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Abstract A large number of problems in inventory control, production planning
and scheduling, location, transportation, finance, and engineering design require
that decisions be made in the presence of uncertainty of underlying models. In the
present paper we consider the case, where it is known that the underlying distribu-
tion belongs to a parametric family of distributions. The problem of determining an
optimal decision rule in the absence of complete information about the underlying
distribution, i.e., when we specify only the functional form of the distribution and
leave some or all of its parameters unspecified, is seen to be a standard problem of
statistical estimation. Unfortunately, the classical theory of statistical estimation has
little to offer in general type of situation of loss function. In the paper, for improve-
ment or optimization of statistical decisions under parametric uncertainty, a new
technique of invariant embedding of sample statistics in a performance index is pro-
posed. This technique represents a simple and computationally attractive statistical
method based on the constructive use of the invariance principle in mathematical
statistics. Unlike the Bayesian approach, an invariant embedding technique is inde-
pendent of the choice of priors. It allows one to eliminate unknown parameters from
the problem and to find the best invariant decision rules, which have smaller risk
than any of the well-known decision rules. A numerical example is given.
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1 Introduction

Most of the inventory management literature assumes that demand distributions are
specified explicitly. However, in many practical situations, the true demand distri-
butions are not known, and the only information available may be a time-series of
historic demand data. When the demand distribution is unknown, one may either
use a parametric approach (where it is assumed that the demand distribution belongs
to a parametric family of distributions) or a non-parametric approach (where no
assumption regarding the parametric form of the unknown demand distribution is
made).

Under the parametric approach, one may choose to estimate the unknown parame-
ters or choose a prior distribution for the unknown parameters and apply the Bayesian
approach to incorporating the demand data available. Scarf [1] and Karlin [2] consider
a Bayesian framework for the unknown demand distribution. Specifically, assuming
that the demand distribution belongs to the family of exponential distributions, the
demand process is characterized by the prior distribution on the unknown parameter.
Further extension of this approach is presented in [3]. Application of the Bayesian
approach to the censored demand case is given in [4, 5]. Parameter estimation is
first considered in [6] and recent developments are reported in [7, 8]. Liyanage and
Shanthikumar [9] propose the concept of operational statistics and apply it to a single
period newsvendor inventory control problem.

Within the non-parametric approach, either the empirical distribution or the boot-
strapping method (e.g. see [10]) can be applied with the available demand data to
obtain an inventory control policy.

Conceptually, it is useful to distinguish between “new-sample” inventory control,
“within-sample” inventory control, and “new-within-sample” inventory control.

For the new-sample inventory control process, the data from a past sample of
customer demand are used to make a statistical decision on a future time period for
the same inventory control process.

For the within-sample inventory control process, the problem is to make a statis-
tical decision on a future time period for the same inventory control process based
on early data from that sample of customer demand.

For the new-within-sample inventory control process, the problem is to make a
statistical decision on a future time period for the inventory control process based on
early data from that sample of customer demand as well as on a past data sample of
customer demand from the same process.

In this paper, we consider the case of the within-sample inventory control process,
where it is known that the underlying distribution function of the customer demand
belongs to a parametric family of distribution functions. However, unlike in the
Bayesian approach, we do not assume any prior knowledge on the parameter values.
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2 Cumulative Customer Demand

The primary purpose of this paper is to introduce the idea of cumulative customer
demand in inventory control problems to deal with the order statistics from the
underlying distribution. It allows one to use the available statistical information as
completely as possible in order to improve statistical decisions for inventory control
problems under parametric uncertainty.
Assumptions. The customer demand at the i th period represents a random variable
Yi , i ∈ {1, . . ., m}. For the cumulative customer demand, X , it is assumed that the
random variables

X1 = Y1, . . . , Xk =
k∑

i=
Yi , . . . , Xl =

l∑

i=1

Yi , . . . , Xm =
m∑

i=1

Yi (1)

represent the order statistics (X1 ≤ . . . ≤ Xm) from the exponential distribution
with the probability density function

fσ (x) = 1

σ
exp

(
− x

σ

)
, x ≥ 0, σ > 0, (2)

and the probability distribution function

Fσ (x) = 1 − exp
(
− x

σ

)
. (3)

Theorem 1 Let X1 ≤ . . . ≤ Xk be the first k ordered observations (order statistics)
in a sample of size m from a continuous distribution with some probability density
function fθ (x) and distribution function Fθ (x), where θ is a parameter (in general,
vector). Then the conditional probability density function of the lth order statistics
Xl(1 ≤ k < l ≤ m) given Xk = xk is

gθ (xl |xk) = (m − k)!
(l − k − 1)!(m − l)!

[
Fθ (xl) − Fθ (xk)

1 − Fθ (xk)

]l−k−1

×
[

1 − Fθ (xl) − Fθ (xk)

1 − Fθ (xk)

]m−l fθ (xl)

1 − Fθ (xk)

= (m − k)!
(l − k − 1)!(m − l)!

l−k−1∑

j=0

(
l − k − 1

j

)
(−1) j

[
1 − Fθ (xl)

1 − Fθ (xk)

]m−l+ j

× fθ (xl)

1 − Fθ (xk)
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= (m − k)!
(l − k − 1)!(m − l)!

m−l∑

j=0

(
m − l

j

)
(−1) j

[
Fθ (xl) − Fθ (xk)

1 − Fθ (xk)

]l−k−1+ j

× fθ (xl)

1 − Fθ (xk)
(4)

Proof From the marginal density function of Xk and the joint density function of
Xk and Xl , we have the conditional density function of Xl , given that Xk = xk , as

gθ (xl |xk) = gθ (xl , xk)/gθ (xk). (5)

This ends the proof.

Corollary 1.1 The conditional probability distribution function of Xl given Xk =
xk is

Pθ {Xl ≤ xl |Xk = xk}

= 1 − (m − k)!
(l − k − 1)!(m − l)! ×

l−k−1∑

j=0

(
l − k − 1

j

)
(−1) j

m − l + 1 + j

×
[

1 − Fθ (xl)

1 − Fθ (xk)

]m−l+1+ j

= (m − k)!
(l − k − 1)!(m − l)!

m−l∑

j=0

(
m − l

j

)
(−1) j

l − k + j

[
Fθ (xl) − Fθ (xk)

1 − Fθ (xk)

]l−k+ j

.

(6)

Corollary 1.2 Let X1 ≤ . . . ≤ Xk be the first k ordered observations (order statis-
tics) in a sample of size m from the exponential distribution (2). Then the conditional
probability density function of the lth order statistics Xl(1 ≤ k < l ≤ m) given
Xk = xk is

gσ (xl |xk) = 1

B(l − k, (m − l + 1)

l−k−1∑

j=0

(
l − k − 1

j

)
(−1) j

× 1

σ
exp

(
− (m − l + 1 + j)(xl − xk)

σ

)

= 1

B(l − k, (m − l + 1)

m−l∑

j=0

(
m − l

j

)
(−1) j

× 1

σ

[
1 − exp

(
− xl − xk

σ

)]l−k−1+ j

exp

(
xl − xk

σ

)
, (7)
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and the conditional probability distribution function of the lth order statistics Xl

given Xk = xk is

Pσ {Xl ≤ xl |Xk = xk} = 1 − 1

B(l − k, (m − l + 1)

l−k−1∑

j=0

(
l − k − 1

j

)

× (−1) j

m − l + 1 + j
exp

(
− (m − l + 1 + j)(xl − xk)

σ

)

= 1

B(l − k, (m − l + 1)

m−l∑

j=0

(
m − l

j

)

× (−1) j

l − k + j

[
1 − exp

(
− xl − xk

σ

)]l−k+ j

. (8)

Corollary 1.3 If l = k + 1,

gσ (xk+1|xk) = (m − k)
1

σ
exp

(
− (m − k)(xk+1 − xk)

σ

)

= (m − k)

m−k−1∑

j=0

(
m − k − 1

j

)
(−1) j

× 1

σ

[
1 − exp

(
− xk+1 − xk

σ

)] j

exp

(
xk+1 − xk

σ

)
, (9)

and

Pσ {Xk+1 ≤ xk+1|Xk = xk} = 1 − exp

(
− (m − k)(xk+1 − xk)

σ

)

= (m − k)

m−k−1∑

j=0

(
m − k − 1

j

)
(−1) j

1 + j

×
[

1 − exp

(
− xk+1 − xk

σ

)]1+ j

, 1 ≤ k ≤ m − 1.

(10)

Corollary 1.4 If l = k + 1 and Yk+1 = Xk+1 − Xk , then the probability density
function of Yk+1, k ∈ {1, . . ., m − 1}, is given by

gσ (yk+1) = m − k

σ
exp

(
− (m − k)yk+1

σ

)
, yk+1 ≥ 0, (11)
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and the probability distribution function of Yk+1 is given by

Gσ {yk+1} = 1 − exp

(
− (m − k)yk+1

σ

)
. (12)

Theorem 2 Let X1 ≤ . . . ≤ Xk be the first k ordered observations (order statistics)
in a sample of size m from the exponential distribution (2), where the parameter σ is
unknown. Then the predictive probability density function of the lth order statistics
Xl(1 ≤ k < l ≤ m) is given by

gsk (xl |xk) = k

B(l − k, (m − l + 1)

l−k−1∑

j=0

(
l − k − 1

j

)
(−1) j

×
[

1 + (m − l + 1 + j)
xl − xk

sk

]−(k+1) 1

sk
, xl ≥ xk, sk > 0,

(13)

where

Sk =
k∑

i=1

Xi + (m − k)Xk (14)

is the sufficient statistic for σ , and the predictive probability distribution function of
the lth order statistics Xl is given by

Psk {Xl ≤ xl |Xk = xk} = 1 − 1

B(l − k, (m − l + 1)

l−k−1∑

j=0

(
l − k − 1

j

)

× (−1) j

m − l + 1 + j

[
1 + (m − l + 1 + j)

xl − xk

sk

]−k

.

(15)

Proof Using the technique of invariant embedding [11, 22], we reduce (7) to

gσ (xl |xk) = 1

B(l − k, (m − l + 1)

l−k−1∑

j=0

(
l − k − 1

j

)
(−1) j

× v exp

(
− (m − l + 1 + j)(xl − xk)

sk
v

)
1

sk
= gsk (xl |xk, v), (16)

where
V = Sk/σ (17)

is the pivotal quantity, the probability density function of which is given by
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f (v) = 1

�(k)
vk−1 exp(−v), v ≥ 0. (18)

Then

gsk (xl |xk) = E{gsk (xl |xk, v)} =
∞∫

0

gsk (xl |xk, v) f (v)dv. (19)

This ends the proof.

Corollary 2.1 If l = k + 1,

gsk (xk+1|xk) = k(m − k)

[
1 + (m − k)

xk+1 − xk

sk

]−(k+1) 1

sk
, (20)

and

Psk {Xk+1 ≤ xk+1|Xk = xk} = 1 −
[

1 + (m − k)
xk+1 − xk

sk

]−k

, (21)

Corollary 2.2 If l = k + 1 and Yk+1 = Xk+1 − Xk , then the predictive probability
density function of Yk+1, k ∈ {1, . . . , m − 1}, is given by

gsk (yk+1) = k(m − k)

[
1 + (m − k)

yk+1

sk

]−(k+1) 1

sk
, yk+1 ≥ 0, (22)

and the predictive probability distribution function of Yk+1 is given by

Gsk (yk+1) = 1 −
[

1 + (m − k)
yk+1

sk

]−k

. (23)

3 Inventory Control Models

This section deals with inventory items that are in stock during a single time period.
At the end of the period, leftover units, if any, are disposed of, as in fashion items.
Two models are considered. The difference between the two models is whether or not
a setup cost is incurred for placing an order. The symbols used in the development
of the models include:

c = setup cost per order,
c1= holding cost per held unit during the period,
c2 = penalty cost per shortage unit during the period,
gσ (yk+1) = probability density function of customer demand, Yk+1, during the
(k + 1)th period,
σ = scale parameter,
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u = order quantity,
q = inventory on hand before an order is placed.

No-Setup Model (Newsvendor Model). This model is known in the literature as the
newsvendor model (the original classical name is the newsboy model). It deals with
stocking and selling newspapers and periodicals. The assumptions of the model are:

1. Demand occurs instantaneously at the start of the period immediately after the
order is received.

2. No setup cost is incurred.

The model determines the optimal value of u that minimizes the sum of the
expected holding and shortage costs. Given optimal u(= u∗), the inventory policy
calls for ordering u∗ − q if q < u∗; otherwise, no order is placed.

If Yk+1 ≤ u, the quantity u − Yk+1 is held during the (k + 1)th period. Otherwise,
a shortage amount Yk+1 − u will result if Yk+1 > u. Thus, the cost per the (k + 1)th
period is

C(u) =

⎧
⎪⎪⎨

⎪⎪⎩

c1
u − Yk+1

σ
if Yk+1 ≤ u,

c2
Yk+1 − u

σ
if Yk+1 > u.

(24)

The expected cost for the (k + 1)th period, Eσ {C(u)}, is expressed as

Eσ {C(u)} = 1

σ

⎛

⎝c1

u∫

0

(u − yk+1)gσ (yk+1)dyk+1 + c2

∞∫

u

(yk+1 − u)gσ (yk+1)dyk+1

⎞

⎠ .

(25)
The function Eσ {C(u)} can be shown to be convex in u, thus having a unique

minimum. Taking the first derivative of Eσ {C(u)} with respect to u and equating it
to zero, we get

1

σ

⎛

⎝c1

u∫

0

gσ (yk+1)dyk+1 − c2

∞∫

u

gσ (yk+1)dyk+1

⎞

⎠ = 0 (26)

or
c1 Pσ {Yk+1 ≤ u} − c2(1 − Pσ {Yk+1 ≤ u}) = 0 (27)

or
Pσ {Yk+1 ≤ u} = c2

c1 + c2
. (28)

It follows from (11), (12), (25), and (28) that

u∗ = σ

m − k
ln

(
1 + c2

c1

)
(29)
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and

Eσ {C(u∗)} = 1

σ

⎛

⎝c2 Eσ {Yk+1} − (c1 + c2)

u∗∫

0

yk+1gσ (yk+1)dyk+1

⎞

⎠

= c1

m − k
ln

(
1 + c2

c1

)
. (30)

Parametric uncertainty. Consider the case when the parameter σ is unknown. To
find the best invariant decision rule uBI, we use the invariant embedding technique
[11–22] to transform (24) to the form, which is depended only on the pivotal quantities
V, V1, and the ancillary factor η.

Transformation of C(u) based on the pivotal quantities V , V1 is given by

C (1)(η) =
⎧
⎨

⎩

c1(ηV − V1) if V1 ≤ ηV,

c2(V1 − ηV ) if V1 > ηV,

(31)

where
η = u

Sk
, (32)

V1 = Yk+1

σ
∼ g(v1) = (m − k) exp[−(m − k)v1], v1 ≥ 0. (33)

Then E{C (1)(η)} is expressed as

E{C (1)(η)} =
∞∫

0

⎛

⎝c1

ηv∫

0

(ηv − v1)g(v1)dv1 + c2

∞∫

ηv

(v1 − ηv)g(v1)dv1

⎞

⎠ f (v)dv.

(34)
The function E{C (1)(η)} can be shown to be convex in η, thus having a unique
minimum. Taking the first derivative of E{C (1)(η)} with respect to η and equating it
to zero, we get

∞∫

0

v

⎛

⎝c1

ηv∫

0

g(v1)dv1 − c2

∞∫

ηv

g(v1)dv1

⎞

⎠ f (v)dv = 0 (35)

or ∞∫

0
vP(V1 ≤ ηv) f (v)dv

∞∫

0
v f (v)dv

= c2

c1 + c2
. (36)
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It follows from (32), (34), and (36) that the optimum value of η is given by

η∗ = 1

m − k

[(
1 + c2

c1

)1/(k+1)

− 1

]
, (37)

the best invariant decision rule is

uBI = η∗Sk = Sk

m − k

[(
1 + c2

c1

)1/(k+1)

− 1

]
, (38)

and the expected cost, if we use uBI, is given by

Eσ {C(uBI)} = c1(k + 1)

m − k

[(
1 + c2

c1

)1/(k+1)

− 1

]
= c1(k + 1)uBI

Sk
= E{C(1)(η∗)}.

(39)

It will be noted that, on the other hand, the invariant embedding technique [11–22]
allows one to transform equation (25) as follows:

Eσ {C(u)} = 1

σ

⎛

⎝c1

u∫

0

(u − yk+1)gσ (yk+1)dyk+1 +c2

∞∫

u

(yk+1 − u)gσ (yk+1)dyk+1

⎞

⎠

= 1

sk

⎛

⎝c1

u∫

0

(u − yk+1)v2(m − k) exp

(
−v(m − k)yk+1

sk

)
1

sk
dyk+1

+ c2

∞∫

u

(yk+1 − u)v2(m − k) exp

(
−v(m − k)yk+1

sk

)
1

sk
dyk+1

⎞

⎠ . (40)

Then it follows from (40) that

E{Eσ {(C(u)}} =
∞∫

0

Eσ {C(u)} f (v)dv = Esk {C (1)(u)}, (41)

where

Esk {C (1)(u)} = k

sk

⎛

⎝c1

u∫

0

(u − yk+1)g
•
sk

(yk+1)dyk+1

+ c2

∞∫

u

(yk+1 − u)g•
sk

(yk+1)dyk+1

⎞

⎠ (42)
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represents the expected predictive cost for the (k + 1)th period. It follows from (42)
that the cost per the (k + 1)th period is reduced to

C (2)(u) =

⎧
⎪⎪⎨

⎪⎪⎩

c1
u − Yk+1

sk/k
if Yk+1 ≤ u,

c2
Yk+1 − u

sk/k
if Yk+1 > u,

(43)

and the predictive probability density function of Yk+1 (compatible with (25)) is
given by

g•
sk

(yk+1) = (k + 1)(m − k)

[
1 + (m − k)

yk+1

sk

]−(k+2) 1

sk
, yk+1 ≥ 0. (44)

Minimizing the expected predictive cost for the (k + 1)th period,

Esk {C (2)(u)} = k

sk

⎛

⎝c1

u∫

0

(u − yk+1)g
•
sk

(yk+1)dyk+1

+ c2

∞∫

u

(yk+1 − u)g•
sk

(yk+1)dyk+1

⎞

⎠ , (45)

with respect to u, we obtain uBI immediately, and

Esk {C (2)(uBI)} = c1(k + 1)

m − k

[(
1 + c2

c1

)1/(k+1)

− 1

]
. (46)

It should be remarked that the cost per the (k + 1)th period, C (2)(u), can also be
transformed to

C (3)(η) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1k

(
u

sk
− Yk+1

sk

)
if

Yk+1

sk
≤ u

sk

c2k

(
Yk+1

sk
− u

sk

)
if

Yk+1

sk
>

u

sk

=
⎧
⎨

⎩

c1k(η − W ) if W ≤ η

c2k(W − η) if W > η,

(47)
where the probability density function of the ancillary statistic W = Yk+1/Sk (com-
patible with (25)) is given by

g◦(w) = (k + 1)(m − k) [1 + (m − k)w]−(k+2) , w ≥ 0. (48)
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Then the best invariant decision rule uBI = η∗Sk, where η∗ minimizes

E{C (3)(η)} = k

⎛

⎝c1

η∫

0

(η − w)g◦(w)dw + c2

∞∫

η

(w − η)g◦(w)dw

⎞

⎠ . (49)

Comparison of statistical decision rules. For comparison, consider the maximum
likelihood decision rule that may be obtained from (29),

uML =
�
σ

m − k
ln

(
1 + c2

c1

)
= ηML

j Sk, (50)

where
�
σ = Sk/k is the maximum likelihood estimator of σ ,

ηML = 1

m − k
ln

(
1 + c2

c1

)1/k

. (51)

Since uBI and uML belong to the same class,

C = {u : u = ηSk}, (52)

it follows from the above that uML is inadmissible in relation to uBI.
Numerical example. If, say, k = 1 and c2/c1 = 100, we have that

Rel.eff.{uML, uBI, σ } = Eσ {C(uBI)}/Eσ {C(uML)} = 0.838. (53)

Thus, in this case, the use of uBI leads to a reduction in the expected cost of about
16.2 % as compared with uML. The absolute expected cost will be proportional to σ

and may be considerable.
Setup Model (s-S Policy). The present model differs from the one in (24) in that
a setup cost c is incurred. Using the same notation, the total expected cost per the
(k + 1)th period is

Eσ {C̄(u)} = c + Eσ {C(u)}

= c + 1

σ

⎛

⎝c1

u∫

0

(u − yk+1)gσ (yk+1)dyk+1 + c2

∞∫

u

(yk+1 − u)gσ (yk+1)dyk+1

⎞

⎠ .

(54)

As shown above, the optimum value u∗ must satisfy (28). Because c is constant, the
minimum value of Eσ {C̄(u)} must also occur at u∗. In this case, S = u∗, and the
value of s(<S) is determined from the equation
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Eσ {C(s)} = Eσ {C̄(S)} = c + Eσ {C(S)}, s < S. (55)

This equation yields another value s1(>S), which is discarded.
Assume that q is the amount on hand before an order is placed. How much

should be ordered? This question is answered under three conditions: (1) q < s; (2)
s ≤ q ≤ S; (3) q > S.
Case 1 (q < s). Because q is already on hand, its equivalent cost is given by
Eσ {C(q)}. If any additional amount u − q (u > q) is ordered, the corresponding
cost given u is Eσ {C̄(u)}, which includes the setup cost c, and we have

min
u>q

Eσ {C̄(u)} = Eσ {C̄(S)} < Eσ {C(q)}. (56)

Thus, the optimal inventory policy in this case is to order S − q units.
Case 2 (s ≤ q ≤ S). In this case, we have

Eσ {C(q)} ≤ min
u>q

Eσ {C̄(u)} = Eσ {C̄(S)}. (57)

Thus, it is not advantageous to order in this case and u∗ = q.
Case 3 (q > S). In this case, we have for u > q,

Eσ {C(q)} < Eσ {C̄(u)}. (58)

This condition indicates that, as in Case 2, it is not advantageous to place an order—
that is, u∗ = q.

The optimal inventory policy, frequently referred to as the s − S policy, is sum-
marized as

if q < s, order S − q,

if q ≥ s, do not order.
(59)

The optimality of the s − S policy is guaranteed because the associated cost function
is convex.
Parametric uncertainty. In the case when the parameter σ is unknown, the total
expected predictive cost for the (k + 1)th period,

Esk {C̄ (1)(u)} = c + Esk {C (1)(u)}

= c + k

sk

⎛

⎝c1

u∫

0

(u − yk+1)g
•
sk

(yk+1)dyk+1 + c2

∞∫

u

(yk+1 − u)g•
sk

(yk+1)dyk+1

⎞

⎠ ,

(60)

is considered in the same manner as above.
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4 Conclusion and Future Work

In this paper, we develop a new frequentist approach to improve predictive statis-
tical decisions for inventory control problems under parametric uncertainty of the
underlying distributions for the cumulative customer demand. Frequentist proba-
bility interpretations of the methods considered are clear. Bayesian methods are not
considered here. We note, however, that, although subjective Bayesian prediction has
a clear personal probability interpretation, it is not generally clear how this should be
applied to non-personal prediction or decisions. Objective Bayesian methods, on the
other hand, do not have clear probability interpretations in finite samples. For con-
structing the improved statistical decisions, a new technique of invariant embedding
of sample statistics in a performance index is proposed. This technique represents
a simple and computationally attractive statistical method based on the constructive
use of the invariance principle in mathematical statistics.

The methodology described here can be extended in several different directions
to handle various problems that arise in practice. We have illustrated the proposed
methodology for location-scale distributions (such as the exponential distribution).
Application to other distributions could follow directly.
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