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Abstract Stem taper process measured repeatedly among a series of individual
trees is standardly analyzed by fixed and mixed regression models. This stem taper
process can be adequately modeled by parametric stochastic differential equations
(SDEs). We focus on the segmented stem taper model defined by the Gompertz,
geometric Brownian motion and Ornstein-Uhlenbeck stochastic processes. This class
of models enables the representation of randomness in the taper dynamics. The
parameter estimators are evaluated by maximum likelihood procedure. The SDEs
stem taper models were fitted to a data set of Scots pine trees collected across the
entire Lithuanian territory. Comparison of the predicted stem taper and stem volume
with those obtained using regression based models showed a predictive power to the
SDEs models.

Keywords Diameter · Geometric Brownian motion · Gompertz process · Ornstein-
Uhlenbeck process · Taper · Transition probability density · Stochastic differential
equation · Volume

1 Introduction

Deterministic and stochastic differential equations are probably the most com-
monly mathematical representations for describing continuous time processes [1, 2].
Biological experiments often imply repeated measurements on a series of experimen-
tal units. Stem taper process is usually measured repeatedly among a collection of
individual trees. Traditionally, the relationship between volume, height and diam-
eter has been modeled based on simple linear and nonlinear regressions. The base
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assumption of these regression models is that the observed variations from the regres-
sion curve are constant at different values of a covariate would be realistic if the
variations were due to measurement errors. Instead, it is unrealistic, as the variations
are due to random changes on growth rates induced by random environmental pertur-
bations. Stochastic differential equations (SDEs) models do not have such weakness
[3]. We propose to model these variations using SDEs that are deduced from the
standard deterministic growth function by adding random variations to the growth
dynamics [3–12]. Due to the specific characteristics of diameter dynamics, we thus
consider SDEs models with drift and diffusion terms that can depend linearly or
nonlinearly on state variables.

There is a long history characterizing the stem profile (taper) of trees. Mathemat-
ically defining stem taper is necessary for the accurate prediction of stem volume.
Taper equations do just this and are important to foresters and forest scientists because
they provide a flexible alternative to conventional volume equations. These equations
are widely used in forestry to estimate diameter at any given height along a tree bole
and therefore to calculate total or merchantable stem volume. One crucial element
in these models is the functional response that describes the relative diameter of tree
stem consumed per relative height for given quantities of diameter at breast height D
and total tree height H . The most commonly studied stem taper relations range from
simple taper functions to more complex forms [13–20]. Taper curve data consist of
repeated measurements of a continuous diameter growth process over height of indi-
vidual trees. These longitudinal data have two characteristics that complicate their
statistical analysis: (a) within-individual tree correlation that appears with data mea-
sured on the same tree and (b) independence but extremely high variability between
the experimental taper curves of the different trees. Mixed models provide one of
powerful tools to analysis of longitudinal data. These models incorporate the vari-
ability between individual trees by means of the expression of the model’s parameters
and in terms of both fixed and random effects. Each parameter in the model may be
represented by a fixed effect that stands for the mean value of the parameter as well
as a random effect that expresses the difference between the value of the parameter
fitted for each specific tree and the mean value of the parameter—the fixed effect.
Random effects are conceptually random variables. They are modeled as such in
terms of describing their distribution. This helps to avoid the problem of overpa-
rameterisation. A large number of mixed-effect taper regression models have been
completed, and the study is still one of the important issues in progress [16, 17, 19].

The increasing popularity of mixed-effects models lies in their ability to model
total variation, splitting it into its within- and between-individual tree components.
In this paper, we propose to model these variations using SDEs that are deduced
from the standard deterministic growth function by adding random variations to the
growth dynamics [6–12]. Although numerous sophisticated models exist for stem
profile [18, 20], relatively few models have been produced using SDEs [3, 12].

The basis of the work is a deterministic segmented taper model, which uses
different SDEs for various parts of the stem to overcome local bias. In this paper
an effort has been made to present a class of SDEs stem taper models and to show
that they are quite viable and reliable for predicting not just diameter outside the bark



The Further Development of Stem Taper 123

for a given height but merchantable stem volume as well. Our main contribution is
to expand stem taper and stem volume models by using SDEs and to show how an
adequate model can be made. In this paper attention is restricted to homogeneous
SDEs in the Gompertz, geometric Brownian motion and Ornstein-Uhlenbeck type.

2 Stem Taper Models

Consider a one-dimensional stochastic process Y (x) evolving in M different experi-
mental units (e.g. trees) randomly chosen from a theoretical population (tree species).
We suppose that the dynamics of the relative diameter Y i = d

/
Di versus the rel-

ative height xi = h
/

Hi (xi ∈ [0; 1]) is expressed by the Itô stochastic differential
equation [21], where d is the diameter outside the bark at any given height h, Di is
the diameter at breast height outside the bark of ith tree, Hi is the total tree height
from ground to tip of i th tree. In this paper is used a class of the SDEs that are
reducible to the Ornstein-Uhlenbeck process. The stochastic processes used in this
work incorporated environmental stochasticity, which accounts for variability in the
diameter growth rate that arises from external factors (such as soil structure, water
quality and quantity, and levels of various soil nutrients) that equally affect all the
trees in the stands.

The first utilized stochastic process of the relative diameter dynamics is defined
in the following Gompertz form [6, 8]

dY i (xi ) = [αGY i (xi ) − βGY i (xi ) ln(Y i (xi ))]dxi + σGY i (xi )dW i
G(xi ), (1)

where P(Y i (xi
0) = yi

0) = 1, i = 1, . . . , M, Y i (xi ) is the value of the diameter
growth process at the relative height xi ≥ xi

0, αG , βG , and σG are fixed effects
parameters (identical for the entire population of trees), yi

0 is non-random initial
relative diameter. The W i

G(xi ), i = 1, . . . , M are mutually independent standard
Brownian motions. The second stochastic process of the relative diameter dynamics
is defined in the following geometric Brownian motion form [23]

dY i (xi ) = αG BY i (xi )dxi + σG BY i (xi )dW i
G B(xi ), (2)

where P(Y i (xi
0) = yi

0) = 1, i = 1, . . . , M, αG B , and σG B are fixed effects parame-
ters (identical for the entire population of trees) and W i

G B(xi ) are mutually indepen-
dent standard Brownian motions. The third stochastic process of the relative diameter
dynamics is defined in the following Ornstein-Uhlenbeck form [22]

dY i (xi ) =
(

αO − Y i (xi )

βO

)
dxi + σOdW i

O(xi ) (3)
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where P(Y i (xi
0) = yi

0) = 1, i = 1, . . . , M, αO , βO , and σO are fixed effects
parameters (identical for the entire population of trees) and W i

O(xi ) are mutually
independent standard Brownian motions.

In this paper is used a segmented stochastic taper process which consists of three
different SDEs defined by (1)–(3). Max and Burkhart [24] proposed a segmented
polynomial regression model that uses two joining points 0.15, 0.75 to link three
different stem sections. Following this idea the stem taper models (with two joining
points: 0.15, 0.75 or 1.3

Hi , 0.75) are defined in the two different forms

dY i (xi )

=
⎧
⎨

⎩

[αGY i (xi ) − βGY i (xi ) ln(Y i (xi ))]dxi + σGY i (xi )dW i
G(xi ), xi ≤ 0.15

αG BY i (xi )dxi + σG BY i (xi )dW i
G B(xi ), 0.15 < xi ≤ 0.75

[αGY i (xi ) − βGY i (xi ) ln(Y i (xi ))]dxi + σGY i (xi )dW i
G(xi ), xi > 0.75

(4)

dY i (xi )

=
⎧
⎨

⎩

[αGY i (xi ) − βGY i (xi ) ln(Y i (xi ))]dxi + σGY i (xi )dW i
G(xi ), xi ≤ 1.3

Hi

αG BY i (xi )dxi + σG BY i (xi )dW i
G B(xi ), 1.3

Hi < xi ≤ 0.75
[αGY i (xi ) − βGY i (xi ) ln(Y i (xi ))]dxi + σGY i (xi )dW i

G(xi ), xi > 0.75
(5)

Using Eqs. (4), (5) and either fixing the stem butt and top or assuming that the
stem butt and top were free, we define five stem taper models.

Model 1: Equation (4) and P(Y i (xi
0) = γ ) = 1, i = 1, . . . , M (the stem butt and

top of the i th tree are free), γ is additional fixed-effects parameter (identical for the
entire population of trees).

Model 2: Equation (4) and P(Y i (xi
0) = yi

0) = 1, i = 1, . . . , M (the stem butt of
the i th tree is fixed and the top is free).

Model 3: Equation (4) and P(Y i (xi
0) = yi

0) = 1, P(Y i (1) = 0) = 1, i =
1, . . . , M (the stem butt and top of the i th tree are fixed).

Model 4: Equation (5) and P(Y i ( 1.3
Hi ) = 1) = 1, i = 1, . . . , M (the diameter at

breast height of the i th tree is fixed and top is free).
Model 5: Equation (5) and P(Y i ( 1.3

Hi ) = 1) = 1, P(Y i (1) = 0) = 1, i =
1, . . . , M (the diameter at breast height and top of the i th tree are fixed).

Assume that tree i is measured at ni +1 discrete relative height points (x0, x1 . . . ,

xni ) i = 1, . . . , M. Let yi be the vector of relative diameters for tree i , yi =
(yi

0, yi
1, . . . , yi

ni
), where yi (xi

j ) = yi
j , y = (y1, y2, . . . , yM ) is the n-dimensional

total relative diameter vector, n = ∑M
i=1 (ni + 1). Therefore, we need to estimate

fixed-effects parameters γ, αG , βG , σG , αG B, βG B , σG B, αO , βO , σO using all the
data in y simultaneously.

Models 2 and 3 use one tree-specific prior relative diameter yi
0 (this known initial

condition additional needs stem diameter measured at a stem height of 0 m). Models
4 and 5 use known relative diameter at breast height, 1. The transition probability
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density function of the relative diameter stochastic processes Y i (xi
j ), xi

j ∈ [0; 1] , i =
1, . . . , M, j = 0, . . . , ni defined by Eqs. (1)–(3) can be deduced in the following
form: for the Gompertz stochastic process [8]

pG

(
yi , x

∣
∣
∣yi

z

)
= 1

yi
√

2πvG(x, z)
exp

(
− 1

2vG(x, z)

(
ln yi − μG(x, z, yi

z)
)2

)
(6)

μG(x, z, yi
z) = ln yi

ze−βG (x−z) + 1 − e−βG (x−z)

βG

(

αG − σ 2
G
2

)

(7)

vG(x, z) = 1 − e−2βG (x−z)

2βG
σ 2

G (8)

for the geometric Brownian motion [22]

pGB(yi , x
∣∣∣yi

z ) = 1

σGB yi
√

2π(x − z)
exp

(
−

(
ln

(
yi

yi
z

)
−

(
αGB − 1

2 σ 2
GB

)
(x − z)

)2

2σ 2
GB(x − z)

)
(9)

and for the Ornstein-Uhlenbeck stochastic process [23]

pO(yi , x
∣
∣∣yi

z ) = 1√
2πvO(x, z)

exp

(

−
(
yi − μO(x, z, yi

z)
)2

2vO(x, z)

)

(10)

μO(x, z, yi
z) = yi

z exp

(
− x − z

βO

)
+ αOβO

(
1 − exp

(
− x − z

βO

))
(11)

vO(x, z) = σ 2
OβO

2

(
1 − e

− 2(x−z)
βO

)
(12)

The conditional mean and variance functions m(xi |· ) and v(xi |· ) (xi is the
relative height of the i th tree) of the stochastic processes (1)–(3) are defined by

mG(xi
∣∣yi

0, αG , βG , σG)

= yi
0e−βG xi

exp

(
1 − e−βG xi

βG

(

αG − σ 2
G

2

)

+ σ 2
G

4βG

(
1 − e−2βG xi

))

(13)

wG(xi
∣
∣∣yi

0, αG , βG , σG )

= exp

(

2

(

ln yi
0e−βG xi + 1 − e−βG xi

βG

(

αG − σ 2
G

2

))

+ σ 2
G

2βG

(
1 − e−2βG xi

))

×
(

exp

(
σ 2

G

2βG

(
1 − e−2βG xi

))

− 1

)

(14)
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for the Gompertz stochastic process [8],

mGB(xi
∣
∣∣yi

0, αGB ) = yi
0eαGBxi

(15)

wGB(xi
∣∣∣yi

0, αGB, σGB ) =
(

yi
0

)2
e2αGBxi

(
eσ 2

GBxi − 1
)

(16)

for the geometric Brownian motion [22] and for the Ornstein-Uhlenbeck process the
conditional mean and variance functions m(xi |· ) and v(xi |· ) are defined by [23]

mO(xi
∣
∣∣yi

0, αO , βO ) = yi
0 exp

(
− xi

βO

)
+ αOβO

(
1 − exp

(
− xi

βO

))
(17)

wO(xi |βO , σO ) = σ 2
OβO

2

(
1 − e

− 2xi )
βO

)
(18)

Using the transition probability densities (6), (9) and (10) of SDEs (1)–(3), the
transition probability density functions of the relative diameter stochastic process,
for Models 1–5 take the form, respectively

p1(yi
j , xi

j

∣∣
∣yi

j−1 )

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pG(yi
j , xi

j

∣∣
∣yi

j−1 ), xi
j ≤ 0.15

pGB(yi
j , xi

j

∣
∣∣yi

j−1 ), 0.15 < xi
j ≤ 0.75

pO (yi
j , xi

j

∣
∣∣yi

j−1 ), xi
j > 0.75

, i = 1, . . . , M, yi
0 = γ, j = 1, . . . , ni (19)

p2(yi
j , xi

j

∣∣
∣yi

j−1 )

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pG(yi
j , xi

j

∣
∣∣yi

j−1 ), xi
j ≤ 0.15

pGB(yi
j , xi

j

∣
∣∣yi

j−1 ), 0.15 < xi
j ≤ 0.75

pO (yi
j , xi

j

∣
∣∣yi

j−1 ), xi
j > 0.75

, i = 1, . . . , M, j = 1, . . . , ni (20)

p3(yi
j , xi

j

∣
∣
∣yi

j−1 , yi
j+1)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pG(yi
j , xi

j

∣
∣
∣yi

j−1 ), xi
j ≤ 0.15

pGB(yi
j , xi

j

∣
∣
∣yi

j−1 ), 0.15 < xi
j ≤ 0.75

pO (yi
j , 1 − xi

j

∣∣
∣yi

j+1 ), xi
j > 0.75

, i = 1, . . . , M, j = 1, . . . , ni − 1 (21)



The Further Development of Stem Taper 127

p4(yi
j , xi

j

∣
∣
∣yi

j−1 )

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pG(yi
j ,

1.3
Hi − xi

j

∣
∣
∣yi

j−1 ), xi
j ≤ 1.3

Hi

pGB(yi
j , xi

j

∣
∣
∣yi

j−1 ), 1.3
Hi < xi

j ≤ 0.75

pO (yi
j , xi

j

∣
∣
∣yi

j−1 ), xi
j > 0.75

, i = 1, . . . , M, j = 1, . . . , ni (22)

p5(yi
j , xi

j

∣∣
∣yi

j−1 , yi
j+1)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pG(yi
j ,

1.3
Hi − xi

j

∣∣
∣yi

j−1 ), xi
j ≤ 1.3

Hi

pGB(yi
j , xi

j

∣∣
∣yi

j−1 ), 1.3
Hi < xi

j ≤ 0.75

pO (yi
j , 1 − xi

j

∣
∣∣yi

j+1 ), xi
j > 0.75

, i = 1, . . . , M, j = 1, . . . , ni − 1 (23)

Using the conditional mean and variance functions (13)–(18) we define the tra-
jectories of diameter’ and its variance’ for Models 1–5 in the following form, respec-
tively

d1(h, D, H)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D · mG( h
H

∣
∣∣
∣
∧
γ ,

∧
αG ,

∧
βG ,

∧
σ G ), h

H ≤ 0.15

D · mGB( h
H − 0.15

∣
∣∣
∣mG(0.15

∣
∣∣
∣
∧
γ ,

∧
αG ,

∧
βG ,

∧
σ G ),

∧
αGB,

∧
βGB ), 0.15 < h

H ≤ 0.75

D · mO ( h
H − 0.75

∣
∣∣∣mGB(0.75 − 0.15

∣
∣∣
∧
αGB,

∧
σGB ),

∧
αO ,

∧
βO ), h

H > 0.75

(24)

w1(h, D, H)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D2 · wG( h
H

∣∣
∣∣
∧
γ ,

∧
αG ,

∧
β
G
,

∧
σ

G
), h

H ≤ 0.15

D2 · (wG(0.15

∣∣
∣∣
∧
γ ,

∧
αG ,

∧
βG ,

∧
σ G ) + wGB( h

H − 0.15

∣∣
∣∣
∧
βGB,

∧
σGB )), 0.15 < h

H ≤ 0.75

D2 · (wG(0.15

∣∣
∣∣
∧
γ ,

∧
αG ,

∧
βG ,

∧
σ G ) + wGB(0.75 − 0.15

∣∣
∣∣
∧
βGB,

∧
σGB )

+ wO ( h
H − 0.75

∣∣
∣∣
∧
βO ,

∧
σ O )), h

H ≥ 0.75

(25)

d2(h, D, H, d0)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D · mG( h
H

∣
∣∣
∣

d0
D ,

∧
α
G
,

∧
βG ,

∧
σ G ), h

H ≤ 0.15

D · mGB( h
H − 0.15

∣
∣∣
∣mG(0.15

∣
∣∣
∣

d0
D ,

∧
αG ,

∧
βG ,

∧
σ G ),

∧
αGB,

∧
βGB ), 0.15 < h

H ≤ 0.75

D · mO ( h
H − 0.75

∣
∣∣
∣mGB(0.75 − 0.15

∣
∣∣
∧
αGB,

∧
σGB ),

∧
αO ,

∧
βO ), h

H > 0.75

(26)
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w2(h, D, H, d0)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D2 · wG( h
H

∣∣
∣∣

d0
D ,

∧
αG ,

∧
βG ,

∧
σ G ), h

H ≤ 0.15

D2 · (wG(0.15

∣∣
∣∣

d0
D ,

∧
αG ,

∧
βG ,

∧
σ G ) + wGB( h

H − 0.15

∣∣
∣∣
∧
βGB,

∧
σGB )), 0.15 < h

H ≤ 0.75

D2 · (wG(0.15

∣
∣∣
∣

d0
D ,

∧
αG ,

∧
βG ,

∧
σ G ) + wGB(0.75 − 0.15

∣
∣∣
∣
∧
βGB,

∧
σGB )

+ wO ( h
H − 0.75

∣
∣
∣∣
∧
βO ,

∧
σ O )), h

H ≥ 0.75

(27)

d3(h, D, H, d0)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D · mG( h
H

∣
∣∣
∣

d0
D ,

∧
αG ,

∧
βG ,

∧
σ G ), h

H ≤ 0.15

D · mGB( h
H − 0.15

∣
∣∣
∣mG(0.15

∣
∣∣
∣

d0
D ,

∧
αG ,

∧
βG ,

∧
σ G ),

∧
αGB,

∧
βGB ), 0.15 < h

H ≤ 0.75

D · mO (1 − h
H

∣
∣
∣∣0,

∧
αO ,

∧
βO ), h

H > 0.75

(28)

w3(h, D, H, d0)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D2 · wG( h
H

∣
∣∣
∣

d0
D ,

∧
αG ,

∧
βG ,

∧
σ G ), h

H ≤ 0.15

D2 · (wG(0.15

∣
∣∣
∣

d0
D ,

∧
αG ,

∧
βG ,

∧
σ G ) + wGB( h

H − 0.15

∣
∣∣
∣
∧
βGB,

∧
σGB )), 0.15 < h

H ≤ 0.75

D2 · wO (1 − h
H

∣∣
∣∣
∧
βO ,

∧
σ O ), h

H ≥ 0.75

(29)

d4(h, D, H)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D · mG( 1.3
H − h

H

∣
∣∣
∣1.,

∧
αG ,

∧
βG ,

∧
σ G ), h

H ≤ 1.3
H

D · mGB( h
H − 1.3

H

∣
∣
∣∣mG(0.

∣
∣
∣∣1.,

∧
αG ,

∧
βG ,

∧
σ G ),

∧
αGB,

∧
βGB ), 1.3

H < h
H ≤ 0.75

D · mO ( h
H − 0.75

∣∣
∣∣mGB(0.75 − 0.15

∣∣
∣
∧
αGB,

∧
σGB ),

∧
αO ,

∧
βO ), h

H > 0.75

(30)

w4(h, D, H)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D2 · wG( 1.3
H − h

H

∣
∣∣
∣1.,

∧
αG ,

∧
βG ,

∧
σ G ), h

H ≤ 1.3
H

D2 · wGB( h
H − 1.3

H

∣∣
∣∣1.,

∧
βGB,

∧
σGB ), 1.3

H < h
H ≤ 0.75

D2 · (wGB(0.75 − 1.3
H

∣∣
∣∣

∧
1., βGB,

∧
σGB ) + wO ( h

H − 0.75

∣∣
∣∣
∧
βO ,

∧
σ O )), h

H ≥ 0.75

(31)
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d5(h, D, H)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D · mG( 1.3
H − h

H

∣
∣∣
∣1.,

∧
αG ,

∧
βG ,

∧
σ G ), h

H ≤ 1.3
H

D · mGB( h
H − 1.3

H

∣∣
∣
∣mG(0.

∣∣
∣
∣1.,

∧
αG ,

∧
βG ,

∧
σ G ),

∧
αGB,

∧
βGB ), 1.3

H < h
H ≤ 0.75

D · mO (1 − h
H

∣
∣
∣
∣0,

∧
αO ,

∧
βO ), h

H > 0.75

(32)

w5(h, D, H) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D2 · wG( 1.3
H − h

H

∣
∣
∣∣1.,

∧
αG ,

∧
βG ,

∧
σ G ), h

H ≤ 1.3
H

D2 · wGB( h
H − 1.3

H

∣
∣∣
∣1.,

∧
βGB,

∧
σGB ), 1.3

H < h
H ≤ 0.75

D2 · wO (1 − h
H

∣∣
∣
∣
∧
βO ,

∧
σ O ), h

H ≥ 0.75

(33)

where
∧
γ ,

∧
αG,

∧
βG,

∧
σ G,

∧
αGB,

∧
σGB,

∧
αOU ,

∧
βO ,

∧
σ O are maximum likelihood estima-

tors.
In this paper, we apply the theory of a one-stage maximum likelihood estimator for

stem taper Models 1–5. As all models have closed form transition probability density
functions (19)–(23), the log-likelihood function for Models 1, 2, 4, and Models 3, 5
are given, respectively

Lk(γ, αG , βG , σG , αGB, σGB, αOU , βO , σO)

=
M∑

i=1

ni∑

j=1

ln(pk(yi
j , xi

j

∣∣∣yi
j−1 )), k = 1, 2, 4 (34)

Lk(αG, βG , σG , αGB, σGB, αOU , βO , σO)

=
M∑

i=1

ni −1∑

j=1

ln(pk(yi
j , xi

j

∣∣
∣yi

j−1 , yi
j+1)), k = 3, 5 (35)

To assess the standard errors of the maximum likelihood estimators for stem
taper Models 1–5, a study of the Fisher [25] information matrix was performed. The
asymptotic variance of the maximum likelihood estimator is given by the inverse
of the Fisher’ information matrix, which is the lowest possible achievable vari-
ance among the competing estimators. By defining pk(θ

k) ≡ ln(Lk(θ
k)), where

k = 1, 2, 3, 4, 5, θ1 = (γ, αG , βG , σG , αGB, βGB, σGB, αO , βO , σO), θk =
(αG, βG , σG , αGB, βGB, σGB, αO , βO , σO), k = 2, 3, 4, 5, Lk(θ

k) is defined

by Eqs. (34), (35), the vector pk(θ
k)′ ≡ ∂p1(θ

k )

∂θk , and the matrix pk(θ
k)′′ ≡

[
∂2 pk (θ

k )

∂θk
i ∂θk

j

]T

, we get that n1/2(θ̂k
n − θk)

d→ N (0, [i(θk)]−1), where the Fisher’ infor-

mation matrix is

i(θk) = E(p′(θk)p′(θk)T ) = −E(p′′(θk)) (36)
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The standard errors of the maximum likelihood estimators are defined by the diagonal

elements of the matrix
[
i(θk)

]−1
, k = 1, 2, 3, 4, 5.

The performance statistics of the stem taper equations for the diameter and the
volume included four statistical indices: mean absolute prediction bias (MAB) [18],
precision (P) [18], the least squares-based Akaike’ [26] information criterion (AIC)
and a coefficient of determination (R2). The AIC can generally be used for the
identification of an optimum model in a class of competing models.

3 Results and Discussion

We focus on the modeling of Scots pine (Pinus Sylvestris) tree data set. Scots pine
trees dominate Lithuanian forests, growing on Arenosols and Podzols forest sites
and covering 725,500 ha. Stem measurements for 300 Scots pine trees were used for
volume and stem profile models analysis. All section measurements include of 3,821
data points. Summary statistics for the diameter outside the bark at breast height (D),
total height (H), volume (V) and age (A) of all the trees used for parameters estimate
and models comparison are presented in Table 1.

To test the compatibility between taper and volume equations of all used stem
taper models, the observed and predicted volume values from the sampled trees
were calculated in the following form

Vi = π

40000

(ni −2∑

k=1

(d2
ik + d2

ik+1 + dik · dik+1) · Lik

3
+ d2

ini −1 · Lini −1

3

)

(37)

Using the estimation data set, the parameters of SDEs stem taper Models 1–5 were
estimated by the maximum likelihood procedure. Estimation results are presented in
Table 2. All parameters of the Models 1–5 are highly significant (p < 0.001).

To test the reliability of all the tested stem taper models, the observed and predicted
volume values for the sampled trees were calculated by Eq. (37). Table 3 lists the fit
statistics for the new developed stem taper and volume models. The best values of
the fit statistics were produced by the stem taper Models 2 and 3 with fixed tree butt.

Another way to evaluate and compare the stem taper and volume models is to
examine the graphics of the residuals at different predicted diameters and volumes.
The residuals are the differences between the measured and predicted diameters

Table 1 Summary statistics Data Tree number Min Max Mean St. Dev.

D (cm) 300 6.3 53.8 24.6 9.9
H (m) 300 5.6 34.5 20.6 5.4
V (m3) 300 0.01 3.21 0.58 0.57
A (yr) 300 23 161 77.2 25.8
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Table 2 Estimated parameters (standard errors in parentheses)

Parameter Model 1 Model 2 Model 3 Model 4 Model 5

αG −2.5496 −2.3414 −2.3414 2.5567 2.5567
(0.0923) (0.0396) (0.0396) (0.1624) (0.1624)

βG 22.5646 19.7111 19.7111 −6.5159 −6.5159
(1.3237) (0.6374) (0.6374) (1.6853) (1.6853)

σG 0.3546 0.3389 0.3389 0.3299 0.3299
(0.0105) (0.0083) (0.0083) (0.0144) (0.0144)

αGB −1.0255 −1.0243 −1.0243 −1.0750 −1.0750
(0.0213) (0.0212) (0.0212) (0.0142) (0.0142)

σGB 0.2703 0.2688 0.2688 0.1954 0.1954
(0.0045) (0.0044) (0.0044) (0.0031) (0.0031)

αO −1.6762 −1.6676 2.5288 −1.6691 2.5273
(0.0236) (0.0241) (0.0464) (0.0237) (0.0463)

βO 17.2475 11.4237 0.3535 15.9351 0.3514
(7.0385) (3.7533) (0.0173) (6.2025) (0.0171)

σO 0.2140 0.2147 0.1916 0.2148 0.1917
(0.0050) (0.0051) (0.0046) (0.0051) (0.0046)

γ 1.2937 – – – –
(0.0236)

Table 3 Fit statistics for all the tested stem taper and volume modelsa

Model MAB P AIC R2 Count

Taper models
M. 1 1.2679 1.6769 35523 0.9769 3821
M. 2 1.1033 1.4757 34404 0.9825 3821
M. 3 0.9565 1.3803 33869 0.9848 3821
M. 4 1.2043 1.8096 36059 0.9730 3821
M. 5 1.0924 1.7657 35870 0.9743 3821
Volume models
M. 1 0.0445 0.0735 153 0.9837 300
M. 2 0.0438 0.0664 58 0.9881 300
M. 3 0.0412 0.0654 77 0.9873 300
M. 4 0.0421 0.0696 124 0.9852 300
M. 5 0.0423 0.0698 125 0.9851 300
a The best values of fit statistics for all the taper and volume models are in bold

and volumes. Graphical diagnostics of the residuals for the stem taper and volume
predictions indicated that the residuals calculated using the SDEs stem taper Model
3 had more homogeneous variance than the other models.

Taper profiles for three randomly selected Scots pine trees (diameters outside the
bark at breast heights of 6.3 cm, 17.0 cm, 40.7 cm, and total tree heights of 6.8 m,
21.1 m, 30.3 m) were constructed using SDEs stem taper Models 2, 3 and are plotted
in Fig. 1. Figure 1 includes the stem taper curves and the standard deviation curves.
It is clear that all of the taper curves followed the stem data very closely.
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Fig. 1 Stem tapers and standard deviations for three randomly selected trees generated using the
SDEs stem taper Models 2 (left) and 3 (right): solid line—taper curve; dash dot line—standard
deviation of a tree diameter; diamond—observed data

4 Conclusion and Future Work

The new taper models were developed using SDEs. Comparison of the predicted
stem taper and volume values calculated using SDEs Models 2 and 3 with the values
obtained using the other models revealed a comparable predictive power of the stem
taper Model 3 with fixed stem butt.

The SDEs approach allows us to incorporate new tree variables, mixed-effect
parameters, and new forms of stochastic dynamics.

The variance functions developed here can be applied generate weights in every
linear and nonlinear least squares regression stem taper model the weighted least
squares form.

Finally, stochastic differential equation methodology may be of interest in diverse
of areas of research that are far beyond the modelling of tree taper and volume.
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