this basis, we can define a mapping P : C∗ → C∗ by

Pφ = xω(φ).

Let x(t, φ), x(t, ϕ) be an arbitrary pair of solutions of Eq. (1). Let ε be a positive
number satisfying Eq. (3). Let m � 1

εω
ln(2M(ε))+1 be a positive integer. It follows

from Lemma 5 that

‖Pmφ − Pmϕ‖
= sup

−τ�θ�0
‖x(mω + θ, φ)− x(mω + θ, ϕ)‖∞

� M(ε) sup
−τ�θ�0

e−ε(mω+θ)‖φ − ϕ‖∞

� M(ε)e−ε(m−1)ω‖φ − ϕ‖∞ � 1

2
‖φ − ϕ‖∞,

which shows that Pm is a contraction mapping on the Banach space C∗. According
to the contraction mapping principle, Pm possesses a unique fixed point φ∗ ∈ C∗.
Note that



24 Y. Cheng et al.

Pm(Pφ∗) = P(Pmφ∗) = Pφ∗.

which indicates that Pφ∗ ∈ C∗ is also a fixed point of Pm . It follows from the
uniqueness of fixed point of Pm that Pφ∗ = φ∗, viz. xω(φ∗) = φ∗. Let x(t, φ∗) be
the solution of Eq. (1) with initial condition φ∗, then

xt+ω(φ∗)(θ) = xt (xω(φ
∗)) = xt (φ

∗) for t � 0.

which implies

x(t + ω, φ∗) = xt+ω(φ∗)(0) = xt (xω(0)) = x(t, φ∗).

Thus, x(t, φ∗) is ω-periodic of Eq. (1).
On the other hand, it follows from Lemma 5 that every solution x(t, φ) of Eq. (1)

satisfies
‖x(t, φ)− x(t, φ∗)‖∞ � M(ε)‖φ − φ∗‖∞e−εt ,

for all t � 0. This shows that x(t, φ) is globally exponentially periodic. �

3 An Illustrative Example

Consider the impulsive Hopfield neural network with time-varying delays:

(
ẋ1(t)
ẋ2(t)

)

=
(−2 0

0 −2

)(
x1(t)
x2(t)

)

+
(

0.6 0.3
0.3 −0.5

) (
sin 1√

2
x1(t)

sin 1
2
√

2
x2(t)

)

+
(

0.8 −0.5
−0.6 0.6

)(
sin 1√

2
x1(t − τ1(t))

sin 1
2
√

2
x2(t − τ2(t))

)

+
(

1 − cos 2π t
1 + sin 2π t

)

,

�x1(tk) = γ1k x1(tk),

�x2(tk) = γ2k x2(tk). (9)

Obviously, the right hand side of Eq. (9) is 1-periodic(i.e.ω = 1). Now we investigate
the influence of the delay and the period T of impulsive effect on the Eq. (9). If
τ(t) = 1

5π, T = 1, γ1k = γ2k = 0.1, then p = 1 in (H2). According to Theorem 4,
impulsive Hopfield neural networks Eq. (9) has a unique 1-periodic solution which
is globally asymptotically stable (see Figs. 1, 2, 3, 4). In order to clearly observe the
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Fig. 1 Time-series of the x1(t) of Eq. (9) for t ∈ [0, 16]
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Fig. 2 Time-series of the x2(t) of Eq. (9) for t ∈ [0, 16]
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Fig. 3 Phase portrait of 1-periodic solutions of Eq. (9) for t ∈ [0, 42]
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Fig. 4 Space figure of 1-periodic solutions of Eq. (9) by adding a time coordinate axes t
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x(
t)

0 2 4 6 8 10 1412 16

t

Fig. 5 Time-series of the x1(t) of Eq. (9) for t ∈ [0, 16] with τ(t) = 1
5π

change trend of the solutions, we add a time coordinate axes to the Fig. 4 and change
2-D plan (Fig. 3) into 3-D space (Fig. 4).
If the effect of impulse is ignored, i.e. γ1k = 0, γ2k = 0, then Eq. (9) becomes
periodic system. Obviously, the right hand side of Eq. (9) is 1-periodic. Numeric
results show that Eq. (9) has a 1-periodic solution Fig. 5. Figures 6, 7, 8 show the
dynamic behavior of the Eq. (9) with τ(t) = 1

5π .
Furthermore, If τ(t) = 1

5π rises to τ(t) = π gradually, then periodic oscillation of
Eq. (9) will be destroyed. Numeric results show that Eq. (9) still has a global attractor
which may be gui chaotic strange attractor (see Figs. 9, 10, 11, 12). Every solutions
of Eq. (9) will finally tend to the chaotic strange attractor.
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Fig. 6 Time-series of the x2(t) of Eq. (9) for t ∈ [0, 16] with τ(t) = 1
5π
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Fig. 7 Phase portrait of 1-periodic solutions of Eq. (9) with τ(t) = 1
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Fig. 9 Time-series of the x1(t) of Eq. (9) for t ∈ [0, 48] with τ(t) = π
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Fig. 10 Time-series of the x2(t) of Eq. (9) for t ∈ [0, 48] with τ(t) = π

4 Conclusion

We have established a sufficient condition for the existence and global exponential
stability of a unique periodic solution in a class of HNNs with time-varying delays and
periodic impulses, which assumes neither the differentiability nor the monotonicity
of the activation functions.

Our condition extends and generalizes a known condition for the global expo-
nential periodicity of pure continuous Hopfield neural networks with time-varying
delays. Further the numerical simulation shows that our system can occur many
forms of complexities including chaotic strange attractor and periodic solution.
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Fig. 11 Phase portrait of chaotic strange attractor of Eq. (9) with τ(t) = π
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Fig. 12 Space figure of attractor of Eq. (9) by adding a coordinate axes t

In recent years, numerous results have been reported on the stability of discrete as
well as continuous neural networks. It is worthwhile to introduce various impulsive
neural networks and then establish the corresponding stability results that include
some known results for pure discrete or continuous neural networks as special cases.
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