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Abstract Numerical simulation of compressible two-component flows that consider
different materials and physical properties is conducted. An explicit finite volume
numerical framework based on an extended second order Godunov approach is devel-
oped and implemented to solve an Eulerian type mathematical model. This model
consists of five partial differential equations in one space dimension and it is known as
the transport reduced model. A fixed Eulerian mesh is considered and the hyperbolic
problem is tackled using a robust and efficient HLL Riemann solver. The perfor-
mance of the numerical solver is verified against a comprehensive suite of numerical
and experimental case studies in multi-dimensional space. Computing the evolu-
tion of interfaces between two immiscible fluids is considered as a major challenge
for the present model and the numerical technique. The achieved numerical results
demonstrate a very good agreement with all reference data.
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1 Introduction

The numerical simulation of the creation and evolution of interfaces in compressible
multi-component flows is a challenging research issue. Multi-component flows occur
in several industries and engineering operations such as power generation, separation
and mixing processes and the inertial confinement fusion [1]. Computation of this
type of flow is complicated and causes some difficulties in various engineering appli-
cations such as safety of nuclear reactors [2]. Compressible multi-component flows
can be represented numerically by two main approaches. These are: Sharp Interface
Method (SIM) and Diffuse Interface Method (DIM). The main characteristic of the
DIM is that it allows numerical diffusion at the interface. The DIM corresponds
to different mathematical models and various successful numerical approaches: for
instance, a seven equation model with two velocities and two pressures developed in
[3]; a five equation model proposed in [4] known as the transport reduced model; a
similar five equation model was derived from the generic seven equation model in [5]
and other two reduced models derived in [6]. This paper introduces the development
of the numerical algorithm which utilizes the mathematical model for compress-
ible two-component flows first presented in [4]. The performance of the reduced
mathematical models was investigated in [5] and [7] using classical benchmark test
problems and Roe type solver. The performance of a numerical framework that has
been developed based on this model using HLL and HLLC Riemann solvers has
been examined in [8].

In this work an extension of our work in [8] has been made. Computation of
compressible two-component flows with different materials and tracking the evolu-
tion of the interface between two immiscible fluids is the main aim of the present
work. An extended numerical approach has been developed for tracking the inter-
face evolution. The mathematical equations and the main procedures of the numeri-
cal framework have been stated for two-dimensional flow systems. The results have
been re-demonstrated in the two dimensional case studies with more details. We also
have extended the investigation of the performance of the developed numerical algo-
rithm by computing a numerically challenging shock-bubble interaction problem and
compare the results with available experimental data. Shock-bubble interaction is a
well known multi-component flow phenomenon. It is common in many engineering
applications; for example, during supersonic combustion in ramjet engine.

In the framework of multi-component flows with interface evolution and shock
bubble interaction many interesting experiments have been carried out. For example,
experiments to observe the interaction between a plane shock wave and various gas
bubbles were presented in [9]. The deformation of a spherical bubble impacted by a
plane shock wave via a multiple exposure shadow-graph diagnostic was examined in
[10]. Quantitative comparisons between the experimental data and numerical results
of shock-bubble interactions were made in [11]. On the other hand, many numerical
simulations of compressible multi-component flows that consider the evolution of
the interface have been made. For instance, a numerical method based on upwind
schemes was introduced and applied to several two phase flows test problems in [12].
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The interaction of the shock wave with various Mach numbers with a cylindrical
bubble was investigated numerically in [13]. An interface interaction method for
compressible multifluids was developed in [14]. An efficient method to simulate and
track fluid interfaces called A front-tracking method was presented in [15]. A new
finite-volume interface capturing method was introduced for simulation of multi-
component compressible flows with high density ratios and strong shocks in [16].

This paper is organized as follows: The governing equations of the two compo-
nent flow model are reviewed. The major steps of the numerical method are then
described with the HLL Riemann solver. The obtained results are presented. Finally,
the conclusion is made.

2 The Mathematical Equations

2.1 The Transport Reduced Model

The two-component flow model that has been considered in this work consists of
six equations in 2d flows. It is structured as: Two continuity equations, two mixture
momentum equations, a mixture energy equations augmented by a volume fraction
equation.

Without mass and heat transfer the model can be written as follows:

∂α1
∂t + u ∂α1

∂x + v ∂α1
∂y = 0,

∂α1ρ1
∂t + ∂α1ρ1u

∂x + ∂α1ρ1v
∂y = 0,

∂α2ρ2
∂t + ∂α2ρ2u

∂x + ∂α2ρ2v
∂y = 0,

∂ρu
∂t + ∂(ρu2+P)

∂x + ∂ρuv
∂y = 0,

∂ρv
∂t + ∂ρuv

∂x + ∂(ρv2+P)
∂y = 0,

∂ρE
∂t + ∂(u(ρE+P))

∂x + ∂(v(ρE+P))
∂y = 0 .

(1)

The notations are conventional: αk and ρk characterize the volume fraction and
the density of the kth component of the flow, ρ, u, v, P and E represent the mixture
density, the mixture velocity component in x−direction, the mixture velocity compo-
nent in y−direction, the mixture pressure and the mixture total energy respectively.

The mixture variables can be defined as:

ρ = α1ρ1 + α2ρ2

u = (α1ρ1u1 + α2ρ2u2)/ρ

v = (α1ρ1v1 + α2ρ2v2)/ρ

P = α1 P1 + α2 P2

E = (α1ρ1 E1 + α2ρ2 E2)/ρ.
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2.2 Equation of State (EOS)

In the present work, the isobaric closure is used with stiffened equation of state to
close the model. The mixture stiffened (EOS) can be cast in the following form:

P = (γ − 1) ρe − γπ, (2)

where e is the internal energy, γ is the heat capacity ratio and π is the pressure
constant.

The mixture equation of state parameters γ and π can be written as:

1

γ − 1
=

∑
k

αk

γk − 1
and γπ =

∑
k

αkγkπk

γk − 1
∑

k
αk

γk − 1

,

where k refers to the kth component of the flow.
The internal energy can be expressed in terms of total energy as follows:

E = e + 1

2
u2 + 1

2
v2.

Finally, the mixture sound speed for isobaric closure has been calculated via:

c =
∑

ykεkc2
k

ε
(3)

where, yk is the mass fraction and it is given by yk = αkρk/ρ, ck is the speed of
sound of the kth fluid and εk = 1/(γk − 1).

2.3 Quasi-Linear Equations of the Reduced Model

In two-dimensional flow with two fluids, the system of Eq. (1) can be re-written in
quasi-linear form with primitive variables in the following compact form:

∂W

∂t
+ A (W )

∂W

∂x
+ B (W )

∂W

∂y
= 0 (4)

where the primitive vector W and the Jacobian matrices A(W ) and B(W ) for this
system can be written as:
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W =

⎡

⎢⎢⎢⎢⎢⎢⎣

α1
ρ1
ρ2
u
v
P

⎤

⎥⎥⎥⎥⎥⎥⎦
, A (W ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

u 0 0 0 0 0

0 u 0 ρ1 0 0

0 0 u ρ2 0 0

0 0 0 u 0 1/ρ

0 0 0 0 u 0

0 0 0 ρc2 0 u

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

and

B (W ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

v 0 0 0 0 0

0 v 0 0 ρ1 0

0 0 v 0 ρ2 0

0 0 0 v 0 0

0 0 0 0 v 1/ρ

0 0 0 0 ρc2 v

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

The Jacobian matrix A(W ) provides the following eigenvalues: u + c, u, u, u, u
and u − c, whereas the Jacobian matrix B(W ) provides the following eigenvalues:
v + c, v, v, v, v and v − c , which represent the wave speeds of the system.

3 Numerical Method

The numerical algorithm for 2d problems is developed using an extended Godunov
approach with the classical MUSCL scheme to achieve second order accuracy in
space and time. The splitting scheme is applied for the discretization of the conser-
vative vector in two time steps as follows:

U
n+ 1

2
i, j = U n

i, j − �t

�x

[
Fn

(
U∗

(
U−

i+ 1
2 , j

, U+
i+ 1

2 , j

))
− Fn

(
U∗

(
U−

i− 1
2 , j

, U+
i− 1

2 , j

))]
and

U n+1
i, j = U

n+ 1
2

i, j − �t

�y

[
Gn+ 1

2

(
U∗

(
U−

i, j+ 1
2
, U+

i, j+ 1
2

))
− Gn+ 1

2

(
U∗

(
U−

i, j− 1
2
, U+

i, j− 1
2

))]
.

The flux vectors in x–direction F(U∗) and in y−direction G(U∗) have been
calculated using HLL Riemann solver, which was first presented in [17] and
described in the context of the Riemann problem with details in [18].

Similarly, the discretization of the volume fraction equation with second order
accuracy can be written as:

α
n+ 1

2
i, j = αn

i, j − u
�t

�x

[
α∗(n)

(
α−

i+ 1
2 , j

, α+
i+ 1

2 , j

)
− α∗(n)

(
α−

i− 1
2 , j

, α+
i− 1

2 , j

)]
and

αn+1
i, j = α

n+ 1
2

i, j − v
�t

�y

[
α∗(n+ 1

2 )

(
α−

i, j+ 1
2
, α+

i, j+ 1
2

)
− α∗(n+ 1

2 )

(
α−

i, j− 1
2
, α+

i, j− 1
2

)]
.
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The numerical time step size �t is chosen as in [18]:

�t = CFL × min

(
�x

Sx
,
�y

Sy

)
,

where CFL is the Courant-Friedrichs-Lewy number (CFL ≤ 1, to insure the stability
of the numerical method), Sx and Sy are the maximum wave speeds in the x and y
directions respectively and they can be expressed as:

Sx = max(0, u+
i± 1

2 , j
+ c+

i± 1
2 , j

, u−
i± 1

2 , j
+ c−

i± 1
2 , j

),

Sy = max(0, v+
i, j± 1

2
+ c+

i, j± 1
2
, v−

i, j± 1
2

+ c−
i, j± 1

2
).

3.1 2D Form of the HLL Approximate Riemann Solver

With HLL Riemann solver, the numerical flux function at a cell boundary in
x–direction can be written as follows:

F H L L
i+ 1

2 , j
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fi, j if 0 ≤ SXL,
S+

i+ 1
2 , j

Fi, j −S−
i+ 1

2 , j
Fi+1, j +S+

i+ 1
2 , j

S−
i+ 1

2 , j
(Ui+1, j −Ui, j)

S+
i+ 1

2 , j
−S−

i+ 1
2 , j

if SXL ≤ 0 ≤ SXR,

Fi+1, j if 0 ≥ SXR

In the similar way the numerical flux function at a cell boundary in y−direction
can be written as follows:

G H L L
i, j+ 1

2
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Gi, j if 0 ≤ SYL,
S+

i, j+ 1
2

Gi, j −S−
i, j+ 1

2
Gi, j+1+S+

i, j+ 1
2

S−
i, j+ 1

2
(Ui, j+1−Ui, j)

S+
i, j+ 1

2
−S−

i, j+ 1
2

if SYL ≤ 0 ≤ SYR,

Gi, j+1 if 0 ≥ SYR

where subscripts SXR and SXL denotes to right and left wave speeds at each cell
boundary in x−direction . Whereas, SYR and SYL denotes to right and left wave
speeds at each cell boundary in y−direction.

4 Test Problems

Four different test cases have been considered to observe the evolution of the interface
and to assess the numerical algorithm that is developed in this work. These cases
consider different initial states and physical properties, which provide different flow
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Table 1 Initial conditions for
the explosion test

Physical property Bubble Surrounding fluid

Density, kg/m3 1 0.125
X-Velocity, m/s 0 0
Y- Velocity, m/s 0 0
Pressure, Pa 1 0.1
Heat capacity ratio, γ 1.4 1.4

Fig. 1 Evolution of density
profile at t = 0.25 s for the
explosion test

regimes. The results obtained from the first three cases have been compared with
other numerical results which are generated using different models and numerical
methods. In the fourth case the current results have been compared with available
experimental data.

4.1 Explosion Test

This test is a single phase problem and the reduced model of the two-phase flows
is applied for this test. In this test the two flow components stand for the same fluid
which produce extreme conditions. The physical domain of this problem is a square
of 2×2 m, which contains a circular bubble of 0.8 m in diameter located at the center
of the domain. The initial condition is demonstrated in Table 1. The computation
was made using 300 × 300 cells and the periodic boundary conditions (B.C) were
considered.

The surface plots for density and pressure distribution at time t = 0.25 s are
illustrated in Figs. 1 and 2 respectively. The current results are significantly close to
the results that published in [18]. This confirms that the reduced model reproduces
the physical behavior of the flow components with stiff initial conditions.

4.2 Interface Translation Test

The computational domain for this case study is a square of 1× 1 m includes a
circular interface of 0.32 m in diameter separates two fluids. The center of the bubble
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Fig. 2 Evolution of pressure
profile at t = 0.25 s for the
explosion test

Table 2 Initial conditions for
the interface test

Physical property Bubble Surrounding fluid

Density, kg/m3 1 0.1
X-Velocity, m/s 1 1
Y- Velocity, m/s 1 1
Pressure, Pa 1 1
Heat capacity ratio, γ 1.4 1.6

Fig. 3 Volume fraction con-
tours at the initial time t = 0 s
and at time t = 0.36 s for the
interface translation test

is located at 0.25, 0.25 m. The initial conditions for this test are stated in Table 2. The
computation was made using 300 × 300 cells and periodic B.C.

The results are shown in Fig. 3 for volume fraction contours at the initial time
t = 0 s and at the time t = 0.36 s. The results show the time interval during which the
bubble has moved with a uniform velocity and pressure from its initial position to a
new location where the center of the bubble has the coordinates (0.61, 0.61) m. The
shape of the bubble can be compared with the numerical results presented in [19].
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Table 3 Initial conditions for the under-water explosion test

Physical property Bubble Surrounding fluid

Density, kg/m3 1.241 0.991
X-Velocity, m/s 0 0
Y- Velocity, m/s 0 0
Pressure, Pa 2.753 3.059e−4

Heat capacity ratio, γ 1.4 5.5
Pressure constant, π 0 1.505

Fig. 4 Density evolution
at time t = 0.058 s for the
explosion under-water test

Fig. 5 Pressure distribution
at time t = 0.058 s for the
explosion under-water test

4.3 Bubble Explosion Under-Water Test

This test has been considered by many researchers, for example [15] and [19]. The
computational domain of this test problem is a square of dimension 1 × 1 m, which
including a bubble of 0.4 m in diameter located in the center of the domain. The
initial state is shown in Table 3. The simulation was made using 300 × 300 cells and
periodic B.C.

The surface plots for mixture density and pressure are presented in Figs. 4 and 5
respectively. The numerical results obtained are compared with the equivalent numer-
ical results that published in [15] and [19]. The current results demonstrate a good
compatibility with the other results. The numerical solutions obtained characterize
and capture the physical behavior and the evolution of the interface correctly.
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0.08 m Atmospheric air Kr

High 

pressure 

air

Shock wave

D = 0.04m

0.3 m

Fig. 6 Schematic diagram shows the physical domain of shock-bubble interaction test

Table 4 Initial conditions for shock-bubble interaction test

Physical property Krypton bubble Pre-shock air Post-shock air

Density, kg/m3 3.506 1.29 2.4021
X-Velocity, m/s 0 0 230.28
Y- Velocity, m/s 0 0 0
Pressure, Pa 101325 101325 249091
Heat capacity ratio, γ 1.67 1.4 1.4

Fig. 7 The mixture density contours for the krypton bubble-air constitution at different times
t = 47µs, 166 µs, 236 µs, 306 µs, 400 µs and 510 µs

4.4 Validation of Shock-Bubble Interaction

Here the interaction between a moderate shock wave (Mach = 1.5) and Krypton
gas bubble surrounded by air at atmospheric pressure has been simulated. The cur-
rent numerical results have been compared with the experimental results in [11].
A schematic diagram of the initial physical state is illustrated in Fig. 6 and the initial
conditions are shown in Table 4.
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The results are demonstrated in Fig. 7. The evolution of the bubble contour with
time due to the interaction with the shock wave is observable and it is in a good agree-
ment with experimental results in [11]. It can be noticed that the present numerical
method has the mechanism for tracking the physical phenomena that have been occur-
rence within the domain of the interaction. At the early stage of the interaction, one
can notice a shock wave transmitting inside the gas bubble, incident shock outside the
bubble and a reflection wave propagating backward to the right side. The deformation
of the bubble is influenced by the differences in densities between the krypton and
surrounded air especially in the early stages of the interaction. In the middle time a
high speed penetrating jet, which moving towards the right side has generated on the
line of symmetry of the bubble. At relatively later stages the effect of the vorticity
on the interface deformation has appeared. One can observe the vortices that have
been generated on the top and at the bottom of the bubble contour.

5 Conclusion

Numerical simulations of compressible flows between two immiscible fluids have
been performed successfully. The numerical algorithm for these simulations has been
developed based on an extended Godunov approach with HLL solver considering
second order accuracy. The performance of the considered multi-component flow
model and the numerical method has been verified effectively. This has been made
using a set of carefully chosen case studies which are distinguished by a variety
of compressible flow regimes. The obtained results show that the developed algo-
rithm is able to reproduce the physical behavior of the flow components efficiently.
Consequently, it could be applied to simulate a wide range of compressible multi-
component flows with different materials and physical properties.
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